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Abstract

We propose a new methodology to describe and detect periods of transient market ineffi-

ciency during which the traded price displays a V-shape. Our characterization is consistent

with the forensic definition used by the SEC in legal charges for market access rule violation

causing flash crashes. We show that (i) recent years have seen an increase in the frequency
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and severity of mini-flash crashes, and (ii) transient inefficiencies are not necessarily short-

lived, and imply significant wealth redistribution when coupled with frictions such as a supply

shock.

JEL classification: G14, G12, C58;
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1 Introduction

Inefficient markets and market fragility are a threat to investors. However, it is hard to determine

when, and for how long, market prices are away from fundamentals. A now well-recognized form

of market inefficiency first hit the headlines with the Flash Crash of May 6, 2010 in the U.S. stock

market. This type of inefficiency is characterized by a price that overshoots past fundamental

values, and then rebounds back, tracing a V-shape. Existing methods to detect such type of

inefficiency rely on the volatility of traded prices. However, as we argue, a price movement in a

highly volatile market can be entirely efficient; in the same way as low volatility prices can face

disruption.

In this paper, we show there is additional information hidden in the traded price dynamics. We

present a strategy to decrypt such information based on the distinction between a “drift move”

(due to price trends) and a “variance move” (due to price uncertainty). Among the “drift move”

cases, we are able to detect sudden trend changes, which is our formal definition of a V-shape. We

then offer several empirical applications to show how our method can contribute to the orderly

functioning of financial markets. We further highlight the policy implications of our results in the

current regulatory framework.

Figure 1 frames our intuition. The rows of Figure 1, from top to bottom, exhibit the expected

price, price volatility, and price drift respectively. The first two columns (Model 1 and Model

2) represent well-known forms of tail risk, that is price jumps and volatility spikes (see Section

2 for a thorough discussion). We differentiate from the existing literature on tail risk (see, e.g.,

Bollerslev and Todorov, 2011; Kelly and Jiang, 2014; Weller, 2019) by focusing on Model 3, where

the expected price change may not completely reflect the change in the fundamental price. As it

is clear from Figure 1, a V-shape is characterized by a discontinuity in the sign of the price drift,

which is the distinctive feature that differentiates it from the efficient ups-and-downs of erratic

prices. Using this novel insight, we develop the V-statistic, a new tool that can reveal the inefficient

part of the price change, that is the overshooting unrelated to fundamentals. The focus on the

drift proves to be crucial to set our V-statistic apart from existing measures of distress, typically
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Figure 1: Stylized representation of three idealized markets hit by news.
Left column: perfectly efficient market. Center column: quasi-efficient market.
Right column: inefficient market. Each case is characterized by the expected
price (top row), price volatility (center row) and price drift (bottom row).
Precise formulations of the models are provided in Section 4. Model 3 displays
what we call a V-shape, that is a discontinuity in the sign of the price drift.

based on volatility or price jumps. We show that this modelling difference is extremely effective in

capturing genuine market dysfunctions and price anomalies, and we clarify the relation between

V-shapes and market efficiency by the light of standard economic models of price formation.

Our econometric strategy, that builds on the technical contribution of Christensen, Oomen, and

Renò (2021) (henceforth, COR), is purposely designed to capture V-shapes. The test introduced

by COR is indeed meant to detect “drift bursts”, that is abnormally steep trends. We follow their

logic that associates financial distress with drift explosions. However, the V-statistic proposed in

this paper allows to disentangle the case of a rapid change to a new price level (“gradual jump”, in

the terminology of Barndorff-Nielsen et al., 2008) with that of a V-shaped (for transient crashes)

or a Λ-shaped (for transient surges) price pattern.

In the data, V-shapes come in different durations, and in this paper we provide a set of empirical
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applications that encompasses events that last only fractions of seconds, like mini-flash crashes

(using the terminology of Biais and Foucault, 2014), to the Flash Crash of May 6, 2010, with a

duration of about 30 minutes, to the auction cycle in bond markets (Lou et al., 2013), which can

last several hours.

In our first application, we analyze regulatory charges against financial intermediaries for causing

mini-flash crashes. Our measure reinforces and complements the Securities and Exchange Com-

mission (SEC) evaluation, and proves to be a unique and reliable tool for detecting such events.

In particular, we prove that our econometric definition of a mini-flash crash matches the forensic

definition used by the SEC in (successful) legal charges against financial intermediaries which, in

the SEC words, “harmed the integrity of trading on the securities market” (U.S. Securities and

Exchange Commission, 2016). We exploit the intraday resolution of our measure and extend the

analysis to the U.S. stock market in the years 2013-2020. We show that mini-flash crashes in-

creased over time, and we relate them to a persistent increase in non-fundamental volatility and

to deteriorated liquidity conditions.

Next, we analyze two iconic events. The first one is the eponymous Flash Crash of May 6, 2010.

There is strong consensus on the fact that the whole U.S. stock market was inefficient in that

day (see, e.g., Madhavan, 2012; Kirilenko et al., 2017, and Menkveld and Yueshen, 2019). This

event was indeed triggered by a huge, non-fundamental selling trade in the E-mini futures market

(CFTC and SEC, 2010). Shocking occurrences like this shed light on a market vulnerability

that now appears to be endemic to all financial markets (Christensen, Oomen, and Renò, 2021;

Golub, Keane, and Poon, 2017; Laly and Petitjean, 2020). We show that the V-statistic provides

a highly significant signal of price inefficiency on the Flash Crash day. Then, as a counterfactual,

we analyze the U.S. stock market during the first wave COVID-19 pandemic. After the news

about rising COVID-19 cases spread out, the market rapidly collapsed and then recovered. The

apparent V-shape in the traded price data is however not confirmed as a significant V-shape by

our test, suggesting that prices during the first pandemic wave incorporated available information

efficiently.

Finally, we demonstrate that our methodology can be used to detect longer-lived V-shapes caused
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by well-known price anomalies. The event we study is the May 2018 crash in the Italian bond

market. Our econometric procedure shows that Italian sovereign bond prices deviated abnormally

from an efficient statistical fluctuation during the event. The inefficiency ranged several hours,

and can be explained by the joint effect of the presence of a large Treasury auction held on May

30 issuing more than 6 billion euros of medium and long-term bonds, and of political turmoil due

to a concurrent change of cabinet. Using a regime-switching model, we estimate that, during the

auctions of May 30, about 0.45 billion euros were transferred from the Italian Treasury to primary

dealers. The existence of an auction premium (or auction cycle) is well established and rationalized

(Lou et al., 2013), and it represents an example of market anomaly that can give rise to a V-shape.

In our specific case, what is striking is the size of the wealth transfer, which is equivalent, in a

single day, to the whole premium paid by the U.S. Treasury to primary dealers in one year. We

also document that the V-shape was associated with increased volatility and deteriorated liquidity

conditions that persisted for several months afterwards, as predicted by existing theories of the

auction cycle.

On a policy angle, our findings are important for regulators. In the July 2019 Financial Stability

Report, the Bank of England defines a flash crash as a “ large and rapid change in the price of an

asset that does not coincide with – or in some cases substantially overshoots – changes in economic

fundamentals, before typically retracing those moves shortly afterwards” (Bank of England, 2019).

As early as in U.S. Securities and Exchange Commission (2010), the SEC noted that short-term

price swings can benefit short-term market traders against long term investors. The V-statistic

constitutes a critical step towards the rigorous detection of genuine flash episodes. More broadly,

this kind of inefficiency has detrimental consequences for financial stability. Financial stability

can indeed be defined as the “ability to facilitate and enhance economic processes, manage risks,

and absorb shocks” (Schinasi, 2004). As a matter of fact, a V-shape is a prominent signature of

disrupted market, a non-fundamental risk and a shock which is not absorbed immediately. A

market exposed to this kind of fragility (in the Allen and Gale, 2004 sense) can be inefficient for

a worryingly long time. This paper contributes to this debate by describing a prolonged V-shape

with huge financial stability implications in a central market (Italian sovereign bonds), and its
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aftermaths in terms of inefficiency, volatility, illiquidity and wealth redistribution.

We relate to the vast economic theory of price formation with frictions leading to market anomalies

such as overreaction or price cycles. Several explanations are indeed offered in the literature for

the presence of transient price inefficiencies, typically generated by the strategic interaction of

traders with different objectives in a frictional environment. Frictions considered by theoretical

papers that may lead to a V-shape include immediacy costs, asymmetric information, anticipated

supply shocks, slow moving capital and market fragmentation.

One celebrated example of a mechanism producing a V-shape is presented in Grossman and Miller

(1988), who predict a large and localized price decline (and subsequent reversal to the initial price

level) in the presence of selling pressure looking for immediacy. The price decline of their model

is proportional to the trade size and inversely proportional to the liquidity of the market. This

simple mechanism leading to a V-shape can be exacerbated by co-existing frictions. Bernardo and

Welch (2004) show that the fear of future liquidity shocks can induce traders to liquidate their

positions during a run; Brunnermeier and Pedersen (2005) show that predatory buyers could follow

the initial sell orders to push the price downward inefficiently in an illiquid market; Huang and

Wang (2009) show that market monitoring costs can prevent agents to synchronize trades, giving

rise to abnormal selling and large and inefficient price declines; Duffie (2010) describes V-shapes

ranging several days, for deleted stocks, secondary equity issuances, U.S. Treasury and corporate

bond issuances, and even ranging few months for mutual funds experiencing large redemptions;

Cespa and Foucault (2014) point at liquidity spillovers, showing that feedback liquidity loops can

generate transient crashes; Colliard (2017) shows that flash crashes can be exacerbated by the

presence of traders with superior information on liquidity; Menkveld and Yueshen (2019) show

that cross-arbitrage may break during a severe liquidity shock, and point at fragmented markets

as a potential source of flash crashes; and Lou et al. (2013), as discussed, show the presence of

an auction cycle of bond prices around Treasury auctions, due to risk-aversion of primary dealers

and limited capacity of arbitrageurs. We complement this literature by providing a new reliable

measure of market distress that can be used in event studies to shed empirical light on economic

theory.
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The paper is organized as follows. In Section 2, we discuss how periods of transient market

inefficiency are better identified by looking at price drifts instead of volatility or jumps, and we

provide our definition of a V-shape. In Section 3 we introduce the V-statistic. Section 4 contains

results on simulated data meant to illustrate the size and power of the V-statistic under the null

and the alternative. Section 5 contains the empirical applications. Section 6 concludes.

2 V-shapes as a form of transient market inefficiency

The definition of “market efficiency” is broad and this section is devoted to specify a formal

definition of a V-shape, which form of market inefficiency V-shapes are capturing, and the role

played by price drift in this framework. Indeed, the common practice to detect financial distress

has been to look at price dispersion measures, such as volatility (Christensen et al., 2014; Brogaard

et al., 2018; Bates, 2019) and price jumps (Bates, 2019; Calcagnile et al., 2018). We argue that

sustained volatility or jumps are actually compatible with efficient markets. Drift is instead a

much more reliable signal of potential market inefficiency.

To clarify and formalize this intuition, we introduce the following parametric model for the traded

logarithmic price pt:

pt︸︷︷︸
traded price

= pet︸︷︷︸
efficient price

+ ft︸︷︷︸
frictional component

+ zt︸︷︷︸
random component

, (2.1)

where pet is the (logarithmic) efficient price, or fundamental price (for example, this may be defined

as the expected value of future cash flows properly adjusted for risk); ft is a market-dependent

adjustment that pollutes the efficient price because of frictions;1 and zt is a random shock which

deviates the traded price from the expected price, whose dynamics is given by:

dzt = σtdWt, (2.2)
1In Section 3 we will add a complementary form of friction, in the form of a non-differentiable shock εt to the

traded price, which is typically called market microstructure noise (Diebold and Strasser, 2013), without, again,
neither changing the logic below nor impairing the econometric analysis.
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with Wt being a standard Brownian motion. The coefficient σt is the standard deviation of shocks

to returns. In model (2.1), pet , ft and σt are thought to be deterministic functions, an assumption

which is made only for ease of exposition here, and relaxed in the model (3.1) used for formal

econometric analysis. The expected log-price pt is given by

pt = pet + ft .

We assume that pt is differentiable. The drift in this model is then defined by:

µt =
∂pt
∂t

. (2.3)

We now analyze different forms of ft in a situation in which new fundamental information about

an asset hits the market. Figure 1 describes three cases. The rows of Figure 1, from top to

bottom, exhibit the expected price, the volatility σt, and the drift µt, as defined above. Precise

mathematical formulations of the three models are provided in Section 4, where we study synthetic

data produced by these models.

The left column represents what we call the perfectly efficient market (Model 1). As the news

hits, the expected price incorporates the corresponding change immediately and jumps to the new

fundamental level (top-left panel). Typically, the expected price change comes with higher uncer-

tainty, that is price volatility instantaneously soars (center-left panel), and then slowly declines

as uncertainty about the new fundamental level dissipates away. Soaring volatility and jumps are

thus totally consistent with a definition of an efficient market in which the traded price and the

efficient price are the same. The drift is zero (bottom left-panel), since in the presence of a price

jump both the left-limit and the right-limit of the first derivative of the expected price are zero.

Thus, in this idealized setting, drift is unaffected by the fundamental news.

The center column represents what we call the quasi-efficient market (Model 2), in which the

expected price smoothly declines to the new fundamental level instead of jumping to it instanta-

neously. In this case, when the new information arrives, it still gets embedded in the expected
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price, which frictionally (ft 6= 0) decreases to the new fundamental level through a “gradual jump”

(Barndorff-Nielsen et al., 2008). Accordingly, volatility smoothly spikes, and then declines. A

negative drift appears whose magnitude depends on the speed of reaction of the price to the news.

This drift is always negative during the expected price path to the new fundamental level.

The right column represents what we call the inefficient market (Model 3), where the expected

price overshoots the efficient price and displays a V-shape. This is the kind of “rogue frictional

market” we want to detect. The shape that the price volatility displays may be similar to that

of the quasi-efficient case. In Figure 1, the stylized volatility we show spikes even more than in

quasi-efficient case because it is common to observe sustained volatility in association with crashes.

In Section 3, we even allow volatility to explode to infinity, without compromising our reasoning.

The cusp in the expected price is associated with a drift coefficient which gets first negative, and

then positive immediately after in a discontinuous fashion. Thus, a natural definition of a V-shape

ought to be drift-based, as in the following.

Definition 1. The traded logarithmic price pt has a V-shape at the time point τ if

lim
t→τ−

µt < 0, and lim
t→τ+

µt > 0. (2.4)

The signs are switched for a Λ-shape. When µt is a stochastic process, as we will assume in Section

3, the left and right limits defining a V-shape should be interpreted as almost sure.

The flash crash of May 6, 2010, displayed in Figure 6, is an example of a V-shape in which

there were no fundamental news hitting the market. Model 3 has been widely described by both

the empirical and theoretical literature. Examples of typical distressed events in which the asset

price follows a V-shaped trajectory are reported, for example, in Bellia et al. (2019), Figure 2, in

Christensen et al. (2021), Figure 1, in Kirilenko et al. (2017), or described in Brunnermeier and

Pedersen (2005), Figure 2. We argue that volatility cannot really tell apart Model 2 and Model 3.

Volatility can spike (and even explode to infinity) in the inefficient setting, in the quasi-efficient

setting, and even in the perfectly efficient setting. High volatility cannot be uniquely associated

to a distressed state. Thus, it does not appear to be a reliable indicator of inefficiency. Neither
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jumps can help. Indeed, price jumps – either sudden, as in Model 1, or gradual, as in Model 2 –

are natural in efficient or quasi-efficient markets when news come in.

Some comments are in order. First, Model 2 and Model 3 in Figure 1 are both transiently inefficient

in the sense of Fama (1970). However, V-shapes are associated with Model 3 only. In other words,

V-shapes can capture overreaction but not underreaction. Second, alternative definitions of market

efficiency are possible and vastly analyzed in the literature. For example, if we think at market

efficiency as reaching the fundamental price in the long-run, all the three markets represented in

Figure 1 could be considered to be efficient. V-shapes are thus capturing transient overreaction.

Third, we are assuming here that the market is hit by at most one piece of news at a time.

Multiple news in a short time sequence with opposite impact may generate a pattern similar to

that of Model 3 in an efficient market. However, in the case of multiple news, drift should not

explode (which will be a necessary condition to detect a V-shape in Section 3). Moreover, the

high-frequency setup of our applications makes the occurrence of several concurrent news unlikely.

Finally, both forms of market inefficiency analyzed here (Model 2 and 3) are necessary for the

market to be efficient according to an alternative definition of market efficiency provided in Fama

(1970), that is the impossibility of profitable trading systems based on the available filtration.

The impossibility of profitable trading strategies could be preserved if both Model 2 and Model

3 patterns are displayed. Indeed, if we knew that market inefficiencies were only of the form of

Model 2, trend following strategies would be profitable; while if we knew that market inefficiencies

were only of the form of Model 3, contrarian strategies would be profitable. Thus, both forms are

necessary to the ecosystem of financial markets to prevent statistical arbitrage.

3 The V-statistic

After the discussion about the definition and the interpretation of V-shapes in terms of market

efficiency, we now provide a formal econometric procedure for their identification.

We work with a traditional continuous-time model encompassing virtually all popular models in

financial economics and broadening them to allow for an explosive drift and volatility. We enrich
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the model (2.1) by assuming that the log-price process pt, observed in the interval [0, 1] , is driven

by the equation:

dpt = µt dt+ σt dWt + dJt︸ ︷︷ ︸
traditional semimartingale

+
c−1,t

(τV − t)α
1{t<τV} dt+

c+
1,t

(t− τV)α
1{t>τV} dt︸ ︷︷ ︸

drift burst

+
c2,t

|τV − t|β
dWt︸ ︷︷ ︸

volatility burst

, (3.1)

where µt and σt are bounded drift and volatility respectively, Wt is a Brownian motion, Jt is a

jump process, and τV ∈ ]0, 1[ is the explosion time point. We allow for different drift explosion

coefficients c−1,t and c+
1,t before and after the explosion point τV . For ease of exposition, we use

the same rate of explosion α ∈ [0, 1[ before and after, a harmless assumption that can be relaxed

without altering our results. We also allow for explosion in volatility with rate β ∈ [0, 1/2[ . The

technical conditions that the coefficients in Eq. (3.1) should meet are extremely mild and spelled

out in Assumption 1 in Appendix A. We note that an infinite drift and volatility at point τV is

still consistent with pt being a semi-martingale (Jacod and Protter, 2012). Indeed, what matters

is that these quantities can be integrated over finite intervals including the explosion point, which

is warranted by our assumptions on the coefficients α and β.

We are interested in detecting V-shapes as defined in Definition 1. In this respect, our null (H0)

and alternative (H1) hypothesis are formulated as follows:

H0 : c± = c−1,τV · c
+
1,τV

= 0 or c± 6= 0 and α− β ≤ 3/4.

H1 : c± 6= 0 and α− β > 3/4.

Thus, under the null we can have drift explosion, but either at the left or at the right of the

explosion point, not at both (c± = 0); or we can have explosion at both sides (c± 6= 0), provided

that the drift explosion is not “too strong” with respect to the explosion in volatility (α−β ≤ 3/4).

Under the alternative, we do have drift explosion both at the left and at the right of the explosion

time, and the explosion is strong enough with respect to the explosion in volatility. The model

allows for explosion in volatility or jumps at the same time of the explosion in the drift both under

the null and the alternative.
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In Definition 1 in Section 2 we did not require the drift to explode to define a V-shape, but just to

change sign discontinuously. This apparent disconnect is due to the fact that, for the continous-

time semi-martingale (3.1), it is impossible to estimate the sign of the drift consistently (Bandi,

2002; Kristensen, 2010) unless it explodes. Indeed, estimation of µt in Eq. (3.1) is jeopardized

by the Brownian component. This is however empirically not restrictive, since in small samples

an exploding drift in continuous time should be interpreted just as a “large drift”, as usually done

with asymptotic theory. Alternatively, one may interpret our econometric procedure as a way to

detect a subset of V-shapes as defined in Definition 1, and precisely the subset in which the change

in the drift sign is accompanied by explosion.

To test H1 versus H0 at a given time point τ , we propose to use the V-statistic, defined as:

Vτ,n =
√
hn · T+

τ,n · T−τ,n, (3.2)

where we use a sample of n + 1 log-price observations p0, . . . , pn observed at times t0, . . . , tn

satisfying Assumption 3 in Appendix A, and

T−τ,n =

√
hn
K−2

µ̂−τ,n
σ̂−τ,n

, (3.3)

where

µ̂−τ,n =
1

hn

n∑
i=1

K−
(
ti−1 − τ
hn

)
(pi − pi−1) , for τ ∈ (0, 1] , (3.4)

is a localized estimator of the drift, and

σ̂−τ,n =

(
1

hn

n∑
i=1

K−
(
ti−1 − τ
hn

)
(pi − pi−1)2

) 1
2

, for τ ∈ (0, 1] , (3.5)

is a localized estimator of the volatility. The T+
τ,n statistics is defined accordingly as

T+
τ,n =

√
hn
K+

2

µ̂+
τ,n

σ̂+
τ,n

, (3.6)

with µ̂+
τ,n and σ̂+

τ,n computed as in Eqs. (3.4) and (3.5) withK−(·) replaced by the right-sided kernel
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K+(·), that is K+(x) = 0 when x ≤ 0. In equation (3.2), hn is a bandwidth parameter measuring

the extent of the localization, and K−(·) is a suitable left-sided kernel, that is K−(x) = 0 when

x ≥ 0, and K−2 =
∫

R(K−(x))2 dx is a kernel-specific constant. The properties of the bandwidth

and the kernel are specified in Assumption 2 in Appendix A.

From a statistical point of view, the statistic T−τ,n can be interpreted as the ratio between the part

of the log-return, between τ − hn and τ , due to the drift and the part due to volatility. It can

also be interpreted as the inverse of the left-sided local coefficient of variation (CV), appropriately

scaled and where the mean and the standard deviation are estimated nonparametrically. The

bandwidth hn has thus the important interpretation of being proportional to the duration of the

V-shape, that is of the transient market inefficiency. The interpretation of T+
τ,n is the same as that

of T−τ,n, now for the log-return between τ and τ + hn.

The V-statistic Vτ,n has thus a simple interpretation. When positive, it identifies a drift having

the same sign before and after τ , that is a trending price. When negative (the case we are

interested in), it identifies a swing, that is a time-point τ in which the drift changes sign and the

price experiences a V-shape or a Λ-shape. The scaling by
√
hn is needed to disentangle the case

in which both T−τ,n and T+
τ,n explode, so that the statistic diverges to infinity, from the gradual

jump case in which only one of the two t-tests explodes, and the scaling annihilates the statistic

asymptotically. We can indeed prove the following:

Theorem 1. Assume X is driven by model (3.1). Under Assumption 1, 2 and 3 in Appendix A,

if the following conditions are met:

1. α− β > 3/4;

2. 1
n2−2αhn

→ 0 as n→∞;

3. c± = c−1,τV · c
+
1,τV
6= 0,

then, as n→∞, VτV ,n → sign(c±)∞. If instead c± = 0, then as n→∞, VτV ,n → 0.

Proof. See Appendix A. 2
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Theorem 1 shows that the V-statistic can formally capture two-sided drift explosions (when

c± 6= 0), diverging to infinity, when three sufficient conditions are met: existence of an exploding

drift both at the left and at the right of the exploding point (c± 6= 0), sufficiently fast drift ex-

plosion (α − β > 3/4) and sufficiently large bandwidth hn (n2−2αhn → ∞). If one of these three

conditions is not met (for example, if the explosion is only one-sided), the statistic will go to zero

(or be bounded at the boundaries of the conditions, e.g. when α−β = 3/4). When c± is negative,

we have a V-shape or a Λ-shape (when T−τ,n < 0 and T+
τ,n > 0, or when T−τ,n > 0 and T+

τ,n < 0,

respectively). When c± is positive, we have a price trend.

Since in practice it is natural to test on multiple points, it makes sense also to define aggregate

statistics. When looking for V-shapes, we will look at the minimum value of the V-statistics as

computed on several points (τ1, . . . , τm) as:

MinVτ1,...,τm,n = min
i=1,...,m

V±τi,n. (3.7)

Finally, with the intention to apply this technique to tick-by-tick data, we further enrich the model

with a classical market microstructure noise component, by assuming that the observed log-price

X̃t is given by:

p̃t = pt + εt, (3.8)

where εt satisfies Assumption 4 in Appendix A. The presence of market microstructure noise in

the data is tackled with a combination of pre-averaging (Jacod et al., 2009) and HAC correction

(Andrews, 1991) as in COR, to which the reader is referred to for details.

3.1 Small-sample confidence bands: simulated bootstrap with stochas-

tic volatility

In small samples, how can we separate the two cases of diverging and annihilating Vτ,n? And

how can we obtain confidence bands when aggregating multiple tests, as in Eq. (3.7)? In case

of neither drift nor volatility explosions (c−1,τV = c+
1,τV

= c2,τV = 0), the product T−τ,n · T+
τ,n is
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asymptotically distributed as the product of two independent standard normal variates, that is it

has the distribution of a modified Bessel function of the second kind of order zero (Craig, 1936).2

The asymptotic mean and variance of Vτ,n are still 0 and 1 respectively, and their (two-sided)

95% and 99% confidence limits are 2.18 and 3.60 respectively. Choosing time units such that
√
hn = 1, as we do in the empirical application, these values can be loosely used as a replacement

for traditional confidence limits. However, as our simulations below will show, these values would

be unreliable in practice for realistic data generating processes, and useless against gradual jumps

(when c± = 0 but either c+
1,τV

or c−1,τV is nonzero) and multiple testing biases. Moreover, using the

asymptotic values cannot disentangle one-sided explosions from V-shapes.

For these reasons, the asymptotic values are undersized and we advocate the adoption of a simu-

lated bootstrap to evaluate confidence bands for the Vτ,n and aggregated statistics asMinVτ1,...,τm,n

in Eq. (3.7). The idea of the bootstrap is to compute the distribution of Vτ,n (orMinVτ1,...,τm,n)

on simulations based on the data at hand. Simulations should have zero drift, but still reproduce

the stochastic volatility observed in the data. Attributing all the potential drift observed in the

sample to volatility will generate confidence bands which are automatically robust to stochastic

volatility. In this paper, we use an EGARCH(1,1) model to filter the observed variance, to be used

for simulated bootstrap. The EGARCH(1,1) has two appealing features: it is simple, and it can

reproduce stochastic volatility and the leverage effect. Appendix C describes the implementation

of the bootstrap in detail.

4 Simulations

We test the V-statistic on synthetic data obtained by simulating four models: the first one is a

simple geometric Brownian motion, and the last three are those described in Section 2 (where we

call them perfectly efficient market, quasi-efficient market, inefficient market) and illustrated in

Figure 1. More precisely, the models we simulate in the time span [0, 1] (all units are meant to be
2If c−1,τV = c+1,τV = 0, but c2,τV > 0, that is if there is volatility explosion without drift explosion, the product

T−τ,n · T+
τ,n is still a modified Bessel function but with a larger variance which grows with the volatility explosion

rate β, see Theorem 2 in COR.
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daily, so that the time span represents one day of trading) are:

• Model 0 (Brownian motion): pt = log (P1)

σt = σ0

• Model 1 (price jump): pt = log
(
P1 · I{t≤0.5} + P2 · I{t>0.5}

)
σt = σ0 + (σ1 − σ0)e−(2t−1)/τ1 · I{t>0.5}

• Model 2 (gradual jump with volatility spike): pt = log
(
P1 − P1−P2

1+e−(2t−1)/τ2

)
σt = σ0 + (σ1 − σ0)

(
e−(2t−1)/τ1 · I{t>0.5} + e(2t−1)/τ2 · I{t≤0.5}

)
• Model 3 (V-shape):

pt = log(P1) + 1−α
α

∫ t
0

(
(log(P1)− log(P3)) (1− (−(2s− 1))−α)I{s≤0.5}

+ (log(P2)− log(P3)) ((2s− 1)−α − 1)I{s>0.5}
)
ds

σt = σ0 + (σ2 − σ0)
(
e−(2t−1)/τ1 · I{t>0.5} + e(2t−1)/τ2 · I{t≤0.5}

)
Parameters are set as follows: σ0 = 1% (the baseline daily volatility), σ1 = 2% (the peak of

volatility after the change in the efficient price in Model 1 and 2), τ1 = 1/3 (the decay time of

the volatility), τ2 = 0.05 (the decay time of the price, and the exponential rise time of volatility

in Model 2 and Model 3), α = 0.8 (the explosion rate for drift in Model 3). For Model 3, use

either a heightened volatility at the peak (σ2 = 2.5%) or the same volatility of Model 2 (σ2 = 2%,

in this case we call it Model 3’). The parameter P1 is the starting price, P2 is the final price,

P3 is the lowest reached price and P2 − P3 is the overshooting. We simulate two settings. The

first one has P1 = P3 = 100, and P2 = 98, that is no fundamental news and 2% overshooting in

Models 3 and 3’. In this setting without a fundamental price jump, Model 1 and Model 2 differ

only in the volatility shape before t = 0.5. The second one has P1 = 100, P3 = 98 (2% change in

the fundamental price) and P2 = 96 (2% overshooting in Models 3 and 3’). We generate 10,000

simulations of n = 23, 400 observations (corresponding to 1−second observations in a day with

6.5 hours of trading). We then compute the minimum of the V-statistic and its confidence bands

on each simulation as described in Appendix C. We use exponential kernels and a bandwidth
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Figure 2: We simulate Model 0 (Brownian motion), 1 (price jump), 2 (grad-
ual jump with volatility spike), 3 and 3’ (V-shape). Model 3’ has the drift
of model 3 and the (smaller) volatility of model 2. Panel A: P1 = P3 = 100,
P2 = 98 (no change in the efficient price, 2% overshooting). Panel B: P1 = 100,
P3 = 98, P2 = 96 (2% change in the efficient price, 2% overshooting). The pan-
els show the distributions of the minimum of the V-statistics (3.2) on 10, 000
replications of the four models.

hn = 300 seconds for the numerator, and h′n = 1500 seconds for the denominator, in line with the

empirical application below.

Figure 2 shows the distribution of MinVτ1,...,τm,n on the simulations of the five models. Panel

A reports the distribution in the setting with no news; and Panel B in the setting with news.

Panel A shows that, when there are no news, the distribution of the minimum of the V-statistic

in the simple Brownian motion (Model 0), in Model 1 and in Model 2 (a volatility spike) is

almost identical, while in Model 3 (the V-shape) the distribution is clearly shifted to the left.

The distribution is even more shifted to the left in Model 3’, that is under the alternative with

smaller volatility. The same results are confirmed in Panel B, that is when there is a jump in the

fundamental price. In this case, the distance between the null and the alternative is even more

pronounced, and the distinction between Model 1 (a price jump) and Model 2 (a gradual price

jump) from the simple Brownian motion is virtually immaterial. Figure 2 thus shows two crucial

properties of the V-statistic. The first is that it is able to clearly disentangle the null (Model 0, 1

and 2) from the alternative (Model 3 and 3’). The second is that it is extremely robust to a vast

set of null hypothesis, and in particular to jumps or volatility spikes. It really takes a discontinuity

in the sign of the drift to drive the V-statistic away from the null hypothesis.
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Table 1: Percentage of rejections at 1% and 5% of theMinVτ1,...,τm,n statistic
(3.7), based on 1, 000 bootstrapped simulations with an EGARCH(1,1) model.
Panel A: P1 = P3 = 100, P2 = 98 (no change in the efficient price, 2% over-
shooting). Panel B: P1 = 100, P3 = 98, P3 = 96 (2% change in the efficient
price, 2% overshooting). Model 3’ has the same drift of Model 3 but the (lower)
volatility of Model 2.

Panel A: no fundamental price change, 2% overshooting.

Model 0 Model 1 Model 2 Model 3 Model 3’
Quantile Percentage of rejections

0.1% 0.22 0.21 0.20 42.04 72.05

1% 0.92 0.92 0.91 67.42 89.98

5% 4.50 4.66 4.58 84.47 96.87

Panel B: 2% fundamental price change, 2% overshooting.

Model 0 Model 1 Model 2 Model 3 Model 3’
Quantile Percentage of rejections

0.1% 0.22 0.11 0.15 46.46 68.05

1% 0.91 0.48 0.83 79.49 93.75

5% 4.43 2.48 3.98 93.03 98.85

Table 1 reports the number of rejections at the 0.1%, 1% and 5% confidence level, estimated using

a simulated bootstrap based on the EGARCH(1,1) model, in the two settings. The table shows

that the test is very well sized in both settings, with a slight oversizing in the extreme tail, and

slight undersizing for model 1 in the case with news. Power is extremely good in both settings,

and it increases when the volatility spike is smaller, or when there is fundamental news, or if the

price overshooting is larger (not shown).

Summarizing, our simulation experiments show quite clearly that the V-statistics, and in particular

their minimum, are able to disentangle a V-shape from a random fluctuation accompanied by a

jump or a burst in volatility on synthetic data. The ability of the V-statistic to detect V-shapes

increases when price volatility is lower and when price overshooting is higher. Corroborated by
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these results, we now turn to real financial market data.

5 Empirical applications

The empirical applications we showcase in this section are ordered according to the duration of the

transient inefficiency we capture. We first show the potential of the V-statistic in the detection

of mini-flash crashes, a phenomenon that has recently drawn the attention of researchers and

regulators (see, e.g. Biais and Foucault, 2014 and Laly and Petitjean, 2020). Here, we first use a

forensic benchmark to test the correctness of our specification, that is we investigate the events

involved in the SEC legal actions against financial intermediaries for market access rule violations.

We then study mini-flash crashes in the Google stock and in the SPDR S&P 500 trust exchange-

traded fund (SPY) in the period 2013-2020. Next, we study the Flash Crash of May 6, 2010,

and the COVID-19 crash during the first wave, the former case providing an example of a strong

signal, and the latter providing an example of a price fluctuation that is not recognized by the

V-statistic as a distressed state. The final part of this section is an event study focusing on the

auction cycle in the Italian sovereign bond market and on its redistribution effects.

5.1 Mini-flash crashes

While there is clear indication that mini-flash crashes are a menace to financial markets,3 there

is no widespread consensus on how to define a mini-flash crash yet. We argue that the SEC

legal actions against financial intermediaries for market access rule violations provide an excellent

benchmark to assess the correctness of our specification, and we apply the V-statistic to mini-flash

crashes as determined by regulatory charges against traders or financial intermediaries (the flash

crash of May 6, 2010 in Figure 6 is a prominent example in this category, since the trader that

caused the crash was eventually prosecuted).

On September 26, 2016 the SEC announced that “Merrill Lynch has agreed to pay a 12.5 million
3See, for example, the speech given by Andrew Hauser on January 7, 2021: “Why central banks need new tools

for dealing with market dysfunction”, available at https://www.bankofengland.co.uk/speech/2021/january/
andrew-hauser-speech-at-thomson-reuters-newsmaker.
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penalty for maintaining ineffective trading controls that failed to prevent erroneous orders from

being sent to the markets and causing mini-flash crashes”. The occasions investigated by the SEC

are listed in Table 2.4

Table 2 also shows that the V-statistic is able to detect mini-flash crashes in 12 out of 14 instances.

The two events that are not detected are characterized by extremely thin trading, with the mini-

flash crashes consisting in one or two trades only, see the display of the events in Figure 17 in

Appendix E. Also, the detected timing corresponds exactly with that indicated by the SEC for

all events. Moreover, three stocks (AXE, QLYS and ROI) also display a second flash crash later

on during the same day. The V-statistic detects both events (see again Figure 17 in Appendix E)

and is more negative for the second crash in all the three cases. Thus, our econometric definition

of mini-flash crashes virtually coincides with the forensic definition adopted by the SEC to charge

Merrill Lynch.

Were there additional mini-flash crashes for these stocks? The SEC itself seems to suggest that

this is the case, since the events in Table 2 are defined as “Examples of market incidents that

resulted from erroneous orders that Merrill Lynch sent to the market during the relevant period”

(U.S. Securities and Exchange Commission, 2016).

To detect mini-flash crashes, we adopt an algorithm which complements the V-statistic with a

companion measure which has an immediate economic interpretation. Denote by τV the time

when a significant V-shape is detected using the bandwidth hn, and for this point define the

(standardized) price convexity CτV ,hn as

CτV ,hn =
pτV−hn + pτV+hn − 2pτV√

2hnσ2
τV−hn

, (5.1)

where pt and σ2
t are the logarithmic price and the spot variance at time t respectively. Price

convexity is just the difference of logarithmic returns before and after the V-shape peak, stan-

dardized with the variance at the beginning of the time window. This dimensionless quantity has
4We exclude one event, namely EBND on 4-5 December 2012, since the the first trade of the day was involved,

and the price preceding the event is the prior day’s closing price.
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Table 2: Mini-flash crashes reported by the SEC as evidence of violations
by Merrill Lynch of Section 15(c)(3) of the Exchange Act and Exchange Act
Rule 15c3-5 (“Market Access Rule” or “Rule”). The first three columns report
the stock ticker, the date of the event and the start of the event through
their Height/Depth, as reported by the SEC (U.S. Securities and Exchange
Commission, 2016). The fourth column reports the daily minimum of the V-
statistic, and the fifth column its corresponding p-value, computed by simulated
bootstrap using 5, 000 replication of an EGARCH(1,1) model calibrated each
day. The last column is the location of the minimum of the V-statistics.

Ticker Date Time V-statistics p-value Estimated time
(from SEC) (daily minimum) (%)

ACRE 18-jun-2013 15:58:53-15:58:54 -7.53 0.10 15:58:54.083
APC 17-may-2013 15:59:59-15:59:59 -5.73 0.72 15:59:59.489
AXE 8-mar-2013 11:48:51-11:48:52 -10.44 0.02 12:54:27.323
BCEI 14-may-2013 15:40:05-15:40:06 -13.62 0.02 15:40:06.233
DEO 7-nov-2012 15:45:47-15:45:49 -29.67 0.00 15:45:49.282
GOOG 22-apr-2013 09:37:11-09:37:12 -22.76 0.00 09:37:12.132
GVA 2-jan-2013 11:45:56-11:45:57 -11.02 0.02 11:45:57.826
PCRX 1-feb-2013 15:38:17-15:38:18 -12.61 0.00 15:38:18.182
PLD 11-jun-2013 09:11:48-09:11:48 -4.55 4.68 10:46:47.105
PPG 18-jan-2013 15:00:50-15:00:51 -15.83 0.00 15:00:51.868
QLYS 25-apr-2013 09:35:38-09:35:39 -13.09 0.04 10:15:23.172
ROI 27-nov-2012 09:30:00-09:30:29 -5.85 8.74 10:49:30.909
TYC 19-sep-2012 10:18:38-10:18:39 -24.21 0.00 10:18:39.650
ZBRA 17-jun-2014 15:59:03-15:59:51 -14.66 0.00 15:59:14.029

the same structure of a t-statistic and is clearly related to the V-statistic (3.2), but with a major

difference: in equation (5.1), we standardize with volatility before the peak, not at the peak. It

makes economic sense to define mini-flash crashes as V-shapes with high price convexity.5 We

estimate price convexity using the filtered volatility from the same EGARCH model we use for

the bootstrap, and detect a mini-flash crash if the two following conditions are met:

1. The minimum of the V-statistics with bandwidth hn is significant at the confidence level α;

2. The absolute value of price convexity at the time of the minimum τV is greater than a given

threshold θC .

We apply the V-statistic to data of the Google stock (ticker: GOOG) in 2013 with a bandwidth of
5Using price convexity (5.1) to detect a mini-flash crash only works if we do so after conditioning to the

significance of the V-statistic. The sole statistic (5.1) applied to data unconditionally would not indeed be robust
to jumps and volatility spikes, see e.g. Lee and Mykland (2008) who use a test statistic similar to (5.1) purposely
to detect jumps.
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Figure 3: The three detected mini-flash crashes on the Google stock in 2013
using a bandwidth hn = 10 seconds. In the inset, a zoom around the few sec-
onds around the 40 seconds around the crash. The event displayed in the bot-
tom panel has been used by the SEC in legal charges against Merrill Lynch for
causing mini-flash crashes (U.S. Securities and Exchange Commission, 2016).

hn = 10 seconds and, again, we use simulated bootstrap of an EGARCH(1,1) model to determine

confidence bands. With θC = 10 and α = 1%, we reveal 3 mini-flash crashes, displayed in Figure

3. Out of these three, one (displayed in the bottom panel of Figure 3, on 22 April 2013) has been

used by the SEC for its legal actions (see Table 2).

We do not need to restrict our analysis to flash crashes that span a few seconds only. We apply

our methodology also using hn = 30, 60, 300 seconds, and the number of events detected by our
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algorithm with θC = 5 on the Google stock in 2013 grows to 59 and includes notorious examples

like the “Twitter flash crash” of April 23, 2013, displayed in Figure 15. Figure 18 in Appendix E

shows the 19 detected events at α = 1% confidence level with a price convexity larger than θC = 10

in absolute value. All of these are clear examples of the pervasive presence of flash crashes in stock

data, which reinforces the findings of COR that flash crashes are not isolated events, but rather a

stylized fact of the price dynamics.

Next, we apply the detection technology to SPY from 2013 to 2020. We use again hn =

10, 30, 60, 300 seconds and α = 1%. When using the threshold θC = 5, we detect 240 events

in 8 years, 174 with positive convexity (crashes) and 66 with negative convexity (surges). With

θC = 10, we find 63 instances, (45 crashes and 18 surges).6 The temporal distribution of these

instances is shown in Panel A of Figure 4. We see that the number of these events rose over

the past few years, especially for events with larger price convexity, which is a rather worrying

phenomenon from the perspective of financial stability.7 To the best of our knowledge, this is

the first clear-cut empirical evidence on the conjecture that the number of flash crash instances

increased over recent times. The number of detected events in 2013 is somewhat smaller than that

observed for Google (31 vs 59 respectively), indicating that mini-flash crashes are more likely for

individual stocks than for the index. Panel B of Figure 4 shows the average cumulative return

across these events, which displays exactly the V-shape the test is designed to capture. There is

a clear asymmetry between crashes and surges, with crashes being relatively deeper.

In mini-flash crashes detected by the SEC and used as evidence in legal proceedings, the events

were always associated with abnormal volume. This is the case also for mini-flash crashes in SPY.

Panel C of Figure 4 shows the median traded volume (in millions of U.S. dollars) per second in

the thirty minutes preceding and following the event. We can see a huge spike exactly at the time

when the mini-flash crashes occur, with the volume rising by more than 25 times with respect

to the average level of trading (Panel C of Figure 4 reports the median instead of the average).8

6All the instances with absolute value of price convexity larger than 10 are shown at http://dse.univr.it/hidea/
researchoutput.html.

7The t-statistics of the regression lines in Panel A of Figure 4 are 1.52 for events with price convexity larger
than 5 and 4.03 for events with price convexity larger than 10.

8The difference in trading intensity is strongly statistically significant. The average trading size in SPY in the
period 2013-2020 was $0.90 million dollar per second (we use the same units below). In the second in which we
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Figure 4: Panel A: the number of detected flash crashes in SPY per year,
from 2013 to 2020. Panel B: the average cumulative return around detected
mini-flash crashes in the 30 minutes around the peak. Panel C: the median
traded volume (in U.S. dollars) per second around detected mini-flash crashes
in the 30 minutes around the peak. Panel D: the average volatility (daily units,
percent, estimated from the EGARCH(1,1) model) around detected mini-flash
crashes in the 30 minutes around the peak. In all figures we show averages
with θC = 5 and θC = 10, where θC is the price convexity threshold used for
detection. Namely, we select V-shapes with bandwidths hn = 10, 30, 60, 300,

significant at the 1% level, with |CτV ,hn | =

∣∣∣∣∣pτV−hn+pτV+hn−2pτV√
2hnσ2

τV−hn

∣∣∣∣∣ > θC .

This corroborates the view expressed by the SEC that mini-flash crashes are generated by trading

abnormal sizes. Figure 5 shows how the volume at the second of the peak of a detected flash crash

compares with the unconditional distribution of traded volumes on SPY. Clearly, flash events

detect the peak of the crash, average trading size was $7.96 for events with price convexity larger than 10, with a
t-test for comparison between means of 5.55, and $25.44 for events with price convexity larger than 5, with a t-test
of 1.44. If we include the previous and the next second in the calculation, the average trading size for events with
price convexity greater than 5 becomes $13.02, and the t-test becomes 2.13.
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Figure 5: Estimated probability distributions of logarithmic traded dollar
volume (in U.S. dollars) per second between 9.30 and 16:00 on SPY in the period
2013-2018: unconditional (red-solid line), and conditional to the detection of a
V-shape in that second. For conditional distributions, we select V-shapes with
bandwidths hn = 10, 30, 60, 300, significant at the 1% level, with |CτV ,hn | =∣∣∣∣∣pτV−hn+pτV+hn−2pτV√

2hnσ2
τV−hn

∣∣∣∣∣ > θC . The two distributions are for θC = 5 and θC = 10.

are in the very right tail. This supports the policy of the SEC of preventing the entry of orders

that would exceed appropriate credit or capital thresholds. Indeed, the reason why Merrill Lynch

was charged was “failing to establish to establish pre-trade risk management controls reasonably

designed to prevent the entry of erroneous orders” (U.S. Securities and Exchange Commission,

2016).

Panel D of Figure 4 shows the average volatility around the events, measured with the same

EGARCH(1,1) model used to filter volatility for the bootstrap and for the estimation of price

convexity in Eq. (5.1). The observed behavior of SPY volatility around flash crashes is similar

to that depicted in model 3 in Figure 1. Volatility rises few minutes before the event, and then

declines much more slowly. The effect is stronger with stronger price convexity, and the impact on

price volatility is much more persistent than the impact of the price itself, with volatility remaining

higher than the previous level for longer time.9

9This effect is, again, statistically significant. Comparing the average volatility 15 minutes after and 15 minutes
before the peak of the event, the two-sample mean equality t-test is 3.51 for V-shapes with price convexity larger
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Figure 6: Blue dots: transaction prices for E-mini S&P500 futures on May
6, 2010. Red pentagrams: V-statistics computed using an exponential kernel
and a bandwidth hn = 1000 seconds. Confidence bands for the individual tests
are computed bootstrapping the V-statistics on 50,000 simulations of an E-
GARCH(1,1) process without drift fitted on observed returns. The minimum
of the V-statistics is −24.6, signaling a strong V-shape. The p-value of the
minimum, which we interpret as the probability that the flash crash was due
to a pure volatility move, and thus that the market was not inefficient in that
day, is estimated to be 0.006%.

5.2 The flash crash of May 6, 2010

Here we apply the V-statistic to E-mini S&P500 futures prices recorded on May 6, 2010, that is the

day of the eponymous flash crash. At the bottom of the peak, right before 3 p.m., the V-statistic

reaches the value −24.6, which is strongly significant when compared to its displayed confidence

bands. When we account for multiple testing (as explained in Appendix C), we estimate that the

probability that such a value is reached because of a statistical fluctuation due to volatility is only

around 0.006% (the figure caption provides technical details about the implementation). There is

strong consensus on the fact that the market was inefficient in that day. The V-statistic does its

job in providing a strong signal.

than 5, and 4.15 for V-shapes with price convexity larger than 10.
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5.3 V-shapes during the COVID-19 pandemic?

When the COVID-19 pandemic started in February 2019, the U.S. stock index dropped dramat-

ically and then recovered through 2020, as shown in Figure 7. Can the observed price dynamics

be considered a V-shape?

To answer this question, we apply the V-statistic to all transacted prices of SPY from January 1st,

2019 to August 17, 2020 (see Figure 7). The price nadir was reached on March 23, 2020, at 11:46:11

am (the recorded SPY price was 218.29). We compute the V-statistic precisely at that time. We

use different bandwidths hn ranging from 5 minutes to more than 40 hours. The bandwidths

can be roughly interpreted, as discussed above, as the duration of the state of potential market

inefficiency. For consistency, we apply the V-statistic to the minimum reached by simulations

in the bootstrap procedure. The result is shown in the inset of Figure 7. The V-statistics are

negative, as expected, but not significant. Thus, we cannot conclude that the U.S. stock market

was driven by drift during the turmoil due to the pandemic. This result is consistent with the

market being hit by a huge wave of uncertainty, which translated in enormous volatility in 2020.

This section thus shows an example in which an “apparent V-shape” in the data is not actually

a V-shape (that is a discontinuity in the sign of the price drift) when judged with the formal

statistical procedure we introduce in this paper. On the other hand, the COVID-19 pandemic did

have an adverse effect on the efficiency of the stock market. On SPY, for example, in 2020 we

detect 12 V-shapes with price convexity greater then 10, and the one with the largest convexity

(28.83) was observed on March 12, 2020, during the first wave. However, the flash crashes we

detect are all at high-frequency in nature and not qualitatively different from those in previous

years, and our technology does not allow to conclude that there was market inefficiency over a

longer scale.

5.4 Event study: Italian bonds in May, 2018

While the previous section makes it clear that the phenomenon of flash crashes in financial mar-

kets is endemic and increasing over the last few years, it still remains to discuss whether such
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Figure 7: Traded prices of SPY interpolated to the nearest second for the
sample period considered. In the inset, we show the V-statistics, together
with 1% and 5% confidence bands computed via simulated bootstrap of an
EGARCH model calibrated on the same data, as computed at the instant in
which SPY reaches the minimum price, that is on Mar 23, 2020, at 11:46:11
a.m., for different choices of the bandwidth parameter hn.

dysfunctions reach a scale that threatens financial stability. The event study in this section serves

to this purpose in illustrating an impactful V-shape in the Italian sovereign bond market in May,

2018. The choice of this specific event is not accidental. First, the Italian bond market, one of

the largest in the world (the nominal size of the Italian public debt being roughly 10% of the U.S.

one), is central to the global economy. Second, our analysis focuses on the auction cycle, that is

on the price decline and subsequent rise typically observed when an anticipated supply shock (the

auction) hits the bond market (Lou et al., 2013; Sigaux, 2020). The auction cycle is an example of

market inefficiency (in the sense that the price drifts away temporarily from fundamentals because

of frictional reasons) of the type illustrated in Section 2, and originated by economic forces which

are different from those originating the flash crashes analyzed in the previous section.
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Figure 8: Tick-by-tick transaction prices (clean price) observed in the MOT
(secondary market) for five representative Italian bonds. The dashed-red line
is May 29, 2018.

5.4.1 Prices, volatility, volume and V-statistic

Figure 8 shows the tick-by-tick transaction prices of selected Italian government bonds in 2018.10

The figure highlights the extreme price movement that occurred on May 29. The observed pattern

is consistent with that shown in the top-right panel of Figure 1.

For each bond, we estimate daily realized volatility (RV), that is the sum of squared 5-minute

intraday returns. For this computation, prices are sampled on the 5-minute grid using the last

observed transaction. Figure 9 shows the square root of daily RV for the instruments considered

in Figure 8 (given the limited number of transactions, we exclude the inflation-linked BTPi from

this plot). The RV paths have a marked spike on May 29, with a transient component that lasts

a couple of months after the price crash. A similar long-term impact on volatility was observed

after the flash crash of May 6, 2010 (Boulton et al., 2014). The price volatility dynamics of the

five sovereign bonds is visually compatible with that represented in both the middle and right
10These bonds represent the spectrum of all available Italian bonds: BTPs are fixed rate bonds, CCTs are floating

rate bonds and BTPis are inflation linkers. Appendix D provides details about the data used for the analysis in
this section, as well as the macroeconomic background during the crash.
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Figure 9: Square root of daily five-minutes realized volatility (RV) for four
representative Italian bonds sampled in the MOT. The dashed-red line is May
29, 2018.

columns of Figure 1, and thus it does not unequivocally signal the presence of market inefficiency.

The daily traded volumes of the five assets, showcased in Figure 10, show an increase around

the week of May 29, 2018 which is similar to that observed around flash crashes (Figure 4). The

number of transactions, shown in the inset of the same figure, also peaks, and even more than

volume itself.

Figure 11 reports the daily minimum of the V-statistics on selected bonds. As expected, this

statistic is largely negative on May 29 and statistically significant. The figure reports the confi-

dence bands for the BTP-1nv23 only, showing that for this instrument the V-statistic is close to

the 1% confidence limit. The p-values for the minimum of the V-statistics, estimated by simulated

bootstrap (see Section 3.1) are 1.5%, 2.4%, 1.8% for the fixed-rate bonds and 9.8% for the floating

rate bond. It is also interesting to note the positive peak of the V-statistics in mid-May, which,

according to the theory, is a signal of strong trend. In light of the discussion in Section 2 and

Section 3, this result delivers strong statistical evidence for an inefficient market on May 29.
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trading day for the same five bonds. The dashed-red line is May 29, 2018.

Commenting on the crash, Financial Times11 pointed at extreme volatility caused by a deteriora-

tion of market liquidity, questioning the proper functioning of the market. The V-statistics show

that the crash was not actually due to volatility, but to drift. The distinction between a volatility

move and a drift move, as argued above, is not immaterial. Indeed, large volatility is possible even

in an efficient and perfectly liquid market. A V-shape has instead to be associated with distress,

that is with prices pushed away from fundamentals because of market frictions (in this case, the

auction cycle).

5.4.2 Redistribution effects

The Italian Treasury held auctions on May 28, 29 and 30. Details on the auction mechanism are

provided in Appendix D. This section quantifies the wealth transfer in the auctions of May 30,

the impact on the other two auctions having been minor. The market fragility associated with

the observed V-shape was indeed painfully costly for Italian taxpayers.
11“Italian bonds’ extreme volatility exposes liquidity strains”, Financial Times, June 1, 2018
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Figure 11: Daily minimum of V-statistic computed as in Eq. (3.7) at all
intraday transaction times. proposed in this paper, using a bandwidth hn = 2
days. The reported confidence bands are relative to the Btp-1nv23. The vertical
dashed-red line is May 29, 2018.

For each auctioned Treasury bond, we define the loss Italian taxpayers had to endure as the

difference between the realized price Pt and a synthetic price P̃t, representing the price that would

have been traded in a functioning market, times the allocated volume of the issuance, with t equal

to the auction date. To determine the distribution of P̃t we use a Markov switching model.

We assume the log-return process of each bond is affected by three unobservable regimes

st = {1, 2, 3}. We further assume log-returns are normally distributed in all states. The first

regime (st = 1) corresponds to a Business-as-Usual (BaU) state, with zero mean and volatility

σ1. The second state (st = 2) corresponds to the distressed market state, with expected return µ2

and volatility σ2. In this second state we allow for a drift different from zero (supposedly, large

and negative). Finally, we allow for a third regime (st = 3), which we expect to occur after the

distressed state, where log-returns have again zero mean, but a possibly different (and supposedly

higher) volatility, σ3. Allowing for a different volatility level in the third state is meant to capture

the typical behavior of volatility when news arrive, as discussed in Section 2, as well as the positive

trend after the crash. The probability for each regime to occur at time t only depends on the
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Figure 12: Secondary market tick-by-tick transaction prices of the three
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regime at time t− 1, as e.g. in Kole and Van Dijk (2017). Thus, the unobserved state variable st

follows a three-state first order ergodic Markov chain. We estimate parameters and filtered state

probabilities via maximum likelihood.

Figure 13 shows the historical behavior of the Btp-1Feb28 2% log-returns (upper panel), and the

smoothed state probabilities for each time t (bottom panel). The dashed red line in the bottom

panel indicates the 29 May 2018 date, when the crash occurred. As expected, before the crash

occurs, the probability of being in st = 1 is very high. After that, st = 3 becomes the most likely

state for a long period, until the probability of being in state 1 eventually starts to increase again.

Between these two states, we have the distressed period (st = 2). Similar patterns are observed

for the other two bonds.

Table 3 shows the estimates for the parameters in the different regimes. As expected, the volatility

estimate for st = 3 is about twice higher than the one for st = 1 for all three auctioned bonds,

indicating that the distressed event leads to a lingering increased uncertainty in the market. The

volatility estimate for st = 2 is even higher, and the estimate of µ2 is largely negative (even if

hardly significant) for all selected bonds, providing further parametric support for the presence
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Btp-1fb28 2% Btp-1mr23 0.95% Cct-Eu Tv St25

µst σst µst σst µst σst

st = 1
0 5.79% 0 2.15% 0 4.30%
- (0) - (1.92 · 10−5) - (1.28 · 10−4)

st = 2
−87.22% 18.69% −34.55% 22.87% −126.85% 27.75%
(0.0934) (1.61 · 10−5) (0.6492) (0.0018) (0.2016) (0.0076)

st = 3
0 9.38% 0 4.98% 0 8.81%
- (4.44 · 10−16) - (1.09 · 10−11) - (2.53 · 10−8)

Table 3: Markov Regime Switching annualized parameter estimates for each
state. State 1 corresponds to the BaU state, State 2 is the Crash state, and
State 3 is the Post-crash unsteady state. P-values are in parentheses.

of large local drift (incompatible with an efficient market) during the crash period. Thus, our

parametric exercise also confirms the non-parametric empirical evidence shown in Section 5.4.1.

To estimate the distribution of P̃t, we assume that a functioning market would have switched

from state st = 1 to state st = 3, without going through the distressed state st = 2. That is,

we assume that the average price moves to a new fundamental level, that the volatility spikes,

but the inefficient market (that of the right column of Figure 1), in which price overshoots and

drift explodes, never takes place. A significant difference of P̃t from the actually realized price Pt

(observed in a market in which drift is abnormally large, as confirmed by our statistical analysis

above) is an additional evidence of broken and inefficient market.
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Following this logic, we simulate 10,000 Brownian bridges from t1 to t2, where t1 and t2 are,

respectively, the end of regime 1 (defined as the first time t when the smoothed state probability

of being in st = 1 < 0.95), and the beginning of regime 3 (defined as the first time t when the

smoothed state probability of being in st = 3 > 0.95). This period includes the crash period,

when Pr(st = 2) > 0.95. In the simulations, we set the standard deviation of the Brownian Bridge

equal to σ3, that is the volatility in the post-distress state. For each simulated path, P̃t is defined

as the simulated price at t equal to the auction date. We thus obtain the estimate of the loss for

each simulated path.

Summing the losses over the three auctioned titles, we obtain the total loss distribution, showcased

in Figure 14. The estimated loss averages at 434 million euros (145 for Btp-1Feb28 2%, 113 for

Btp-1mr23 0.95%, and 176 for Cct-Eu Tv Eur6m+0.55% St25.), and is largely significant, ranging

from 250 to 650 millions. This amount of money, according to our estimate, was transferred from

the Treasury budget to primary dealers. To gauge the enormous size of this wealth transfer, it is

enough to mention that this single auction costed the Italian Treasury, in one day, roughly the

same amount of money ($649 millions) that Lou et al. (2013) estimate the U.S. Treasury loses in

one year because of the price concessions associated with the supply shocks of repeated auctions.

6 Conclusions

When the market is transitorily moving away from fundamentals, we observe a V-shape in prices,

defined as a sudden change in the sign of the price drift. The V-statistic that we introduce in

this paper can reliably detect such V-shapes. We present several applications of this new tool.

We provide new empirical evidence relative to the presence of frequent (and increasing over time)

mini-flash crashes in U.S. stocks. As highlighted by SEC legal proceedings against financial inter-

mediaries for causing mini-flash crashes, V-shaped events represent not only a potential violation

of market rules, but also a threat to investor confidence in the market. Our results prove that our

tool is of help for the regulators’ mission to maintain orderly and efficient markets. In a specific

event study (the crash of Italian bonds on May, 2018), we show the harmful implications of V-
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Figure 14: Distribution of the estimated loss for the Italian Treasury due
to market inefficiency during the auctions of May 30.

shapes for financial stability. Specifically, we quantify the extent of the wealth transfer that the

V-shape-related inefficiency (the auction cycle magnified by political turmoil) caused. We thus

conclude that our analysis enriches regulators, academics, and practitioners with a new, promising

tool for the analysis of financial markets.
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A Technical Appendix.

This appendix contains technical details about the model in Eq. (3.1), as well as the proof of Theorem 1.

Assumption 1. i) The log-price pt is a stochastic process defined on a filtered probability space

(Ω,F , (Ft)t≥0,P) and assumed to be an Itō semimartingale described by the dynamics in Eq. (3.1),

where p0 is F0-measurable, µt is a locally bounded and predictable drift, σt is locally bounded, adapted,

càdlàg and strictly positive (almost surely) volatility, c−1,t, c
+
1,t, c2,t are continuous and twice differentiable

deterministic functions, W = (Wt)t≥0 is a standard Brownian motion and J = (Jt)t≥0 is a pure-jump

process.

ii) The jump process Jt is of the form:

Jt =

∫ t

0

∫
R
δ(s, x)I{|δ(s,x)|≤1} (ν(ds, dx)− ν̃(ds, dx)) +

∫ t

0

∫
R
δ(s, x)I{|δ(s,x)|>1}ν(ds, dx), (A.1)

where ν is a Poisson random measure on R+×R, ν̃(ds, dx) = λ(dx)ds a compensator, and λ is a σ-finite

measure on R, while δ : R+ × R → R is predictable and such that there exists a sequence (τn)n≥1 of Ft-

stopping times with τn →∞ and, for each n, a deterministic and nonnegative Γn with min(|δ(t, x)|, 1) ≤

Γn(x) and
∫

R Γn(x)2λ(dx) <∞ for all (t, x) and n ≥ 1.

iii) Fix t ∈ (0, T ] and let Bε(t) = [t− ε, t] with ε > 0 fixed. We assume there exists a Γ > 0 and a sequence

of Ft-stopping times τm →∞ and constants C(m)
t such that for all m, (ω, s) ∈ Ω×Bε(t)∩ [0, τm(ω)[, and

u ∈ Bε(t),

Eu∧s
[
|µu − µs|2 + |σu − σs|2

]
≤ C(m)

t |u− s|Γ, (A.2)

where Et[·] = E[·|Ft].

To implement the test, we need a kernel and a bandwidth sequence, satisfying the following assumptions:

Assumption 2. The bandwidth hn is a sequence of positive real numbers, such that, as n→∞, hn → 0,

nhn →∞. The kernel K : R→ R+ is any function with the properties:

(K1) K is bounded and differentiable with bounded first derivative; further, xK(x)→ 0 and xK ′(x)→ 0

as x→ ±∞.

(K2)
∫ +∞
−∞ K(x)dx = 1 and K2 =

∫ +∞
−∞ K2(x)dx <∞;

39



(K3) It holds that for every positive sequence Gn → ∞,
∫
|x|>Gn K(x)dx ≤ CG−Bn for some B > 0 and

C > 0 (i.e., K has a fast vanishing tail);

(K4) mK(α) =
∫ +∞
−∞ K(x)|x|αdx <∞, for all α > −1; m′K(α) =

∫ +∞
−∞ K2(x)|x|αdx <∞, for all α > −1.

We consider a left-sided kernel K−(x) satisfying Assumption 2 with the additional property K(x) = 0

when x > 0, and a right-sided kernel satisfying Assumption 2 with the additional property K(x) = 0

when x < 0.

We need an assumption regarding observation times:

Assumption 3. (ti)
n
i=0 is a deterministic sequence. We denote by ∆i,n = ti − ti−1, ∆−n =

mini=1,...,n{∆i,n}, ∆+
n = maxi=1,...,n{∆i,n}. We assume that, for a sufficiently large n, and suitable

constants C1, C2 which do not depend on n,

C1∆n ≤ ∆−n ≤ ∆+
n ≤ C2∆n,

where ∆n = T/n. Moreover, denoting the “quadratic variation of time up to t” as H(t) = limn→∞Hn(t),

where Hn(t) = 1
∆n

∑
ti≤t (∆i,n)2, we assume H(t) exists and is Lebesgue-almost surely differentiable in

(0, T ) with derivative H ′ such that: |H ′(ti)−∆i,n/∆n| ≤ C∆i,n, for any ti in which H is differentiable,

for a suitable constant C ≥ 0 which does not depend on i and n.

Proof of Theorem 1. Consider the T−τ,n statistic in Eq. (3.3). Using the method of proof of Theorem 2 of

COR, we get:

T−τ,n =
√
hn

Op(h
−α
n )(

Op(h
−2β
n ) +Op

(
1

n2−2αhn

)) 1
2

The term Op

(
1

n2−2αhn

)
, coming from the bias, is vanishing because of the stated assumption, so that T−τ,n

diverges with rate h1/2−α+β
n . The same applies to T+

τ,n, hence when c± 6= 0, Vτ,n is of order h3/2−2α+2β
n

which diverges if and only if α − β > 3/4. If instead c± = 0, then Vτ,n is at most of order h1−α+β
n → 0.

2

We finally provide the assumption on market microstructure noise in Eq. (3.8).

Assumption 4. (εti)
n
i=0 is adapted and independent of X. Moreover, E[εti ] = 0, E[(εti)

4] < ∞, and
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denoting by γk = E[εtiεti+k ] for any integer k ≥ 0, we further assume γk is finite, independent of i and

n, such that γk = 0 for k > Q, where Q ≥ 0 is an integer (i.e., Q-dependent noise).
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B Cleaning of intraday prices

We clean high-frequency transactions according to the following procedure:

a. for each trading day, we discard observations three times larger than the daily price median;

b. at the day-level, we then implement the Brownlees and Gallo (2006) filter to filter out outliers: we

keep the jth observation if

|pj − p̄j(k)| < 3σj(k) + γ , (B.1)

where p̄j(k) and σj(k) denote the δ-trimmed sample mean and standard deviation, respectively, of a

neighborhood of k observations around j, while γ is the so-called granularity parameter. We select

k = 50 observations, γ = 0.02 (twice the minimum tick), and δ = 0.9.

c. We aggregate transactions with the same time-stamp. We substitute simultaneous tick-by-tick prices

with the volume-weighted average price, and simultaneous tick-by-tick volumes with the sum of the

simultaneous volumes.

When dealing with SPY, given the huge amount of recorded transactions (roughly 480K transactions per

day, more than 195M in total) we interpolate prices to a 1-second grid to ease data management.
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C Implementation of the V-statistic

This section describes how the V-statistic is implemented on a single set of data to identify V-shapes. We

describe our implementation using a specific day of trades, that is the Google stock on April 23, 2013,

displayed in Figure 15, when a spectacular mini-flash crash, labelled the “Twitter flash crash”, occurred

(this followed the mini-flash crash of April 22, 2013, which the SEC used as evidence to charge Merrill

Lynch, see Section 5.1). The procedure inputs are the trade times t1, . . . , tn, the prices p1, . . . , pn and the

bandwidth hn.

Step 1: fit the EGARCH(1,1)

We fit the EGARCH(1,1) model with a starting sample of 1-minute log-returns by maximum likelihood

and we filter the volatility using estimated parameters. Figure 15 shows the estimate of daily volatility

obtained on the selected date. We see that the mini-flash crash is associated to a spike in volatility, since

in the EGARCH(1,1) model there is no drift, so a misspecified driftless model can only attribute the price

swing to volatility. The EGARCH(1,1) filtered variances will be used in the step 3 below, but also to

compute price convexity using formula (5.1).

Step 2: select testing times

To select testing times, we look for local minima and local maxima in the time series with a simple

algorithm that localizes the global minimum, excludes observations around the minimum over a given

window, and then finds the next minimum. We implement this procedure for 10 minima and maxima

with two windows: a short one of length hn/5 (to disentangle between mini-flash crashes that may happen

at a distance of a few seconds), and a long one of 20 minutes (to identify all local minima/maxima). In

total we could than have up to 40 testing points. In the case in Figure 15, we test in 36 points denoted

by a cross.

Step 3: compute the V-statistics at testing times

This is done by applying formula (3.2) with the provided bandwidth hn. We use K−(x) =

exp (−|x|) 1{x<0} (left-sided), and K+(x) = exp (−|x|) 1{x≥0} (right-sided). We replace the volatility

estimates in the denominator of T−τ,n and T+
τ,n with an HAC estimator of the long-run variance of the local

drift estimator, applied to pre-averaged returns, as recommended in COR.

Step 4: bootstrap
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Figure 15: Blue dots: transaction prices for Google stock on April 23, 2013
(the day of the “Twitter flash crash”). Magenta crosses: testing points. Red
dashed lines: filtered volatility from the EGARCH(1,1) model.

We construct artificial samples of n data with the same trade times t1, . . . tn and logarithmic prices

generated by the following formula:

pti = pti−1 + εt

√
(ti − ti−1)σ̃2

t

where the local variances σ̃2
t are obtained by interpolating the EGARCH(1,1) filtered variances at trading

times and εt is iid standard normal noise. On each simulated sample, we repeat Step 2 (that is, we test

at local minima/maxima of each simulated trajectory) and 3 before, and compute the minimum of the

V-statistics across testing times. Figure 16 shows the distribution of the minimum of the V-statistics on

5, 000 bootstraps obtained for the day in Figure 15. Estimated quantiles are −11.42 at 1% and −9.23

at 5% (note: much larger than the asymptotic values of the Bessel distribution, that would be strongly

undersized for a case like this).

Step 5: draw conclusions

On this specific day, the minimum of the V-statistics is −13.47, thus largely significant at 1%, obtained

at the testing point immediately after 13:00. This is the only recorded value in this day below the 1%

limit.
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Figure 16: Histogram of the minimum of the V-statistics obtained on simu-
lated data with the volatility filtered from the EGARCH(1,1) model on 5, 000
replicas.

D The event study: data, macroeconomic background and

the auction mechanism

D.1 Data

We use tick data for a subsample of Italian government securities traded on the MOT (Mercato Ob-

bligazionario Telematico), the electronic Italian-regulated limit order book market for sovereign, bank

and corporate bonds. MOT is a retail exchange characterized by many transactions with small volume.

It is the main retail trading venue by volume for Italian government bonds (8.25% of all trades on plat-

forms in 2018), even if its volume is much lower than that of the two wholesale platforms, MTS Cash

and MTS BondVision (91.24% of all trades on platforms in 2018)12. Despite its relatively thin volume,

the high number of transactions in the MOT guarantees that absence of cross-market arbitrage and fair

security pricing is broadly guaranteed within the bid-ask spreads (Schneider and Lillo, 2019).

The daily trading schedule on the MOT is divided in two segments: an opening auction, from 8:00 a.m.

to 9:00 a.m., followed by a continuous trading phase, from 9:00 a.m. to 5:30 p.m.. The opening price

is determined during the opening auction phase. We only focus on the continuous trading session, and

exclude opening auction activity from the analysis. We select a representative set of Treasury bonds

12See CONSOB, Bollettino Statistico n. 14, June 2019, available at http://www.consob.it/web/
area-pubblica/bollettino-statistico.
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among BTPs (fixed coupon), CCTs (floating + fixed coupon), and BTPi (inflation linked bonds), namely:

• a 10Y BTP with maturity 2023, and 9% coupon rate (BTPs pay semi-annual coupon), BTP-1nv23

9%,

• a 30Y BTP with maturity 2029 and 5.25% coupon rate, BTP-1nv29 5.25%,

• a 30Y BTP with maturity 2040 and 5% coupon rate, BTP-1st40 5%,

• an inflation-linked 30Y BTP with maturity on 2035 and 2.35% coupon rate, BTPi-15st35 2.35%,

• a 7Y CCT with maturity 2022, and with an Euribor-linked coupon rate, CCT-Eu Tv Eur6m+0.7%

Dc22,

We also use an additional sample of three government bonds issued in 2018 and auctioned on May 30,

2018:

• a 10Y BTP with maturity 2028 and 2% coupon rate, BTP Tf 2,00% Fb28 Eur

• a 5Y BTP with maturity 2023 and 0.95% coupon rate, BTP Tf 0.95% Mr23 Eur,

• a 7Y CCT with maturity 2025 and an Euribor-linked coupon rate, CCT-Eu Tv Eur6m+0.55% St25.

We consider the period from January 1, 2018 (except for the last three securities, whose data start on the

first issue date, that is January 31, 2018, February 28, 2018 and May 2, 2018, respectively) to May 30,

2019. The data were provided by Borsa Italiana S.p.A., and are recorded with millisecond time-stamps.

All transactions are at the clean price and are cleaned using the procedure delined in Appendix B.

To deal with overnight gaps, we construct a new time vector for each time series, associated to the original

one, where the time (in milliseconds) elapsed from the closing of day t−1 to the next available open price

is equal to

t̃ =
σovernight
σintraday

t̂ .

Here, σovernight is the standard deviation of overnight returns, defined as the price appreciation or de-

preciation between market close of day t − 1 and market open of day t, while σintraday is the standard

deviation of intraday returns, defined as the price appreciation or depreciation between market open and

close of the same day. Finally, t̂ is the time, in milliseconds, elapsed from market open (9 a.m.) to
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close (5:30 p.m.). We implement the test statistic (3.3) and (3.2) at each point in time of the previously

defined time vector with abridged overnight times, which we use in lieu of the original time series one; we

choose a bandwidth hn for the drift equal to 2 days13, while we base the long-run variance of the drift

estimate on a 10-day bandwidth. We use exponential kernels K−(x) = exp (−|x|) 1{x<0} (left-sided), and

K+(x) = exp (−|x|) 1{x≥0} (right-sided). Given that we use all transactions, to account for the presence

of market microstructure noise we replace the volatility estimates in the denominator of T−τ,n and T+
τ,n with

an HAC estimator of the long-run variance of the local drift estimator, applied to pre-averaged returns,

as recommended in COR.

D.2 Macroeconomic background

The Italian Treasury huge bond price movement in the week from May 28 to June 1st reflected the

country’s political uncertainty in the aftermath of a radical government change which was taking place

exactly in that week. On March 4, 2018 Italy held its political elections. The centre-right coalition, led

by the League party, got the majority of votes, while the Five Star Movement was the most voted party.

However, no political group won an outright majority, leading to a hung parliament. After almost three

months of political gridlock, the League and the Five Star Movement reached an agreement and joined

a coalition. On May 21, the two parties indicated Mr. Giuseppe Conte, a law professor with no former

political experience, as designated Prime Minister. Two days after, Mr. Conte was granted the mandate

to form a new cabinet from the Italian President Mr. Mattarella. The leaders of the two coalition parties

strongly pushed for the appointment of Mr. Paolo Savona as Minister of Treasury, despite the rumored

opposition of the Italian President because of his alleged anti-euro positions. On Sunday, May 27, the

leaders of the two coalition parties gave Mr. Mattarella, who must endorse the cabinet, an ultimatum,

which triggered him to reject the nomination. As a consequence, during the evening of the same day, Mr.

Conte dropped his bid to form a government. On May 28, Mr. Mattarella appointed a former International

Monetary Fund official, Mr. Cottarelli, as designed prime minister, and asked him to form a new cabinet.

However, both the Five Star Movement and the League announced their intention not to support a vote of

confidence for the new designated Prime Minister, which would have triggered new immediate elections.

Finally, on May 31, they agreed upon the composition of the new government in which Mr. Savona was

appointed Minister of European Affairs and Mr. Giovanni Tria Minister of Treasury, and on June 1 the
13Results, not shown here, are pretty robust to the choice of hn.
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new Conte cabinet was formally sworn in. We notice we are not the first to connect V-shapes to political

turmoil. Tsai (2018) associates large changes with political turmoils, justified using the model of Kyle

(1985).

D.3 The auction mechanism of Italian government bonds

Before trading in the secondary markets, Italian government bonds are first issued on the primary market,

where securities are allotted through electronic marginal auctions. The size of the allocations in the

primary market in Italy is fairly predictable, since an annual auction calendar with a regular schedule

is published at the beginning of the year (Sigaux, 2020). At regular intervals (usually monthly), the

Treasury adds to an existing issue (new tranches), so to increase the outstanding amount. In this respect,

auctioning of Italian bonds is similar to that of the U.S. Treasury (Lou et al., 2013). After each ordinary

offering, usually on the day after, there is a supplementary placement, at the same price of the ordinary

offering, reserved to specialists. This is technically considered a subsequent tranche. For each issued

bond, there are usually between 12 and 18 tranches. The amount issued is communicated to authorized

dealers approximately 3 days before the auction takes place. The main auction concludes at 11:00 of the

due date. Most of the bids come to the Treasury in the few minutes before, to exploit the information in

the secondary market at best.

During the day following the bonds crash, and precisely at 11:00 a.m. on May 30, three (ordinary)

auctions took place: the 9th, 7th, 3rd tranches of BTP Tf 2,00% Fb28 Eur, BTP Tf 0.95% Mr23 Eur, and

CCT-Eu Tv Eur6m+0.55% St25 Eur, respectively, were issued. These are the last three debt securities

we selected and listed in Section D.1. The total nominal value of the three issuances were 2.159, 2.013

and 2.3 billion euros. Figure 12 shows the price path of the three auctioned instruments from May 23

to June 5. Other auctions took place on May 28 and 29 on a two-years zero coupon bond (CTZ) and

two inflation-linked bonds (BTPi), and on May 29 and 30 on a 6-month zero coupon bond (BOT). We

assume that the Auctions of May 28-29 were unaffected, the auction price being fixed on the 28th. The

6-months BOT was issued at the sky-rocketing yield of 1.23% (it was −0.421% in the previous issuance of

May 26, and 0.092% in the following issuance of June, 27). However the loss due to this specific issuance

is negligible, and it can be estimated in roughly 0.5 million euros.
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E Additional Figures
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Figure 17: Mini-flash crashes used by SEC in legal actions against Merrill
Lynch.
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Figure 17: (continued)
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Figure 18: V-shapes in the Google stock in 2013.
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Figure 18: (continued)
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Figure 18: (continued)
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