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1. Introduction

Previous theoretical research has shown that jumps in asset prices, as well as jumps

in volatility, have important implications for the asset allocation problem (Branger et al.,

2008; Liu et al., 2003; Liu and Pan, 2003). However, an empirical difficulty in testing these

models lies in disentangling the identification of jumps in the asset prices from jumps in the

diffusion covariance matrix. Considerable advances have been made towards asset price jump

identification, such as those by Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen

and Shephard (2006), and Andersen et al. (2007).

We advance the literature by examining jumps in the diffusive covariance matrix at

the intraday frequency. By assuming that the diffusion covariance matrix evolves at a lower

frequency than the financial asset price series, we extend the jump identification of Barndorff-

Nielsen and Shephard (2006) and Andersen et al. (2007) into a two-step methodology. In the

first step, price jumps are identified using strategies similar to the prior literature. In the

second step, we use the filtered diffusive covariance matrix attained from the first step to

identify jumps covariance jumps in asset pairs. Therefore, our covariance jump methodology

also falls within the literature proposing multi-frequency estimators (Zhang, 2006; Zhang

et al., 2005).

An extant literature has examined the continuity properties of volatility by searching for

jumps both in the CBOE Volatility Index (VIX) as well as in individual securities returns1.

The drawback of only identifying jumps in the VIX is that the volatility jump dynamics

cannot be generalized to identifying jumps in individual assets without additionally speci-

fying a factor model for returns, which is subordinated on the aggregate VIX index. Latter

methods identifying volatility jumps directly in the underlying traded securities resolve the

1Jump studies using the VIX include Todorov (2015), Todorov and Tauchen (2011), and Todorov et al.
(2014). For securities returns studies see Bibinger et al. (2017), Caporin et al. (2015), and Jacod and Todorov
(2010).
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subordinating specification issue. The point-change method of Bibinger et al. (2017) also has

the beneficial property of being able to identify multiple intraday jumps.

Our proposed model for identifying volatility jumps advances this literature in several

ways. First, the test statistics only require observed price data thus avoiding model specifica-

tion errors. Second, since it is a two-step application of the Barndorff-Nielsen and Shephard

(2006) and Andersen et al. (2007) jump identification methods, we are able to identify multi-

ple volatility jumps at an intraday frequency. Third, the test statistics are standard normally

distributed.2 As a result, tests for asset volatility jumps and cojumps, both within and across

asset classes, are simply the sum of the test statistics and follow a chi square distribution.

The quality of our test is examined using a Monte-Carlo simulation study. Using simulated

covariance paths under stochastic volatility and affine jump process, we construct price pairs

resulting in the affine double jump processes described in Equations (1) and (2).3 Our test

reliably detects jumps in high frequency data with minimal probability for incorrect spurious

detections. Under an equivalent volatility calibration and the commontly used 5minute

observation block setting, we detect jumps at a rate of 99.87%. Alternatively, decreasing

observational frequency leads to a 91.8% detection rate. The spurious detection rates across

all calibrations is shown to statistically be zero. Various calibrations demonstrate reliable

test performance under a wide variety of jump sizes and observational frequencies analagous

to practical use. Though a caveat should be noted that high test quality holds provided a

reasonably large mean jump magnitude and tight observational frequency is concurrently

utilized.

Lastly, we empirically test our proposed jump identification model the currency pairs

derived from 15 individual FOREX series. A broad suite of tick level foreign exchange rate

prices were collected from Gain Capital over the period of January to December 2017. We

2This feature is also present in Andersen et al. (2007).
3The covariance processes restricted to be positive semi-definite. Visual representation of simlated covari-

ance and pricing pairs can be found in Figure 1.
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find that jumps occur in the price, variance, and pair covariances at mean rates of 1.06%,

1.43%, and 1.53%, respectively, with negative jumps occurring at slightly lower frequencies

to their positive counterparts. Diffusive covariance jumps occur in 24.76% of days, suggesting

they occur more often than price jumps albeit over fewer days.

Our empirical results have broad implication to research involving second momemt dy-

namics. Examples include covariance risk (Harvey, 1991), investment return premia (Moskowitz,

2003), and the ICAPM model (Guo and Whitelaw, 2006). Such works often take an ad-hoc

approach to covariance process specification, an issue is especially omnipresent in GARCH

forecasts related to hedging (Bali, 2008), derivatives and options (Duan et al., 2006), and

FOREX pricing (Fiszeder et al., 2019). The volatility forecast literature has recently ex-

tended the second moment forecasting to include GARCH-Jump features (Lin et al., 2013;

Callot et al., 2017), the underlying specification of the jump intensity and magnitude pa-

rameters is often opaque. By utilizing our test prior to process estimation, future research

would more closely parameterize models according to their endogenous sample features.

The remainder of the paper is organized as follows. Related literature is briefly discussed

in Section 2. In Section 3 we present the model for covariance matrix jump identification.

Empirical results from our simulation and data studies are reported in Section 4. Section 5

concludes.

2. Literature Review

Efforts to specify the nature of jump processes have provided a plethora of approaches.

Early works often utilize jump diffusion models while employing a number of variants. Such

methodological variations include using GMM estimators (Chernov and Ghysels, 2000; Pan,

2002), simulated method of moments (Duffie and Singleton, 1993), efficient method of mo-
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ments (Gallant and Tauchen, 1996; Andersen et al., 2002), and indirect inference methods

(Gourieroux et al., 1993).

Heston (1993), Melino and Turnbull (1995), and Bates (1996) examine combined jump

diffusion models, advocating for the inclusion of jumps to the volatility process. Duffie et al.

(2000) generalized their approach to include affine double jumps, simulataneous jumps in

both volatility and prices. They argue that models which include volatility jumps perform

significantly better. A number of authors have found emprical support for their claim (Eraker

et al., 2003; Eraker, 2004; Liu and Pan, 2003; Bates, 2000; Wu, 2003). Studies using Monte-

Carlo Markov Chain simulated data have gnerated additional empirical support (Jacquier

et al., 2002; Johannes, 2004).

Todorov and Tauchen (2011), Todorov et al. (2014), and Todorov (2015) have recently

studied jump activity in the VIX. These works employed nonparametric statistics to test

for asymmetric volatility jumps. All conclude the VIX exhibits a pure jump semi-martingale

process with no continuous component. Todorov et al. (2014) further evaluate their param-

eter estimates using high frequency VIX data and S&P index returns, generating strong

supportive evidence for their conclusions.

Beyond the theoretical, covariance is of primary empirical importance for portfolio the-

ory and asset selection. It is well documented that investment strategies which account for

dynamic covariance structures are more efficient than those that ignore second moments

(Moskowitz, 2003). In recent decades, a wider literature has explored the many implications

of second moments. Particular focus has been on characterizing the risk return relationship.

Harvey (1991) explores the reward per unit of second moment risk for a global asset portfolio.

He finds that time-varying covariance capture some, but not all, of cross-country dynamic

return behavior. The empirical strategy employed exploits time variation in country specific

expected return and conditional covariance with the world portfolio return. In addition to

global factors, return predictions are formed on ‘local instruments’, of which foreign exchange
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rate changes are included. While the main goal is calculating a ‘world price’ of covariance

risk, the underlying covariance structure assumes a simplified stochastic structure. Incorrect

specification of this structure will likely lead to an inefficient global portfolio, an issue which

the author notes.

Moskowitz (2003) identify a broad association between investment strategy return pre-

mia and conditional second moments. They utilize a standard Geometric Brownian Motion

GARCH model to characterize time-varying covariance volatility. The authors argue that

time variation in return second moments curtails the ability of time-invariant factors to

properly capture return volatility dynamics. Improperly captured dynamics are found to

lead to inefficient investment and sub-optimal out–of-sample mean value portfolios.

Covariance risk premia has been further explored under an ICAPM setting. Guo and

Whitelaw (2006) estimate covariance models using decomposed risk and hedge components.

Bali (2008) extends the multivariate GARCH setting to include estimates of conditional

covariances. Such estimates are then used to form portfolios on firm and industry variables.

Bali and Engle (2010) later extend this model to include dynamic variation in conditional

correlation. Rossi and Timmermann (2015) relax the assumption of linearity in the covariance

process, finding improved performance when utilizing nonparametric projections of various

state variable sets.

These works not only illustrate the importance of properly characterizing covariance pro-

cesses, but also have led to a variety of suggested methods for including jump components

within GARCH models. Their empirical use often applied to options and derivatives pricing.

Although a significant improvement on previous models, these works have a key shortcoming

of parameterizing the covariance jump processes in an ad-hoc fashion. Specifically, this relates

to the calibration of jump intensity (λ) and magnitude (σ). Duan et al. (2006) consider lim-

iting models of diffusive prices, correlated jumps, and volatilities within the GARCH-Jump

processes. However, instead of defining exact calibrations they employ a range of possible pa-
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rameter values. Similarly, Callot et al. (2017) uses a combination of one-step-ahead forecasts

and exponentially weighted moving averages (EWMAs), with a high smoothing parameter,

for calibration. Lin et al. (2013) incorporates a jump process to develop a lattice model for

options pricing, finding jump effects in both in- and out-of-the money options. Again, they

rely on posited distributions to match future period intensity and size probabilities.

Empirical application of GARCH modeling to FOREX individual currency pairs can be

seen in the BEKK model results of Fiszeder (2018). Fiszeder et al. (2019) extends their prior

work to range-based and high/low price DCC models. Both works use single FOREX closing

price series for GARCH optimization. Covariance jump which require only price series, and

therefore no additional components or state variables, to identify jump occurrences would

be of particular value in such cases.

Omission or mischaracterization of a jump component would fall under many potential

misspecification umbrellas of the prior literature. While we do not explore each implication

individually, we broadly inform the literature in two ways. First, we provide evidence that

jumps occur in the covariance of asset pairs, along with their probability and size at multiple

frequencies. Particularly, our empirical results directly relate to jumps in foreign currency

pairs. Second, our proposed test provides future researchers a straightforward and way to

include and parameterize covariance jump components in future asset pricing models. Ad-

ditionally, these methods are generalizable across other assets or commodities for which a

pricing series is obtained. These developments are further illustrated via Monte-Carlo simu-

lation.
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3. Identification Model

We assume that asset prices are observed on the unit interval [0, 1] on a fixed time

grid, where the time between observations is denoted by ∆. Therefore, there are T = ∆−1

observations and we are concerned with the limiting case where ∆→ 0. For now we assume

that all prices are observed synchronously. This abstracts from the Epps (1979) effect where

realized correlations are biased towards zero (due to non-synchronous trade) when higher-

frequency data is used.4

Let the vector of M log price changes be described by the following doubly stochastic

process of Duffie et al. (2000):

dPt = αPt dt+ ΘP
t dW

P
t + ΞP

t dN
P
t (1)

dV ech(Σt) = αΣ
t dt+ ΘΣ

t dW
Σ
t + ΞΣ

t dN
Σ
t (2)

where Pt = (Pt,1, Pt,2, . . . , Pt,M)′ is the vector of log asset prices. αt = αt,1, αt,2, . . . , αt,M)′(αΘ
t )

is the vector of per annum log price (covariance) drift coefficients. Θt(Θ
Σ
t ) is the (M×M) as-

set (covariance) log return covolatility matrix such that the covariance matrix is Σt = ΘtΘ
′
t.

5

Wt = (Wt,1,Wt,2, . . . ,Wt,M)′(WΣ
t ) is the vector of independent standard Brownian motions.

Ξt(Ξ
Σ
t ) is the (M×M) covolatility matrix of finite activity jumps in log prices (covariances).

Nt = (Nt,1, Nt,2, . . . , Nt,M)′(NΣ
t ) is the vector of counts of the number of jump events that

have arrived for each asset (covariance) up to time t. V ech(·) denotes the

(
M(M + 1)

2
× 1

)
vector, which stacks the elements on and below the main diagonal of a square matrix, moving

4See Hayashi and Yoshida (2005) for an analysis of the bias of the realized covariance estimator as the
sampling frequency increases with asynchronously traded assets.

5ΣΣ
t = ΘΣ

t Θ′Σ
t
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from left to right.6

Similar to the to the log price processes, the covariance process is composed of a con-

tinuous component as well as a discontinuous component. We do not assume that ΘΣ
t

or ΞΣ
t are diagonal, which means that covariances are allowed to have correlated diffu-

sive moves as well as correlated jumps. Further, we do not restrict the matrix given by

(dWt, dNt, dW
Θ
t , dN

Θ
t )′(dWt, dNt, dW

Θ
t , dN

Θ
t ) to be diagonal. This allows for the leverage ef-

fect (Black, 1976) as well as for volatility feedback effects (Campbell and Hentschel, 1992;

Bekaert and Wu, 2000). Since variances cannot be negative, a stochastic differential equation

(SDE) representation such as the Heston (1993) model can be used for the variance terms

in Equation (2).

Let K be an integer and
T

K
be the largest integer that is less than or equal to

T

K
.

In practice, K can be the number of observations in one trading day, in one hour, or in

one 20-minute period, for example. Divide the sample into K non-overlapping blocks, each

containing
T

K
∆-period observations. Let tk be the set of observations in the k’th block of

data and let tkl denote the l’th observation of the k’th block of data for k = {1, 2, . . . , K}.

In order to attain the diffusive covariance matrix of returns Σt, the effects of log price

jumps need to first be removed. Denote the ∆-period log return for the log price vector as

rtkl = Ptkl −Ptkl −1. Following from the results of Andersen et al. (2001) Barndorff-Nielsen and

Shephard (2004), and Barndorff-Nielsen and Shephard (2006), the bipower covariation can

be subtracted from the realized covariance to identify the jump covariance of a stochastic

process. That is, in the limit as ∆→ 0:

RCV (P, tk)−BCV (P, tk)→
∑
tk

ΞP (tks)Ξ
′P (tks)∆N

P (tks)∆N
′P (tks), (3)

6For example, V ech

α1,1 α1,2 α1,3

α2,1 α2,2 α2,3

α3,1 α3,2 α3,3

 = (α1,1, α2,1, α3,1, α2,2, α3,2, α3,3)′
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where:

RCV (P, tk) = [P ]tk

= lim
∆→0

#(tk)∑
l=1

rtkl r
′
tkl

→
∫
tk

Θ(tks)Θ
′(tks)ds+

∑
tk

ΞP (tks)Ξ
′P (tks)∆N

P (tks)∆N
′P (tks)

(4)

is the realized covariance for the k’th block and:

BCV (P, tk; 1) = {P ; 1}tk

= lim
∆→0

#(tk)∑
l=2

Γtkl ||Γtkl |
′

→
∫
tk

Θ(tks)Θ
′(tks)ds

(5)

is the bipower covariation for the k’th block. #(tk) denotes the cardinality of the set tk

(the number of observations in tk). The associated discrete estimators for RCV (P, tk) and

BCV (P, tk; q) are:7

R̂CV (P, tk) =
∑
tk

Γ(tkl )Γ
′(tkl ), (6)

B̂CV (P, tk; 1) = µ−2
1

∑
tk
|Γtkl ||Γtkl |

′ (7)

where µ1 =
√

2
π
. We use Equation (6) to filter the jump component out of the observed

log return series by calculating B̂CV (P, tk; 1) for each k block of data. The time series of

unique diffusion covariance elements left are:

∫
tk
V ech( Σ(tks)) ds =

∫
tk
αΣ(tks) ds+

∫
tk

ΘΣ(tks) ds+ ΣtkΞ
Σ(tks)∆N

Σ ds (8)

7See Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2004), and Barndorff-Nielsen and Shep-
hard (2006) for a thorough presentation of relevant discrete estimators.
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which is time varying across each of the K blocks of data. As ∆ → 0, k → ∞, with

T
k
→ c for some constant c.8 As data frequency increases, blocks covering a smaller period of

calendar (intraday) time can be formed. Within the specified limits, block estimates of the

integrated covariance converge to the latent spot covariance of that blocks’ intraday time.

We use the recovered V ech(Σ) estimates to examine the realized covariance of V ech(Σ),

RCV (Σ), and the bipower covariataion of V ech(Σ), BCV (Σ). K non-overlapping blocks of

data are collected into H non-overlapping blocks, resulting in each new block containing K
H

blocks.

Let τh be the set of blocks and let thl denote the l’th block, in the h’th broad block

of data.9 R̂CV (P, tk) and B̂CV (P, tk; 1) are calculated on the K narrow blocks of data and

R̂CV (Σ, τh) and B̂CV (Σ, τh; 1) are calculated using the K
H

blocks of narrow data within each

of the broad H blocks. Therefore, a two-step RCV and BCV estimator is being employed.

By Equation (2), dV ech(Σt) has the same stochastic properties as dPt. Therefore, the

following two convergence results of Equation (9) and Equation (10) hold:

RCV ( Σ, τh) = [Σ] τh

= lim
∆→0

#(τh)∑
l=1

|Γthl ||Γthl |
′

→
∫
τh

ΘΣ(tks)Θ
′Σ(tks)ds

+
∑
τh

ΞΣ (ths )Ξ′Σ (ths )∆NΣ (ths )∆N ′Σ (ths )

(9)

BCV ( Σ, τh; 1) = {Σ; 1}τh

= lim
∆→0

#(τh)∑
l=2

|ΓΣ
thl
||ΓΣ

thl−1
|′

→
∫
τh

ΘΣ(ths )Θ
′Σ(ths )ds

(10)

where Γ(thl ,Σ) = V ech(Σthl
)− V ech(Σthl−1

), and #(τh) is the number of tk blocks of data

8Correspondingly,
∫
tk
V ech( Σ(tks)) ds→ V ech(Σ(t)) where t ∈ tk.

9The h’th block is characterized by h = 1, 2, . . . ,H.
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within τh. We then subtract the sample bipower covariation, from the realized covariation

to identify the integrated diffusive covariance matrix for the covariance process:10.

R̂CV (Σ, τh)− B̂CV (Σ, τh; 1)→
∑
τh

ΞΣ (ths )Ξ′Σ (ths )∆NΣ (ths )∆N ′Σ (ths ) (11)

Therefore, our model has the restriction that it identifies jumps in the covariance matrix

at a lower frequency than jumps in the log price series. However, asymptotically as ∆→ 0,

the discrete jump term (ΞΣ dNΣ) dominates the continuous Brownian motion term (ΘΣ dWΣ)

which converges to zero with ∆. 11,12 As a result, if t∗ is the true covariance jump time, then

the identified covariance jump time converges to t∗ from the right as ∆→ 0.

Andersen et al. (2007) and Lee and Mykland (2008) show that intraday jumps in prices

can then be identified with the following strategy:

κ (i, tk) = Γ (i, tkl ) •

 |Γ (i, tkl )|√
#(tk)-1 · B̂CV (i, i, tk; 1)

> Φ1−β
2

 (12)

where

(
|Γ (i,tkl )|√

#(tk)-1·B̂CV (i,i,tk;1)

)
is distributed standard normally, Φ(1−β

2
) denotes the critical

value from the standard normal distribution, Γ(i, tkl ) denotes the log return on asset i at

time tkl , and B̂CV (i, i, tk; 1) denotes the [i, i]’th element of the sample BCV matrix for block

tk. Similar to Equation (12), intraday jumps in the diffusive covariance matrix are identified

with the following strategy:

κ (V ech(Σ), i, τh) =

Γ (V ech(Σ), i, thl ) •

 |Γ (V ech(Σ), i, thl )|√
#(τh)-1 · B̂CV (V ech(Σ), i, τh; 1)

> Φ1−β
2

 (13)

10Bipower covariation: B̂CV (Σ, τh; 1)

Realized covariation: R̂CV (Σ, τh)
11ΘΣ dWΣ = ΘΣZΣ

√
∆

12Where ZΣ ∼ N(0, IM ) is an M × 1 vector of standard normally distributed random variables.
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where i ∈
{

1, 2, . . . , N(N+1)
2

}
.

A covariance matrix containts N(N+1)
2

unique elements. Additionally, each jump test

statistic is standard normally distributed. Therefore, a joint test for a full covariance matrix

jump is the sum of the squared jump test statistics. Resultant joint test statistics are χ2

distributed.

Proposition 1. The joint test for covariance matrice jumps is given by:

κ (V ech(Σ), tk) =

N∑
i=1

N∑
j=1

 |Γ (V ech(Σ), i, thl )|√
#(τh)-1 · B̂CV (V ech(Σ), i, τh; 1)

2

∼ χ2N(N + 1)

2

(14)

Proof. The sum of M squared standard normal random variables is distributed as χ2
M . There-

fore, the sum of the N(N+1)
2

squared jump test statistic kernels is distributed χ2
n

(N(N+1)
2

.13

In Proposition (1) we show that a covariance matrix jump occurs when there is a statisti-

cally significant change in the covariance of at least 2 assets. A drawback of the joint test of

Equation (14) is that it cannot identify which assets experience covariance jumps. However,

by applying Equation (13) to individual covariance matrix elements, cojumps in individual

asset pair covariances are identified.

4. Empirical Results

13Jump test statistic kernels:

 |Γ (V ech(Σ), i, thl )|√
#(τh)-1 · B̂CV (V ech(Σ), i, τh; 1)

2
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4.1. FOREX Data Testing

We apply our test on 15 bilateral USD exchange rates using tick-by-tick data obtained

from Gain Capital for the sample period January to December, 2017. Currencies included

are: Australian Dollar (AUD), Canadian Dollar (CAD), Swiss Franc (CHF), Danish Krone

(DKK), Euro (EUR), Hungarian Forint (HUF), Japanese Yen (JPY), Mexican Peso (MXN),

New Zealand Dollar (NZD), Russian Ruble (RUB), Swedish Krona (SEK), Singapore Dollar

(SGD), Turkish Lira (TRY), and South African Rand (ZAR). We specifically determine the

dynamics of the individual currency series price and variance, as well as covariance jump

dynamics of the FOREX pairs.

In Table 1 we reported the summary statistics of daily returns for each currency pair

exchange rate. Daily prices are formulated at one day sampling frequencies. Daily returns

are calculated as log price difference of the daily prices, following rtkl = Ptkl − Ptkl−1
where

k = 1 day. The mean daily return is -0.015%. Standard deviation ranges from 0.243 to 0.874.

The correlation between standard deviation and price jump prevalence is 0.66. The averages

for skewness and kurtosis are -0.017 and 1.197, respectively.

[INSERT TABLE 1]

Following Equation (12), we test for jump in the prices of individual exchange rates, using

a significance level of 5% and 5-minute blocks. As demonstrated in the latter simulation ex-

ercise, Although our test is robust to wide array of frequency specifications, jump test power

increases at higher frequencies. Therefore, we choose to present our results for subsequent

tables with respect to a 5-minute frequency as is common to the literature.

We first test for jumps in the Forex prices series, presenting our results in Table 2. We

find that price jumps occur in 133 of the sample days at a mean occurrence rate of 1.06%.

RUB (1.39%) and TRY (1.22%) exibit the largest average jump prevalences, while CHF
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(0.89%) exitibits the smallest. We also find that positive jumps occur 0.02% more often

than negative jumps, while tending to be slightly smaller. Our average daily return jump

prevalence is smaller than that of Lee and Wang (2019), who find 1.53% on average for 17

country exchanges over the years 1999-2015. Overall, our jump values are comparable to

theirs. Minor discrepancies are likely due to their inclusion of high-prevalence outliers such

as India (5.2%) and Korea (3.83%). Without such outliers their sample has a jump occrence

average average of 1.17%.

[INSERT TABLE 2]

Next, we test for jumps in the variances of the foreign exchange series. Variance dynamics

play a role in determining covariance dynamics of a price series pair. Further, a determining

factor of V ech, from Equation (2), is the underlying stochastic volatility of the series. This

becomes especially important in the latter simulation exercise. We provide variance jump

dynamics results in Table 3. We find variance jumps occur in only 88 sample days (24.25%),

with a mean prevalence of 1.43%. Therefore, while being more prevalent, fewer total days

exhibit variance jumps than their price or covariance counterparts. Positive and negative

jumps have the largest deviation with positive jumps occurring in 0.09% more observations

and also being larger in magnitude.

[INSERT TABLE 3]

We lastly employ our test for predicting jumps in the covariance matrix. A separate test

is conducted over each of the 15 Forex currency pairs, for a total of 105 tests. We begin by

calculating the diffusive intraday covariance matrix, V ech(Σ), according to Equation (13).

The joint test for the occurrence of a jump in the V ech(Σ), for a k-block is given by Equation

(14). Average results from our covariance tests, along with price and variance test averages
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for reference, are provided in Table 4.14 The mean covariance jump prevalence is 1.53% across

90 sample days. This suggestis that covariance jumps occur approximately 62.8% more often

than price jumps and 7% more than variance jumps. Positive jumps occur slightly more often

(0.02%) than negative counterparts. Covariance jumps are also the smallest in magnitude.

We conducted additional tests using alternative frequency specifications of k = 15minutes,

30minutes, and 1hour. For brevity, results for each of these are not provided here. Overall

results indicate that covariance jumps become more prevalent and larger in magnitude as

time-intervals increase.15 They also occur in a larger proportion of days. Such results are

similar to those found by Lee and Mykland (2008) and Lee and Wang (2019), and further

reiterate the value of including volatility in model specifications.16 Our results additionally

suggest that covariance jumps often occur contemporaneously to jumps in price, while not

being a precondition for their existence.

[INSERT TABLE 4]

4.2. Monte Carlo Simulation

In this section, we examine the performance of our covariance matrix jump estimator

using simulated data. We conduct the simulation following a two stage process. In stage

one, we simulate a covariance series according to an affine jump process. Jumps in the

intraday covariance pattern are parameterized according Merton (1976) where the the jump

component follows a poisson process described by:

Nt =
∑
n≥1

1t≥τn (15)

14Our jump test results for each of the diffusive covariance asset pair can be found in Appendix 1. We do
not present the full table here for brevity, instead opting for reporting average statistics.

15Results at each frequency are available upon request.
16Eraker et al. (2003) highlights that models without volatility jump components are mispecified.
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where the jump intensity parameter λ, is the expected number of jumps per time unit.

Combining the previous equations, a series under the Merton Jump-Diffusion model is char-

acterized by:

Pt = P0e
µ−σ

2

2
t+σWt+

∑Nt

i=tQt (16)

where µ is the diffusion drift, σ is diffusion volatility, Wt a standard Brownian motion,

and {ΣNt
i=1Qi}t≥0 a compound Poisson process. We set the probability of jump occurrence

(intensity), λ equal to 0.1 (10%), initial covariance to 0.5, and volatility at 0.3.

In the second stage, a similar jump diffusion process is used to simulate covariance paths

for each of the price pairs. This results in two price series following a doubly stochastic

jump process as described in Equation (1) and Equation (2). We show the paths for the

underlying simulated covariance processes in the first colums of Figure 1. 5000 paths were

replicated under each covariance calibration with varying jump sizes of 0.1, 0.5, 1, and 2

times the volatility level. We further restrict values to be greater than zero, to ensure the

diffusive covariance matrix remains positive semi definite. The resultant covariance paths

were then used in determining two corresponding price series. Price series were calibrated

with an initial price of 100 and identically sized jumps occurring at λ = 10%. Each of our

price series simulations are shown in the second and third columns of Figure 1, respectively.

Final simulated series correspond to one month (31 days) of trading.17

[INSERT FIGURE 1]

We then examine whether our tests sufficiently detect jumps in the covariance (V ech(Σ))

matrix in the simulated series at a 5% level of significance. Multiple frequency samplings of 5

minutes, 30 minutes, 1 hour and 12 hours and each of the aforementioned jump magnitudes

17One month of trading days is equal to 31 days. Simulation was conducted at frequencies of k=5 minutes,
30 minutes, 1 hour, and 12 hours. This results in 8928, 2976, 744, and 62 monthly observations per path.
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are explored by varying the mean jump size by a scalar multiple of the volatility level, σ.

We focus upon two estimated metrics. The first, Global Failure to Detect (GFTD) is the

proability of our test not detecting a jump. We calculate GFTD as the difference between

the total number of detected jumps and the number of occurring jumps imposed by our

calibrated model. Therefore, the total detection rate over the entire sample is 1 − GFTD.

The second metric is Global Spurious Detection (GSD). GSD is the probability of the test

to experience a Type I error of detecting a jump that did not occur. Consistently we find

the GSD of our test to be near zero.18

Table 5 presents our results. Overall, we fail to detect jumps at quite low rates under

various high-frequency settings. At a baseline level, meaning a 5 minute frequency and sample

corresponding volatility, our test detects 99.67% of jumps. Even at the 12 hour frequency,

91.8% of jumps are detected. Successful detection rates increase at higher data frequencies,

while test accuracy decreases significantly with jump size. Taken together,our test performs

quite similar to asymptotic results at high observational frequency and under large jump

sizes. Correspondingly, as frequency and size are reduced the tests’ precision decreases. We

assessed the sensitivity of our test to alternative parameter specifications and initializing

values across each observational frequency fingind our test statistics to be quite robust, with

negligible changes to global and spurious detection rates occurring. We take these results as

confirmation that our covariance jump test performs well under a wide variety of potential

scenarios.

[INSERT TABLE 5]

18For an in depth mathematical discussion of such tests see Lee and Mykland (2008), as these are primarily
extensions from their work.
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5. Conclusion

We have proposed a new method for identifying intraday jumps in the diffusion covari-

ance matrix of high-frequency financial assets. Previously literature shows that inefficient

estimation of model components leads to errors in pricing models. Our method has two

distinct advantages. First, it avoids model misspecification errors corresponding to asset

jump-diffusions processes. Second, it provides standard normally distributed and χ2 test

statistics.

Test performance was evaluated using tick-by-tick exchange rate and simulated data.

We find covariance jumps to occur at a rate of 1.53%, while variance and price jumps

occur at rates of 1.42% and 1.06% respectively. A subsequent Monte-Carlo simuation study

shows our estimator correctly identifies jumps in diffusive covariance matrices with virtually

zero spurious detection. Under the commonly used 5 minute frequency with sample equal

jump size variance, covariance jumps are properly identified over 99% of the time. However,

it should be noted that the test performs best under high frequency and sufficiently large

jump magnitude settings. Empirical examinations provided evidence of the strong association

between covariance and price jumps, with covariance jumps occurring at a higher rate.

Our results inform a wide variety of prior literature examining intraday jumps in asset

prices, as well as those estimating or forecasting second moment processes. While we have

not explored the many individual implications, our test provides an accessible framework

for the parameterization of such models. One key limitation of our study is the required

precondition of the diffusive matrix being non-independent and resultant covariances being

greater than zero. Future research may look into relaxing these assumptions or utilizing

alternative parameterizations such as the matrix-logarithm of Bauer and Vorkink (2006)

and fractional logit procedures.
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Figures

Figure 1. Note: Probabilities representative of simulated series. λ = 0.1. Each row refers
to the volatility level, Xσ, used for the simulation. X is a scalar multiple (from top to
bottom row), where X = [0.1, 0.5, 1, 2]. Initial covolotility is set at 0.5 and price set at 100.
Observations are simulated over a 31 day trading month for k = 5minutes. Each graph
includes 5000 path simulations.
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Tables

Table 1. Exchange Rate Return Statistics

Country Code Mean St.Dev Min Max Skewness Kurtosis

Australia AUD 0.025 0.476 -1.334 1.876 0.255 1.112
Canada CAD -0.021 0.438 -1.511 1.493 -0.369 1.639
Switzerland CHF -0.015 0.394 -1.288 2.021 0.158 2.513
Czech Rep. CZK -0.062 0.457 -1.404 2.014 -0.017 1.525
Denmark DKK -0.043 0.417 -1.402 1.560 -0.234 0.898
Euro EUR 0.044 0.418 -1.583 1.399 0.232 0.900
Hungary HUF -0.042 0.495 -1.622 1.780 -0.191 1.169
Japan JPY -0.013 0.474 -1.741 1.466 -0.080 0.854
Mexico MXN -0.017 0.713 -2.489 1.839 -0.167 0.826
New Zealand NZD 0.005 0.514 -1.923 1.625 -0.046 0.781
Russia RUB -0.018 0.616 -1.832 2.260 0.228 0.912
Sweden SEK -0.034 0.491 -1.480 2.063 -0.047 0.833
Singapore SGD -0.025 0.243 -0.821 0.851 -0.062 0.932
Turkey TRY 0.022 0.760 -2.887 2.742 0.184 1.820
South Africa ZAR -0.033 0.874 -3.038 2.769 -0.106 1.235

Note: This table reports the first four moments of daily returns for the full
sample of currencies. Returns a presented in percentage terms.
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Table 5. Probability of Misclassification

1 - GFTD GSD

Block Size 0.1σ 0.5σ 1σ 2σ All

k = 5 minutes 0.8728 0.9959 0.9967 0.9987 0.0000
(0.1082) (0.0346) (0.0346) (0.0316) (0.0000)

k = 30 minutes 0.7927 0.9571 0.9931 0.9948 0.0000
(0.1417) (0.0660) (0.0489) (0.0433) (0.0000)

k = 1 hours 0.6501 0.9081 0.9888 0.9982 0.0000
(0.1464) (0.1071) (0.0418) (0.0353) (0.0000)

k = 12 hours 0.4383 0.7403 0.9180 0.9852 0.0000
(0.0931) (0.1464) (0.0827) (0.0402) (0.0000)

Note: This table presents covariance jump test performance statistics. Probabil-
ities representative of simulated price series. λ = 0.1. Xσ refers to the volatility
level, where X is a scalar multiple. k denotes the frequency of observations. Initial
covolotility set at 0.5. GFTD is the global probability of the test failing to detect a
jump in covariance. GSD is the global probability of the test spuriously detecting
a jump in covariance.Observations are simulated over a 31 day trading month for
each k. Values reflect the mean across 5000 simulations.
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Appendix 1: Covariance Jump Statistics (1)

All Jumps Positive Jumps Negative Jumps Jump Days

Series #Tests J# J % % Q1 Q2 Q3 % Q1 Q2 Q3 % #

AUD CAD 104147 1668 1.60% 0.83% 8.58E-10 3.36E-09 1.23E-08 0.77% 8.00E-09 3.96E-08 1.03E-07 23.20% 84
AUD CHF 104147 1513 1.45% 0.75% 9.75E-10 3.63E-09 1.25E-08 0.70% 4.85E-09 3.06E-08 8.18E-08 25.69% 93
AUD CZK 104147 1521 1.46% 0.78% 2.49E-08 1.00E-07 3.79E-07 0.75% 5.79E-08 3.77E-07 1.51E-06 24.03% 87
AUD DKK 104147 1587 1.52% 0.78% 5.03E-09 1.78E-08 6.07E-08 0.74% 2.72E-08 1.68E-07 5.01E-07 24.31% 88
AUD EUR 104147 1565 1.50% 0.77% 6.17E-09 3.36E-08 8.99E-08 0.73% 8.95E-10 3.23E-09 1.22E-08 25.97% 94
AUD HUF 104146 1450 1.39% 0.71% 5.28E-07 2.34E-06 8.10E-06 0.69% 5.04E-07 2.31E-06 9.03E-06 26.52% 96
AUD JPY 104147 1585 1.52% 0.79% 1.18E-07 4.40E-07 1.57E-06 0.74% 4.03E-07 2.34E-06 8.87E-06 26.24% 95
AUD MXN 104140 1685 1.62% 0.82% 1.33E-08 1.30E-07 6.00E-07 0.80% 1.39E-08 1.13E-07 5.13E-07 27.07% 98
AUD NZD 104147 1588 1.52% 0.79% 7.28E-09 3.86E-08 9.08E-08 0.73% 8.03E-10 2.70E-09 8.63E-09 27.62% 100
AUD RUB 104145 1534 1.47% 0.74% 2.08E-30 3.41E-07 2.14E-06 0.73% 2.42E-10 5.50E-07 3.24E-06 26.24% 95
AUD SEK 104146 1540 1.48% 0.74% 9.33E-09 3.64E-08 1.35E-07 0.74% 3.27E-08 1.78E-07 6.08E-07 24.86% 90
AUD SGD 104147 1591 1.53% 0.77% 5.92E-10 2.50E-09 7.20E-09 0.76% 2.27E-09 1.67E-08 5.74E-08 26.80% 97
AUD TRY 104147 1639 1.57% 0.80% 2.88E-09 1.59E-08 5.60E-08 0.78% 9.10E-09 1.04E-07 3.41E-07 22.38% 81
AUD ZAR 104147 1592 1.53% 0.77% 1.97E-08 9.45E-08 3.68E-07 0.76% 4.91E-08 4.10E-07 1.36E-06 25.41% 92
CAD CHF 104147 1493 1.43% 0.74% 6.13E-09 3.67E-08 1.06E-07 0.69% 1.28E-09 5.54E-09 1.93E-08 24.59% 89
CAD CZK 104147 1628 1.56% 0.79% 9.07E-08 5.66E-07 1.87E-06 0.78% 3.20E-08 1.53E-07 6.47E-07 22.65% 82
CAD DKK 104147 1652 1.59% 0.80% 3.90E-08 2.20E-07 6.73E-07 0.79% 5.25E-09 2.50E-08 9.44E-08 23.20% 84
CAD EUR 104147 1566 1.50% 0.76% 1.03E-09 5.12E-09 1.96E-08 0.74% 7.56E-09 4.09E-08 1.19E-07 24.03% 87
CAD HUF 104146 1572 1.51% 0.77% 8.97E-07 3.90E-06 1.53E-05 0.74% 6.84E-07 3.43E-06 1.34E-05 24.59% 89
CAD JPY 104147 1630 1.57% 0.81% 4.79E-07 2.89E-06 1.11E-05 0.76% 1.48E-07 6.29E-07 2.46E-06 24.59% 89
CAD MXN 104140 1818 1.75% 0.88% 1.67E-08 1.62E-07 8.79E-07 0.87% 2.05E-08 1.72E-07 8.09E-07 25.41% 92
CAD NZD 104147 1554 1.49% 0.77% 9.15E-10 3.39E-09 1.16E-08 0.72% 8.35E-09 3.98E-08 1.11E-07 24.86% 90
CAD RUB 104145 1674 1.61% 0.81% 6.40E-09 7.01E-07 3.66E-06 0.80% 2.55E-09 6.06E-07 3.49E-06 24.59% 89
CAD SEK 104146 1635 1.57% 0.79% 3.40E-08 2.25E-07 7.19E-07 0.78% 1.39E-08 6.12E-08 2.11E-07 22.93% 83
CAD SGD 104147 1605 1.54% 0.78% 2.51E-09 2.33E-08 7.21E-08 0.76% 6.22E-10 3.21E-09 1.10E-08 25.97% 94
CAD TRY 104147 1694 1.63% 0.82% 1.24E-08 1.15E-07 4.42E-07 0.81% 4.06E-09 2.56E-08 9.54E-08 23.20% 84
CAD ZAR 104147 1605 1.54% 0.78% 6.98E-08 5.71E-07 1.87E-06 0.76% 2.95E-08 1.61E-07 6.16E-07 24.86% 90
CHF CZK 104147 1511 1.45% 0.73% 1.55E-07 8.87E-07 2.17E-06 0.72% 3.20E-08 1.10E-07 3.94E-07 22.93% 83
CHF DKK 104147 1612 1.55% 0.79% 8.52E-08 3.77E-07 8.22E-07 0.76% 5.73E-09 2.10E-08 7.21E-08 23.20% 84
CHF EUR 104147 1611 1.55% 0.80% 1.58E-09 5.10E-09 1.43E-08 0.74% 1.71E-08 6.71E-08 1.50E-07 22.93% 83
CHF HUF 104146 1456 1.40% 0.71% 1.10E-06 4.03E-06 1.29E-05 0.69% 9.22E-07 4.15E-06 1.33E-05 24.03% 87
CHF JPY 104147 1588 1.52% 0.79% 1.00E-06 5.00E-06 1.40E-05 0.74% 1.43E-07 5.35E-07 1.96E-06 25.41% 92
CHF MXN 104140 1653 1.59% 0.80% 2.37E-08 1.72E-07 6.88E-07 0.79% 2.63E-08 1.73E-07 8.35E-07 26.24% 95
CHF NZD 104147 1423 1.37% 0.69% 1.02E-09 3.86E-09 1.21E-08 0.68% 7.88E-09 3.82E-08 8.86E-08 25.41% 92



Appendix 1: Covariance Jump Statistics Continued (2)

All Jumps Positive Jumps Negative Jumps Jump Days

Series #Tests J# J % % Q1 Q2 Q3 % Q1 Q2 Q3 % #

CHF RUB 104145 1625 1.56% 0.79% 2.03E-09 5.67E-07 2.99E-06 0.77% 2.68E-10 5.17E-07 2.71E-06 25.41% 92
CHF SEK 104146 1477 1.42% 0.71% 5.69E-08 2.94E-07 8.77E-07 0.70% 1.52E-08 6.14E-08 1.82E-07 23.48% 85
CHF SGD 104147 1544 1.48% 0.74% 4.74E-09 2.59E-08 7.04E-08 0.74% 6.99E-10 3.00E-09 9.64E-09 24.86% 90
CHF TRY 104147 1529 1.47% 0.75% 1.23E-08 1.20E-07 3.56E-07 0.72% 6.13E-09 2.65E-08 1.02E-07 24.03% 87
CHF ZAR 104147 1478 1.42% 0.71% 7.49E-08 5.01E-07 1.73E-06 0.71% 2.87E-08 1.75E-07 6.34E-07 24.59% 89
CZK DKK 104147 1617 1.55% 0.80% 1.43E-06 7.99E-06 1.95E-05 0.76% 9.51E-08 4.09E-07 1.52E-06 24.03% 87
CZK EUR 104147 1575 1.51% 0.77% 2.72E-08 1.00E-07 3.27E-07 0.74% 1.82E-07 1.10E-06 2.59E-06 23.76% 86
CZK HUF 104146 1494 1.43% 0.72% 2.97E-05 1.41E-04 5.25E-04 0.71% 1.90E-05 7.60E-05 2.55E-04 25.41% 92
CZK JPY 104147 1568 1.51% 0.76% 9.00E-06 5.10E-05 1.96E-04 0.74% 4.00E-06 1.70E-05 6.70E-05 26.52% 96
CZK MXN 104140 1789 1.72% 0.87% 5.54E-07 4.71E-06 1.82E-05 0.85% 4.18E-07 4.08E-06 2.25E-05 23.48% 85
CZK NZD 104147 1519 1.46% 0.74% 3.33E-08 1.14E-07 3.80E-07 0.72% 9.15E-08 4.83E-07 1.59E-06 26.52% 96
CZK RUB 104145 1553 1.49% 0.75% 1.25E-07 1.88E-05 9.32E-05 0.74% 8.56E-08 1.64E-05 8.14E-05 24.59% 89
CZK SEK 104146 1612 1.55% 0.80% 4.00E-06 1.60E-05 3.70E-05 0.75% 3.44E-07 1.25E-06 4.29E-06 23.20% 84
CZK SGD 104147 1727 1.66% 0.85% 1.29E-07 7.79E-07 2.15E-06 0.81% 1.94E-08 7.18E-08 2.58E-07 22.65% 82
CZK TRY 104147 1617 1.55% 0.79% 2.43E-07 2.49E-06 8.79E-06 0.76% 1.15E-07 6.96E-07 2.52E-06 22.10% 80
CZK ZAR 104147 1681 1.61% 0.82% 2.00E-06 1.80E-05 5.50E-05 0.79% 6.70E-07 3.35E-06 1.10E-05 23.76% 86
DKK EUR 104147 1613 1.55% 0.80% 4.99E-09 2.33E-08 8.53E-08 0.75% 1.30E-07 4.84E-07 1.15E-06 22.65% 82
DKK HUF 104146 1512 1.45% 0.73% 6.00E-06 2.40E-05 9.40E-05 0.72% 5.00E-06 2.30E-05 8.00E-05 24.31% 88
DKK JPY 104147 1589 1.53% 0.78% 5.00E-06 2.40E-05 7.70E-05 0.75% 7.84E-07 2.89E-06 1.07E-05 24.31% 88
DKK MXN 104140 1753 1.68% 0.86% 1.42E-07 9.88E-07 4.24E-06 0.82% 1.15E-07 1.00E-06 5.00E-06 25.69% 93
DKK NZD 104147 1469 1.41% 0.74% 5.90E-09 2.06E-08 6.36E-08 0.67% 3.79E-08 2.00E-07 5.66E-07 25.69% 93
DKK RUB 104145 1628 1.56% 0.79% 6.22E-08 4.22E-06 2.22E-05 0.77% 6.39E-08 4.26E-06 1.94E-05 24.03% 87
DKK SEK 104146 1598 1.53% 0.78% 6.82E-07 3.23E-06 7.37E-06 0.75% 4.27E-08 1.95E-07 6.65E-07 22.65% 82
DKK SGD 104147 1723 1.65% 0.84% 3.15E-08 1.98E-07 5.43E-07 0.81% 4.01E-09 1.53E-08 4.58E-08 24.03% 87
DKK TRY 104147 1679 1.61% 0.81% 1.06E-07 9.11E-07 2.71E-06 0.80% 2.65E-08 1.37E-07 5.58E-07 21.55% 78
DKK ZAR 104147 1582 1.52% 0.78% 4.19E-07 4.20E-06 1.24E-05 0.74% 1.82E-07 8.69E-07 2.86E-06 23.20% 84
EUR HUF 104146 1568 1.51% 0.76% 9.51E-07 4.13E-06 1.38E-05 0.75% 9.16E-07 3.97E-06 1.39E-05 24.03% 87
EUR JPY 104147 1633 1.57% 0.82% 1.49E-07 5.73E-07 2.24E-06 0.75% 9.30E-07 4.34E-06 1.48E-05 25.14% 91
EUR MXN 104140 1791 1.72% 0.87% 1.86E-08 1.89E-07 8.21E-07 0.85% 1.85E-08 1.67E-07 7.04E-07 23.48% 85
EUR NZD 104147 1512 1.45% 0.75% 6.46E-09 3.18E-08 9.46E-08 0.71% 1.08E-09 3.94E-09 1.45E-08 25.97% 94
EUR RUB 104145 1637 1.57% 0.79% 1.24E-08 6.86E-07 3.20E-06 0.78% 4.97E-09 6.94E-07 3.66E-06 27.62% 100
EUR SEK 104146 1520 1.46% 0.74% 1.04E-08 4.66E-08 1.56E-07 0.72% 8.03E-08 3.89E-07 1.01E-06 23.20% 84
EUR SGD 104147 1636 1.57% 0.79% 6.24E-10 3.01E-09 9.11E-09 0.78% 3.59E-09 2.43E-08 7.91E-08 27.07% 98
EUR TRY 104147 1664 1.60% 0.81% 4.38E-09 2.38E-08 9.15E-08 0.79% 9.03E-09 1.22E-07 4.30E-07 21.55% 78
EUR ZAR 104147 1668 1.60% 0.80% 3.14E-08 1.38E-07 5.72E-07 0.80% 5.05E-08 5.43E-07 1.83E-06 24.86% 90
HUF JPY 104146 1460 1.40% 0.70% 9.50E-05 4.08E-04 1.49E-03 0.70% 8.10E-05 3.84E-04 1.42E-03 25.14% 91
HUF MXN 104140 1690 1.62% 0.81% 7.00E-06 5.90E-05 2.46E-04 0.81% 6.00E-06 5.40E-05 2.72E-04 25.97% 94



Appendix 1: Covariance Jump Statistics Continued (3)

All Jumps Positive Jumps Negative Jumps Jump Days

Series #Tests J# J % % Q1 Q2 Q3 % Q1 Q2 Q3 % #

HUF NZD 104146 1359 1.30% 0.67% 5.08E-07 2.30E-06 8.78E-06 0.64% 6.71E-07 3.02E-06 1.10E-05 27.35% 99
HUF RUB 104145 1494 1.43% 0.72% 2.19E-07 2.79E-04 1.21E-03 0.71% 1.71E-27 1.39E-04 7.60E-04 25.14% 91
HUF SEK 104146 1492 1.43% 0.72% 1.20E-05 5.10E-05 1.85E-04 0.71% 6.00E-06 2.50E-05 9.50E-05 24.86% 90
HUF SGD 104146 1480 1.42% 0.71% 5.58E-07 2.66E-06 1.11E-05 0.71% 4.62E-07 2.10E-06 7.73E-06 26.24% 95
HUF TRY 104146 1555 1.49% 0.75% 2.00E-06 1.90E-05 6.80E-05 0.74% 2.00E-06 1.40E-05 5.70E-05 23.48% 85
HUF ZAR 104146 1523 1.46% 0.73% 1.80E-05 1.26E-04 4.23E-04 0.73% 1.40E-05 7.10E-05 2.60E-04 24.59% 89
JPY MXN 104140 1662 1.60% 0.80% 2.00E-06 1.40E-05 7.20E-05 0.79% 2.00E-06 1.90E-05 9.30E-05 27.90% 101
JPY NZD 104147 1519 1.46% 0.75% 1.48E-07 4.75E-07 1.49E-06 0.71% 7.27E-07 3.94E-06 1.13E-05 27.35% 99
JPY RUB 104145 1538 1.48% 0.74% 4.29E-28 6.89E-05 4.29E-04 0.74% 2.67E-09 7.54E-05 3.71E-04 25.69% 93
JPY SEK 104146 1539 1.48% 0.75% 4.00E-06 2.30E-05 7.30E-05 0.73% 2.00E-06 7.00E-06 2.60E-05 24.86% 90
JPY SGD 104147 1591 1.53% 0.77% 3.59E-07 2.59E-06 7.83E-06 0.76% 1.01E-07 4.01E-07 1.38E-06 27.35% 99
JPY TRY 104147 1566 1.50% 0.75% 1.00E-06 1.00E-05 4.20E-05 0.75% 6.53E-07 3.05E-06 1.08E-05 23.20% 84
JPY ZAR 104147 1537 1.48% 0.75% 5.00E-06 4.00E-05 1.64E-04 0.72% 3.00E-06 1.70E-05 6.60E-05 27.35% 99
MXN NZD 104140 1602 1.54% 0.78% 1.15E-08 1.35E-07 5.69E-07 0.76% 1.19E-08 9.88E-08 4.35E-07 28.45% 103
MXN RUB 104140 1551 1.49% 0.76% 4.91E-08 1.64E-05 9.61E-05 0.73% 1.66E-07 1.46E-05 7.72E-05 25.97% 94
MXN SEK 104140 1685 1.62% 0.81% 1.74E-07 1.53E-06 7.01E-06 0.81% 2.08E-07 1.43E-06 7.37E-06 24.59% 89
MXN SGD 104140 1690 1.62% 0.82% 1.19E-08 1.23E-07 5.25E-07 0.81% 1.36E-08 1.49E-07 6.36E-07 24.59% 89
MXN TRY 104140 1837 1.76% 0.88% 4.65E-08 6.42E-07 3.78E-06 0.88% 4.28E-08 7.11E-07 3.73E-06 28.18% 102
MXN ZAR 104140 1756 1.69% 0.86% 2.80E-07 4.49E-06 2.29E-05 0.83% 3.34E-07 4.87E-06 2.32E-05 25.41% 92
NZD RUB 104145 1560 1.50% 0.75% 4.65E-09 4.74E-07 2.41E-06 0.75% 4.20E-09 5.59E-07 3.15E-06 24.59% 89
NZD SEK 104146 1434 1.38% 0.69% 1.08E-08 4.46E-08 1.58E-07 0.69% 4.37E-08 2.33E-07 6.65E-07 26.24% 95
NZD SGD 104147 1527 1.47% 0.75% 5.61E-10 2.25E-09 7.16E-09 0.72% 3.00E-09 2.17E-08 6.44E-08 27.35% 99
NZD TRY 104147 1526 1.47% 0.73% 4.26E-09 1.91E-08 6.48E-08 0.73% 1.36E-08 1.18E-07 3.38E-07 24.03% 87
NZD ZAR 104147 1509 1.45% 0.74% 2.33E-08 1.16E-07 4.09E-07 0.71% 5.76E-08 5.34E-07 1.58E-06 26.24% 95
RUB SEK 104145 1588 1.52% 0.77% 2.48E-09 5.93E-06 3.47E-05 0.75% 6.12E-08 6.02E-06 2.92E-05 23.76% 86
RUB SGD 104145 1580 1.52% 0.76% 2.96E-20 5.64E-07 3.22E-06 0.76% 5.16E-30 5.51E-07 2.70E-06 26.80% 97
RUB TRY 104145 1751 1.68% 0.84% 1.10E-08 3.08E-06 1.56E-05 0.84% 1.10E-08 3.08E-06 1.56E-05 22.38% 81
RUB ZAR 104145 1725 1.66% 0.83% 3.87E-08 1.52E-05 9.84E-05 0.82% 6.89E-08 1.38E-05 7.89E-05 23.20% 84
SEK SGD 104146 1570 1.51% 0.77% 4.32E-08 2.73E-07 8.24E-07 0.74% 7.98E-09 3.51E-08 1.29E-07 25.97% 94
SEK TRY 104146 1574 1.51% 0.76% 1.75E-07 1.07E-06 3.23E-06 0.75% 5.78E-08 3.16E-07 1.09E-06 22.65% 82
SEK ZAR 104146 1598 1.53% 0.76% 1.00E-06 8.00E-06 2.30E-05 0.76% 3.33E-07 1.32E-06 4.13E-06 21.55% 78
SGD TRY 104147 1639 1.57% 0.79% 1.29E-08 9.91E-08 2.97E-07 0.78% 3.49E-09 1.79E-08 6.72E-08 23.20% 84
SGD ZAR 104147 1674 1.61% 0.81% 5.79E-08 6.00E-07 1.98E-06 0.80% 1.92E-08 8.64E-08 2.96E-07 25.14% 91
TRY ZAR 104147 1776 1.71% 0.87% 3.15E-07 4.32E-06 1.25E-05 0.84% 7.81E-08 5.19E-07 1.71E-06 22.10% 80
Average 104146 1594 1.53% 0.78% 2.06E-06 1.45E-05 5.75E-05 0.75% 1.49E-06 9.99E-06 4.18E-05 24.76% 90

Note: This table presents covariance jump prevalence and corresponding statistics across all currency pairs. ‘Jump Days’ refers to trading
days which experience a price jump. k = 5 minutes. Sample period (full): January 1 to December 31, 2017.
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