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Abstract

Classifications of informed traders depend on market conditions and
are thus endogenous. We argue that exogenous information on the trader
type that is independent of the market conditions should be used: whether
the trader is an agent and principal trader. At an hourly frequency, vari-
ation in agent flow accounts for 25% of the total variance of innovations
in efficient prices while the contribution of principal flow is virtually zero.
Informativeness of different order types depends on market conditions as
measured by the VIX.

classification codes: 360, 420, 350, 570

1 Introduction

Research on informed trading usually relies on an endogenous classification of
which traders are informed. However, which trader is labelled informed may
depend on the market circumstances, the trader’s order execution strategy, and
the interaction with other traders. To avoid such problems, it is desirable to
have an exogenous classification of traders that it independent of the market
circumstances and link it the informativeness of their orders.

We analyze the trading behavior of different types of traders – agent and
principal traders – in terms of their contribution to price discovery and price
impact. Even though recent evidence focusing on a subset of arguably in-
formed traders shows that these traders use limit orders (see, for example Collin-
Dufresne and Fos (2015) and Kacperczyk and Pagnotta (2019) ), it remains
unanswered how to link the exogenous classification of a trader with the infor-
mativeness of the traders’ their order. We focus on differences in information
content of trades between traders using the same order type. Are agents’ market
orders as informed as principals’ market orders?

∗Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, the Netherlands,
albertjmenkveld@gmail.com, +31 20 598 6130, and Tinbergen Institute.

†Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, the Netherlands,
saru.ionlucas@gmail.com, +31 20 598 6060, and Tinbergen Institute.

1

mailto:albertjmenkveld@gmail.com
mailto:saru.ionlucas@gmail.com


We propose a state space model to estimate the contribution of orders of
different traders to price discovery. Our model controls for differences in trad-
ing volume. Thus, even though trading volume between agents and principals
differs, we estimate the information content in order flow scaled by volume.
The state space framework allows us to disentangle transitory and permanent
movements in security prices. Based on this, we identify whether price changes
are due to information or price pressure. Even if agents and principals use the
same order type, the order’s contribution to price discovery differs.

We exhibit our main results in Figure 1. At an hourly frequency, aggressive
orders used by agents account for 25% of the variance of innovations in efficient
prices, while the contribution of aggressive principal orders is virtually zero.
Our findings indicate that besides the order type, also information on the trader
using the order is relevant for its informativeness.

We show that order informativeness depends on market conditions as mea-
sured by the VIX. Efficient price changes load stronger on agents’ market orders
in high-VIX periods and weaker in low-VIX periods. In low-VIX periods, effi-
cient price innovations load stronger on agents’ limit orders. Also, the variance
of innovations in efficient prices is lower in low-VIX periods while the variance
of pricing errors is virtually the same across market conditions. Our findings are
consistent with at least some agents with information using limit orders in times
of low market volatility. This complements the findings of Menkveld, Yueshen,
and Zhu (2017) who show that volume migrates between trading venues de-
pendent on the market conditions. We show that information scaled by trading
volume varies with market volatility.

In light of a recent literature analyzing closing auctions in equity markets
(Bogousslavsky and Muravyev, 2021; Comerton-Forde and Rindi, 2021), we an-
alyze opening and closing auctions in futures markets. Our results indicate no
significant differences in terms of price discovery and liquidity provision of the
traders between opening auctions and continuous trading. For closing auctions,
we do not find differences in terms of price discovery but evidence that agents
and principals trade stronger against pricing errors. Rather than creating auc-
tion price deviations, this reduces deviations from efficient prices.

Our analysis focuses on trading in Euro STOXX 50 index futures, capturing
the 50 largest companies in the Eurozone from eight countries. We use data on
futures trading as futures are leading other instruments in terms of price dis-
covery (Kawaller, Koch, and Koch, 1987; Stoll and Whaley, 1990; Hasbrouck,
2003; Tse, Bandyopadhyay, and Shen, 2006). Since we are asking the question
how different traders contribute to price discovery, we want to analyze the in-
strument where price discovery first occurs rather than analyzing instruments
that are lagging in price discovery.1

In contrast to existing studies on the use of order types by informed traders
that focus on traders with stock-specific information (Collin-Dufresne and Fos,
2015; Kacperczyk and Pagnotta, 2019), we focus on information regarding a

1In that case, traders might incorporate information into prices that has been revealed in
other instruments. For this, however, the speed of the trader matters and the analysis might
confound different effects.
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Figure 1: Hourly variances of pricing errors and efficient price innovations

The figure plots hourly variances of pricing errors and efficient price innovations
as well as the share of agents’ and principals’ aggressive orders in these variances.
The radius corresponds to the standard deviation of pricing errors and efficient
price innovations, respectively, in bp.
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basket of stocks. It is not clear that existing results extend to instruments that
reflect a basket of multiple stocks. Prices of futures, such as the Euro STOXX
50 futures, reflect, next to information on the indexes constituents, information
on the state of the “European” economy.2 We address the question how traders
with this more general, macro-type of information trade upon their information
and provide liquidity using different orders. We find that both information on
the trader type as well as the order used matters for the expected informational
content of the order relative to analyzing either on a stand-alone basis. Thus,
with our work we contribute to the question of price efficiency and information
incorporation into prices. Our results suggest that rather than relying on an
endogenous classification of informed versus uninformed orders, research should
focus on exogenous exchange versus non-exchange member trader types.

Our work relates to a vast literature studying information content of differ-
ent order types as well as order submission by informed traders. In recent work,
Li, Ye, and Zheng (2021) study different order types at the NYSE and evalu-
ate their performance, also in terms of price discovery. However, they do not
observe the traders submitting the orders. It is possible that the same trader
uses different order types, depending on the market circumstances and the in-
formational horizon. While we do not observe the exact order type, we observe
whether a trade record stems from an aggressive or a passive order. However,
we have information on the type of trader utilizing the order. Thus, observing
how orders perform depending on which type of trader uses them allows us to
infer valuable information on the trader’s information and motivation. We find
a pecking order of order types depending on market volatility. Our findings
reveal that aggressive orders are relatively more informative in high-volatility
periods and passive orders are less subject to adverse selection in low-volatility
periods.

We address the question which order type is used by informed traders. The
early literature assumes that informed traders use market order (Harris, 1998).
Recent evidence shows that informed investors use limit orders. For example,
Collin-Dufresne and Fos (2015) find that 13D activist traders use limit orders.
Parlour (1998) and Foucault (1999) study limit and market order submission by
uninformed traders. Hollifield, Miller, and Sand̊as (2004) theoretically and and
empirically analyze optimal limit order submissions. In early empirical work,
Biais, Hillion, and Spatt (1995) study limit order book dynamics and interac-
tions between market and limit orders.3 Bloomfield, O’Hara, and Saar (2005),
Baruch, Panayides, and Venkataraman (2017) and Kacperczyk and Pagnotta
(2019) find that informed traders use limit orders.4 Other work focuses on order

2Traders with stock-specific information can achieve a greater exposure to a stock by
trading its shares or derivatives on its shares rather that trading futures on the index that
contains the share.

3Goettler, Parlour, and Rajan (2009) develop a model of the choice of acquiring informa-
tion and choosing the order type and Hoffmann (2014) studies order choice in a market with
HFTs.

4Brogaard, Hendershott, and Riordan (2019) document that HFTs’ limit orders contribute
to price discovery, and Fleming, Mizrach, and Nguyen (2018) provide evidence consistent with
price discovery through limit orders.
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choice by informed and uninformed traders, respectively. Bloomfield, O’Hara,
and Saar (2015) find that informed trader’s order choice depends on whether
they can hide liquidity and that they use more limit orders if liquidity not vis-
ible. Kaniel and Liu (2006) present a theoretical model in which informed
trades can submit limit orders. In equilibrium, limit orders may contain more
information than market orders. Also, if private information is more long-lived,
the probability of using limit orders increases. Our results are consistent with
the latter interpretation. However, the classification of traders into informed
and uninformed traders is endogenous. We show that rather than relying on
an endogenous classification, exogenous information on trader types contains
information on the informativeness of the traders’ orders as well price discovery
under different market conditions. Overall, we find more information content
in market orders, but our evidence suggests that agents’ limit order are more
informed at longer horizons and in times of low market volatility.

Several studies that analyze the trading behavior of groups of traders focus
only on subgroups. Kelley and Tetlock (2013) study the usage of limit and mar-
ket orders by retail investors. In contrast to us, they analyze trading and return
patterns at a lower frequency and relate daily imbalances to monthly returns.
They find that retail investors using market orders trade on new information.
Also limit orders by retail investors provide liquidity and some limit orders may
be informed. Hendershott, Livdan, and Schürhoff (2015) study price discov-
ery of institutional investors and find that they contribute to price discovery
regarding news events. However, they do not distinguish between order types.
In a recent study, Beason and Wahal (2020) study institutional trading algo-
rithms and find that they mainly use limit orders. Hence, to the extent that
institutional investors are informed, they are incorporating their information
using limit orders. Anand, Chakravarty, and Martell (2005) analyze the intra-
day pattern of orders usage by liquidity traders and institutional traders. They
find that institutional traders use market orders early during the day and limit
orders later during the day. Our analysis incorporates information on different
trader types (agents and principals) as well as information on the orders used.
This allows us to analyze differences in the information content of orders scaled
by volume.

Barber et al. (2009) study the Taiwanese market during the period 1995 –
1999. They distinguish between what they call aggressive and non-aggressive
orders as the market only allowed for limit orders. They find that individ-
ual traders make losses through “aggressive orders” while aggressive and non-
aggressive orders of institutions are profitable. We, in contrast, analyze a mod-
ern limit order book market that allows for submitting both market and limit
orders.

The remainder of the paper is structured as follows. In Section 2 we provide
institutional details on Euro STOXX 50 futures trading before we describe the
data in Section 3. Section 4 discusses our state space methodology. We present
our main results on relative differences in order flow informativeness by trading
type in Section 5 and results on opening and closing auction in Section 6. Finally,
Section 7 concludes.
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2 Institutional Background

Our analysis focuses on Euro STOXX 50 futures, one of the most actively traded
futures contracts in the world. The Euro STOXX 50 is the index for the largest
companies of the Eurozone with the constituents registered in Belgium, Finland,
France, Germany, Ireland, Italy, the Netherlands, and Spain.5 The constituents
are not all listed at the same exchange, however the trading hours are aligned.
Trading takes place in an electronic limit order book.

In our sample period, trading in Euro STOXX 50 futures takes place from 8
in the morning to 10 in the evening, Central European (Summer) Time. Trad-
ing starts with an opening auction in the morning. After continuous trading
terminates in the evening, it is followed by a call phase of at least three minutes,
before a closing auction is held.

2.1 Fee Structure

Eurex (2021) sets a fee structure that differentiates between principals (ex-
change members) and agents (non-exchange members).6 Exchange members
include internationally operating banks as well a nationally operating European
banks, proprietary trading firms, high frequency trading firms, global asset man-
agement companies, and other institutional investors. Non-exchnage members
are by definition the remaining traders and include other institutional investors,
pension funds, et cetera. According to Eurex, there is little migration of agents
to principal accounts and retail order flow in agency order flow is negligible.

The standard fee per contract via the limit order book is 0.35 EUR for agents
and 0.30 EUR for principals. A reduced fee beyond a certain volume threshold
does not apply. Fees for cash settlement are 0.35 EUR and 0.30 EUR for agents
and principals, respectively, and position closing adjustment fees are 0.70 EUR
and 0.60 EUR. Rebates for liquidity provision are based on several components
and amount up to 80%.7 Volume rebates are calculated on a monthly level and
all volume across all index futures is taken into account.

3 Data

Our focus is on studying the information in order flow and liquidity provision
by different trader types. We use proprietary trading data on Euro STOXX 50
futures from Eurex. The sample period spans from January 4, 2010 to December
7, 2018.8 We focus on futures trading as futures are leading in terms of price

5https://www.stoxx.com/index-details?symbol=SX5E
6A list of exchange members can be found on the Eurex website. We provide a list of all

unique exchange members listed on Eurex’ website in Appendix A.
7These include basic requirements, requirements for a combination of products, require-

ments for updating quotes in response to quote requests, size requirements, and maximum
spread requirements.

8We restrict our sample to end in December 7, 2018 in order to avoid any confounding
effects with a trading hour extension in the morning on December 8, 2018.
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discovery (see Hasbrouck (2003), among others).9 Central to our analysis is the
information on the account role of a trader as well as whether the trader utilizes
an aggressive order or not.10 The data contains the following information:

• Expiration of the futures contract.

• Indicator whether the trade is a buy or sell.

• Trade size.

• Execution price.

• Aggressor flag, whether the trade stems to a market or limit order. In the
following, we label trades that pertain to a market or marketable limit
order as aggressive trades and trades that stem to a limit order as passive
trades.

• The account role of the trader, whether the trader is a principal or agent.

• Indicator whether the order was fully or partially executed in the trade.

The analysis is based on trading in the contract with the highest trading volume.
This is usually the nearest-to-maturity contract.11 Also, we focus on continuous
trading as only during continuous trading there is a limit order for every market
order.12 Our focus is on the differences between different traders as well as how
they trade on their information. We thus distinguish between aggressive and
passive orders. This distinction is only meaningful during continuous trading.
Furthermore, this assures that there are no confound effects with dynamics dur-
ing the opening, closing, and intraday auctions (Bogousslavsky and Muravyev,
2021; Comerton-Forde and Rindi, 2021).

In the next section we describe details on the data cleaning procedure before
we provide summary statistics for the data.

3.1 Data Cleaning

We identify continuous trading by requiring that for every timestamp, the vol-
ume of market orders equals the volume of limit orders. This classification is

9An alternative is analyzing patterns in price discovery based on ETF trading data. Has-
brouck (2003) finds that ETFs contribute significantly to price discovery as well, with the
ETFs’ contribution varying between instruments. Furthermore, Menkveld and Yueshen (2019)
document a cross-market non-arbitrage relationship between S&P 500 futures and ETFs (E-
mini and SPY). Moreover, the futures market is less fragmented than the ETF market and
very liquid.

10We do not observe the exact order used. Orders at Eurex include next to market and
limit orders also stop orders, orders for the closing auction, as well as one-cancels-other and
book-or-cancel restrictions for limit orders (Eurex, 2021a).

11Similarly, Huang (2018) uses the contract with the highest volume. Our approach yields
similar results to using the front contract and rolling over to the next contract a pre-specified
number of days before expiration (Andersen et al., 2007).

12This is in line with, for example, Brogaard, Hendershott, and Riordan (2014), who study
the contribution of high-frequency traders to price discovery during continuous trading.
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performed based on the aggressor flag: the volume of aggressive orders has to
equal the volume of passive orders. This is feasible for the period January 1,
2010 – May 7, 2013. On May 8, 2013, Eurex migrated its products to the T7
trading system. This causes some imprecision in the timestamps in the data of
the following form. Orders that were executed against each other are not neces-
sarily recorded at the same timestamp but at consecutive timestamps where the
difference between the records is usually within the range of a few tens of mil-
liseconds.13 Thus, requiring the volume of market orders to equal the volume of
limit orders at every timestamp to identify continuous trading is not feasible.14

We address this problem using an event time approach.15 Trades that are
recorded at the same price within a defined time-interval are grouped together.
Then, the total volume of limit orders and the total volume of market orders
over the grouped trades are computed. If the total volume of limit orders equals
the total volume of market orders, the trades are labeled as continuous trading
and included in the main analysis.

The algorithm starts at the beginning of each trading day. For each price-
timestamp combination, a time window starting with that trade record is ini-
tialized.16 All following trades that are executed within the time window at the
same trading price are grouped together and assigned the timestamp of the first
recorded trade in that group. Once a trade is executed at the same trading price
but does not fall within the time window, or at a different trading price, a new
time window starting from that trade record is initialized. Again, all trades that
occur within the time window at the same execution price are grouped together.
This procedure continues until the end of the trading day.

The only parameter that has to be chosen is the length of the time window.
Choosing the window length trades off two factors. On the one hand, choosing a
longer window length assures that all corresponding trades are grouped together
even if there is substantial imprecision in the timestamps and high trading
activity. On the other hand, if the window length is chosen too long and the
volume of market orders and limit orders is not equal, substantial volume is
excluded form the main analysis. We consider the possibilities of 100ms, 500ms,
2s, and 4s. In the main analysis, we focus on data that has been cleaned using
a window length of 100ms. Our findings are robust to using a different window
length.

13Also, it appears that this “noise” in the timestamps increases in times of high trading
activity.

14Also, market clearing does not hold for every timestamp as a results of the imprecision in
the timestamps.

15Here we outline the main considerations and move a detailed discussion in Appendix C.
We discuss the advantages of an event-time approach over a wall-clock time approach in which
all trades within a time unit are grouped together.

16This approach is comparable to the methodology developed in Aquilina, Budish, and
O’Neill (2021), Ernst (2020), and Ernst, Sokobin, and Spatt (2021).
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3.2 Variable Construction

We run our analysis at an hourly frequency. The last observed trading price
within an hour is assigned to that interval. For order flow, we sign volume using
the trade direction indicator from the data set. Then, we sum signed volume
for every hour. Thus, order flow has the same frequency as the prices that we
observe.

We are focusing on differences in price discovery and liquidity provision of
orders with the same characteristics between trader types. In terms of order
characteristics, we distinguish between aggressive (market and marketable limit)
orders and passive (limit) orders based on the aggressor flag. In terms of trader
types, we distinguish between principal and agent traders based on the account
role information in the data set. Orders and trades must be identified as prin-
cipal or agent trades with the distinction not being arbitrary (Eurex, 2021a).17

We use the information on the aggressor flag and account role to create
order flow variables for every aggressor flag-account role combination. This
yields several account role-aggressor flag combinations:

1. agent flow,

2. Principal flow,

3. Agent aggressive flow,

4. Agent passive flow,

5. Principal aggressive flow,

6. Principal passive flow,

7. Aggressive flow,

8. Passive flow.

1 and 2, 3 – 6, as well as 7 and 8 clear the market, thus, in the empirical analysis
at least one of the respective account role-aggressor flag combinations has to be
omitted from the model for estimation.

We give an overview of the order flow variables and exhibit summary statis-
tics on returns as well as the order flow variables in Table 1. Due to market
clearing, summary statistics on agent flow and principal flow as well as on ag-
gressive flow and passive flow mirror each other. Our sample contains many
extreme observations for returns and order flow. Differences between the order
flow variables give a first indication that orders with the same characteristics
are used differently by different trader types. The kurtosis of most order flow
variables is considerably higher than that of the returns: there are more tail
realizations for order flow than for returns in our sample period.

17For accounts classified by Eurex as agent accounts (account code “A”), we retain the
label. We label accounts classified by Eurex as proprietary (account code “P”) and market
maker (account code “M”) as principal accounts.
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4 Methodology

To study information content in order flow and liquidity provision by different
traders, we propose a state space model. The framework builds on Hasbrouck’s
(1993) approach as well as on the state space framework developed in Menkveld,
Koopman, and Lucas (2007). The framework decomposes security prices into
an efficient price component as well as a deviation from the efficient price, the
pricing error. Our approach allows us to decompose observed prices into both
components and to get estimates of both the efficient price series as well as the
size of the pricing error.

4.1 State Space Model

Following Hasbrouck (1993) and Campbell et al. (1998), efficient prices are
modeled to follow a martingale and observed prices are the sum of the efficient
price and the pricing error

pt = mt + st (1)

mt = mt−1 + wt (2)

with pt denoting log prices, st ∼ N (0, σ2
s) being the pricing error, mt the effi-

cient price, and wt ∼ N (0, σ2
w) innovations in the efficient price. Identification

of pricing errors in this standard model relies on either the assumption of inde-
pendent pricing errors and innovation in the efficient price series or fixing the
correlation between pricing errors and innovations in efficient prices to a spe-
cific value (George and Hwang, 2001; Menkveld, Koopman, and Lucas, 2007).
Imbalances in order flow help explaining pricing errors and innovations in order
flow contain information (Brandt and Kavajecz, 2004; Pasquariello and Vega,
2007; Evans and Lyons, 2008; Hendershott and Menkveld, 2014). We thus use
information on signed order flow to identify pricing errors and innovations in
efficient prices. It follows the full state space model

pt = mt + st (3)

mt = mt−1 +
∑
s∈S

γsx̃s,t + wt (4)

st = φst−1 +
∑
s∈S

δsxs,t + εt (5)

with wt ∼ N (0, σ2
w) and εt ∼ N (0, σ2

ε). xs,t denotes order flow by account role-
aggressor flag combination s and x̃s,t are surprises in order flow. S denotes the
account role-aggressor flag combinations included in the estimation. The iden-
tifying assumption is that wt and εt are uncorrelated (Durbin and Koopman,
2012; Hendershott and Menkveld, 2014; Brogaard, Hendershott, and Riordan,
2014). Similar models have been applied in Menkveld, Koopman, and Lucas
(2007), Menkveld (2013), Hendershott and Menkveld (2014), Brogaard, Hen-
dershott, and Riordan (2014), Chordia, Green, and Kottimukkalur (2018), and
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Yueshen and Zhang (2020), among others, see also Hasbrouck (2007). Economi-
cally, the correlation between pricing errors and innovations in order flow is due
to trading activity in the market that is captured by the order imbalance. Thus,
once we control for order flow and innovations in order flow, the orthogonal part
is arguably independent.

4.2 Order Flow Series

Surprises in order flow are obtained as the residual from an VAR model for all
order flow series included in the specification, with the number of lags deter-
mined using BIC. We perform the same analysis estimating a AR model, again
determining the optimal lag length using BIC.18

Incorporating information on account role and aggressor flag yields several
account role-aggressor flag combinations, as discussed in in Section 3.2.19 As
total order flow clears the market, at least one of the respective account role-
aggressor flag combinations has to be omitted from the model for estimation.
We thus estimate differences between the included order flow series. Given that
our focus is on differences between traders, we use aggressive and passive order
flow, respectively, and distinguish between principals and agents.20

As we control for trading volume in euros, our estimates on order flow and
surprises in order flow account for differences in order flow and measure rela-
tive differences in order flow. We this estimate information scaled by volume.
Additionally, we quantify the contribution of an account role-aggressor flag com-
bination to price discovery by expressing the variation in efficient prices that
can be explained by innovations in the respective order flow series relative to
the total variation in efficient prices. This yields

γ2svar(x̃s)

γ′Σγ + σ2
w

where s denotes the account role-aggressor flag combination, γ is the vector of
estimated coefficient on innovations in order flow and Σ is the covariance matrix
of innovations in order flow.

4.3 Model Estimation

We estimate our state space model over the sample period, similar to Menkveld
(2013) and Hendershott and Menkveld (2014), rather than estimating the model
day-by-day as in Brogaard, Hendershott, and Riordan (2014). As Easley et al.
(2008) document evidence consistent with predictable trade patterns across

18When estimating AR and VAR models with different lag lengths, we adjust the number of
observations included such that models with the same number of observations are compared.

19These are agent flow, principal flow, agent aggressive flow, agent passive flow, principal
aggressive flow, principal passive flow, aggressive flow, passive flow.

20Thus, for the specification with aggressive order flow omitted, we include agent passive
and principal passive order flow. For the specification with passive order flow omitted, we
include agent aggressive and agent passive order flow.
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trading days and our question addresses differences in price discovery at a lower
frequency, this is more appropriate than a day-by-day estimation. In particular,
this enables us to identify longer-lasting pricing errors. Also, Easley et al. (2008)
find persistence in uninformed order arrival. This motivates our specification
order flow.

Our state space model can be mapped into the standard state space rep-
resentation (Durbin and Koopman, 2012) and standard estimation techniques
apply. We describe the mapping in appendix D.

The model is estimated by maximum-likelihood estimation and the Kalman
filter is used to evaluate the likelihood function. The Kalman filter requires
initial conditions for the state variables, given by a prior mean and a prior
variance. Since the efficient price series is assumed to follow a martingale walk,
the state for the efficient price series is initialized as diffuse. Therefore, the prior
variance is set to κ with κ→∞. The prior for the pricing errors are initialized
as stationary using the unconditional variance.

Based on the estimation results, the Kalman smoother is used to obtain
estimates of the unobserved states, conditional on all observations. This allows
obtaining estimates of the efficient price series as well as of pricing errors at
every point in time. Starting values for the maximum likelihood estimation are
obtained in three steps. First, we obtain starting values for a reduced form
model excluding order flow and innovations in order flow

pt = mt + st

mt = mt−1 + wt

st = φst−1 + εt

with wt ∼ N (0, σ2
w) and εt ∼ N (0, σ2

ε). We obtain the starting values based
on return variances and autocovariances, details are provided in Appendix E.
Second, the estimation results from this reduced form model are used as start-
ing values for the full state space model, but with the coefficients on the order
flow variables estimated as states rather than parameters in MLE.21 Finally,
estimation results from the second model are used to estimate the full model by
maximum likelihood.22 Inference is based on robust, quasi-maximum likelihood
standard errors (Harvey, 1990) such that inference is still valid under misspecifi-
cation. Estimation is implemented using the state space models package within
statsmodels in python (Seabold and Perktold, 2010; Fulton, 2015).

The methodology has several advantages over alternative approaches, as
discussed in Menkveld, Koopman, and Lucas (2007), Menkveld (2013), Hender-
shott and Menkveld (2014), and Brogaard, Hendershott, and Riordan (2014).
Estimation using maximum likelihood is efficient and unbiased under the as-
sumption of correct model specification. We only observe trading prices dur-
ing the trading hours. Thus missing observations have to be dealt with. The

21Therefore, the coefficients are introduced as other latent state variables, for example
δt = δt−1, and initialized as diffuse states.

22We perform simulation exercises revealing that this approach yields reliable convergence
of the maximum likelihood estimation to known parameters.
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Kalman filter deals in a tractable manner with missing observations by extrap-
olating the state vector from the last observation, while the Kalman smoother
interpolates between observations (Durbin and Koopman, 2012). This allows
obtaining estimates of the states even for periods without observations. Also,
the model can incorporate level shifts and structural breaks in the time series.
This is important given that we study almost a decade of trading data.

5 Results

In this section we first present reduced form results to illustrate our empirical
approach. Then we turn to the full model on information content and liquidity
provision of different trader’s order flow. In Appendix F we present additional
results showing the robustness of our findings when we allow pricing errors to
over- and under-react to past innovations in order flow.

5.1 Reduced Form Results

We first present a reduced form version of our state space model omitting order
flow and innovations in order flow. We obtain estimates of the efficient price
series and pricing errors as smoothed states from the model and relate the order
flow variables to changes in efficient prices and pricing errors. Therefore, we
estimate the model

pt = mt + st

mt = mt−1 + wt

st = φst−1 + εt

with wt ∼ N (0, σ2
w) and εt ∼ N (0, σ2

ε). As described in Section 4, the identi-
fying assumption for estimation is that wt and εt are uncorrelated. Estimation
results are presented in Table 2.

Then, we relate changes in the efficient price series as well as pricing errors
to order flow as well as innovations in order flow. Both order flow variables are
expressed in EUR. We compute correlations between the order flow and price
variables over time and plot them with the corresponding confidence intervals in
Figures 2 and 3. For each month, quarter, and year in the sample, we compute
correlations based on hourly data.23

The correlations presented in Figures 2 and 3 are quarterly. The patterns
suggest that principals, even if using market orders, trade less in the direction
of price pressures than agents. At the same time, agents’ limit orders are overall
positively correlated with pricing errors in the second half of the sample period.

23To compute the confidence intervals, we first apply a Fisher transformation to the corre-
lation coefficients

z =
1

2
ln

(
1 + r

1 − r

)
= tanh−1(r)
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Table 2: Estimation results of the reduced form state space model

We present estimation results for the reduced form state space model with auto-
correlation in transitory pricing errors and omitting the order flow series given
by

pt = mt + st

mt = mt−1 + wt

st = φst−1 + εt

at an hourly frequency. Standard deviations are in bp. Robust standard errors
are computed. ∗ denotes significance at the 10% level, ∗∗ denotes significance
at the 5% level, and ∗∗∗ denotes significance at the 1% level.

Variable Estimate
σw 22.1363∗∗∗

(0.4222)

σε 21.3933∗∗∗
(0.4555)

φ 0.8644∗∗∗
(0.0088)

#Observations 32,480

Similar patterns are true for innovations in order flow and changes in the efficient
price series. Innovations in agent aggressive flow are positively correlated with
changes in efficient prices. The correlations between principal aggressive flow
and changes in efficient prices decreases over the sample period to zero. Passive
order flow is negatively correlated with changes in the efficient price series over
all account roles as well as for agents and principals.

where r is the correlation. Then, two sided confidence limits are computed as

zU = z + z1−α/2

√
1

N − 3

zL = z − z1−α/2

√
1

N − 3

where N denotes the number of observations used to compute the correlation and z1−α/2 is
the critical value of the normal distribution at an α significance level. Finally, critical values
for the correlation are obtained by transforming the confidence limits

rU =
exp(2zU − 1)

exp(2zU + 1)

= tanh(zU )

rL =
exp(2zL − 1)

exp(2zL + 1)

= tanh(zL).
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Graphical inspection of the correlations suggests that aggressive agent flow
contains information. The positive correlation between pricing errors and ag-
gressive agent flow is both consistent with agents trading in the direction of
price pressures – thus demanding liquidity – as well as with prices overreacting.
This evidence gives further motivation for the state space model presented in
Section 4. As pricing errors and innovations in efficient prices tend to be cor-
related, assuming the innovations in a simple state space model without order
flow variables to be uncorrelated is not sufficient. Instead, order flow has to
be accounted for to get meaningful results. The full state space model results
presented in the following Section address these points.

5.2 Full Results

In this section we present results on the full state space model incorporating
order flow and surprises in order flow. We first only include information on the
account role and the aggressor flag, before incorporating information on both
account role and aggressor flag.

Estimation by aggressor flag

Estimation results including aggressive order flow – we thus estimate relative
differences in information scaled by volume between aggressive and passive flow
– are presented in column (1) of Table 3. The results suggest that, in compar-
ison to passive flow, aggressive order flow contains more information. This is
consistent with informed traders using market orders as in Harris (1998).

Kaniel and Liu (2006) argue that if information is more short-lived, traders
rather use market orders. Our finding that overall market orders contain more
information scaled by volume suggests that the information traded on in the
futures market is relatively short lived.

Pricing errors loading positively on aggressive order flow is consistent with
overreactions to information as well as market orders demanding liquidity.

Estimation by account role

Next, we estimate the state space model including agent flow (column (2) of
Table 3). We thus estimate relative differences between agents and principals.
In comparison to principal flow, agent flow contains more information in the
sense that changes in the efficient price series load significantly stronger on
innovations in agent flow. At the same time, there are no differences in terms
of trading behavior in the direction of (or against) price pressures. The finding
that agent flow is relatively more informative is in line with the findings of
Menkveld, Sarkar, and Wel (2012) for the US treasury market.

In terms of order informativeness, agent flow resembles aggressive order flow.
Our findings suggest that agents are both informed and more informed than
principal traders. It is noteworthy that the relative difference in order infor-
mativeness between agent flow and principal flow is larger than the relative

16



Figure 2: Quarterly correlations between order flow and pricing errors

The figure plots quarterly correlations between order flow and pricing errors by
account role. The solid line depicts aggressive order flow and the dotted line
passive order flow. Blue areas are 95% confidence intervals. Note the different
scales of the y-axes.
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Figure 3: Quarterly correlations between innovations in order flow and efficient
price changes

The figure plots quarterly correlations between innovations in order flow and
changes in the efficient price series by account role. The solid line depicts
aggressive order flow and the dotted line passive order flow. Blue areas are 95%
confidence intervals. Note the different scales of the y-axes.
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Table 3: State space model with order flow

This table presents estimation results for the full state space model

pt = mt + st

mt = mt−1 +
∑
s∈S

γsx̃s,t + wt

st = φst−1 +
∑
s∈S

δsxs,t + εt

at an hourly frequency. xt is order flow and x̃t are surprises in order flow
obtained as the residual from a VAR model. The subscripts on γ and δ denote
the account role with c (p) standing for agent (principal) and the aggressor flag
with a (n) standing for aggressive (passive) order flow. Variances are in bp and
δ as well as γ in bp/1, 000, 000 EUR. Robust standard errors in parentheses.
∗ denotes significance at the 10% level, ∗∗ denotes significance at the 5% level,
and ∗∗∗ denotes significance at the 1% level.

Variable (1) (2) (3) (4)
σw 19.7390∗∗∗

(0.2453)
18.8255∗∗∗

(0.1484)
17.6391∗∗∗

(0.2315)
19.8213∗∗∗

(0.2183)

σε 20.2853∗∗∗
(0.3829)

21.0704∗∗∗
(0.3096)

18.8810∗∗∗
(0.4438)

20.1506∗∗∗
(0.3856)

φ 0.8888∗∗∗
(0.0128)

0.8271∗∗∗
(0.0140)

0.8806∗∗∗
(0.0153)

0.8768∗∗∗
(0.0137)

efficient price

γa 0.3710∗∗∗
(0.0304)

γc 0.7214∗∗∗
(0.0332)

γc,a 0.8213∗∗∗
(0.0460)

γp,a 0.0057
(0.0306)

γc,n −0.1823∗∗∗
(0.0694)

γp,n −0.4502∗∗∗
(0.0402)

pricing error

δa 0.0576∗∗
(0.0254)

δc −0.0380
(0.0311)

δc,a 0.0996∗∗∗
(0.0365)

δp,a 0.0582∗∗
(0.0265)

δc,n −0.1579∗∗∗
(0.0550)

δp,n −0.0086
(0.0303)

#Observations 32,225 32,219 32,223 32,221
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difference between aggressive and passive order flow. Thus, the relative infor-
mational advantage of agents over principals is larger than that of traders using
market orders over trader using limit orders. Rather than comparing the per-
formance of different order types, we thus advocate to compare different trader
types. Dependent on the circumstances, agents might feel inclined to use dif-
ferent order types to maximize their profits. If we analyze the performance of
order types, we do not know who is using these orders. Given these findings,
we combine the information on account role and order type in the next section.

Also, the difference in informativeness of aggressive order flow on the one
hand and agent order flow on the other hand suggests that there are at least some
informed traders that are using limit orders, consistent with Collin-Dufresne and
Fos (2015) and Kacperczyk and Pagnotta (2019). However, rather than looking
at stock-specific information, we are concerned with economy-wide information.

Estimation by account role and aggressor flag

Given the results from estimating the model by aggressor flag and account role
separately, we next incorporate information on both. First, we estimate the state
space model for aggressive agent flow and principal flow (column (3) of Table
3). Then, we estimate the model for passive agent and principal flow (column
(4) of Table 3). This specification allows us to compare relative differences
between trader types – agents and principals – that are using the same order
types. Hence, rather than asking the question how different orders perform, we
are focusing on differences between trader types.

Recall that aggressive orders are either market orders or marketable limit
orders. In line with the previous results, changes in efficient prices load positive
on innovations in aggressive agent flow. The coefficient on aggressive agent
flow is statistically highly significant and economically relevant. The same does
not hold true for aggressive principal flow, where we cannot reject the null
hypothesis that innovations in efficient prices do not load on innovations in
aggressive principal flow.

We express the contribution to price discovery as the fraction of variation in
efficient prices that can be explained by the variance in aggressive agent flow,
that is

γ2c,avar(x̃c,i)

γ′Σγ + σ2
w

where γ is the vector of estimated coefficient on innovations in order flow and
Σ is the covariance matrix of innovations in order flow. At an hourly frequency,
this yields a value of approximately 0.25. For principal aggressive flow it is
virtually 0.24

These differences in contribution to price discovery are economically mean-
ingful. In general, our results are consistent with informed agents using market
orders (Harris, 1998). Agents are relatively more informed. Principals may infer

24We exhibit these contribution graphically in Figure 1.
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information from order flow (Evans and Lyons, 2002). For example, principal
dealers observe the order flow of their customers and may also deduce informa-
tion from the state of the order book. Hortaçsu and Kastl (2012) argue that
dealers may extract information from the orders of their customers to either
compete with their customers or deduce fundamental information from order
flow. Our results suggest that at an hourly frequency, principals do not learn
enough information to place informative market orders. This may be because
optimal order placement of informed traders (for example as in Collin-Dufresne
and Fos (2016) ) does not allow principals to deduce information from the order
book and trade flows.

The estimation results for agents and principals using passive – i.e. limit
– orders, reveal that efficient price changes load negatively on innovations in
passive agent and principal flow. This is consistent with traders using limit
orders being adversely selected (see, for example, Gârleanu and Pedersen (2004)
and Linnainmaa (2010) ). Principals are stronger subject to adverse selection
that clients. Together with the results on aggressive agent and principal flow,
these results suggest that both informed agents and principals use market orders,
while uninformed traders rather use limit orders and are adversely selected.

A potential mechanism causing informed traders to use limit orders instead
of market orders are rebates for supplying liquidity. If rebates are sufficiently
high compared to the execution risk of limit orders relative to market orders,
informed traders prefer to submit limit orders. Our results indicate that this
is, in general, not the case as limit orders are on average subject to adverse
selection while efficient price innovations load positively on market orders.

The results for principal traders are consistent with principals making the
market and offering quotes to other traders. Agents using passive orders are less
informed than traders using aggressive orders, but more informed that prin-
cipal’s passive orders. Together with the results on aggressive order flow, a
possible explanation is that agents with a longer information horizon not only
trade using market orders, but also use limit orders, consistent with Kaniel and
Liu (2006). Another interpretation that is consistent with our results is that
the group of agent traders is diverse. On the one hand, the group consists of
uninformed traders whose limit orders are adversely selected and who do not
contribute to price discovery. On the other hand, the group consists of informed
traders with long-lived information who are using limit orders that contribute
to price discovery, as documented by Bloomfield, O’Hara, and Saar (2005),
Collin-Dufresne and Fos, 2015, Baruch, Panayides, and Venkataraman (2017),
and Kacperczyk and Pagnotta (2019). Furthermore, our results suggest that
principals do not learn enough from the orders of their customers to prevent
their limit orders from being adversely selected (Hortaçsu and Kastl, 2012).

Note that the signs of the coefficients on the impact of order flow on efficient
price innovations and pricing errors are not fully aligned with the results of Bro-
gaard, Hendershott, and Riordan (2014) for HFTs’ and non-HFTs’ liquidity de-
manding and supplying orders. Similarly to our results on aggressive order flow,
they find liquidity demanding trades to be positively associated with efficient
price innovations. At the same time, in their results, pricing errors load nega-
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tively on liquidity demanding trades. Thus, such trades push observed prices in
the direction of efficient prices. We find that pricing errors load positively on
aggressive order flow. Similarly for passive order flow, we find negative coeffi-
cients for the impact of order flow on efficient prices and negative coefficients for
the impact on pricing errors. Brogaard, Hendershott, and Riordan (2014) find
negative and positive coefficients, respectively. Our result that pricing errors
load positively on aggressive order flow is consistent with prices overshooting
to new information. Moreover, as noted by Brogaard, Hendershott, and Rior-
dan (2014), in the state space formulation, traders managing risk causes order
flow to relate positively to pricing errors. In our setting, this has the intuitive
interpretation of traders using market orders for risk management.

Overall, our findings suggest that it does not only matter which order type
is used, but also who uses which order. We document relative differences in
information scaled by volume of the same order type between different groups
of traders. Combining information on both the order type used and the account
role of the trader using the order gives a substantially more differentiated picture
of order informativeness than analyzing either separately.

5.3 Estimation by market volatility

We are interested in how trading patterns change depending on the market
conditions. Therefore, we include information of the CBOE’s volatility index
(VIX). The VIX serves as a background variable that is plausibly exogenous
to trading in Euro STOXX 50 futures as it is calculated based on options on
the S&P 500. At the same time, it captures general market conditions that
influence trading in Euro STOXX 50 futures. Thus, we prefer this specification
over alternative specifications using measures such as returns in certain time
intervals or realized volatilities as these are endogenous to the trading process.

We augment our state space model as follows. We include an indicator
variable that equals one if the VIX on the respective trading day falls in the
lowest and highest decile, respectively, of the distribution over our sample period
and interact it with the order flow variables.25 As trading in Euro STOXX 50
futures might not instantaneously react to changes in the VIX and our focus is
on price discovery over longer time horizons, we assign the indicator based on
daily VIX levels. Then it follows for the state space model:

pt = mt + st (6)

mt = mt−1 +
∑
s∈S

γsx̃s,t +
∑
s∈S

γs,V IX1(V IXt ∈ D)x̃s,t + wt (7)

st = φst−1 +
∑
s∈S

δsxs,t +
∑
s∈S

δs,V IX1(V IXt ∈ D)xs,t + εt. (8)

25We compute the distribution of the VIX over our sample period based on daily closing
prices. Then, using each daily closing price, we assign the indicator variable to all observations
on the respective trading day, depending on in which percentile of the sample distribution the
respective closing price falls.
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Figure 4: Daily VIX closing prices over the sample period

The figure plots daily VIX closing prices over the sample period. Blue crosses
indicate observations in the top decile of the sample distribution and red crosses
indicate observations in the bottom decile of the sample distribution.
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In the specification, D denotes the respective decile. This specification captures
differences in price discovery and liquidity provision in normal periods versus
high-VIX and low-VIX periods. Again, we ask the question which traders are
informed and how they are trading on their information. Thus, we again focus
on differences between trader types conditional on order type.

Observations in the bottom and top decile of the VIX distribution are dis-
tributed unevenly over our sample period (Figure 4). Most of the the obser-
vations in the bottom decile of the sample distribution cluster in 2017. Most
observations that fall in the top decile of of the sample distribution cluster early
in our sample period in the years 2010 and 2011.

As in the previous analysis, we run the state space model for aggressive and
passive order flow separately and include order flow from agents and principals.
Overall, our results indicate differences in trading patterns in times of high
and low market volatility. Also, the differences are larger for agents than for
principals.

The results for aggressive flow are presented in Table 4. In comparison to
the results presented in the previous section, our results are remarkably stable,
indicating the robustness of our results. In low-volatility regimes, the relative
contribution of aggressive agent flow to price discovery is lower than over the
whole sample period. Still, agents’ contribution to price discovery using market
and marketable limit orders dominates the contribution of principals using the
same order type.
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The coefficient on client flow in the pricing error equation, δ, is lower in low-
volatility periods. The combination of a positive coefficient on innovations in
order flow and a negative coefficient on the impact on pricing errors is more in
line with the results of Brogaard, Hendershott, and Riordan (2014) for liquidity
demanding HFTs.

While we find differences in agents’ usage of aggressive orders between low-
volatility periods and the overall sample, our main conclusions remain un-
changed. Agents contribute relatively more to price discovery using their ag-
gressive orders than principals do. For principals using aggressive orders, most
of the coefficients for the low-volatility dummy are insignificant. Overall, there
is no evidence for a higher contribution of principals’ aggressive orders to price
discovery in low-volatility periods.

For high-volatility periods, the patterns are reversed in comparison to low-
volatility periods – except that we find small changes for principals. Efficient
price innovations load stronger on innovations in aggressive agent flow in high-
volatility periods relative to the overall sample. That is, aggressive agent flow
contains more information scaled by volume and contributes more to price dis-
covery in high-VIX periods than in the overall sample. A plausible explanation
for this pattern is that informed agents rather use market or marketable limit
orders in high-volatility periods while they rely on limit orders in low volatility
periods. This is consistent with a pecking order of order types dependent on
the market conditions, in a spirit of Menkveld, Yueshen, and Zhu (2017).

The impact of agent flow on pricing errors increases – if anything – in high
volatility periods, reinforcing our results for the overall sample. We interpret
this result as overreactions to information that are especially pronounced in
highly volatile periods.

For principal trades, the results are mostly unchanged. Efficient price inno-
vations do not load significantly stronger on innovations in aggressive principal
flow in high-VIX periods than in the overall sample. This is consistent with
the previous finding that most information is incorporated into prices through
agent flow. In high volatility periods, the variance in agent flow accounts for
roughly 45% of the variance in efficient price innovations, while the variance in
principal flow accounts for less than 1%. We do not find evidence that in highly
volatile times, principals are better able to extract information from the state
of the order book and trade on this information (Parlour, 1998).

Next, we turn to the results for passive order flow (Table 5). In low-volatility
periods, innovations in efficient prices load stronger on passive agent flow than
over the entire sample period. Recall that over the whole sample, changes in
efficient prices load negatively on passive agent flow, indicating that agents’ limit
orders are adversely selected. In low volatility periods, agents are less exposed
to adverse selection. We do not find evidence that principals’ limit order are less
exposed to adverse selection in low volatility periods than in the overall sample
period.

These findings can be explained by agents being better able to manage their
orders in times of low volatility. Also, some informed agents may use passive
orders rather than aggressive orders in less volatile times. As a result, on aver-
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Table 4: State space model for aggressive order flow including VIX

This table presents estimation results for the full state space model including
VIX

pt = mt + st

mt = mt−1 +
∑
s∈S

γsx̃s,t +
∑
s∈S

γs,V IX1(V IXt ∈ D)x̃s,t + wt

st = φst−1 +
∑
s∈S

δsxs,t +
∑
s∈S

δs,V IX1(V IXt ∈ D)xs,t + εt

at an hourly frequency. xt is order flow and x̃t are surprises in order flow
obtained as the residual from a VAR model. 1(V IXt ∈ D) is an indicator that
equals one if the closing VIX on the respective trading day is in the lowest
decile or highest decile, respectively, of the distribution over the sample period.
Passive order flow is omitted from the specification. The subscripts on γ and
δ denote the account role with c (p) standing for agent (principal) and the
aggressor flag with a standing for aggressive order flow. Standard deviations
are in bp and δ as well as γ in bp/1, 000, 000 EUR. Robust standard errors in
parentheses. ∗ denotes significance at the 10% level, ∗∗ denotes significance at
the 5% level, and ∗∗∗ denotes significance at the 1% level.

low high
σw 17.5000∗∗∗

(0.2370)
17.1452∗∗∗

(0.2382)

σε 18.8085∗∗∗
(0.4708)

18.5078∗∗∗
(0.3984)

φ 0.8859∗∗∗
(0.0150)

0.8901∗∗∗
(0.0133)

efficient price

γc,a 0.8285∗∗∗
(0.0508)

0.7126∗∗∗
(0.0453)

γp,a 0.0376
(0.0345)

−0.0076
(0.0294)

γc,a,V IX −0.2932∗∗∗
(0.0865)

0.6286∗∗∗
(0.1391)

γp,a,V IX −0.1533∗∗∗
(0.0574)

0.1736
(0.1516)

pricing error

δc,a 0.1395∗∗∗
(0.0408)

0.1028∗∗∗
(0.0330)

δp,a 0.0360
(0.0292)

0.0540∗∗
(0.0260)

δc,a,V IX −0.2400∗∗∗
(0.0705)

0.2673∗∗
(0.1236)

δp,a,V IX 0.0813
(0.0522)

0.1298
(0.1412)

#Obs 32,223 32,223
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Table 5: State space model for passive order flow including VIX

This table presents estimation results for the full state space model including
VIX

pt = mt + st

mt = mt−1 +
∑
s∈S

γsx̃s,t +
∑
s∈S

γs,V IX1(V IXt ∈ D)x̃s,t + wt

st = φst−1 +
∑
s∈S

δsxs,t +
∑
s∈S

δs,V IX1(V IXt ∈ D)xs,t + εt

at an hourly frequency. xt is order flow and x̃t are surprises in order flow
obtained as the residual from a VAR model. 1(V IXt ∈ D) is an indicator that
equals one if the closing VIX on the respective trading day is in the lowest
decile or highest decile, respectively, of the distribution over the sample period.
Aggressive order flow is omitted from the specification. The subscripts on γ
and δ denote the account role with c (p) standing for agent (principal) and
the aggressor flag with n standing for passive order flow. Standard deviations
are in bp and δ as well as γ in bp/1, 000, 000 EUR. Robust standard errors in
parentheses. ∗ denotes significance at the 10% level, ∗∗ denotes significance at
the 5% level, and ∗∗∗ denotes significance at the 1% level.

low high
σw 19.7916∗∗∗

(0.2371)
19.3578∗∗∗

(0.2363)

σε 20.0336∗∗∗
(0.3998)

19.7299∗∗∗
(0.3703)

φ 0.8846∗∗∗
(0.0136)

0.8875∗∗∗
(0.0127)

efficient price

γc,n −0.3269∗∗∗
(0.0810)

−0.0912
(0.0632)

γp,n −0.4340∗∗∗
(0.0442)

−0.3949∗∗∗
(0.0385)

γc,n,V IX 0.2691∗∗
(0.1104)

−0.7087∗∗∗
(0.2409)

γp,n,V IX 0.0508
(0.0745)

−0.4234∗∗∗
(0.1434)

pricing error

δc,n −0.0849
(0.0616)

−0.1415∗∗∗
(0.0482)

δp,n −0.0372
(0.0336)

−0.0159
(0.0275)

δc,n,V IX 0.1962∗∗
(0.0982)

−0.2140
(0.2324)

δp,n,V IX 0.1249∗
(0.0648)

−0.1927
(0.1332)

#Obs 32,221 32,221
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age, agents are less exposed to adverse selection. At the same time, principal
traders may mainly provide liquidity and are subject to adverse selection.

The results for the high-VIX periods are in line with this intuition. In
comparison to the overall sample period, efficient price innovations load more
negative on both agents’ and principals’ passive orders. That indicates that limit
orders of both trader types are stronger subject to adverse selection in volatile
times than in the overall sample period. This result mirrors the results for
aggressive orders in high-VIX periods: efficient price innovations load stronger
on aggressive agent flow. This suggests that informed traders use predominantly
aggressive orders in periods of high volatility. Traders supplying liquidity, in
contrast, trade for non-informational reasons.

In high-volatility periods, the change in exposure to adverse selection is
higher for agents than for principals. In such periods, principals might have to
post limit orders to provide liquidity within the exchange’s requirements. At
the same time, they might have superior information from the order book and
are thus less subject to adverse selection (in line with Hortaçsu and Kastl (2012)
). Our results provide suggestive evidence in line with the latter channel. They
also suggest that the finding that agent’s passive orders are adversely selected
is mainly due to high-volatility periods.

These results suggest a pecking order of order types dependent on the market
conditions, akin to Menkveld, Yueshen, and Zhu (2017). Also, these results are
consistent with the intuition of Kaniel and Liu (2006). Higher market volatility
can be interpreted as decreasing the horizon on which investors can trade on
their information. As markets are volatile, movements in the disadvantage of a
trader may occur more frequent and are less predictable. A reduction in their
horizon causes informed traders to use market orders rather than limit orders.
This is what we observe in our data.

The results of Collin-Dufresne and Fos (2015) and Kacperczyk and Pagnotta
(2019) show that informed traders are using limit orders. Their results speak
to insiders that possess firm-specific information. We analyze trading in futures
on a Pan-European index, the Euro STOXX 50. Thus, even though traders
active in these futures contracts may be motivated by firm-specific information
on the constituents, prices of Euro STOXX 50 futures also reflect information
on the state of the “European” economy. Our results suggest that also traders
possessing information of this nature use limit orders, dependent on the market
conditions. Thus, our evidence is consistent with the results of Collin-Dufresne
and Fos (2015) and Kacperczyk and Pagnotta (2019) extending to a wider set
of information and asset classes.

6 Opening and Closing Auctions

In this Section we analyze trading during opening and closing auctions. With
this, we add to the contemporaneous literature focusing on closing auctions in
American (Bogousslavsky and Muravyev, 2021) and European (Comerton-Forde
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and Rindi, 2021) equity markets. We analyze auctions in a futures market that
tracks the leading index of the Eurozone.

We identify auctions from the trading data as follows. Trades are grouped
using the event time approach described in Section C, using a window length of
100ms. For the opening auction, the trade record with the highest volume during
the first 20 seconds of trading, for which the volume of aggressive and passive
orders does not match is identified.26 All other trades executed at the same price
within the first 20 seconds of trading with non-matching aggressive and passive
volume are labeled as opening auctions. For the closing auction, we identify
auctions based on trade records for the last three minutes of trading. This is
motivated by the market structure at Eurex. After continuous trading, the call
phase for the auction lasts at least three minutes with a random end time. Thus,
by focusing on the trade records within the last 3 minutes of trading, we are
confident that we do not capture trade records during continuous trading.27

In comparison to to continuous trading, the share of agent trading in opening
and closing auctions is substantially higher (70% and 48%, respectively, versus
32%).28 That is, the share of agent trading during opening auctions is higher
than during closing auctions. From this follows the question whether partici-
pation of different trader types in the opening and closing auction relative to
continuous trading have a positive or negative impact on price discovery. In
comparison to equity markets, the share or auction volume in daily trading
volume is low and usually in the magnitude of a few basis points.

The finding of a low volume share of opening and closing auctions in con-
tinuous trading is robust over the sample period and to the identification of
auctions.29 Also, this is in contrast to high closing-auction shares described in
the equity markets literature (Bogousslavsky and Muravyev, 2021; Comerton-
Forde and Rindi, 2021).

To address the question of price discovery during auctions, we analyze auc-
tion prices relative to the prices 15 minutes around the auctions, similar to
Bogousslavsky and Muravyev (2021). Also, to account for potential longer last-
ing pricing errors, price reversals, and long-term patterns in price discovery, we
incorporate auction prices into our state space model. Similar the the analysis
for periods with high and low market volatility presented in Section 5.3, we
allow pricing errors and innovations in efficient prices to depends differently on
order flow during auctions in comparison to continuous trading. The focus on
longer-term patterns in prices are motivated by the price patterns described in

26All records for the auctions should have an aggressor flag that indicates a passive order.
In fact, this is not true for all trade records. Ideally, we would like to exclude all trade records
with an aggressor flag that indicates an aggressive order as well as all trade records that
pertain to limit orders that these market orders executed against. Since various trade records
are recorded at the same timestamp and the timestamps are imprecise from May 8, 2013,
onward, this is however not possible.

27We perform robustness checks with a window of five minutes for the closing auctions and
windows up to 3 minutes for the opening auction which leaves the results unchanged.

28We provide more summary statistics on the auctions in Appendix G.
29We consider a different window length in our event-time approach and allow auctions to

be recorded further into continuous trading.
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Bogousslavsky (2021). Thus, we also account for noisy prices in the first minutes
of the trading day (Bogousslavsky, 2021).

As a first step, we focus on deviations of auction prices similar to Bogous-
slavsky and Muravyev (2021) and we compute the auction prices deviation
as

| ln(pcnt/pauc)|

for the opening auction and

| ln(pauc/pcnt)|

for the closing auction where pauc denotes the auction price and pcnt denotes
the first (last) price record during continuous trading for the opening (closing)
auction. Alternatively, we compute the auction price deviation based on the
price 15 minutes after (before) the auction.

We regress the auction price deviation on the share of agent trading during
the auction, the VIX on the respective trading day, the auction share in contin-
uous trading, and the share of agent volume in trading volume in 15 minutes
around the auction (results are presented in Table 13 in Appendix G). Higher
auction price deviations are consistently correlated with higher VIX levels, as
also found in Bogousslavsky and Muravyev (2021). Furthermore, when com-
paring opening auction prices to the price 15 minutes after the opening auction
and closing auction prices to the last price recorded during continuous trading,
we find that auction price deviations are positively related to the share of agent
trading in the auction.

Are these deviations transitory noise? Or do they reflect fundamental in-
formation? We address this within our state space model. This allows us to
explicitly distinguish between the information and noise components. As our
model controls for trading volume, we can compare the the results for the open-
ing and closing auctions even though they differ in volume. As auction volume
is by definition passive, we estimate our state space model for passive order flow,
distinguishing between principals and agents.

Our results are presented in Table 6. They indicate that trading during
opening and closing auctions does not differ substantially from continuous trad-
ing in terms of price discovery. Note that we found that passive order flow of
both agents and principals is adversely selected and thus efficient price inno-
vations load negatively on innovations in the order flow series. There is some
evidence that trading during the closing auction of both agents are principals
is more informative than during continuous trading. Taking this into account,
order flow during closing auctions is even informative in the sense that efficient
price innovations load positively on innovations in the order flow series.

Furthermore, we find that during closing auctions, agents and principals
trade more against pricing errors than during continuous trading. This is not
in line with the idea that closing auctions are increasing pricing errors. For
opening auctions, the evidence is at best weak.
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Thus, our results suggest that opening auctions do not differ significantly
from continuous trading, irrespective of whether we consider agent or principal
trading. Closing auctions do in the sense that both agents and principals trade
more against pricing errors. A possible explanation for this is that traders in
futures markets align their inventory in the end of the trading day and thus
reduce the pricing error (Hendershott and Menkveld, 2014). Thus, our results
differ from the equity market literature. A potential explanation are differences
in the market we are analyzing relative to equity markets. Trading in the end of
the trading day may be substantially impacted by hedging demands that create
pricing errors. Also, trading volume in the end of the trading day is low and
the market is likely less liquid. In this setting, closing auctions can be seen as
a more liquid trading opportunity in a spirit of Budish, Cramton, and Shim
(2015).

7 Conclusions

How does information in futures markets get incorporated into prices? How
does this depend on market conditions? Do auctions deviate from continuous
trading? We address these questions based on trading in Euro STOXX 50 fu-
tures and a state space framework. Our results indicate that the classification of
who is informed is endogenous to market conditions. We link exogenous infor-
mation on the trader type to their order’s informativeness. Our results indicate
that aggressive orders contain more information scaled by volume. Relative or-
der informativeness differs between agent’s and principal’s orders, with agent’s
orders being more informative.

Changes in efficient prices load stronger on agent’s aggressive orders than
on principal’s aggressive orders. At an hourly frequency, 25% of the variation
in efficient price innovations can be explained by the variance in aggressive
agent flow. At the same time, agent’s passive orders are less exposed to adverse
selection than principal’s passive orders. Thus, in futures markets, principals do
not deduce sufficient information from the orders of their customers to better
protect their limit orders from adverse selection.

Comparing different market conditions as measured by the VIX indicates a
pecking order of (informed) traders’ order choice. This complements the peck-
ing order of trading venues documented in Menkveld, Yueshen, and Zhu (2017).
In low-volatility regimes, agents’ passive orders are less subject to adverse selec-
tion than in normal times and in high-volatility regimes, aggressive orders are
relatively more informative. The results suggest that some informed traders use
limit orders not only to trade on stock-specific information, but also trade on
economy-wide information in futures markets.

Auctions in futures markets appear different than auction in equity markets
(Bogousslavsky and Muravyev, 2021; Comerton-Forde and Rindi, 2021). For
opening auctions, we do not find differences in terms of price discovery and
liquidity provision relative to continuous trading. For closing auctions, while
we do not find differences in terms of price discovery, but we find that both
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principal’s and agent’s orders trade stronger against pricing errors than during
continuous trading. Thus, rather than creating price deviations, orders in the
closing auction push observed prices closer to efficient prices.
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Table 6: State space model for non-aggressive order flow including auctions

This table presents estimation results for the full state space model for non-
aggressive order flow including opening and closing auctions at an hourly fre-
quency. Aggressive order flow is omitted. The subscripts on γ and δ denote the
account role with c (p) standing for agent (principal) and the aggressor flag with
n standing for non-aggressive order flow. Standard deviations are in bp and δ
as well as γ in bp/1, 000, 000 EUR. Robust standard errors in parentheses. ∗

denotes significance at the 10% level, ∗∗ denotes significance at the 5% level,
and ∗∗∗ denotes significance at the 1% level.

open close
σw 19.8510∗∗∗

(0.2046)
19.9972∗∗∗

(0.1899)

σε 20.0147∗∗∗
(0.3857)

18.6370∗∗∗
(0.4070)

φ 0.8700∗∗∗
(0.0136)

0.8541∗∗∗
(0.0174)

efficient price

γc,n −0.2145∗∗∗
(0.0694)

−0.1760∗∗
(0.0691)

γp,n −0.4511∗∗∗
(0.0393)

−0.4629∗∗∗
(0.0410)

γc,n,auction 1.4936
(4.7538)

2.4531∗∗
(0.9882)

γp,n,auction 0.2744
(4.7195)

0.4029
(0.3333)

pricing errors

δc,n −0.1545∗∗∗
(0.0547)

−0.1647∗∗∗
(0.0523)

δp,n 0.0084
(0.0298)

0.0048
(0.0285)

δc,n,auction −7.3689
(5.8456)

−7.2249∗∗∗
(0.8272)

δp,n,auction −5.6077
(5.8678)

−5.5375∗∗∗
(0.8272)

#Obs 34,510 34,510
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A Exchange Members

The following list contains all unique exchange members listed on the Eurex
website.

3Red Partners LLC
Aardvark Trading, L.L.C.
ABC arbitrage Asset Management
ABN AMRO Bank N.V.
ABN AMRO Clearing Bank N.V.
ADG Europe Ltd
ADG Market Making LLP
ADG Markets Ltd.
ADM Investor Services Inc.
ADM Investor Services International Ltd.
Advantage Futures LLC
AFS Equity & Derivatives B.V.
All Options International B.V.
Allston Capital LLC
Allston Trading LLC
Allston Trading UK Limited
AlphaGrep Pte Ltd
Altura Markets Sociedad de Valores SA
AMP Global Clearing LLC
AP Capital Investment Limited
ARB Trading Group North, LP
Atlantic Trading London Limited
Aurel BGC
Auriga Capital Limited
B. Metzler seel. Sohn & Co. Aktiengesellschaft
Baader Bank Aktiengesellschaft
Banca Akros Spa
Banca Profilo SPA
Banca Sella Holding S.p.A.
Banca Simetica S.p.A.
Banco Bilbao Vizcaya Argentaria S.A.
Banco Comercial Portugues S.A.
Banco Santander SA
Bank J. Safra Sarasin AG
Bank Julius Bär & Co. AG
Bank Vontobel AG
Bankhaus Lampe KG
Bankinter
Banque de Luxembourg
Banque Lombard Odier & Cie SA
Banque Pictet & Cie SA
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Barak Capital G.T. LTD.
Barclays Bank Ireland Plc
Barclays Bank PLC
Barclays Capital Securities Ltd.
Basler Kantonalbank
Bayerische Landesbank
BCS Prime Brokerage Limited
Belfius Banque SA
Berner Kantonalbank AG
Bethmann Bank AG
BGC Brokers L.P.
Blue Fire Capital LLC
Bluefin Capital Management, LLC
BNP Paribas
BNP Paribas (Suisse) SA
BNP PARIBAS Arbitrage SNC
BNP Paribas Fortis SA/NV
BNP Paribas S.A. Niederlassung Deutschland
BNP Paribas Securities Services S.C.A. Zweigniederlassung Frankfurt
Boerboel Trading L.P.
BofA Securities Europe SA
BRED Banque Populaire
BSMA Limited
CACEIS Bank SA
Caixabank S.A.
Cantor Fitzgerald Europe
Capital Fund Management
Capital Futures Corp.
Capital MarketsTrading UK LLP
Capital Ventures International
Capitalead Pte. Ltd.
Cast Trading L.P.
Centercross B.V.
China Construction Bank Corporation Niederlassung Frankfurt
China Xin Yongan Futures Company Limited
Citadel Securities (Europe) Ltd.
Citadel Securities GCS (Ireland) Limited
Citigroup Global Markets Europe AG
Citigroup Global Markets Limited
CM Capital Markets Bolsa S.A. A.V.
CN FIRST INTERNATIONAL FUTURES LIMITED
Commerzbank AG
Concord Futures Corp.
Contech LP
Coöperatieve Rabobank U.A.
Corner Banca SA
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Corretaje e Información Monetaria y de Divisas, Sociedad de Valores SA
Credit Agricole Corporate and Investment Bank
Crédit Industriel et Commercial
Credit Suisse (Schweiz) AG
Credit Suisse AG
Credit Suisse Bank (Europe) SA.
Credit Suisse International
Criterion Arbitrage & Trading BV
CSC Futures (HK) Limited
CTC London Limited
Cunningham Commodities LLC
D. E. Shaw Asymptote Portfolios LLC
Da Vinci Derivatives B.V.
Daiwa Capital Markets Europe Limited
Danske Bank A/S
De Riva Asia Limited
DekaBank Deutsche Girozentrale
Deutsche Bank AG
Directa SIM
Dom Group AG
Donner & Reuschel Aktiengesellschaft
Dorman Trading L.L.C.
DRW Europe B.V.
DRW Europe Derivatives B.V.
DRW Global Markets Ltd
DRW Investments (UK) Limited
DRW Investments LLC
DRW Singapore Pte Ltd
DV Trading LLC
DZ BANK AG Deutsche Zentral-Genossenschaftsbank
DZ Privatbank S.A.
E D & F Man Capital Markets MENA Limited
Eagle Labs (HK) Limited
Eagle Seven LLC
ED & F Man Capital Markets Ltd
EFG Bank AG
Epoch Capital Pty Ltd
Equita Societa Di Intermediazione Mobiliare SPA
Erste Group Bank AG
Exane Derivatives
Exane S.A.
FCT Europe Limited
Fenics GO Holdings Limited
Fermion Investments Limited
Financial Market Engineering Limited
FinecoBank Banca Fineco S.p.A
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Finovesta GmbH
flatexDEGIRO Bank AG
Flow Traders Asia Pte Ltd
Flow Traders B.V.
Flow Traders U.S. LLC
Freeman Commodities Limited
Fubon Futures Co., Ltd
G. H. Financials Ltd.
Gallardo Securities Limited
Gelber Coöperatief U.A.
Gelber Group LLC
Geneva Ireland Financial Trading Ltd.
GFI Securities Ltd.
Global Execution Limited
Goldman Sachs Bank Europe SE
Goldman Sachs International
Grammont Finance SA
GTS Securities Europe Ltd
Hamburg Commercial Bank AG
Hamburger Sparkasse AG
Hard Eight Futures LLC
Hardcastle Trading AG
Hauck & Aufhäuser Privatbankiers AG
HC Technologies LLC
Headlands Technologies Europe B.V.
Headlands Technologies LLC
HGNH INTERNATIONAL FUTURES CO. LIMITED
HNK ALPHA PTE. LTD.
HPC S.A.
HRTEU Limited
HSBC Bank plc
HSBC Continental Europe
HSBC Trinkaus & Burkhardt AG
Hudson River Trading Europe Ltd.
IBKR Financial Services AG
IBROKER GLOBAL MARKETS, S.V., S.A.
IBVV Trading DMCC
ICAP CORPORATES LLC
IMC Trading B.V.
ING Bank N.V.
Ingensoma Arbitrage PTE LTD
Interkapital vrijednosni papiri d.o.o.
Intermonte SIM S.p.A.
Intesa Sanpaolo S.p.A.
Invest Banca SPA
J.P. Morgan AG
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Jane Street Capital, LLC
JB DRAX HONORE (UK) LIMITED
Jefferies GmbH
Jefferies International Ltd.
Joh. Berenberg Gossler & Co. KG
Jump Trading Europe B.V.
Jump Trading Futures LLC
Jump Trading Pacific Pte Ltd
KBC Bank N.V.
Kemp Trading B.V. ta Nino Options
Kepler Chevreux (Suisse) SA
Kerdos Investment-AG TGV
KGI Futures Co. Ltd.
Korea Investment & Securities Co. Ltd.
Kreissparkasse Köln
Kutxabank S.A.
Kyte Broking Limited
Landesbank Baden-Württemberg
Landesbank Berlin AG
Landesbank Hessen-Thüringen Girozentrale
Lang & Schwarz AG
Lang & Schwarz TradeCenter AG & Co. KG
Leonteq Securities AG
Liquid Capital Australia Pty. Ltd.
Liquid Capital Markets Ltd.
LR Financial LLC
M.M. Warburg & CO (AG & Co.) Kommanditgesellschaft auf Aktien
Macquarie Bank Europe Designated Activity Company
Mako Derivatives Amsterdam B.V.
Mako Financial Markets Partnership LLP
Mako Global Derivatives Partnership LLP
Marex Financial
Marex North America LLC
Marex Spectron Europe Limited
Mariana UFP LLP
Market Securities (FRANCE) SA
Market Wizards BV
Maven Derivatives Amsterdam B.V
Maven Europe Limited
Mediobanca Banca di Credito Finanziario S.p.A
Melanion Volatility Fund
Mercury Derivatives Trading Limited
Merrill Lynch International
Method Investments & Advisory LTD
Mint Tower Capital Management B.V.
Mizuho Securities USA LLC
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MMX Trading B.V.
Morgan Stanley & Co. International PLC
Morgan Stanley Europe SE
Mosaic Finance SAS
MUFG Securities (Europe) N.V.
MUFG Securities EMEA plc
National Bank of Greece SA
Natixis
Natwest Markets NV
Natwest Markets Plc
NH FUTURES CO. LTD.
Nomura Financial Products Europe GmbH
Nomura International plc.
Norddeutsche Landesbank - Girozentrale
Nordea Bank Abp
NRW.BANK
Nyenburgh Holding B.V.
ODDO BHF Aktiengesellschaft
ODDO BHF SCA
Old Mission Capital, LLC
Optiver Australia Pty Limited
Optiver V.O.F.
Panthera Investment GmbH
Phillip Capital Inc.
PNT Financial LLC
Prime Trading, LLC
Q1E LP
Quant.Capital Verwaltungs GmbH
QuantRes Fund SPC
Qube Research & Technologies Limited
Quintet Private Bank (Europe) S.A.
R.J. O’Brien Limited
R.J.O Brien France S.A.S.
Radix Trading Europe B.V.
Radix Trading LLC
Raiffeisen Bank International AG
Raiffeisen Centrobank AG
Raiffeisenlandesbank Oberösterreich Aktiengesellschaft
RBC Capital Markets (Europe) GmbH
RBC Europe Limited
RCUBE ASSET MANAGEMENT
RSJ Securities a.s.
Saccade Capital Limited
Scotiabank Europe Plc
Sea Cliff Investments Limited
Sequoia Capital LLP
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SIB (Cyprus) Limited
Sigma Broking Limited
Skandinaviska Enskilda Banken AB
Société Générale
Sparkasse Pforzheim Calw
Squarepoint Master Fund Limited
SSW-Trading GmbH
St. Galler Kantonalbank AG
Star Beta Pty Ltd
StoneX Financial Europe S.A.
StoneX Financial Inc.
StoneX Financial Ltd
Sucden Financial Limited
Sunrise Futures LLC
Susquehanna International Securities Ltd.
Swedbank AB
Swissquote Bank S.A.
Tanius Technology LLC
Tensor Technologies AG
Teza Capital Management LLC
TFS Derivatives HK Ltd
TFS Derivatives Ltd.
Tibra Trading Europe Limited
TMG Trading FZE
Tower Research Capital Europe B.V.
Tower Research Capital Europe Limited
TP ICAP (Europe) SA
TP ICAP Markets Limited
Tradegate AG Wertpapierhandelsbank
TradeLink LLC
TradeLink Worldwide Limited
TradeWeb Europe Ltd
Tradition Securities and Derivatives Inc
Tradition Securities and Futures S.A.
Transtrend B.V.
TTG Capital Limited
Tullett Prebon (Securities) Limited
Tullett Prebon Financial Services LLC
Tyler Capital Ltd.
UBS AG
UBS Europe SE
UniCredit Bank AG
UniCredit S.p.A.
Vallum Trading LLC
Vantage Capital Markets HK Limited
Vantage Capital Markets LLP
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Vatic Fund I LLC
Vectalis
Vector Trading LLC
Vegasoul Opus Fund SPC High Street Segregated Portfolio
Virtu Financial Ireland Limited
Virtu Financial Singapore Pte. Ltd.
Volatility Performance Fund SA
VOLKSBANK WIEN AG
Vortex Street Fund Limited
VTB Capital plc
WEBB Traders B.V.
Wedbush Securities Inc.
Wells Fargo Securities International Limited
Wells Fargo Securities, LLC
WH Trading LLC
Whitney Capital Series Fund LLC
Wolfgang Steubing AG Wertpapierdienstleister
Xconnect Market Maker LLP
XConnect Trading Limited
XR Trading EU B.V.
XR Trading LLC
XTX Markets Limited
XTX Markets SAS
Yuanta Futures Co. Ltd.
Zürcher Kantonalbank

B Additional Descriptive Statistics
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Figure 5: Evolution of prices in the sample period

This figure depicts the evolution of the price series over our sample period from
January 4, 2010 to December 7, 2018.
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Figure 6: Intraday volume pattern

The figure presents the intraday pattern of relative trading volume. Volume
in each minute is divided by the total volume of the respective trading day.
The solid line depicts overall volume, the dashed line agent volume and the
dotted line principal volume. For agent and principal volume, relative volume is
computed based on total daily volume for the respective account role. The time
indicated for the US open assumes synchronization of daylight saving time. In
fact, there are every year two to three weeks in which the US open is shifted by
one hour.
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C Data Cleaning

In this section we describe details on the data cleaning procedure and discuss
our approach in comparison to other approaches.

Between May 6, 2013 and May 13, 2013, Eurex migrated its products to
its T7 trading architecture. Euro STOXX 50 futures were migrated on May 8,
2013. From this day onward, there is imprecision (or “noise”) in the timestamps.
In particular, orders that appear to be executed against each other are not
necessarily recorded at the same timestamp. Rather, orders are recorded at
consecutive timestamps, with the difference usually being within a few tens of
milliseconds. As a result, for each timestamp, buying and selling volume as
well as aggressive and non-aggressive volume do not necessarily satisfy market
clearing. As our analysis focuses on continuous trading only (Section 3) and we
are inferring continuous trading periods from the data, we have to deal with the
imprecision in the timestamps in an efficient manner.

We clean the data using an event-time approach that is akin to the methodol-
ogy of Aquilina, Budish, and O’Neill (2021), Ernst (2020), and Ernst, Sokobin,
and Spatt (2021). A natural way to solve the problems arising from the im-
precision in the timestamps is grouping trade records with the same execution
price that are recorded closely together. This can be addressed in both clock
time and event time. A clock time approach, however, comes with the caveat
that trades that are executing against each other and are recorded in different
intervals, for example seconds, are not grouped together and thus neither of the
trades enter the main analysis.30 The problem can be addressed by allowing
volumes of market and limit order to deviate up to a threshold within each time
interval. This threshold, however, is arbitrary and hard to infer from the data
and the classification remains noisy.

An event time approach offers a tractable and more precise solution. There-
fore, trades that are recorded at the same price within a short period of time a
grouped together. Then, the total volume of limit orders and the total volume
of market orders over these trades are computed. If the total volume of limit
orders equals the total volume of market orders, the trades are labeled “contin-
uous trading” and included in the main analysis. The algorithm for classifying
trades runs from the start of each trading day. For each trade s0 that is exe-
cuted at price pi, a time window starting with that trade record is initialized.
All following trades s1, s2, . . . that are executed within the time window at the
same trading price pi are grouped together and assigned the same time. Once
a trade sbreak is executed at the same trading price pi but does not fall within
the time window, a new time window starting from that trade record is defined.
Again, all trades that occur within the time window at the same execution price
are grouped together with this trade. This procedure continues until the end of
the trading day.

30Suppose, for example trades are grouped by seconds. The first trade is recorded at t.900000
with t denoting seconds, and the next is recorded at t+ 1.100000. In an clock time approach,
market clearing would not be satisfied for either of the seconds.
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The only parameter that has to be chosen is the length of the time win-
dow. In general, choosing the window length trades off two factors. On the one
hand, choosing a longer window length assures that all corresponding trades are
grouped together even if there is substantial noise in the timestamps and high
trading activity, that might further delay recording of some of the trades. On
the other hand, by choosing a shorter window only trades that were actually
executing against each other are captured. If the window length is chosen too
long and the volume of market orders and limit orders does not equal, a sub-
stantial volume does not enter the main analysis. We consider the possibilities
of 100ms, 500ms, 2s, and 4s. In our particular dataset, inspection reveals that
the imprecision is usually within the magnitude of a few tens of microseconds.
Thus, in comparison to the clock-time approach discussed before, our approach
allows to determine the appropriate choice to the parameter based on the data.

Another alternative to clean the data is by removing opening and closing
auctions. This does however not account for potential intraday auctions that
are held and thus have to be identified differently. Also, the identification of
auctions is not clear cut due to the “noise” in the timestamps.31

D State Space Representation

In this Section we show how the state space model presented in Section 4 can
be mapped into the standard linear state space model form. Our state space
model is given by

pt = mt + st (9)

mt = mt−1 +
∑
s∈S

γsx̃s,t + wt (10)

st = φst−1 +
∑
s∈S

δsxs,t + εt (11)

31There are several ways to do so. First, opening auctions can be defined as the first trade
record on each trading day and closing auctions as the last trade record on each trading day.
This is, however, only feasible for the period before May 8, 2013, as after the first recorded
trade is not necessarily the opening auction and opening auctions were occasionally recorded
at several timestamps. In principle, the aggressor flag for auction trades indicates that these
trades pertain to a passive order. This suggests identifying auctions as timestamps for with
only passive trades are recorded. In practice, there are timestamps around the (potential)
opening or closing auctions for which trades with an aggressor flag indicating an aggressive
order as well as trades with an aggressor flag indicating a passive order are recorded. Even
if market clearing holds taking all orders into account, the volume of aggressive orders does
not equal the volume of passive orders for these timestamps (this is, for example, the case
on March 11, 2011). From the trade data, it is not possible to identify against which limit
orders this market order has executed. Since the account flag is of first-order importance for
the main analysis, such an identification would however be necessary if the market order were
to be included.
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with wt ∼ N (0, σ2
w) and εt ∼ N (0, σ2

ε). The standard linear state space model
is given by

ys = Zsαs + εs, (12)

αs+1 = Tsαs + Rsηs, (13)

with index s = 1, . . . , S, and the disturbances εs ∼ N (0,Hs) and ηs ∼ N (0,Qs),
following the notation of Durbin and Koopman (2012).

We follow Hamilton (1986) and include exogenous variables in the state
vector. We collect the variables γs for s ∈ S in the S × 1 vector γ and the
variables δs for s ∈ S in the S × 1 vector δ. Similarly, we collect order flow in
the S × 1 vector xt and innovations in order flow in the S × 1 vector x̃t. Note
that the dimension S of the vectors depends on which order flow variables are
included, as discussed in Secton 4.2. Then we obtain

ys = pt−1, (14)

αs = (mt−1, st−1,γ
′
t−1, δ

′
t−1)′, (15)

ηs = (wt, εt)
′, (16)

It is set Hs → 0 and thus εs = 0. Then the design matrix32 is given by

Zs =
[1 1 S S
1 1 0 0 1

]
(17)

Furthermore, the transition matrix

Ts =


1 1 S S
1 0 x̃′t 0 1
0 φ 0 x′t 1
0 0 IS 0 S
0 0 0 IS S

 (18)

is time-varying, with IS being and S × S identity matrix. The selection matrix
is given by

Rs =


1 1
1 0 1
0 1 1
0 0 S
0 0 S

 , (19)

and the state covariance matrix by

Qs =

[ 1 1
σ2
w 0 1
0 σ2

ε 1

]
. (20)

32For all matrices we denote the dimensions in the first row and last column
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In the state space model given by (14) – (20), the parameters on order flow and
innovations in order flow are estimated by state estimation. This model is used
as second step when determining the starting values, as described in Section
4. For implementation, state estimation is replaced by parameter estimation
such that the coefficients on the order flow variables are estimated by maximum
likelihood estimation. Therefore, a constant 1 is assigned to exogenous variables.
Both the exogenous variables as well as the parameters are included in the
system matrices. This yields

ys = pt−1, (21)

αs = (mt−1, st−1, ι
′
S)′, (22)

ηs = (wt, εt)
′, (23)

with ιS being an S × 1 vector of ones. Again, it is set Hs → 0 and thus εs = 0.
The design matrix is unchanged and given by (17). Furthermore, the transition
matrix changes and is now given by

Ts =


1 1 S
1 0 γ′diag(x̃t) 1
0 φ δ′diag(xt) 1
0 0 IS S

 . (24)

is time-varying. The selection matrix is given by

Rs =


1 1
1 0 1
0 1 1
0 0 S

 , (25)

and the state covariance matrix is unchanged and given by (20).

E Implementation of Estimation

This section describes details on the implementation of the model estimation
described in Section 4. The model is estimated by maximum likelihood estima-
tion and the Kalman filter recursion is used to valuate the likelihood function.
For the maximum likelihood estimation, starting values are required. Here, we
describe how these starting values are obtained. Also, we discuss restrictions on
the parameters in estimation.

Starting values for the maximum likelihood estimation are obtained in three
steps. First, a simple state space model excluding order flow and innovations in
order flow is estimated. Thus, the model is given by

pt = mt + st (26)

mt = mt−1 + wt (27)

st = φst−1 + εt (28)
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with wt ∼ N (0, σ2
w) and εt ∼ N (0, σ2

ε). Since the model is estimated with log
prices, return variances and autocovariances can be expressed as a function of
the model’s parameters. It can be shown that the autocovariances of the returns
are

γ(0) = σ2
w +

1− 2φ

1− φ2
σ2
ε (29)

γ(1) =
φ− 1

1 + φ
σ2
ε (30)

γ(2) =
φ(1− φ)

1 + φ
σ2
ε . (31)

Using this, starting values for the maximum likelihood estimation are given by

φ =
γ(2)

γ(1)
(32)

and using the starting value for φ it follows for σ2
ε

σ2
ε = γ(1)

1 + φ

φ− 1
(33)

and finally for σ2
w

σ2
w = γ(0)− 1− 2φ

1− φ2
σ2
ε . (34)

Using these starting values the reduced form state space model given by (26)
– (28) is estimated. We estimate parameters for σε and σw rather than for σ2

ε

and σ2
w. Thus, our starting values are given by the square root of (33) and

(34), respectively. The estimates are stored and used as starting values for
estimating the full state space model, with parameter estimation replaced by
state estimation. The model is discussed in Appendix D, (14) – (20). This
model introduces the parameters on order flow and innovations in order flow as
latent state variables given by

δt = δt−1 (35)

and

γt = γt−1. (36)

For estimation, the states for the parameters are initialized as diffuse by setting
a prior variance of κ with κ→∞.

After estimation, the estimated parameters for σε, σw, and φ as well as the
state estimates for δ and γ are stored and used as starting values for estimating
the full state space model (9) – (11) by maximum likelihood.
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The model contains parameters that are required to be positive (the stan-
dard deviations of the error terms in the state and observation equation) or to
be in the interval [−1, 1] (the autocorrelation in pricing errors). To ensure that
these restrictions are satisfied in estimation, we transform the restricted param-
eters before optimization by applying the function f(x) to parameter x. After
optimization, we untransform the parameters by applying the function g(y) to
the transformed parameter y. For the variance parameters, we use

f(x) = x2 (37)

and

g(y) = y
1
2 . (38)

For the autocorrelations in pricing errors that are required to be in the interval
[−1, 1], the functions are given by

f(x) = tanh(x) (39)

and

g(y) = arctanh(y). (40)

F Additional Robustness Checks

We perform additional robustness checks for our results obtained based on the
full state space model presented in Section 4. With this, we address the potential
concern that pricing errors in a period are not only a function of the order flow
in the respective period, but also include a component that is due to under-
reactions or over-reactions to past news. To capture this effect, we allow the
pricing error st in period t to depend on innovations in order flow x̃t−1 in period
t− 1:

pt = mt + st (41)

mt = mt−1 +
∑
s∈S

γsx̃s,t + wt (42)

st = φst−1 +
∑
s∈S

δsxs,t + εt (43)

As before, wt ∼ N (0, σ2
w), εt ∼ N (0, σ2

ε), xs,t denotes order flow by account
role-aggressor flag combination s, and x̃s,t are surprises in order flow. S denotes
the account role-aggressor flag combinations included in the estimation. The
coefficient δs,lag in equation (43) captures the degree to which pricing errors
under-react or over-react to past innovations in the respective order flow series.

Results are presented in Table 10. Overall, the evidence for both under-
reactions and over-reactions in weak and at most suggestive for innovations in
agent flow.
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Table 10: State space model estimation results

This table presents estimation results for the full state space model

pt = mt + st

mt = mt−1 +
∑
s∈S

γsx̃s,t + wt

st = φst−1 +
∑
s∈S

δsxs,t +
∑
s∈S

δs,lagx̃s,t−1 + εt

at an hourly frequency. xt is order flow and x̃t are surprises in order flow ob-
tained as the residual from a VAR model. Passive order flow is omitted from
the specification. The subscripts on γ and δ denote the account role with c
(p) standing for agent (principal) and the aggressor flag with a (p) standing
for aggressive (passive) order flow. Variances are in bp and δ as well as γ in
bp/1, 000, 000 EUR. Robust standard errors in parentheses. ∗ denotes signifi-
cance at the 10% level, ∗∗ denotes significance at the 5% level, and ∗∗∗ denotes
significance at the 1% level.

(1) (2)
σw 17.6117∗∗∗

(0.2642)
19.6547∗∗∗

(0.2492)

σε 19.0850∗∗∗
(0.4433)

20.4210∗∗∗
(0.3832)

φ 0.8926∗∗∗
(0.0146)

0.8886∗∗∗
(0.0128)

efficient price

γc,a 0.7928∗∗∗
(0.0460)

γp,a 0.0204
(0.0338)

γc,n −0.1383∗
(0.0773)

γp,n −0.4864∗∗∗
(0.0436)

pricing error

δc,a 0.1550∗∗∗
(0.0463)

δp,a 0.0356
(0.0287)

δc,a,lag −0.0131
(0.0127)

δp,a,lag 0.0013
(0.0095)

δc,n −0.2320∗∗∗
(0.0642)

δp,n 0.0261
(0.0349)

δc,n,lag 0.0607∗∗∗
(0.0195)

δp,n,lag −0.0169∗
(0.0099)

#Obs 32,276 32,272
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Table 11: Summary statistics on trading during continuous trading and auctions

This table presents summary statistics for trading activity during continuous
trading and trading during the opening and closing auctions. Trading vol-
ume of agents during continuous trading is computed as the average of hourly
shares of agent volume in total volume. Agent share (q = 0.9) and agent share
(q = 0.99) denote the share of agent volume in total auction volume for auc-
tions with volume in the 90% and 99% quantile of the distribution of auction
volumes. Agent share around auction denotes the share of agent volume in the
15 minutes of continuous trading around the opening and closing auctions. Auc-
tion share denotes the share of auctions in continuous trading. Price deviation
denotes the absolute deviation of the auction price from the first (last) recorded
price in continuous trading for opening (closing) auctions and price deviation 15
min denotes the deviation of the auction price from the price 15 minutes later
(earlier) for opening (closing) auctions.

Cont’ trading Open Close
Agent share 0.3159 0.7023 0.4775
Agent share (q = 0.9) 0.5506 0.4965
Agent share (q = 0.99) 0.5426 0.4654
Agent share around auction 0.4926 0.4926
Auction volume 2832.7121 419.7658
Auction share (bp) 15.07 2.3925
Price deviation (bp) 2.8540 4.5542
Price deviation 15 min (bp) 14.4548 9.7480

G Additional Results on Auction Trading
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Table 13: Auction deviations: regression results

This table presents regression results for auction price deviations relative to
the first price after (last price before) opening (closing) auctions as well as the
price 15 minutes after (15 minutes before) opening (closing) auctions. agent
share denotes the share of agent volume in total auction volume. Agent share
around auction denotes the share of agent volume in the 15 minutes of continu-
ous trading around the opening and closing auctions. Auction share denotes the
share of auction volume in continuous trading volume on the respective trading
day. Clustered standard errors using 20 lags in parentheses. ∗ denotes signifi-
cance at the 10% level, ∗∗ denotes significance at the 5% level, and ∗∗∗ denotes
significance at the 1% level.

open open (15 min) close close (15 min)
constant -0.1200 -7.8140*** -0.9508* -6.0120***

(0.579) (1.893) (0.493) (1.272)
Agent share auction 0.317843 7.1313*** 1.3599*** 0.5643

(0.765) (1.947) (0.519) (0.975)
Auction share 0.010983*** 0.0210* 0.1251 0.0819*

(0.002) (0.011) (0.093) (0.045)
Agent share around auction -0.785586 3.1205 -0.4377 2.4498

(1.617) (3.581) (0.951) (1.896)
VIX 0.174428*** 0.9041*** 0.2793*** 0.8307***

(0.039) (0.090) (0.026) (0.089)
Obs 2289 2289 2289 2289
Adj R2 0.058 0.154 0.136 0.224
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Table 14: State space model for agent flow including auctions

This table presents estimation results for the full state space model for agent
flow including opening and closing auctions at an hourly frequency. Princi-
pal order flow is omitted. The subscripts on γ and δ denote the account role
with c standing for agent. Standard deviations are in bp and δ as well as γ in
bp/1, 000, 000 EUR. Robust standard errors in parentheses. ∗ denotes signifi-
cance at the 10% level, ∗∗ denotes significance at the 5% level, and ∗∗∗ denotes
significance at the 1% level.

open close
σw 18.5076∗∗∗

(0.1617)
19.1561∗∗∗

(0.1282)

σε 21.3162∗∗∗
(0.3099)

19.4433∗∗∗
(0.3198)

φ 0.8396∗∗∗
(0.0127)

0.7923∗∗∗
(0.0181)

efficient price

γc 0.7039∗∗∗
(0.0343)

0.7235∗∗∗
(0.0318)

γc,auction −0.6341
(0.8398)

0.1338
(0.6404)

pricing error

δc −0.0325
(0.0315)

−0.0415
(0.0294)

δc,auction −0.4653
(0.6246)

−1.3338
(1.3147)

#Obs 34,512 34,512
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