
Present-Bias and the Value of Sophistication ∗

Subas Acharya David Jimenez-Gomez Dmitrii Rachinskii Alejandro Rivera

January 7, 2023

Abstract

This paper develops a dynamic wealth management model for risk-averse investors displaying

present-bias in the form of hyperbolic discounting. The investor chooses an optimal consumption

policy and allocates her funds between a risk-free asset, a traded liquid asset, and a non-traded

illiquid asset. We characterize these policies for both sophisticated and naive present-biased

investors. There are three results. First, sophisticated investors over-consume more than their

naive counterparts if and only if their coefficient of relative risk-aversion is smaller than one.

As a result, sophistication is welfare reducing (increasing) when risk-aversion is low (high).

Second, increasing asset illiquidity always benefits the sophisticated investor more than the

naive investor. Thus, the welfare gap between sophisticated and naive investors is increasing

in the proxy for asset illiquidity. Finally, present-biased investors accumulate a larger share of

their wealth in the non-traded illiquid asset than in the traded risky stock compared to the

neoclassical exponential discounter investor. As a consequence, from the perspective of present-

biased investors, the equity premium puzzle (Mehra and Prescott, 1985) and the private equity

puzzle (Moskowitz and Vissing-Jørgensen, 2002) are two sides of the same coin.
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1 Introduction

Aversion towards risk and a bias towards the present are two well established features influencing

the decision-making process of economic agents. Risk-aversion, on the one hand, has been a central

element of decision theory since its onset. Its formal introduction to the literature dating back to at

least De Finetti (1952) and Pratt (1964). Present-bias, on the other hand, has been documented by

a large body of experimental and field evidence. Strotz (1955) provided its first formal treatment

(subsequently expanded by Phelps and Pollak, 1968; Pollak, 1968), but it was only after Laibson

(1997) that the notion of present-bias really took hold in the economics and decision sciences

literature. Moreover, the distinction of whether the agent is sophisticated enough to account for

the presence of this bias when planning for the future has had important implications in the finance

(e.g., Angeletos et al. (2001)), industrial organization (e.g., DellaVigna and Malmendier (2004);

O’Donoghue and Rabin (1999)), and contract theory literature (e.g., Gottlieb and Zhang (2020)).

In this paper, we explore the interaction between risk-aversion and present-bias in the con-

sumption and investment decisions of investors, and assess the welfare implication of behavioral

sophistication within this setting. We show that being aware of one’s present-bias (i.e., sophisti-

cation) is welfare enhancing when the investor’s coefficient of relative risk-aversion is larger than

one. By contrast, being unaware about one’s present-bias (i.e., naiveté) is welfare enhancing when

the coefficient of relative risk-aversion is smaller than one. Importantly, our result is robust to the

inclusion of liquid and illiquid assets, borrowing constraints, as well as the presence of idiosyncratic

and systematic risks.

Before delving into the intuition for this result, we provide more details about our model.

We model the investor as a sequence of selves. The current self controls current consumption and

investment decisions, but derives utility from the entire stream of consumption chosen by her future

selves. We lever on the game theoretic literature to interpret our model as a game played between

the investor’s current self and her future selves. We characterize the solution of this game using

Markov Perfect Equilibrium (MPE) as the solution concept. Furthermore, we allow for investors

to have heterogeneous degrees of sophistication regarding their present bias. We focus our analysis

in the two extreme cases: complete sophistication and full naiveté. Sophistication implies that the

current self is fully aware that her future selves will display the same amount of present-bias as

her current self, and thus makes decisions anticipating this bias. By contrast, the naive thinks that

only her current self displays present bias, and (wrongly) anticipates that her future selves will not
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display any amount of present bias (i.e., that her future selves will be exponential discounters).

For tractability reasons we assume time to be continuous. We adopt the continuous-time

hyperbolic discounting framework developed by Luttmer and Mariotti (2003) and extended by

Harris and Laibson (2013). We model two state variables. The investor’s liquid wealth, invested in

the risk-free bond and the traded (liquid) risky stock, and the private firm’s size (illiquid private

equity). The stock follows a standard geometric brownian motion with constant coefficients a la

Merton (1973). The investor can costlessly adjust her share of wealth exposed to the stock and the

risk-free asset at each point in time. By contrast, the size of the private firm follows a controlled

geometric brownian motion with neoclassical adjustment costs (e.g., Hayashi, 1982). We interpret

the magnitude of the adjustment costs as a proxy for asset illiquidity. Higher adjustment costs

means it is costly for the investor to liquidate a large fraction of her private firm over a short period

of time. Thus, investing in private equity provides the investor with a commitment technology to

prevent her future selves from splurging.

Our main result states that the naive present-biased investor over-consumes more than her

sophisticated counterpart if and only if the coefficient of relative risk-aversion is larger than one.

As result, according to the long-run welfare criterion put forth by O’Donoghue and Rabin (1999),

sophistication is welfare reducing (increasing) when relative risk aversion is below (above) one.

Because sophistication makes the investor cognizant that her future selves will also display present-

bias, our results emerge from the interplay of two effects. On the one hand, the sophisticated

investor anticipates that her future selves will splurge. Thus, saving becomes less appealing, and

the investor increases over-consumption. We refer to this force as the splurging effect. On the other

hand, the sophisticated investor correctly anticipates that splurging will lead her future selves to

deplete her wealth and push her into states where the marginal utility of consumption is very high.

Preventing this undesirable outcome makes saving (by the current-self) more appealing, thereby

leading to less over-consumption. We refer to this mechanisms as the precautionary effect. It

turns out that when risk aversion is high (i.e., relative risk-aversion above one) the precautionary

effect dominates and the sophisticated investor over-consumes less than the naive investor. When

risk-aversion is low (i.e., relative risk-aversion below one) the splurging effect dominates and the

sophisticated investor over-consumes more than the naive. Finally, as expected, when risk aversion

is exactly equal to one (logarithmic preferences), these two effects exactly cancel each other out

and the consumption policies of both types of investors coincide.1

1Pollak (1968) already pointed out the coincidence of behavior for naive and sophisticated for the case of a
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There are three important additional results. First, higher asset illiquidity always benefits the

sophisticated investor more than his naive counterpart. As a result, the gap between the welfare

of the sophisticated investor and the naive investor is increasing in the proxy for illiquidity of the

private equity investment. Because the sophisticated investor is aware of her future present bias,

higher asset illiquidity endows her with a more powerful commitment device to constraint her future

selves from splurging. The naive investor, by contrast, does not anticipate being present-biased in

the future. Thus, she does not benefit from the presence of commitment devices.2 A potentially

fruitful policy intervention would involve making investors more self-aware of their future present-

bias, while simultaneously providing them with commitment devices to mitigate the adverse effect

of such bias. This also implies that incentivizing entrepreneurship can have a better than expected

return, if it improves the commitment abilities of sophisticated investors.

Second, the value of the illiquid private equity as a commitment device is decreasing in its

volatility. This is quite intuitive: the value of a commitment device lies precisely in allowing the

current self to influence the consumption of her future selves, and an increase in volatility decreases

her ability to set future consumption. Therefore, for a given fixed return in the private equity, an

increase in its volatility reduces its value as a commitment device for risk-averse agents.

Finally, we explore the fraction of wealth accumulated by the investor in the traded versus the

non-traded assets. In line with our main result, we show that the sophisticated investor accumulates

more (less) wealth in the traded asset than the naive investor when her risk-aversion is high (low).

Moreover, present-biased investors always accumulate a larger fraction of their wealth in the private

firm than in the risky stock, compared to exponential investors. Therefore, in general equilibrium,

an economy populated with present-biased investors would feature higher equity premia for traded

(liquid) assets and lower expected returns for non-traded (illiquid) assets. Consequently, from

the perspective of a model of present-biased investors, the equity premium puzzle (Mehra and

Prescott, 1985)) and the private equity puzzle (Moskowitz and Vissing-Jørgensen, 2002) are deeply

intertwined, as two sides of the same coin.

logarithmic utility. Below we discuss the literature that has focused on the issue of naive vs. sophisticated, and
especially their interaction with respect to the coefficient of relative risk-aversion.

2It is well known that commitment devices help sophisticated hyperbolic discounters alleviate their dynamic
inconsistency problems by “solidifying” part of their future behavior in the present moment. For example, an agent
that deposits her money in an illiquid bank account bearing no interest (as in “Christmas clubs”), that would only
allow to recover her money back in six months time, does so to avoid having her impatient future selves consume
excessively (Laibson, 1997; Giné et al., 2010; Duflo et al., 2011). Beshears et al. (2020) also show that for naive
investors, providing some amount of illiquidity can be optimal from a social welfare perspective. Importantly, our
model implies that efforts to provide present-biased investors with commitment devices will be more effective for
investors that display sophistication regarding their present-bias.
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Literature review

One of the oldest results in the analysis of hyperbolic discounting (and behavioral economics more

generally), is the fact that the behavior of naive and sophisticated agents coincides for a logarithmic

utility function (Pollak, 1968). This result has been extended to the Merton model (Marin-Solano

and Navas, 2010). Crucially for us, the logarithmic function corresponds to a CRRA with γ = 1,

and one of our contributions is to show that this value for γ actually constitutes a threshold at

which the behavior of naive and sophisticated agents reverses. Our paper is therefore connected to a

literature that has found that behavior switches at the threshold γ = 1 for agents with CRRA utility

functions. Gollier et al. (1997) found that agents with higher flexibility invested more in risky assets

for γ < 1, and the reverse holds for γ > 1 (as we will see in Section 4, this intuition translates to

hyperbolic discounting). More relevant for us, Barro (1999) noted (in a deterministic environment)

that for CRRA functions the behavior of hyperbolic discounters reverses at the threshold γ = 1, but

in contrast to our results, he focused on the influence of γ on interest rates rather than emphasizing

the distinction of naive vs. sophisticated agents.3 Finally, in contemporaneous work Shigeta (2020)

studies a related setting to ours, but his focus is on solving the Merton problem with Epstein-Zin

preferences and characterizing the role of the inter-temporal elasticity of substitution on the degree

of overconsumption. His model, unlike ours, only considers traded assets, thus our contribution is

complementary to his.

A recent literature analyzes hyperbolic discounting for CRRA utility functions in the Merton

model (Marin-Solano and Navas, 2010; Zou et al., 2014).4 We contribute to this literature by

focusing on the interaction between the coefficient of risk aversion γ and the agent sophistication,

and are the first to prove that there is a threshold at γ = 1 such that magnitude of overconsumption

for naive and sophisticated agents reverses as γ crosses the threshold.

Brocas and Carrillo (2004) consider an economy of sophisticated entrepreneurs with hyperbolic

discounting, and their focus is on endogenous acquisition of information: they find that some en-

trepreneurs might prefer to forgo information, in order to “discipline” future selves. DellaVigna

and Malmendier (2004) study the contracts that a monopolist offers to hyperbolic agents, and show

3Others have focused on analyzing CRRA utility functions in hyperbolic discounting only for a region of the
parameter space such as γ > 1 (e.g., Tsoukis et al. (2017)).

4Ekeland and Pirvu (2008) analyze the problem using a non-exponential form of discounting called pseudo-
exponential. Also in continuous time, Grenadier and Wang (2007) solve the problem of optimally exercising an
option for naive vs. sophisticated agents with linear utility functions, Maxted (2020) embeds present-bias into
an incomplete markets model, and Laibson et al. (2020) characterize the effects of fiscal and monetary policy in a
heterogeneous-agent economy populated by present-bias households. Finally, Rivera (2022) and Cetemen et al. (2021)
study present-bias in dynamic principal-agent settings.
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that the contracts offered include switching costs (as those agents underestimate the probability of

incurring those costs). Gottlieb and Zhang (2020) analyze contracts between firms and consumers

in the long-run, with one- and two-sided commitment, and show that hyperbolic discounting can

actually make some front-loaded contracts more feasible (as present-biased agents discount the

future less steeply than exponential discounters). While the last two papers explore how commit-

ment (or lack thereof) is exploited by firms who face present-biased consumers, our focus is on how

hyperbolic entrepreneurs can generate commitment by investing (inefficiently high, as compared to

an exponential discounter) in their own firm.5 Regarding the demand for commitment in applied

work: a subset of smokers have a demand for commitment (and benefit from it, Giné et al., 2010);

offering small incentives to farmers in Kenya for an illiquid option (fertilizer), increases purchasing

rates (and hence future output, Duflo et al., 2011); and a program that offered commitment to

allocating a portion of future salary increases toward retirement savings had a substantial take-up

rate (Thaler and Benartzi, 2004).

It has been previously emphasized (O’Donoghue and Rabin, 1999) that whether an agent is

naive or sophisticated about their present bias has important implications for their behavior. As

mentioned before, DellaVigna and Malmendier (2004) show that a monopolist would incorporate

switching costs to their products to exploit hyperbolic agents but, interestingly, only naive agents

would have a reduction in welfare. Within the literature on corporate finance in continuous time

with time inconsistent preferences, Grenadier and Wang (2007) apply the IG model developed by

Harris and Laibson (2013) to study the exercise of real options under hyperbolic discounting, and

show that the timing of the exercise depends on whether the investor is naive or sophisticated and

whether the payoff occurs all at once, or over time. Tian (2016) expands on this analysis to study

capital structure decisions and shows that hyperbolic discounting causes inefficiencies in the timing

of both investment and default. She shows that naive investors choose higher levels of leverage than

their sophisticated counterparts. Our focus is on entrepreneurial finance where the investor chooses

her firms investment policy as well as her portfolio and consumption decisions.6 We show that the

investor’s attitude towards sophistication is critical for her welfare, and show that illiquid private

equity disproportionally benefits the sophisticated investors compared to her naive counterpart.7

5Developments in the recent literature of contracting with behavioral agents are summarized in Grubb (2015) and
Koszegi (2014). For readers interested in a review of behavioral public finance, see Bernheim and Taubinsky (2019).

6Behavioral portfolio theory was developed by Shefrin and Statman (2000). Maenhout (2004) developed a robust
portfolio model and explored its asset pricing implications. More recently, Andries (2012) characterized portfolio
choice under loss aversion, and Momen et al. (2020) developed a behavioral portfolio selection model with robust
estimation.

7Li et al. (2020) analyze the case of a hyperbolic fund manager, and obtain results similar to Grenadier and Wang
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2 Model

2.1 Dynamics and investment opportunity set

An investor has two types of investment opportunities, traded financial assets and private equity

from her business. The per period cashflows from the private equity line of business are proportional

to firm size Xt. Firm size evolves according to a controlled geometric brownian motion process

(GBM):

dXt = Xt((µX + it)dt+ σXdB
X
t ), (2.1)

where BX
t is a standard brownian motion process under probability measure P, and parameters

µX , σX > 0 represent the baseline growth and volatility of profitability, respectively. Firm size

can be increased via investment it. Investment costs satisfy standard quadratic adjustment costs

g(i) = i+ θ i
2

2 .

The investors can also invest in traded financial assets. In particular, she can invest in a risk-

free bond with return r and in a risky stock with cumulative return Rt that evolves according

to
dRt
Rt

= µSdt+ σSdB
S
t ,

where BS
t is a standard brownian motion independent of BX

t , and µS , σS > 0 represent the expected

return and volatility of the risky stock, respectively.

The investor’s financial wealth Wt evolves according to

dWt = rWtdt+ πtWt

(
(µS − r)dt+ σSdB

S
t

)
+Xtdt−Xtg(it)dt− Ctdt, (2.2)

where πt represents the fraction of wealth invested in the risky stock, Ct the investor’s con-

sumption, and Xt the cashflows generated by the private equity.8

We assume the VNM utility function over consumption for the investor is given by CRRA

preferences:

(2007), in that the manager prefers more leverage than if she had exponential time discounting. Relatedly, Mu et al.
(2016) characterize the optimal contract in a dynamic principal-agent setting when the agent exhibits hyperbolic
discounting.

8That is, we have normalized cashflows to be exactly equal to firm size. We could have assumed instead that
cashflows from private equity are pXt, where p captures the payout rate per unit of firm size.
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u(C) =
C1−γ − 1

1− γ
,

where γ represents the relative risk aversion coefficient.

The investor is subject to financial constraints that require her financial wealth to be non-

negative at all times. The following definition specifies admissible policies that guarantee the

financial constraint is respected.

Definition 1. A policy (C, i, π) is in the admissible set A(X0,W0) if Xt satisfies (2.1) with initial

condition X0, wealth Wt satisfies (2.2) with initial condition W0, and the borrowing constraint of

the investor Wt ≥ 0 is satisfied for all t.

2.2 Present-Bias

We now describe a discount function that models present-bias preferences in continuous time. All

periods, present and future, are discounted exponentially with discount factor 0 < δ < 1. However,

future periods are additionally discounted with uniform weight 0 < β ≤ 1. As a result, the present

period receives full weight, while future periods are given weight βe−δt.

We model our economic agent (the investor) as a sequence of selves. Call the self born at time

s0 = 0 “self 0”. The lifetime of self 0 is split into the present, which lasts from s0 to s0 + τ0, and

the future, which lasts from s0 + τ0 to ∞. The present can be thought of as the interval during

which control is exercised by self 0, while the future is the interval during which control is exercised

by subsequent selves. The length of the time interval τ0 is stochastic and exponentially distributed

with hazard rate λ ∈ [0,∞).

Once the present of self 0 ends at s0+τ0, self 1 is born and takes control. The preferences of self

1 are identical to those of self 0, and her present lasts from s1 = s0+τ0 to s1+τ1. Proceeding in this

manner we obtain an infinite sequence of selves {0, 1, 2, ...} born respectively at dates {s0, s1, ...}

Each self applies a discount factor Dn(t) to the utility flow at time sn + t, where

Dn(t) =

 e−δt if t ∈ [0, τn)

βe−δt if t ∈ [τn,∞)

 .

For tractability reasons we will focus in the limiting case when λ→∞, known as the Instantaneous

Gratification (IG) Model pioneered by Harris and Laibson (2013). In this case the discount function
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exhibits a discrete discontinuity at t = 0+ so that

D(t) =

 1 if t = 0

βe−δt if t ∈ (0,∞)

 .

Note that setting β = 1 nests as a special case the standard exponential discounting used in most

economic applications.

Finally, a key consideration in our analysis is whether the agent correctly anticipates the present

bias she will have in the future. Following O’Donoghue and Rabin (2001), we suppose that the

entrepreneur believes her future selves β will be β̂. We analyze two cases: the sophisticated case

(β = β̂) whereby the investor understands her future selves will behave differently than she would

like to, and the naive case (β̂ = 1) whereby the investor ignores the inconsistency in her preferences

and (incorrectly) anticipates her future selves will behave as she would like to.

3 Model solution

In this section we first solve the model for the case in which the investor has sophisticated beliefs

about the behavior of her future selves. We then solve for the case in which the investor holds naive

beliefs. Finally, we show how to compute the ergodic distribution implied by each of these models.

The ergodic distribution will allow us to study the implications of present-bias for the steady-state

levels of consumption, investment in financial assets, and investment in the private equity.

3.1 Solution under sophisticated beliefs

For the case of sophisticated beliefs, our investor is modeled as a sequence of autonomous selves.

Hence, our consumption-investment problem is an intrapersonal game. We will use the notion of

Markov perfect equilibrium (MPE) as the solution concept for her game. An MPE is a type of

Subgame Perfect Equlibrium, characterized by the fact that strategies are conditioned on state

variables, rather than on the entire history of the game. In our case, strategies are conditioned on

Xt and Wt. Moreover, we restrict ourselves to stationary MPE: that is, we focus on equilibria in

which all selves use the same strategy.

Denote the consumption, investment, and portfolio strategies of the sophisticated investor by

CS(X,W ), iS(X,W ), and πS(X,W ), respectively; and the value for the current self by V (X,W ).

Recall the Instantaneous Gratification (IG) Model specifies that the current self lives only for a
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vanishingly short time interval, so that

V (X,W ) = βEt

[∫ ∞
t

e−δ(s−t)u
(
CS(Xs,Ws)

)
ds

]
= βFS(X,W ),

where FS(X,W ) is the value that an exponential discounter would obtain from the consumption

policy of the sophisticated entrepreneur CS(X,W ). Following Harris and Laibson (2013) we derive

the IG Bellman equation for the entrepreneur9:

δFS(X,W ) =
(ĈS)1−γ − 1

1− γ
+ FSW (X,W )

(
rW + π̂SW (µS − r) +X − ĈS −X

(
îS + θ

(̂iS)2

2

))
(3.1)

+
1

2
FSWW (X,W )

(
(π̂S)2W 2σ2S

)
+ FSX(X,W )(µX + îS)X +

1

2
FSXX(X,W )σ2XX

2,

where

ĈS(X,W ) =

(
1

βFSW (X,W )

)1/γ

, (3.2)

π̂S(X,W ) = −
(µS − r)FSW (X,W )

σ2SF
S
WW (X,W )W

, (3.3)

îS(X,W ) =
1

θ

(
FSX(X,W )− FSW (X,W )

FSW (X,W )

)
, (3.4)

and subject to boundary conditions F (0,W ) = G(W ) specified in the Appendix and a growth

condition that ensures admissibility as per Definition 1. Equation (3.2) corresponds to the standard

first-order condition for consumption except that the investor discounts the marginal benefit of

wealth by the additional factor β.10 This mechanism leads to the standard over-consumption result

documented in the present-bias literature. Equations (3.3) corresponds to the usual expression for

the optimal portfolio. It states that the fraction of financial wealth invested in the risky asset is

proportional to premium of the risky asset and inversely proportional to the volatility of the risky

asset and the relative risk-aversion implied by the value function. Finally, equation (3.4) equates

the marginal cost of increasing X by an additional unit (1 + θi)FW with its marginal cost FX .

For general preferences and stochastic processes the partial differential equation (3.1) is very

9In section 7.1 we verify that the solution to the IG Bellman equation below and associated policies correspond
to a MPE of this intra-personal game. See also Ekeland and Lazrak (2006) for a rigorous derivation of a sufficient
and necessary condition characterizing an MPE in the case without uncertainty.

10Harris and Laibson (2001) manipulate this expression to derive the Hyperbolic Euler Relation and show investors
behave as if they had an endogenous rate of time preference that depends on their marginal propensity to consume.
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challenging to solve. However, the combination of CRRA preferences and GBM for the stochastic

process X deliver a scaling property that allows us to reduce the state space to a one dimensional

problem with the scaled firm size x = X/W as the single state variable. To that end, we guess and

verify that

FS(X,W ) = fS(x)W 1−γ +
1

δ

W 1−γ − 1

1− γ
. (3.5)

Substituting this guess into (3.2)-(3.4) yields

CS(X,W ) =

[(
β

(
−xf ′S(x)− γfS(x) + fS(x) +

1

δ

))−1/γ]
︸ ︷︷ ︸

cS(x)

W = cS(x)W, (3.6)

πS(X,W ) = πS(x) =
(µS − r) (δxf ′S(x) + (γ − 1)δfS(x)− 1)

σS2
(
−γ + δx

(
xf ′′S(x) + 2γf ′S(x)

)
+ (γ − 1)γδfS(x)

) , (3.7)

iS(X,W ) = iS(x) =
−δ(x+ 1)f ′S(x) + fS(x)(δ − γδ) + 1

θ
(
δxf ′S(x) + (γ − 1)δfS(x)− 1

) . (3.8)

Finally, we substitute (3.6), (3.7), (3.8), and our guess (3.5) into the IG Bellman equation (3.1) to

obtain the ordinary differential equation:

0 =
1

2
σX

2x2f ′′S(x)− xf ′S(x)(−µX + r + x)− (β + γ − 1)

(γ − 1)β
1
γ

(
1

δ
− xf ′S(x) + (1− γ)fS(x)

) γ−1
γ

+
x (δf ′S(x) + δxf ′S(x) + (γ − 1)δfS(x)− 1)2

2θδ
(
−δxf ′S(x) + (γ − 1)(−δ)fS(x) + 1

) +
(r − µS)2 (−δxf ′S(x) + (1− γ)δfS(x) + 1)2

2δσS2
(
γ − δx

(
xf ′′S(x) + 2γf ′S(x)

)
+ (1− γ)γδfS(x)

)
+ (1− γ)fS(x)(r + x)− δfS(x) +

r + x

δ
+

1

γ − 1
, (3.9)

which verifies that our guess was correct. Because equation (3.9) is a second-order differential

equation we need to specify boundary conditions. The first boundary condition corresponds to the

value of x = 0 and states that

fS(0) = AS , (3.10)

where AS is a constant specified in the Appendix. Intuitively, because X follows a controlled GBM

process, it follows that X = 0 is an absorbing boundary for that state, and therefore 0 is also an

absorbing boundary for x = X/W (i.e., if xt = 0 =⇒ xt+s = 0 for all s ≥ 0). Hence, once x hits 0

we can simply solve the model as if there was no X (i.e., with W as the only state variable). The

constant AS is easily obtained from solving this simplified model.
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The second boundary condition is more involved. We need to ensure the dynamics of Wt implied

by the consumption and investment policies satisfy the admissibility constraint that Wt be non-

negative for all t. To that end, we use Ito’s formula to compute the dynamics of wt = Wt/Xt = 1/xt

to obtain

dwt = µw(wt)dt+ σXw (wt)dB
X
t + σSw(wt)dB

S
t ,

where the explicit expressions for µw(w), σXw (w), and σSw(w) as functions of f(x), f ′(x), and f ′′(x)

are provided in the Appendix. Admissibility requires that wt ≥ 0, which is equivalent to ensuring

that

σXw (w)
∣∣
w=0

= 0, σSw(w)
∣∣
w=0

= 0, µw(w)
∣∣
w=0

> 0. (3.11)

These conditions ensure that the stochastic processes wt (and therefore Wt) never go below 0,

because the volatilities will vanish at 0 and the drift will be strictly positive. Finally, we solve

equation (3.9) subject to boundary condition (3.10) at x = 0 and boundary condition (3.11) at

x→∞ (i.e., at w → 0).

Remark. Problem (3.9) - (3.11) requires a delicate mathematical treatment because of the presence

of singularities at x = 0 and at x = ∞. In order to successfully identify the value function within

the set of solutions to the ordinary differential equation we “resolve” the singularity at the left end

and use a variant of the shooting method to ensure the boundary condition at the right end. The

details on how we adapt perturbation analysis techniques to address the problem above is postponed

to Section 6.

3.2 Solution under naive beliefs

We now turn to the case of naive beliefs. The investor believes (incorrectly) that only her current

self displays present-bias, but that her future selves will behave according to standard exponential

discounting. We solve the model recursively by considering the behavior of an exponential dis-

counter. To that end, we set β = 1 in the model of Section 3.1, and denote with the superscript E

the value for the exponential discounter FE(X,W ) = FS(X,W ;β = 1).11 The Bellman equation

11Recall that a sophisticated investor with parameter β = 1 (i.e., without present-bias) corresponds to a neoclassical
exponential discounter.
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for the naive investor FN (X,W ) is given by

δFN (X,W ) =
(ĈN )1−γ − 1

1− γ
+ FNW (X,W )

(
rW + π̂NW (µS − r) +X − ĈN −X

(
îN + θ

(̂iN )2

2

))
(3.12)

+
1

2
FNWW (X,W )

(
(π̂N )2W 2σ2S

)
+ FNX (X,W )(µX + îN )X +

1

2
FNXX(X,W )σ2XX

2,

where

ĈN (X,W ) =

(
1

βFEW (X,W )

)1/γ

, (3.13)

π̂N (X,W ) = −
(µS − r)FEW (X,W )

σ2SF
E
WW (X,W )W

, (3.14)

îN (X,W ) =
1

θ

(
FEX (X,W )− FEW (X,W )

FEW (X,W )

)
. (3.15)

We note that in contrast to the policies chosen by the sophisticated investor (problem (3.2)

- (3.4)), the naive entrepreneur fails to anticipate that her future selves will also display present-

bias. As a result, her policies reflect the (incorrect) belief that her future selves will behave as she

would like them to. Mathematically, this can be seen by noting that the RHS of equations (3.6) -

(3.8) use the value function of the exponential discounter FE(X,W ) when computing consumption,

portfolio, and investment policies.

The model can be solved in the same fashion as the model for the sophisticated entrepreneur.

That is, we guess and verify that

FN (X,W ) = fN (x)W 1−γ +
1

δ

W 1−γ − 1

1− γ
, (3.16)

and by solving an associated differential equation for fN (x) with suitable boundary conditions we

obtain the policies of the naive investor cN (x), πN (x), and iN (x).

4 Normative Analysis

Our results are organized as follows. We first prove our main result characterizing the welfare

implication of sophistication on present-biased entrepreneurs as a function of their relative risk

aversion in a simplified model without an illiquid asset. Then, we numerically show our main result

holds in the presence of an illiquid asset. Moreover, we characterize the role played by illiquidity

12



and volatility on the relative welfare of the sophisticated and the naive investors. Throughout the

section, we consider prescriptions for policy makers attempting to mitigate the welfare reduction

induced by present-bias.

4.1 Analytical results: the case without illiquid asset

We start by recalling that, following most of the literature, our welfare analysis relies on the long-

run welfare criterion put forth by O’Donoghue and Rabin (1999, 2001). This criterion assesses the

welfare of an investor by the value that an exponential discounter would derive from the policies

chosen by such investor. In our notation the welfare of the sophisticated (resp. naive) investor is

given by FS(X,W ) (resp. FN (X,W )).

In this section we specialize our results to the case in which the investor cannot accumulate

wealth in the non-traded asset (i.e., we assume Xt = 0 for all t). In this case, the value for the

sophisticated investor (3.5) and associated consumption policy (3.6) simplify to:

FS(0,W ) = FS(W ) = ASW 1−γ +
1

δ

W 1−γ − 1

1− γ
,

CS(W ) =

[(
β

(
−γAS +AS +

1

δ

))−1/γ]
︸ ︷︷ ︸

cS

W = cSW, (4.1)

while the value for the naive present-biased investor (3.16) and associated consumption policy (3.13)

are given by:

FN (0,W ) = FN (W ) = ANW 1−γ +
1

δ

W 1−γ − 1

1− γ
,

CN (W ) =

[(
β

(
−γAE +AE +

1

δ

))−1/γ]
︸ ︷︷ ︸

cN

W = cNW, (4.2)

where AN = fN (0), AE = fE(0).

Condition 2. We make the following technical assumptions about the model parameters:

either γ > 1, 1/e ≤ β < 1 or 0 < γ < 1, 1− γ < β < 1; (4.3)

δ +

(
r +

(r − µS)2

2γσ2S

)
(γ − 1) > 0.12 (4.4)

12For the standard calibration of γ ≥ 1, this condition automatically holds for any value of β > 1/2 and δ > 0.
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We are now ready to state our main result in this setting in the following two Propositions:

Proposition 3. Under Condition 2, the present-biased naive investor over-consumes more than

the present-biased sophisticated investor if and only if the coefficient of relative risk-aversion is

greater than one:

cN > cS ⇐⇒ γ > 1. (4.5)

Proposition 4. Under Condition 2, the welfare of the present-biased naive investor is lower than

that of the present-biased sophisticated investor if and only if the coefficient of relative risk-aversion

is greater than one:

AN < AS ⇐⇒ γ > 1.13 (4.6)

Panel A of Figure 4.1 illustrates Proposition 3 by depicting CN (W ) and CS(W ) for the case

γ = 2 > 1. Indeed, the the consumption of the naive investor is larger than that of the sophisticated

investor. Similarly, Panel B illustrates Proposition 4 by depicting FE(W ) and FS(W ) and show-

ing that the naive investor is worse-off than the sophisticated investor given our long-run welfare

criterion. Panels C and D show that the converse is true for the case when γ = 1/2 < 1.

The intuition for our results is as follows. Because the sophisticated investor is aware that

her future selves will also display present-bias, our results can be explained as the interaction of

two effects. On the one hand, the sophisticated investor anticipates that her future selves will

splurge, thus making saving less appealing, and leading to more over-consumption. We refer to

this mechanism as the splurging effect. On the other hand, the sophisticated investor correctly

anticipates that splurging will lead her future selves into low wealth regions (i.e., poverty) where

the marginal utility of consumption is very high. Thus, poverty prevention makes saving by the

current-self more appealing, thereby leading to less over-consumption. We refer to this force as the

precautionary effect.14 It turns out that when γ > 1 the precautionary effect dominates and the

sophisticated investor consumes less than the naive investor, while when γ < 1 the splurging effect

dominates and the reverse happens.

Finally, for logarithmic preferences (γ = 1) these two effects exactly cancel each other out and

13Shigeta (2020) shows a similar result with respect to the IES parameter when the investor displays Epstein-Zin
preferences. His result, however, does not embed our result for CRRA as a special case, as our result holds for all γ,
whereas the two conditions imposed on his Lemma 13 (for the case when the IES parameter is the reciprocal of the
risk-aversion parameter, which is the CRRA case), imply that 1 − β < γ < 2.

14The precautionary effect arises in similar contexts. For example, Baucells and Zhao (2020) show (in a model
with satiation) that when the coefficient of relative risk aversion is large enough, the optimal choice involves delaying
consumption until the last period.
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Figure 4.1: Illustration for Propositions 3 and 4. Top (resp. bottom) panels depict con-
sumption and welfare for γ = 2 (resp. γ = 1/2). Parameter values are r = 0.03, µS = 0.06,
σS = 0.18, δ = 0.05 and β = 0.7.

the consumption policies of both types of investors coincide.15

4.2 Numerical results: overconsumption and welfare

In this section we provide numerical solutions. The annualized portfolio choice parameters follow

a standard calibration: interest rate r = 3%, expected return on the risky asset µS = 6%, and

volatility of the risky asset σS = 18%. We also set the baseline growth rate of private equity

µX = 1%, the volatility of private equity σX = 10%, and the adjustment costs θ = 20000 to match

the growth rate and volatility of non-tradable income in Viceira (2001). Finally, we set the long-

15Pollak (1968) showed the equivalence between sophistication and naiveté for log preferences in a setup with similar
preferences and without uncertinaty. Marin-Solano and Navas (2010) showed that portfolio rules for the sophisticated
and naive investor coincide within the Merton model for logarithmic preferences. Moreover, the logarithmic function
has been proved to be the only utility function under serially correlated returns that has the “myopic property”,
i.e. under which decisions made in isolation provide an optimal strategy for a multiperiod problem (Baucells and
Sarin, 2019). This last result provides an interesting connection: if agents with log utility can make optimal decisions
myopically, then it is natural that this utility function is robust to naiveté or sophistication.
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term subjective discount rate δ = 5% and the present-bias parameter β = 0.7 following Angeletos

et al. (2001).
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Figure 4.2: Overconsumption and welfare. Top (resp. bottom) panels depict consumption
policy and welfare for γ = 2 (resp. γ = 1/2). Other parameter values are r = 0.03, µS = 0.06,
σS = 0.18, δ = 0.05, µX = 0.01, σX = 0.10, θ = 20000 and β = 0.7.

We now return to the full model where the investor has also access to investment in the

non-traded (illiquid) asset Xt > 0. We start by illustrating numerically that the implications of

Propositions 3 and 4 remain true in the presence of illiquid investment technologies. Panel A

of Figure 4.2 depicts the consumption policies for the sophisticated investor cS(s) and the naive

investor cN (x) for γ = 2. Exactly as in the case without illiquid assets, the precautionary effect

dominates the splurging effect inducing the sophisticated investor to save more, and therefore

consume less than her naive counterpart. The greater overconsumption of the naive investor makes

her worse-off than the sophisticated investor under the long-run welfare criteria, as depicted in

Panel B. That is, fN (x) ≤ fS(x) for all values of x.

By contrast, panel C shows that the consumption policy of the naive investor lies below that

of the sophisticated investor when γ = 1/2. In this case, the splurging effect dominates the pre-
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cautionary effect inducing the sophisticated investor to save less and therefore consume more than

her naive counterpart. As a consequence, the naive investor is better-off than the sophisticated

investor. That is, fN (x) ≥ fS(x), as seen in Panel D.

We now proceed to derive further insights by exploring the role played by illiquidity and

volatility on the investor’s consumption decision and her associated welfare.

4.2.1 The value of illiquidity

Figure 4.3 depicts comparative statics with respect to the parameter governing the degree of irre-

versibility in investment θ, which can be interpreted as a proxy for illiquidity. Panel A shows the

wedge in consumption policies between the sophisticated and the naive investor cN (x)− cS(x) ≥ 0

when γ = 2. Panel B depicts the associated welfare gap fS(x) − fN (x) ≥ 0 for this case. Both

of these gaps are increasing in the degree of illiquidity θ. Intuitively, the sophisticated investor is

aware that her future selves will also display present-bias, and therefore can use the illiquid private

equity X as a commitment device to prevent her future selves from splurging. By contrast, the

naive investor does not anticipate her future selves to splurge and thus does not perceive any benefit

from illiquidity. As a result, the welfare gap fS(x)− fN (x) is increasing in θ.

Panels C and D depict the case γ = 1/2, which corresponds to a instance in which the so-

phisticated over-consumes more than the naive. Because it is more intuitive to think in terms of

positive gaps, panel C depicts the consumption gap cS(x) − cN (x) ≥ 0 and panel D the welfare

gap fN (x) − fS(x) ≥ 0. In this case, the welfare gap is decreasing in the degree of illiquidity θ.

The same mechanism is present in this case: the sophisticated investor is the only one that stands

to benefit from asset illiquidity due to its commitment properties. Because in the case γ < 1 the

sophisticated investor is worse-off than the naive investor, illiquidity allows her to close that gap

and bring her welfare closer to that of the naive investor.

We conclude this section by noting that naiveté and high risk-aversion constitute a very prob-

lematic combination from a welfare perspective: not only is the naive investor worse-off than her

sophisticated counterpart, the naive investor would not benefit from the availability of illiquid

investment opportunities. Because of this, from a normative point of view it is imperative that

we understand whether departures from the rational (exponential) model are better captured by

sophisticated vs. naive hyperbolic discounting.
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Figure 4.3: The value of illiquidity. Top (resp. bottom) panel depicts the relative over-
consumption and welfare gap for γ = 2 (resp. γ = 1/2). Other parameter values are r = 0.03,
µS = 0.06, σS = 0.18, δ = 0.05, µX = 0.01, σX = 0.10, θ = 20000 and β = 0.7.

4.2.2 The role of uncertainty

We now perform comparative statics with respect to the volatility of the two sources of risk in our

model, namely the risky stock and the illiquid private equity. We start with comparative statics

with respect to σS . Figure 4.4 shows that an increase in σS always makes the sophisticated investor

relatively better-off than her naive counter-part. This is true both when γ = 1/2 (panel A) and

γ = 2 (panel B). Intuitively, increasing risk-aversion γ and increasing risk σS both activate the

precautionary motive (i.e., the possibility that her future selves will be in states with very high

marginal utility), encouraging savings, and thereby leading to less overconsumption and higher

welfare. Thus, sophistication is more valuable in environments with higher uncertainty.

The comparative statics with respect to σX are more involved. Figure 4.5 shows that when

γ = 1/2 the sophisticated investor is relatively better off than the naive investor when the risk

of the illiquid asset σX increases (panel A). However, when γ = 2, the opposite holds (panel

B). Increasing σX has two effects on the welfare of the sophisticated investor. On the one hand,
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Figure 4.4: Volatility of traded (liquid) asset. Right (resp. left) panel depicts the welfare
gap for γ = 2 (resp. γ = 1/2). Other parameter values are r = 0.03, µS = 0.06, σS = 0.18,
δ = 0.05, µX = 0.01, σX = 0.10, θ = 20000 and β = 0.7.

just as in the comparative static with respect to σS , increasing risk activates the precautionary

motive which uniformly benefits the sophisticated investor. On the other hand, the value of the

illiquid asset as a commitment device is undermined the more volatile the return on this asset

is. Note that the value of a commitment device arises from allowing the current self to influence

the consumption of her future selves; and as the volatility increases, this ability decreases, and

therefore the precautionary motive of a (sophisticated) agent. It turns out that when γ = 1/2 the

precautionary motive dominates, but when γ = 2 the reduction in commitment value dominates.
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Figure 4.5: Volatility of non-traded (illiquid) asset. Right (resp. left) panel depicts the
welfare gap for γ = 2 (resp. γ = 1/2). Other parameter values are r = 0.03, µS = 0.06, σS = 0.18,
δ = 0.05, µX = 0.01, σX = 0.10, θ = 20000 and β = 0.7.

We emphasize that even though we only show numerical results for the cases γ = 1/2 and
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γ = 2, our numerical explorations suggest that our results are much more general, and generically

hold whenever γ < 1 and γ > 1, respectively.

5 Descriptive Results

In this section, we study the consequences of present-bias and sophistication attitudes on the

long-run distribution of wealth, asset accumulation, and welfare gaps. We first start with a short

technical note on the way in which we use our continuous time model to compute the system’s

ergodic distribution. We then proceed to analyze the implications of model parameters on this

distribution for our various cases of interest. Finally, we study the steady-state distribution implied

by our model, and show that from the perspective of a present-bias investor the equity premium

puzzle Mehra and Prescott (1985) and the private equity puzzle (Moskowitz and Vissing-Jørgensen,

2002) are two empirical regularities that can be explained by our model. That is, they are two

sides of the same coin.

5.1 Ergodic distribution

We can easily compute the ergodic distribution for each of our models. Denote the ergodic distri-

bution (or sometimes also called steady-state distribution) by φ(x) and recall that it is interpreted

as the fraction of investors that have a scaled firm size of x = X/W at any given time.

To compute the ergodic distribution we use Ito’s formula to obtain the dynamics of xt = Xt/Wt

dxt = µx(xt)dt+ σXx (xt)dB
X
t + σSx (xt)dB

S
t , (5.1)

where the functions µx(x), σx(x), and σS(xt) are specified in the Appendix. We note that the

specific dynamics of xt (and therefore functions µx(x), σx(x), and σS(xt)) depend on whether the

investor holds sophisticated versus naive beliefs.

Endowed with dynamics (5.1) we know that the ergodic distribution φ(x) satisfies the Fokker-

Plank equation

0 = − ∂

∂x
[µx(x)φ(x)] +

1

2

∂2

∂x2
[(σXx (xt))

2φ(x) + (σSx (xt))
2φ(x)],

subject to boundary conditions φ(0) = φ(∞) = 0 and
∫∞
0 φ(x)dx = 1.
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5.2 Relation to asset pricing puzzles

The equity premium puzzle (Mehra and Prescott, 1985) essentially states that observed historically

large equity returns cannot be easily reconciled within a representative agent economy with standard

preferences. Such a model predicts that the demand for the risky asset is too large to induce the

underpricing needed for the risky asset to generate the observed high returns. By contrast, the

private equity puzzle (Moskowitz and Vissing-Jørgensen, 2002) states that returns in non-publicly

traded equity are no better than those of publicly traded equities. Since entrepreneurial investment

is highly concentrated, it is puzzling why investors would display such large demand for this asset

class. To summarize, a standard model predicts that demand for publicly traded equities is too

large compared to that observed in reality, while demand for private equities is too small.

A model with present-biased investors can simultaneously shade light on these two facts. We

show that present-bias leads the investor to allocate a larger fraction of her wealth to the private

equity (because of its commitment value) and a smaller fraction of her wealth to publicly traded

equities, relative to a rational (exponential) benchmark.

To do so, we define the total value of the investor’s wealth TWt as the sum of her financial

wealth Wt plus the wealth from her private equity Xt
r−µX , where for simplicity we assume that the

dollar value from private equity is computed under the assumption of no investment:

TWt = Wt +
Xt

r − µX
= Wt

(
1 +

xt
r − µX

)
.

Thus, the fraction of wealth the investor keeps in the traded and non-traded assets are respectively

given by
Wt

Wt(1 + xt
r−µX )

=
r − µX

r − µX + xt
,

Xt
r−µX

Wt(1 + xt
r−µX )

=
xt

r − µX + xt
.

Finally, denoting the long-run fraction of wealth the investor allocates to the traded (resp. non-

traded) asset by α (resp. 1−α), we proceed to compute these quantities relying on the steady-state

distributions computed in the previous section. That is,

α =

∫ ∞
0

r − µX
r − µX + x

φ(x)dx,
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1− α =

∫ ∞
0

x

r − µX + x
φ(x)dx.

Figure 5.1 depicts the fraction of wealth allocated to the traded asset as a function of β for

both naive and sophisticated investors for three different values of γ. We notice that the fraction of

wealth allocated to the (liquid) traded asset is increasing in β, i.e., the fraction of wealth allocated

to the non-traded (illiquid) asset is decreasing in β, and notice that β = 1 corresponds to the

rational (exponential) case. As a result, our model can simultaneously explain why present-biased

investors would have a stronger preference for private equity versus publicly traded stocks. Thus,

the equity premium and the private equity puzzles, from the lens of a present-biased investor,

are two sides of the same coin. Importantly, this result is independent on whether the agent is

sophisticated or naive, and whether her risk-aversion is large or small.

We conclude this section by noting that, just as what happens to the consumption policies,

the investment policies of the naive and sophisticated investor coincide for the logarithmic case of

γ = 1(panel B), but differ for the case general case when γ < 1 (panel A) and γ > 1 (panel C).

That is, the fraction of wealth allocated to the traded-asset α inherits the same properties as the

consumption policy c(xt) of present-bias agents regarding the relationship between sophistication

and risk-aversion.
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Figure 5.1: Fraction of wealth allocated to the (liquid) traded asset. Baseline parameter
values are r = 0.03, µS = 0.06, σS = 0.18, δ = 0.05, µX = 0.01, σX = 0.10, θ = 10000 and β = 0.7.

6 Technical Contribution

The methodology discussed below works for both sophisticated and naive cases. Therefore, we

avoid writing the respective subscripts in the notation. Equation (3.9) has a singularity at the
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point x = 0. This singularity can be resolved by the change x = eτ of the independent variable.

Equivalently, equation (3.9) can be written as the autonomous system

ẋ = x, ḟ = u, H(x, f, u, u̇) = 0, (6.1)

where dot denotes differentiation with respect to τ , and the last equation is obtained by substituting

u = xf ′(x), u̇−u = x2f ′′(x) in (3.9). In this setting, the boundary condition (3.10) at the singular

point x = 0 is replaced by the condition

(x(τ), f(τ), u(τ))→ e = (0, A, 0) as τ → −∞, (6.2)

which ensures that f(x) → A and simultaneously xf ′(x) → 0, x2f ′′(x) → 0 as x → 0. By direct

calculation, e is en equilibrium point of system (6.1), hence the trajectories satisfying (6.2) form

the unstable manifold Wu(e) of e. To approximate this manifold, we linearize system (6.1) at the

point e and obtain the characteristic equation of the linearization:

(λ− 1)

[
λ2 −

(
1− Hu(e)

Hv(e)

)
λ+

Hf (e)

Hv(e)

]
= 0,

where Hu(e) = µX − r −Hf (e),

Hf (e) = −1

γ

[
δ +

(
r +

(r − µS)2

2γσ2S

)
(γ − 1)

]
, Hv(e) =

1

2

(
(r − µS)2

γ2σ2S
+ σ2X

)
.

Condition (4.4) implies that Hf (e)/Hv(e) < 0, hence the characteristic roots satisfy λ1 = 1, λ2 >

0, λ3 < 0. Therefore, e is a saddle point with a 2-dimensional unstable manifold Wu(e). Using the

eigenvectors of the linearization of system (6.1) corresponding to the positive eigenvalues λ1, λ2, we

obtain the following approximation of the trajectories that belong to Wu(e) by the trajectories of

the linearization for small x > 0:

fasym(x) = A−
(

Hx(e)

Hf (e) +Hu(e)

)
x+Cxλ2 , uasym(x) = −

(
Hx(e)

Hf (e) +Hu(e)

)
x+λ2Cx

λ2 , (6.3)

where C is an arbitrary constant, 2βθHx(e) = (2θ + 1)(β + γ − 1)γ(−γHf (e))−γ and λ2 is a unique

positive root16 of the equation Hv(e)λ2−(Hv(e)−Hu(e))λ+Hf (e) = 0. Note that x−1uasym(x) =

16Using the therminology of the Frobenius method, λ2, λ3 are the exponents at the singularity for the singular
point x = 0 of the linearization of equation (3.9).
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f ′asym(x) is an approximation of f ′(x).

We obtain a numerical approximation to the solution of the boundary-value problem (3.9) -

(3.11) by the shooting method using the asymptotic formulas (6.3) as follows. For a fixed C, the

values f(x0) = fasym(x0), f
′(x0) = f ′asym(x0) defined by (6.3) are used as initial conditions for a

small x0 > 0. Equation (3.9) with these initial conditions is solved on the interval x0 ≤ x ≤ 1. At

the point x = 1, we change the independent variable to w = 1/x and use the substitution

f(x) = δ−1(γ − 1)−1 + x1−γ k (1/x) . (6.4)

This change of variables transforms equation (3.9) to

a(w)(k′′(w))2 + b(w)k′′(w) + c(w) = 0 (6.5)

with

a(w) =
1

2
σ2Xw

2, c(w) = −(r − µS)2(k′(w))2

2σ2S
,

b(w) = k′(w)

(
1

2θ
− (β + γ − 1) (βk′(w))−1/γ

γ − 1
+ w

(
γσ2X +

1

θ
− µX + r +

w

2θ

)
+ 1

)

+
(γ − 1)2(k(w))2

2θk′(w)
+ k(w)

(
(γ − 1)

(
γσ2X

2
− µX +

w + 1

θ

)
− δ
)
,

while the volatilities and drift are related to the function k(w) by the formulas

σXw (w) = −σXw, σSw(w) =
(r − µS)

σS
· k
′(w)

k′′(w)
, (6.6)

µw(w) = 1 +
1

2θ
−
(

1

βk′(w)

) 1
γ

− (γ − 1)2(k(w))2

2θ(k′(w))2
− (r − µS)2k′(w)

σ2Sk
′′(w)

+w

(
1

θ
− µX + r + σ2X +

w

2θ

)
.

(6.7)

Equation (6.5) is solved on the interval 0 < w ≤ 1 (corresponding to x ≥ 1) with the initial

conditions k(1) = f(1)− δ−1(γ − 1)−1, k′(1) = (1− γ)k(1)− f ′(1), which match the solution f(x)

of equation (3.9) on the interval x0 ≤ x ≤ 1 at the point x = 1 according to (6.4).

We now vary C, i.e., the initial condition near x = 0 (cf. (6.3)), in order to find the solution,

which satisfies the boundary condition (3.11) at w = 0 (corresponding to x → ∞). In particular,

the first relation (6.6) ensures that σXw (0) = 0. For larger values of C, the solution of equation (6.5)
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satisfies k′(0) > 0 > k′′(0), hence the second relation (6.6) implies σSw(0) > 0. As C decreases, k′(0)

remains bounded, positive and separated from zero, whereas k′′(0) decreases and k′′(0) → −∞ as

C → C∗ for some critical value C∗ of the parameter C. The corresponding value σSw(0) decreases

with C on the interval C > C∗ and satisfies σSw(0) → 0 as C → C∗, see Figure 6.1. On the

other hand, for C < C∗, one observes that k′′(w) → −∞ and σSw(w) → 0 as w → w∗ at a point

w∗ = w∗(C) > 0. Hence, C = C∗ provides a solution with zero volatilities σXw (0) = σSw(0) = 0

as required by (3.11). In addition, (3.11) requires the drift to be positive at zero, i.e., µw(0) > 0.

Since θ � 1, equation (6.7) implies that µw(0) ≈ 1− (βk′(0))−1/γ . Thus, the solution with C = C∗

provides an approximation to the value function provided that βk′(0) > 1 for this solution.
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Figure 6.1: The volatility σSw(w) near the point w = 0 for different values of the parameter C in
(6.3). The red curve corresponds to the trajectory satisfying the boundary condition (3.11).

7 Conclusion

We analyze a situation in which a risk-averse present-biased investor dynamically chooses her

consumption and investment decision. The investment decision consists of allocating funds between

liquid traded assets (a risk-free bond and a risky stock) and an illiquid non-traded asset (private

equity). In our setting, the present-biased investor can be either naive or sophisticated with respect

to her present bias. We characterize the implications of present bias and degree of sophistication

on the investor’s decisions and her long-run utility.

Our main finding states that a sophisticated investor over-consumes more than her naive

counter-part if and only if her coefficient of relative risk-aversion is smaller than one. As a re-

sult, sophistication is welfare enhancing from a long-run utility perspective when the investor is

sufficiently risk-averse. Otherwise, the investor would be better-off being naive about her future

present bias. We study the role of illiquidity and volatility on the investor’s welfare and show that
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the presence of an illiquid asset disproportionally benefits the sophisticated investor, due to the

commitment value of illiquidity. However, such commitment value is depleted as the illiquid asset

becomes more volatile. Therefore, our results suggest that it is crucial to properly identify the

degree of sophistication of agents when designing welfare improving interventions.

These results raise several interesting questions for future research. Are there additional insights

from allowing for correlation between the traded risky asset and the non-traded private equity? How

would our results change if we incorporated Epstein-Zin preferences in our model? Similarly, are

there additional insights from considering stochastic hyperbolic discounting in our setting? Finally,

one can also explore whether sophistication and risk-aversion interact in a real option setting similar

to that of Grenadier and Wang (2007). We leave these and other questions for future research.
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Appendix

7.1 Verification

Start with the case in which the agent is sophisticated. Consider the problem solved by the t-

self after an arbitrary history. Suppose that there exists a smooth solution FS(X,W ) to (3.1).

Moreover, this agent anticipates that his future selves will choose strategies ĈS(X,W ), π̂S(X,W ),

and îS(X,W ) according to (3.2)-(3.4).

Applying Ito’s lemma we can check that the probabilistic representation of this equation is

given by:

FS(X,W ) = Et

[∫ ∞
t

e−δ(s−t)u
(
CS(Xs,Ws)

)
ds

]
.

That is, FS(X,W ) captures the value an exponential discounter would obtain from the policies

that will be undertaken by the future selves. Next, consider the optimization problem solved by

this (arbitrary) current self:

max
C,π,i

u(C)dt+βEC,π,it

[
dFSt (Xt,Wt)

]
(7.1)

max
C,π,i

u(C)dt+βFSW (X,W )

(
rW + πW (µS − r) +X − C −X

(
i+ θ

i2

2

))
dt (7.2)

β
1

2
FSWW (X,W )

(
π2W 2σ2S

)
dt+ βFSX(X,W )(µX + i)Xdt+ β

1

2
FSXX(X,W )σ2XX

2dt.

(7.3)

Solving this (local) optimization problem obtains that the optimal policies for the t-self coincide

with the conjectured policies in (3.2)-(3.4). Therefore, policies (3.2)-(3.4) constitute a MPE for

the intra-personal game of the sophisticated investor. A similar approach can be used in the naive

case.

7.2 Preliminaries for the proofs of Propositions 3 and 4

Recall that AE = fE(0), AS = fS(0) and AN = fN (0). Setting x = 0 into the corresponding

differential equations for fE(x), fS(x) and fN (x), we obtain:

r

δ
+

1

γ − 1
−AE(γ − 1)r −AEδ +

(r − µS)2

2γσ2S

(
1

δ
− (γ − 1)AE

)
− γ

γ − 1

(
1

δ
− (γ − 1)AE

) γ−1
γ

= 0;

(7.4)
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r

δ
+

1

γ − 1
−AS(γ−1)r−ASδ+(r − µS)2

2γσ2S

(
1

δ
− (γ − 1)AS

)
−(β + γ − 1)β−1/γ

γ − 1

(
1

δ
− (γ − 1)AS

) γ−1
γ

= 0;

(7.5)

r

δ
+

1

γ − 1
−AN (γ − 1)r −ANδ +

(r − µS)2

2γσ2S

(
1

δ
− (γ − 1)AN

)
− β−1/γ

(
1

δ
− (γ − 1)AE

)−1
γ
[

β

γ − 1

(
1

δ
− (γ − 1)AE

)
+

(
1

δ
− (γ − 1)AN

)]
= 0. (7.6)

Equation (7.5) has a simple solution AS = δ−1/(γ− 1). Since this solution is unbounded as γ → 1,

it should be discarded. Dividing (7.5) by δ−1 − (γ − 1)AS , we obtain

(
1

δ
− (γ − 1)AS

)− 1
γ

=
β1/γ

β + γ − 1

[
δ +

(
r +

(r − µS)2

2γσ2S

)
(γ − 1)

]
. (7.7)

Similarly, dividing equation (7.4) by δ−1 − (γ − 1)AE gives

(
1

δ
− (γ − 1)AE

)− 1
γ

=
1

γ

[
δ +

(
r +

(r − µS)2

2γσ2S

)
(γ − 1)

]
. (7.8)

Proof of Proposition 3

Relations

AS =
1

γ − 1

(
1

δ
− (β + γ − 1)γ

β

[
δ +

(
r +

(r − µS)2

2γσ2S

)
(γ − 1)

]−γ)

=
1

γ − 1

1

δ
− β + (1 + β lnβ)(γ − 1)

β

1

δ
−
r + (r−µS)2

2γσ2
S

+ δ ln δ

δ2
(γ − 1)

+O(γ − 1)

=
r

δ2
+

(r − µS)2

2δ2σ2S
+

ln(δ)

δ
− 1

βδ
− lnβ

δ
+O(γ − 1) as γ → 1,

show that AS is bounded. Denote

Z =

(
1

δ
− (γ − 1)AS

)− 1
γ

.

Equation (7.7) is equivalent to

Z =
β1/γ

(β + γ − 1)

[
δ +

(
r +

(r − µS)2

2γσ2S

)
(γ − 1)

]
,
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hence

δ−1 − Z−γ

γ − 1
=

β1/γ

(β + γ − 1)2

(
β + γ − 1

γβ
− 1

)[
δ +

(
r +

(r − µS)2

2γσ2S

)
(γ − 1)

]
=

Z

β + γ − 1

(
1

β
− 1

)(
1− 1

γ

)
.

Therefore, conditions (4.4) imply that Z > 0 and

(γ − 1)
∂Z

∂β
> 0.

But

AS =
δ−1 − Z−γ

γ − 1
,

∂AS

∂β
=
γZ−γ−1

γ − 1

∂Z

∂β
,

hence AS increases with β. Since AE corresponds to AS with β = 1, we conclude that

AE > AS

for all β ∈ (0, 1). Thus,

γ > 1 ⇐⇒ 1

δ
− (γ − 1)AE <

1

δ
− (γ − 1)AS

⇐⇒ cN =

[
β

(
1

δ
− (γ − 1)AE

)]−1/γ
>

[
β

(
1

δ
− (γ − 1)AS

)]−1/γ
= cS ,

which proves (4.5) and the proposition.

Proof of Proposition 4

Introducing the notation

E =

(
1

δ
− (γ − 1)AE

)− 1
γ

,

equation (7.8) can be written as

E =
1

γ

[
δ +

(
r +

(r − µS)2

2γσ2S

)
(γ − 1)

]
;

note that E > 0 due to condition (4.4). Combining the above two equations with (7.6) gives

(
1

δ
− (γ − 1)AN

)[
γE

γ − 1
− β−1/γE

]
=
β1−1/γ

γ − 1
E1−γ ,
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hence

1

δ
− (γ − 1)AN =

β1−1/γ(
γ − (γ − 1)β−1/γ

)E−γ =
β

γβ1/γ − γ + 1

(
1

δ
− (γ − 1)AE

)
. (7.9)

From relations (7.7) - (7.9), it follows that

1

δ
− (γ − 1)AS =

(β + γ − 1)γ

β

[
δ +

(
r +

(r − µS)2

2γσ2S

)
(γ − 1)

]−γ
;

1

δ
− (γ − 1)AN =

βγγ

γβ1/γ − γ + 1

[
δ +

(
r +

(r − µS)2

2γσ2S

)
(γ − 1)

]−γ
.

These equations and Lemma 5 presented in the next subsection imply the relation

1

δ
− (γ − 1)AS <

1

δ
− (γ − 1)AN ,

which is equivalent to (4.6). Hence, to complete the proof of the proposition it remains to prove

the following lemma.

Auxiliary lemma

Lemma 5. Suppose that condition (4.3) is satisfied. Then,

(β + γ − 1)γ

γγ
<

β2

γβ
1
γ − γ + 1

. (7.10)

Proof. First note that both quantities β + γ − 1 and γβ
1
γ − γ + 1 in (7.10) are positive due to

(4.3). In particular, if γ > 1, e−1 ≤ β < 1, then

β ≥ 1

e
>

(
1− 1

γ

)γ
,

which implies γβ
1
γ − γ + 1 > 0.

Consider the function

F (β, γ) = β2
(
β

γ
+ 1− 1

γ

)−γ
−
(
γβ

1
γ − γ + 1

)
and its Taylor series near β = 1 for a fixed γ. By direct calculation, the first three Taylor coefficients
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are zero, hence

F (β, γ) =

∞∑
k=3

1

k!

∂kF

∂βk
(1, γ)(β − 1)k.

We want to show that if (4.3) holds, then F (β, γ) > 0. Before proceeding further, we make the

following observations. First,

∂k

∂βk

(
β

γ
+ 1− 1

γ

)−γ∣∣∣∣∣
β=1

= (−1)k
(1 + γ)(2 + γ) · · · (k − 1 + γ)

γk−1

and for k ≥ 4,

∂k

∂βk

[
β2
(
β

γ
+ 1− 1

γ

)−γ]∣∣∣∣∣
β=1

= (−1)k
(1 + γ)(2 + γ) · · · (k − 3 + γ)

γk−1
(γ − 1)

(
(k2 − 3k + 1)γ − (k2 − 3k + 2)

)
.

Further,

− ∂k

∂βk

(
γβ

1
γ − γ + 1

)∣∣∣∣
β=1

= (−1)k
(γ − 1)(2γ − 1) · · · ((k − 1)γ − 1)

γk−1
. (7.11)

Finally,
∂3F

∂β3
(1, γ) = −3

(γ − 1)2

γ2
.

Therefore,

F (β, γ) = −(γ − 1)2

2γ2
(β − 1)3

+
∞∑
k=4

(
(1 + γ)(2 + γ) · · · (k − 3 + γ)(γ − 1)

[
(k2 − 3k + 1)γ − (k2 − 3k + 2)

]
+ (γ − 1)(2γ − 1) · · · ((k − 1)γ − 1)

) (−1)k

k!γk−1
(β − 1)k.

Since β < 1, in order to prove that F (β, γ) > 0, it suffices to show that for each k ≥ 4,

(γ − 1)
(

(1 + γ)(2 + γ) · · · (k − 3 + γ)
[
(k2 − 3k + 1)γ − (k2 − 3k + 2)

]
+ (2γ − 1)(3γ − 1) · · · ((k − 1)γ − 1)

)
> 0. (7.12)

In the case γ > 1, introducing the variable g = γ − 1 > 0, the relation

−(2 + g)(3 + g) · · · (k − 2 + g) + (2 + 3g)(3 + 4g) · · · (k − 2 + (k − 1)g) > 0
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implies for k ≥ 3

(2 + g)(3 + g) · · · (k − 2 + g)
[(
k2 − 3k + 1

)
g − 1

]
+ (1 + 2g)(2 + 3g) · · · (k − 2 + (k − 1)g) > 0,

which is equivelent to (7.12).

In the case γ < 1, introducing the variable ĝ = 1/γ − 1 > 0, we rewrite (7.12) equivalently as

(2 + ĝ)(3 + 2ĝ) · · · (k − 2 + (k − 3)ĝ)
(
1 +

(
k2 − 3k + 2

)
ĝ
)
− (1− ĝ)(2− ĝ) · · · (k − 2− ĝ) > 0.

This inequality is true because

2 + ĝ > |2− ĝ|, 3 + 2ĝ > |3− ĝ|, · · · k− 2 + (k− 3)ĝ > |k− 2− ĝ|; 1 +
(
k2 − 3k + 2

)
ĝ > |1− ĝ|,

hence the inequality (7.12) holds in both cases γ > 1 and γ < 1, which completes the proof of the

lemma and the proposition.

7.3 Computations for section 5

Applying Ito’s lemma to the ratio xt = Xt/Wt and using equations (2.1), (2.2), one obtains equation

(5.1) for the variable xt with the coefficients

µx(x) = x

[
µX + i− r − π(x)(µS − r)− x+ c(x) + xg(i(x)) + π(x)2σ2S

]
;

σXx (x) = xσX ;

σSx (x) = −xσSπ(x).

In the case of a sophisticated investor, these relations are equivalent to

µx(x) = x

[
µX + i− r − πS(x)(µS − r)− x+ cS(x) + xg(iS(x)) + (πS(x))2σ2S

]
; (7.13)

σXx (x) = xσX ; (7.14)

σSx (x) = −xσSπS(x), (7.15)

32



where cS(x), πS(x) and iS(x) are given by (3.6), (3.7) and (3.8), respectively. For a naive investor,

µx(x) = x

[
µX + i− r − πN (x)(µS − r)− x+ cN (x) + xg(iN (x)) + (πN (x))2σ2S

]
;

σXx (x) = xσX ;

σSx (x) = −xσSπN (x),

where

cN (x) =

[(
β

(
−xf ′E(x)− γfE(x) + fE(x) +

1

δ

))−1/γ]
; (7.16)

πN (x) =
(µS − r) (δxf ′E(x) + (γ − 1)δfE(x)− 1)

σS2
(
−γ + δx

(
xf ′′E(x) + 2γf ′E(x)

)
+ (γ − 1)γδfE(x)

) ; (7.17)

iN (x) =
−δ(x+ 1)f ′E(x) + fE(x)(δ − γδ) + 1

θ
(
δxf ′E(x) + (γ − 1)δfE(x)− 1

) . (7.18)
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