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Abstract
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1. Introduction

The management of interest rate risk is of crucial importance in the financial sector, and

the success and failure of strategies have ramifications throughout the economy. Common

fixed income hedging approaches are largely cross-sectional in nature, e.g., combining

instruments of different maturities to match target durations, as in classical immuniza-

tion. However, hedging performance depends on properties of returns, suggesting that

dynamics should be accounted for. The term structure depends on multiple factors, and

annihilating exposure to these simultaneously requires a generalized duration matching

approach, involving the estimation of a host of parameters. Performance can potentially

be enhanced by exploiting parsimony, simplifying the specification of loadings by rely-

ing on the level, slope, and curvature structure of yield curves noted by Litterman and

Scheinkman (1991). However, such reduced parametrization of curve shapes is at risk

of being at odds with dynamic term structure theory, according to which the yield curve

simply cannot take on the restricted shape period after period. This calls the estimation

of parsimoniously specified loadings and the resulting trading strategies into question.

In this paper, we embed the cross-sectional portfolio construction within a dynamically

consistent modeling framework, and show that this leads to improved hedging perfor-

mance, based on weekly yield data from the Federal Reserve (FED) over the period 1983

through 2019 for model estimation, CRSP data for returns to the hedging target, and a

monthly rebalancing horizon. We build on the concept from Björk and Christensen (1999)

of dynamic consistency between the shape of the yield curve and the stochastic process

or dynamic term structure model (DTSM) driving it. According to this notion, a curve

shape (a class of curves) is dynamically consistent with a DTSM if future yield curves

belong to the class, given that the current curve does, and that dynamics are governed

by the DTSM. In contrast, if a curve shape and a DTSM are dynamically inconsistent,

then the dynamics will instantaneously drive the yield curve away from the class, even

if it is currently of the given shape. The importance of dynamic consistency in hedging

applications is that without it, cross-sectional portfolio construction relies in part on
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information that is not relevant for future yield curves, and hence returns. Removal of

such extraneous information facilitates parsimony and leads to forward-looking models

that are more likely to apply out-of-sample.

The conditions for dynamic consistency between a curve shape and a DTSM are that

the loadings from the curve shape, viewed as functions of maturity, span the yield drifts

and volatilities from the DTSM. These conditions are distinct from the requirement of

absence of arbitrage opportunities, which may therefore be imposed as an additional

condition. The joint hypothesis of dynamic consistency and no arbitrage is equivalent to

the condition that the loadings, besides yield volatilities, also span convexity and slope

adjustments, i.e., average slope (yield spread, or carry) and local slope (or roll-down).

In this case, the spanning coefficients in the yield volatility condition are given by the

volatilities of the state variables, and those in the condition on slope adjustments and

convexity by the state variable drifts. Inserting the first condition in the second produces

a condition resembling the fundamental term structure partial differential equation

(PDE), when viewed as an equation with the curve shape (loadings) as unknown, for

given state drifts and volatilities. Our viewpoint is dual to this, i.e., for given curve shape,

such as level, slope, and curvature, we look for spanning coefficients, taking instead

the state drifts and volatilities as the unknowns when seeking a dynamically consistent

DTSM. From this viewpoint, the relevant condition is an ordinary equation in spanning

coefficients, rather than a PDE.

A prominent theory based on the PDE viewpoint is that of Duffie and Kan (1996)

on affine term structure models (ATSMs). Here, by suitable affine specifications of the

assumed state drifts and volatilities (local variances), the relevant PDE is reduced to an

ordinary differential equation (ODE). Taking the short rate to be affine in the stochastic

state variables generates an initial condition that leaves all yields affine throughout. In

contrast, in the dynamic consistency approach, there is no requirement that the yield

curve satisfies the given curve shape at all times. Once it does, it will continue to do

so, i.e., the class of curves of the given shape is absorbing. Some of the state variables

can be deterministic, although time-varying. If they reach their long-run levels, they
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remain there, and the yield curve assumes standard affine shape, depending on calendar

time only through the stochastic state variables. For other values of the deterministic

state variables, their associated loading functions enter the yield curve with time-varying

coefficients, hence representing a generalization of the maturity-specific intercept in the

ATSMs. Furthermore, the dynamic consistency approach applies more generally, without

affine restrictions on state drifts and volatilities, outside the factor model case, and for

specifications not imposing the absence of arbitrage opportunities. We highlight all these

cases, and show the incremental economic value of the dynamic consistency approach,

without imposing the restrictions to the standard affine case.

For the hedging analysis, our starting point is a factor model for yields, governing

both the hedging instruments, which we take to be a set of zero-coupon bonds of dif-

ferent maturities, and the target to be hedged. We derive the optimal portfolio that

minimizes conditional hedging return error variance under generalized duration match-

ing. We investigate the possibility that performance can be enhanced by adopting a

parsimoniously parametrized curve shape that is dynamically consistent with a suitable

arbitrage-free DTSM, i.e., with loadings spanning convexity and slope adjustments, as

well as yield volatilities. Convexity can present a problem, because it involves maturity

times a quadratic in volatility, and therefore in loadings. Spanning this through loadings

can require augmenting the set of loading functions, and hence factors. Since volatility is

already spanned, convexity is unaltered by such augmentation. However, slope adjust-

ments change, and dynamic consistency requires that the new adjustments are spanned

by the augmented loadings.

We exploit dynamic consistency by imposing increasing structure in the estimation

of loadings over three stages. In the first, loadings are augmented as indicated, to span

volatility and convexity corresponding to a suitable DTSM, as well as slope adjustments,

and the factor model is estimated with the augmented loadings. This way, the dynamics

are indirectly brought to bear on the estimation, via the shape of the loading functions.

In the second stage, we model the dynamics directly. Based on the DTSM identified

in the first stage, we specify a reduced factor model for slope-adjusted yield changes
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(fixed-maturity yield changes less slope adjustments). As excess returns are negative

slope-adjusted yield changes times maturities, modeling the latter brings in the dynamics

directly, and allows testing the no-arbitrage condition, following Christensen and van der

Wel (2019).1 The reduction in the factor model stems from the fact that not all factors in

the dynamically consistent DTSM need be stochastic. Since the yield curve may not yet

have assumed the dynamically consistent shape, neither the current yield curve nor the

slope adjustments are restricted by this shape in the second-stage approach. Instead, in

the spirit of the general Heath, Jarrow, and Morton (1992) (henceforth HJM) approach of

conditioning on an arbitrary initial (current) yield curve, the latter is taken directly from

the data when computing the slope adjustments. In the third stage, if the current yield

curve indeed assumes the dynamically consistent shape, then slope adjustments take on

suitably restricted forms, too, and information is potentially lost by ignoring this. Jointly

imposing the restrictions from the DTSM on the dynamics and from the dynamically

consistent augmented curve shape on the current yield curve and the cross section of

slope adjustments leads to a filtering approach based on consecutive yield curves along

the dynamically consistent curve family.

Our reasons for requiring the absence of arbitrage opportunities, alongside dynamic

consistency, are that it serves as a criterion for correct model specification and provides

additional parsimony, as a limited number of market prices of risk are estimated, in

place of unrestricted mean parameters. While Joslin, Singleton, and Zhu (2011) find that

forecasts of factors are invariant to no-arbitrage restrictions in Gaussian DTSMs, our

hedged positions do not depend on factor forecasts, as generalized duration matching

removes factor exposure, so the gains in performance stem from reductions in model and

parameter uncertainty.

The popular Nelson and Siegel (1987) (henceforth NS) curve shape is used extensively

in the bond yield literature, and can be motivated by its level, slope, and curvature features.

We consider this as our leading case of a curve shape imposed for parsimony. The NS

factor loadings involve but a single parameter, which enters nonlinearly. We provide an

1Goliński and Spencer (2017) similarly consider excess returns rather than yields for model estimation.
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example of a DTSM that is dynamically consistent with the NS curve shape and features

time variation in both the three (linear) factors and the additional nonlinear parameter.

However, we also show that the NS curve shape is dynamically inconsistent with all non-

degenerate arbitrage-free DTSMs. Therefore, we augment the NS curve shape and show

that the resulting augmented NS (henceforth ANS) curve shape is dynamically consistent

with a certain arbitrage-free DTSM, which we label the ANS-extended Vasicek (1977)

model. The dynamically consistent DTSM involves both a stochastic factor, associated

with slope, and two locally deterministic factors (or state variables). When freezing the

latter at their long-run levels, the DTSM reduces to standard affine (ATSM) form. We

investigate the value of ANS in hedging, using the three-stage approach.

The ANS-extended Vasicek model involves but a single driving Wiener process. As it

is widely believed that at least three stochastic factors govern term structure movements,

we introduce a DTSM with three driving processes. Motivated by the observed level, slope,

and curvature structure of yield curves, we set the volatility functions to be proportional

to the three NS loading functions. We label this the stochastic level, slope, and curvature

or SLSC model, and show that it is dynamically consistent with a curve shape involving

seven loading functions and seven factors, of which four are locally deterministic. Again,

when freezing the latter at their long-run levels, a standard ATSM emerges, in this

case corresponding to the so-called arbitrage-free NS or AFNS model considered by

Christensen, Diebold, and Rudebusch (2011) and Krippner (2015). This is a three-factor

affine model, an A0(3) model in the Dai and Singleton (2000) classification.

In our empirical work, the target for assessing immunization performance is taken to

be a portfolio consisting of two-year, five-year, and ten-year coupon bonds with positive and

negative weights, based on CRSP data. Portfolios of zero-coupon bonds are constructed

on a monthly basis to minimize conditional hedging error variance while matching

generalized durations based on estimated loadings and idiosyncratic error variances,

and the resulting ability to hedge one-month target returns is recorded. Estimation

is performed based on weekly FED yield data using each of the methods outlined, i.e.,

unrestricted factor models for yields, parsimoniously restricted versions, augmented
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versions requiring dynamic consistency with suitable DTSMs, reduced factor models

for slope-adjusted yield changes based on the same DTSMs, and state space models

fully exploiting both the relevant DTSMs and the dynamically consistent curve shapes

(loadings). We present results both for full-period estimation and for rolling estimation

using a four-year window of observations immediately preceding formation of the hedge.

The rolling estimation mimics a feasible out-of-sample strategy.

As a simple benchmark, we consider traditional immunization by duration matching.

All other methods involve estimation of loadings and idiosyncratic variances. We find

that generalized duration matching based on an unrestricted three-factor model for

yields offers only a modest gain over basic duration matching, in terms of root mean

squared error (RMSE). Further, for a parsimoniously restricted version based on the

NS curve shape, hedging performance deteriorates. Given that the NS curve shape is

dynamically inconsistent with all non-degenerate arbitrage-free DTSMs, this suggests

that the quest for gains from parsimony should proceed on a principled basis, exploiting

dynamic consistency.

For our first-stage approach to dynamic consistency, imposing the parsimonious ANS

curve shape leads to a gain in hedging performance relative to both NS and the correspond-

ing unrestricted factor model. These results are broadly supportive of the importance of

dynamic consistency. In the second stage, using a factor model for slope-adjusted yield

changes, as opposed to yields, performance deteriorates when based on an unrestricted

model, but improves when imposing the ANS-extended Vasicek model, hence reinforcing

the importance of the dynamics. In the third stage, performance deteriorates, relative

to the second-stage results. One possibility is that the DTSM (ANS-extended Vasicek)

is correctly specified, but that the yield curve has not yet reached the dynamically con-

sistent shape (ANS). In this case, the HJM approach of conditioning on an arbitrary

initial (current) curve proves its value, with better results in the second stage than in the

third. Another possibility is that the curve shape and DTSM are too restrictive, hence

calling for a more flexible curve shape, dynamically consistent with a more general DTSM.

Evidence pointing to the latter possibility is that the no-arbitrage condition is rejected
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in the ANS-extended Vasicek model, which is particularly damaging, because it is the

arbitrage-free version of this model that is dynamically consistent with ANS. Thus, for a

more general specification, we consider the new SLSC model.

In the feasible rolling estimation case, hedging performance based on the SLSC model

is stronger than that based on the other approaches considered, and the no-arbitrage

condition is not rejected. Constructing standard pairwise model comparison t-statistics,

following Diebold and Mariano (1995) and Giacomini and White (2006), we find that

the improvement compared to our benchmark is significant. Moreover, using the Model

Confidence Set (MCS) of Hansen, Lunde, and Nason (2011) to compare performance across

all approaches considered, we find that the MCS includes both the second and third stage

SLSC approaches, along with the second stage ANS-extended Vasicek approach. For the

SLSC approaches, performance in the third stage is at least as strong as in the second.

The results suggest that the more flexible SLSC curve shape better accommodates the

current yield curve, and hence the cross section of slope adjustments, compared to ANS,

and that the SLSC model with three stochastic factors generates value, relative to the

ANS-extended Vasicek model with but one. Performance deteriorates when freezing the

locally deterministic state variables at their long-run levels, thus reducing the model

to the standard affine case (AFNS). Finally, instead of removing factor risk exposure

completely from the hedged position, we consider an alternative approach that relaxes

the generalized duration matching constraint and targets RMSE directly, thus trading

off conditional expected hedging error (bias) against conditional variance, rather than

minimizing the latter. However, the evidence favors the generalized duration approach.

Parsimony is again the likely reason. The generalized duration matching strategies

involve only estimated loadings and idiosyncratic variances, whereas those targeting

RMSE involve all model parameters, including state transition coefficients, thus adding

to estimation uncertainty.

Overall, the empirical results show that generalized duration matching by itself

does not suffice for improving hedging performance, relative to traditional immunization.

Neither does the combination with a flexible, parsimonious curve shape, motivated by prior
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knowledge about relevant level, slope, and curvature yield curve shapes, and imposed

on factor loadings in the estimation of generalized durations. Instead, performance

is improved by requiring that the curve shape imposed on loadings be dynamically

consistent with a suitable DTSM. The latter can involve further parsimony and lead to

improved performance by allowing for arbitrary initial curve shape, in agreement with the

general HJM approach. In our analysis, adopting a sufficiently rich DTSM such that the

dynamically consistent curve shape is flexible enough to capture the current yield curve

and imposing this shape throughout generates at least as strong performance. The results

suggest that the shape of the yield curve is dynamically consistent with the stochastic

process driving it, but is not at the long-run equilibrium, where it reduces to standard

affine form. This indicates that the loadings associated with deterministic state variables

do not enter yield curves in fixed proportions over time, and this insight can be exploited

for immunization purposes.

Our work relates to a long tradition in finance. Redington (1952) introduced the

traditional technique of matching the basic bond duration measure of Macaulay (1938)

across assets and liabilities and coined the term immunization for this operation. This is

an entirely cross-sectional and essentially single-factor strategy, with duration capturing

the return sensitivity with respect to the target yield. Fisher and Weil (1971) documented

the relatively strong empirical performance of this approach. Nelson and Schaefer (1983)

acknowledge the possibility of a multivariate factor structure underlying market yields.

Return sensitivities with respect to individual factors are calculated as negative yield

sensitivities times maturity. The relevant immunization strategy matches the return

sensitivity with respect to each factor of the hedging portfolio to that of the target and

is fully invested, i.e., a value matching condition. This is achieved by considering k+1

hedging instruments in case of k factors, so there is no optimization. With more than

k+1 instruments, Ingersoll (1983) seeks diversification by minimizing the sum of squared

hedging weights, subject to the return sensitivity and value matching constraints. This

approach only minimizes conditional hedging error variance if idiosyncratic return errors

are homoskedastic, corresponding to idiosyncratic yield variances declining quadratically
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in maturity, whereas we allow for an arbitrary term structure of idiosyncratic variances.

Litterman and Scheinkman (1991) is a leading example of a cross-sectional approach

using the classical statistical factor analysis as the first stage in term structure hedging.

They find that three factors, labeled level, steepness (or slope), and curvature, adequately

describe the term structure. NS interpret their parsimoniously parametrized yield curve

shapes with monotonic and hump components in terms of short-, medium-, and long-term

factors, corresponding to the Litterman and Scheinkman (1991) slope, curvature, and

level factors, respectively. This motivates imposing the NS curve shape on loadings in the

factor analysis, for a reduction in complexity through savings in degrees of freedom, and

potentially improved hedging performance. Willner (1996) calculates the functional form

of the return sensitivities corresponding to the NS curve shape, labeling them level, slope,

and curvature durations. Diebold, Ji, and Li (2006) refer to these as generalized durations

and use them in an empirical hedging application based on the Ingersoll (1983) approach.

Other applications of the Ingersoll (1983) approach include Chambers, Carleton, and

McEnally (1988), Nawalkha, Soto, and Zhang (2003), Soto (2004), and Bravo and Silva

(2006), who consider different restrictions on loadings.2 Carcano and Dall’O (2011) extend

the approach to allow for model error.

Some studies on hedging in other markets have instead used the full variance-

covariance matrix. Campbell, Serfaty-De Medeiros, and Viceira (2010) and Opie and

Riddiough (2020) use foreign currencies to hedge the exchange rate exposure in a given

portfolio of stocks and bonds. However, adoption of a common factor structure is natural

in fixed income markets. Some studies rely on closely related alternative specifications.

Agca (2005) calculates sample standard deviations at different maturities and fits one-

factor HJM volatility functions to these using cross-sectional regression. Galluccio and

Roncoroni (2006) advocate targeting cross-shape risk, or factor volatilities, rather than

cross-yield risk, or HJM volatilities, in hedging. Still, all these studies are cross-sectional

2While Macaulay (1938) duration is a weighted sum of raw terms to payments, the Chambers, Carleton,
and McEnally (1988) loading functions involve powers, corresponding to polynomial loadings for zero coupon
bonds. Nawalkha, Soto, and Zhang (2003) use powers in the differences between terms to payments and the
planning horizon (term to target payment to be immunized). The NS loadings are exponential-polynomial
functions.
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in nature. The implications of dynamics for the curve shape are not exploited.3

The concept of dynamic consistency was introduced by Björk and Christensen (1999),

and studied further by Filipović (1999), but has never been exploited in hedging. The

analysis in Björk and Christensen (1999) was cast in terms of forward rates, and relied

on the Stratonovich rather than the more familiar Itô stochastic calculus. We conduct our

analysis at the level of yields to maturity because this allows easier interpretation and

corresponds to how market prices are quoted, and we rely exclusively on the Itô calculus.

We introduce and explain the dynamic consistency concept in detail, and provide the first

complete proof from first principles of the fundamental result that the NS curve shape

is dynamically inconsistent with all non-degenerate arbitrage-free DTSMs. The result

was alluded to in Björk and Christensen (1999) and Filipović (1999), but never proved

in detail.4 The idea of incorporating a suitably augmented NS curve shape within an

arbitrage-free DTSM is pursued by Christensen, Diebold, and Rudebusch (2011) in their

AFNS model, and a related five-factor model is used by Quaedvlieg and Schotman (2020)

in a hedging application, still imposing standard affine form. The dynamic consistency

approach accommodates the generalization of the maturity-dependent intercept to a

time-varying mixture of the four linearly independent loading functions associated with

deterministic state variables in the SLSC model. We show empirically that this greatly

enhances hedging performance.

The paper proceeds as follows. The basic hedging framework is presented in Section 2,

and the optimal generalized duration matching portfolio is derived. Section 3 considers

parsimonious curve shapes and dynamic consistency. The empirical strategy is introduced

in Section 4. Section 5 presents the data, and Section 6 the empirical results. Section 7

concludes. The Appendix contains all proofs, as well as further details on implementation

and additional empirical results.

3Díaz et al. (2009) consider a stop loss strategy, replacing passive generalized duration matching by
active management for as long as interest rate forecasts are successful.

4The same is true for the textbook treatments, Christensen and Kiefer (2009), Filipović (2009), and
Diebold and Rudebusch (2013).
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2. The Hedging Framework

We consider the problem of hedging the return to some target asset, using m zero-coupon

bonds as the available hedging instruments.5 Writing r∗t+1 for the next period target

return, r t+1 = (r t+1,τ1 , . . . , r t+1,τm)′ for the m-vector of returns to the zero-coupon bonds,

with terms to maturity τ1 < . . .< τm, and w for the m-vector of hedging portfolio weights

to be chosen at time t, the problem is of the type

min
w

vart
(
r∗t+1 −w′r t+1

)
, (1)

minimization of conditional hedging error variance as of time t. We focus on the case that

the target is a bond portfolio, so (1) is a version of the classical immunization problem.

To relate returns to yields, write zero-coupon prices as pt,τ = exp(−τyt,τ), with yt,τ

the continuously compounded yield at time t, for term to maturity τ. The log return

r t+1,τ = log pt+1,τ− log pt,τ+1 is then given by

r t+1,τ =−τ∆yt+1,τ , (2)

with ∆yt+1,τ = yt+1,τ− yt,τ the constant maturity yield change, for purposes of conditional

variance minimization, cf. (1). More precisely, the excess return above the risk-free rate

(short yield) yt,1 is

r t+1,τ− yt,1 =−τ ỹt+1,τ , (3)

with ỹt+1,τ the slope-adjusted yield change,

ỹt+1,τ =∆yt+1,τ−
yt,τ+1 − yt,1

τ
− yt,τ+1 − yt,τ

(τ+1)−τ , (4)

namely, the raw yield change adjusted for average slope (yield spread, or carry), as

well as local slope (or roll-down) at τ.6 From (3)-(4), as the short rate and both slope

adjustments are read off the yield curve at t, only terms in the information set and thus

5The extension to coupon-bearing instruments is considered in Appendix A.3.
6Christensen and van der Wel (2019) derive (3)-(4) as an approximate excess return relation. Proof of

the exact relation is given in Appendix A.1. The denominator in the local slope (last term in (4)) can differ
from unity if time steps in calendar and maturity dimensions differ.
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of zero conditional variance are suppressed in (2), which therefore suffices for conditional

variance minimization.

Traditional immunization amounts to combining the hedging instruments in a portfolio

with weighted average duration matching that of the target. Because the duration of a

zero-coupon bond is maturity, application of (2) to w′r t+1 shows that duration matching

neutralizes returns if yields are common across maturities. As they are not, we consider a

generalized duration matching strategy that minimizes residual or idiosyncratic risk (1)

after removing exposure to common term structure factors by matching suitably defined

generalized durations. To this end, we consider a factor model for yields.

Writing yt = (yt,τ1 , . . . , yt,τm)′ for the yields at time t to the zero-coupon bonds, the

classical factor analysis structure is

yt =µ+Bf t +εt , (5)

with µ the m-vector of mean yields, f t a k-vector of common, covariance-generating

factors, k < m, with k× k variance-covariance matrix var( f t) = Σ, B an m× k matrix of

factor loadings of rank k, and εt an m-vector of error terms, assumed independent of f t

and idiosyncratic, i.e., Ψ= var(εt) is diagonal.

Combining (2) and (5), returns are given by

r t+1 =−T (B∆ f t+1 +∆εt+1) , (6)

with T = diag(τ1, . . . ,τm) the m×m diagonal matrix with the maturities along the di-

agonal. Thus, the m× k matrix T B, maturities times loadings, represents the return

sensitivities or generalized durations of instruments with respect to factors. In particular,

the generalized durations of the ith zero-coupon bond are given by τibi, maturity times

bi, the ith row of B. The return to the hedge portfolio is then

w′r t+1 =−w′T (B∆ f t+1 +∆εt+1) , (7)

i.e., w′T B is the 1×k row vector of generalized durations for the portfolio.

The target return, r∗t+1, is assumed to obey the factor model, too, with generalized

durations given by the 1×k vector (τb)∗. Analogously to (6), r∗t+1 =− (τb)∗∆ f t+1 +∆ε∗t+1,
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where ∆ε∗t+1 is an idiosyncratic target return error, with variance Ψ∗, a scalar, and

uncorrelated with ∆ f t+1 and ∆εt+1. Combining with (7), the hedging error is

r∗t+1 −w′r t+1 =
(
w′T B− (τb)∗

)
∆ f t+1 +∆ε∗t+1 +w′T ∆εt+1 . (8)

Generalized duration matching amounts to imposing w′T B = (τb)∗ on the portfolio selec-

tion problem (1), thus removing all factor exposure from the hedged position. In this case,

by (8), the conditional hedging error variance is

vart
(
r∗t+1 −w′r t+1

)=Ψ∗+w′T ΨT w . (9)

In a complete market with only factor risk, generalized duration matching would identify

a perfect hedge. In practice, in the incomplete market case, (9) applies. Since the first

term on the right side is outside the portfolio manager’s control, we consider minimization

of the second term. The approach of Ingersoll (1983) is instead to minimize w′w. Evidently,

this approach is only variance minimizing if idiosyncratic yield variances Ψ are declining

quadratically in maturities T , whereas our approach applies for arbitrary Ψ> 0.

The following theorem provides the optimal portfolio, subject to generalized duration

matching, both with and without the additional value matching (or full investment)

constraint that weights sum to one, w′ι= 1, with ι= (1, . . . ,1)′.7

Theorem 1. The immunization portfolio w̃ that minimizes conditional hedging error

variance subject to generalized duration matching,

min
w

vart
(
r∗t+1 −w′r t+1

)
s.t. w′T B = (τb)∗ , (10)

is given by

w̃ = T −1
Ψ−1B

(
B′Ψ−1B

)−1
(τb)′∗ . (11)

The immunization portfolio w∗ that minimizes conditional hedging error variance subject

to both generalized duration and value matching,

min
w

vart
(
r∗t+1 −w′r t+1

)
s.t. w′T B = (τb)∗ and w′ι= 1 ,

7All proofs are in Appendix A.
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is given by

w∗ = w̃+ (
1− w̃′ι

) Λι
ι′Λι

, (12)

with w̃ from (11), and

Λ= T −1(
Ψ

−1−Ψ−1B
(
B′Ψ−1B

)−1B′Ψ−1)T −1 .

Since generalized duration matching removes all factor exposure, the weights in Theo-

rem 1 do not depend on Σ.8 Value matching requires adjustment of the portfolio w̃ from

(11), and hence (12). Simple scaling by (w̃′ι)−1 would violate generalized duration matching,

thus reintroducing factor exposure. Further, by the Theorem, the hedging portfolio only

depends on the target through the generalized target durations (τb)∗. If the target takes

the form of a single, known payment τ∗ periods hence, then (τb)∗ = τ∗b∗, with b∗ the 1×k

vector of factor loadings of the yield to the hypothetical τ∗-period bond. More generally, if

the target is a certain payment stream, then each payment has generalized durations of

this form, and the stream has generalized durations given by the value-weighted average

of these. Theorem 1 applies to such streams, too. In the applications, we fit the factor

model only to the hedging instruments, then interpolate generalized durations of the

target, thus accommodating situations without time series observations on target returns,

e.g., company liability streams.9

3. Parsimonious Curve Shape and Dynamic Consistency

The unrestricted factor model (5) involves the estimation of a host of parameters, thus

opening the door to possibly large estimation error. Writing var(yt)=Υ= BΣB′+Ψ, the

classical factor analysis takes Σ = Ik and B′Ψ−1B diagonal for identification, so there

are mk−k(k−1)/2 parameters in B, and m in Ψ. In a typical yield panel covering m = 8

maturities as in our application and with k = 3 factors, this amounts to 29 parameters in

Υ, against m(m+1)/2= 36 in the unrestricted variance-covariance matrix, i.e., not a great

8Replacing B, b by BΣ1/2, bΣ1/2 leaves (11)-(12) unaltered as Σ1/2 cancels.
9Appendix A.3 provides details on interpolation and hedging in case the target and/or the instruments

are general streams, e.g., coupon bonds.
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reduction. We propose a number of increasingly structured approaches to incorporating

restrictions from the shape of the yield curve on the loadings B.

3.1. Flexible parsimonious forms

In (5), the jth column of B holds the sensitivities of yields to the jth factor. It can be

natural to model these by a known function of maturity and a small number of parameters,

say, τ 7→ B j(τ;γ), where B j( · ;γ) takes a simple form, and γ is estimated. In this case, the

parsimoniously parametrized shape of the yield curve τ 7→ y(t,τ) at t is represented as

y(t,τ)=
k∑

j=1
B j(τ;γ) f t, j = B(τ;γ) f t , (13)

where the functions B j( · ;γ) are linearly independent, and B(τ;γ) is 1×k. Imposing this

structure on (5), we have yt,τi = y(t,τi), Bi j = B j(τi;γ), and εt,i is the measurement error.

Consider, for example, the NS curve shape given by

y(t,τ)= f t,1 +
(
1− e−aτ

aτ

)
f t,2 +

(
1− e−aτ

aτ
− e−aτ

)
f t,3 , (14)

for some parameter a. Thus, k = 3, and in the representation (13), the loading functions

are

B̃1:3(τ;a)=
(

B̃1 B̃2 B̃3

)
=

(
1

1−e−aτ

aτ
1−e−aτ

aτ
−e−aτ

)
(15)

on the level, slope, and curvature factors, respectively, using tildes to indicate the spe-

cific as opposed to generic loading functions.10 The generalized durations obtained by

multiplying maturity τ on each loading function in (15) generates the level, slope, and

curvature durations proposed by Willner (1996).

With a curve shape, such as that of NS, imposed on the loadings in (5), (µ,γ,Σ,Ψ) is

estimated, rather than (µ,B,Ψ). In particular, Σ must be estimated if B(·) determines

scaling and rotation, such as in the NS case. Still, with g = dimγ, only g+k parameters

are estimated in (B(γ),Σ) with uncorrelated factors, and g+ k(k+1)/2 with correlated,

10The NS curve is frequently seen in the forward rate representation, which has different loading
functions, with clear interpretation in terms of level, slope, and curvature. We show in Appendix A.4 that
the yield representation (14) is equivalent to the well known forward rate representation, and that the
level, slope, and curvature interpretation carries over to the yield case.
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instead of the mk−k(k−1)/2 free parameters in B in the classical factor analysis. In the

NS case, B(γ) = B̃(a), where B̃(a) has columns determined by (15), i.e., γ= a, and g = 1.

This implies only 4+m variance-covariance parameters (a,Σ,Ψ) with uncorrelated factors,

and 7+m with correlated. For m = 8 maturities, this corresponds to 12 or 15 parameters,

compared to 29 in the general factor model, (B,Ψ), and 36 in the unrestricted case, hence

providing considerable parsimony.

3.2. Intra-period yield curve movements and dynamic consistency

An important issue when restricting the yield curve to a parsimoniously parametrized

shape, which we will elaborate on in this section, is that the restricted curve shape can

lead to dynamic inconsistency. Assume that intra-period movements in yields between

the discrete rebalancing dates t̄ and t̄+1 are governed by a continuous-time DTSM. We

consider a general HJM specification,

dy (t,τ)=α (t,τ)dt+σ (t,τ)′dW(t) , (16)

since this is explicitly a framework for the dynamics of the entire curve τ 7→ y(t,τ), and

thus well suited for the study of curve shapes. In (16), α(t,τ) is the instantaneous drift of

y(t,τ), σ(t,τ) a d-vector of volatilities, and W(t) a d-vector of standard Wiener processes,

with α, σ adapted to {W(t)}t. For each τ, (16) specifies the stochastic differential of

the real-valued process {y(t,τ)}t, the constant-maturity yield. Alternatively, (16) can be

viewed as a single equation of infinite dimension across τ, giving the differential of the

process {y(t, · )}t on the space of curves τ 7→ c(τ).11 In this framework, a particular DTSM

is identified with the choice of (α,σ).

Although there is some resemblance between (16) and the yield factor model (5), the

one-period factor loadings B, which by Theorem 1 are needed for hedging in discrete time,

cannot be identified with the continuous-time volatilities σ(·). At each instant, increments
11This notion can be formalized as in Björk and Christensen (1999) and Da Prato and Zabczyk (2014) by

considering the curve space as a suitable Hilbert space, e.g., the space of differentiable curves equipped
with the inner product < c1, c2 >= ∫ τ̄

0 c1(τ)c2(τ)dτ, for τ̄ the longest maturity (10 years in our empirical
work), and imposing sufficient conditions on α and σ (local boundedness and Lipschitz continuity in c) to
guarantee a solution. The specific models we work out satisfy these conditions.
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to the function (yield curve) y(t, ·) are added in the directions given by the two functions

α(t, ·) and σ(t, ·) in (16), and B in (5) must account for the cumulated impact over discrete

intervals (between t̄ and t̄+1) of both of these effects. As we show, this implies that there

are at least as many factors in the discrete-time f t as in the continuous-time W(t), i.e.,

k ≥ d, but there are typically more, k > d. Thus, restricting B to be dynamically consistent

with a particular DTSM can save not only on parameters, but also on number of driving

processes. Conversely, for a given DTSM with d-dimensional W(t), it may be necessary to

consider more factors for dynamically consistent discrete-time hedging, i.e., hedging uses

certain extended loadings B, of dimension m×k, with k ≥ d. The exact relation between

the DTSM (in particular, σ(·)) and B is subtle, and is the topic of the following dynamic

consistency theory.

Consider a class of potential yield curves Y (τ, x), parametrized by x ∈ X ⊆ Rk, a

suitable parameter (or state) space, i.e., the class is Y = {Y (·, x) |x ∈X }. Let TY = inft{t :

∃x ∈X s.t. y(t, ·)=Y (·, x)} be the first hitting time for Y under (16).

Definition 1. (a) Dynamic consistency between a DTSM (α,σ) and a class Y of yield

curves means that if the yield curve dynamics are governed by (16), then y(t, ·) ∈ Y , for

t ≥ TY .

(b) Strong dynamic consistency between (α,σ) and Y means that if the yield curve dynam-

ics are governed by (16), then y(t,τ)=Y (τ, x(t)), for t ≥ TY , with

dx(t)=φ(t)dt+ψ(t)′dW(t) , (17)

for suitable φ, ψ such that (17) has a strong solution.

Thus, TY represents the first time the yield curve y(t, ·) assumes a shape within the curve

family Y . By Definition 1.(a), under dynamic consistency, the curve remains in the family,

once there, if movements in interest rates are described by (16). The class Y is invariant

under the action (16). The yield curve for t ≥ TY is τ→ Y (τ, x(t)), for suitable x(t) ∈X ,

which therefore serves as the relevant state variable. This obeys dynamics of the type

(17) under mild regularity conditions that we henceforth assume (full rank of ∂Y /∂x′ and

invertibility of x →Y (·, x) on Y suffice). Moreover, if (17) has a solution, so does (16), so
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we henceforth use dynamic consistency and strong dynamic consistency interchangeably.

The initial condition for (17) is x(TY )= xY , where xY satisfies y(TY ,τ)=Y (τ, xY ). Further,

given y(t,τ)=Y (τ, x) in Y , for suitable x, we assume that the volatility σ(t,τ) takes the

form σ(τ, x), for t ≥ TY , depending on time t only through the state variable x = x(t), and

similarly for the drift, α(τ, x). In this case, imposing the same (Markov) condition on

the coefficients in (17), φ(x) and ψ(x), is without loss of generality, hence leading to the

following technical assumption.

Assumption 1. The SDE

dx(t)=φ(x(t))dt+ψ(x(t))′dW(t) (18)

with initial condition x(TY )= xY has a strong solution.

In the HJM representation, α, σ must be adapted to {W(t)}t. Under Assumption 1, they

are.

If the curve shape Y is linear in x, i.e., Y (τ, x) = B(τ)x, with B(τ) a 1× k vector not

depending on x, then we have the case (13), a factor model, and we write B for Y . In case

of the NS curve shape,

Y (τ, x)= x1 + x2

(
1−e−aτ

aτ

)
+ x3

(
1−e−aτ

aτ
−e−aτ

)
, (19)

with fixed a, we obtain a factor model, Y (τ, x) = B̃1:3(τ)x, with x = (x1, x2, x3)′, loading

functions from (15), and ∂Y /∂x′ = B̃1:3(τ) not depending on x. In contrast, if a is considered

part of the state variable x, i.e., x = (x1, x2, x3,a)′, then

∂Y
∂x′

(τ, x)=
(

B̃1:3(τ;a) ∂Y
∂a

)
, (20)

with

∂Y
∂a

=−1
a

(
1−e−aτ

aτ
−e−aτ

)
(x2 + x3)+τe−aτx3 =−1

a
B̃3(τ,a)(x2 + x3)+τe−aτx3 . (21)

Since ∂Y /∂a depends on x, (19) is not a factor model for time-varying a. Thus, whether or

not NS is a factor model depends on whether a is fixed or allowed to vary over time.

For smooth movements in x(t), t ≥ TY , dynamic consistency between (α,σ) and the
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yield curve family Y would be equivalent to the conditions that α(τ, x) and the d coordinate

functions of σ(τ, x) all be spanned by the parameter derivatives ∂Y (·, xt)/∂x of the yield

curve function. But smooth movements do not accommodate the Wiener processes in (16)

and (18). Instead, we have the following.

Proposition 1. Dynamic consistency between the DTSM (α,σ) and the yield curve family

Y is equivalent to the existence of suitable φ, ψ satisfying Assumption 1 and the conditions

α(τ, x)= ∂Y
∂x′

(τ, x)φ(x)+ 1
2

tr
(
∂2Y
∂x∂x′

(τ, x)ψ(x)′ψ(x)
)

, (22)

σ(τ, x)′ = ∂Y
∂x′

(τ, x)ψ(x)′ , (23)

for all (τ, x), where tr(·) is the matrix trace.

Thus, the dynamic consistency conditions involve a drift condition and a volatility condi-

tion. Inclusion of the trace term in the former circumvents a switch from the Itô to the

Stratonovich stochastic calculus invoked in Björk and Christensen (1999). It enters non-

trivially for nonlinear curve shapes. Corollary A.5.1 provides an example of a DTSM (α,σ)

that generates NS curves with time-varying coefficient a(t) in the exponent. Thus, this

is not a factor model, and the trace term is non-zero. This shows that neither nonlinear

dependence on state variables nor NS curve shape precludes dynamic consistency.

Dynamic consistency is a property tying the cross-sectional curve shape to the dynam-

ics and is distinct from the absence of arbitrage opportunities. To state the dynamic con-

sistency condition under the additional no-arbitrage condition, we show in Appendix A.5

that the relevant arbitrage restriction on yield drifts is

α (τ, x)= 1
τ

[
Y (τ, x)−Y (0, x)

]+ ∂Y
∂τ

(τ, x)+ τ

2
σ (τ, x)′σ (τ, x)+σ (τ, x)′λ(x) . (24)

The last two terms are convexity and risk compensation, based on suitable market prices

of risk λ(x). In addition, the no-arbitrage condition involves adjustments for average slope

or yield spread (first term in (24)), as well as local slope of the yield curve (second term),

like the slope-adjusted yield changes (4).12 By (24), an arbitrage-free DTSM is identified

12HJM consider forward rates with maturity date T, f (t,T), and derive the no-arbitrage condition
α f (t,T)=σ f (t,T)′

∫ T
t σ f (t,u)du under the risk-neutral measure, subscripts f indicating forward rates. In
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with (λ,σ). The conditions for dynamic consistency between an arbitrage-free DTSM and

a yield curve family include the original volatility condition (23) and a condition equating

the right sides of (22) and (24) (see Proposition A.7.1 in Appendix A.7).

If a curve family Y and a DTSM are not dynamically consistent, we say that they

are dynamically inconsistent. In this case, even if the yield curve at some point in time

belongs to Y , it will deviate from this shape at some later point in time, i.e., it will leave

Y if dynamics are governed by the given DTSM. The no-arbitrage condition (24) renders

NS dynamically inconsistent with all non-degenerate DTSMs, i.e., models with σ(τ, x) ̸= 0.

Corollary 1. The NS curve shape is dynamically inconsistent with all non-degenerate

arbitrage-free DTSMs, whether a is fixed or not.

The corollary calls any procedure relying on NS into question, including using NS curve

shape for parsimony in hedging. It is in conflict with yield dynamics, and hence returns.

3.2.1. Factor models

It is useful to write out the previous conditions in the special case of a factor model B, i.e.,

the curve shape is Y (τ, x)= B(τ)x, for given loadings B(·).

Corollary 2. Dynamic consistency between the arbitrage-free DTSM (λ,σ) and the factor

model B is equivalent to the existence of suitable φ, ψ satisfying Assumption 1 and

1
τ

[
B (τ)−B (0)

]
x+ ∂B

∂τ
(τ) x+ τ

2
σ (τ, x)′σ (τ, x)+σ (τ, x)′λ(x)= B(τ)φ(x) , (25)

σ(τ, x)′ = B(τ)ψ(x)′ , (26)

for all (τ, x).

Thus, for given curve shape Bx and DTSM (λ,σ), dynamic consistency investigations

involve determining coefficients (φ,ψ), i.e., the drift and volatility of the state process (18),

solving (25)-(26). If a solution exists, then B and (λ,σ) are dynamically consistent.13

(24), risk compensation appears because we consider the physical measure, convexity (in place of the term
involving an integral in HJM) and yield spread because we consider yields, rather than forward rates, and
local slope because our fixed term to maturity analysis avoids the bond aging effect noted by Litterman and
Scheinkman (1991) (details are given in Appendix A.6).

13The corresponding conditions for an arbitrary (not necessarily arbitrage-free) DTSM (α,σ) take the
form α= Bψ, σ′ = Bψ′ (see Corollary A.7.1).
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Inserting (26) into (25) produces

1
τ

[
B (τ)−B (0)

]
x+ ∂B

∂τ
(τ) x+ τ

2
B(τ)ψ(x)′ψ(x)B(τ)′ = B(τ)(φ(x)−ψ(x)′λ(x)) . (27)

This resembles the fundamental term structure PDE characterizing bond prices (here, the

yield curve) for given (φ,ψ). However, as we solve for (φ,ψ), our viewpoint is dual to that

in the PDE-based theories that assume a particular form of the state variable process

(18), thus taking (φ,ψ) as the starting point. A prominent theory in the latter category is

that on affine term structure models (ATSMs), in which the yield typically is written in

the form Y (τ, x̄(t)) = Ā(τ)+ B̄(τ)x̄(t), where B̄(τ) satisfies a Riccatti ODE. This is clearly

the special case of the general form Y (τ, x) = B(τ)x in which one of the state variables

is constant, i.e., x(t) = (x̄(t)′,1)′, B(τ) = (B̄(τ), Ā(τ)), k = d+1. The dynamic consistency

approach accommodates the more general structure Y (τ, x(t)) = B̄(τ)x̄(t)+ ¯̄B(τ) ¯̄x(t), say,

where ¯̄x(t) is a vector of locally deterministic but potentially time-varying state variables,

with loadings ¯̄B(τ). Thus, the time-invariant ATSM intercept Ā(τ) is generalized to the

time-varying form ¯̄B(τ) ¯̄x(t) under dynamic consistency, x = (x̄′, ¯̄x′)′, φ= (φ̄′, ¯̄φ′)′, say, and

ψ′ = (ψ̄,0)′ is k×d, where φ̄, ψ̄ are the d×1 state drift and d×d state volatility in the

ATSM, and k ≥ d+1 – indeed, typically k > d+1, as we demonstrate.14

If φ is affine, φ(x)=Φ(θ− x), where the constant k×k matrix Φ satisfies stationarity

conditions, then θ comprises the long-run means. Further, if the lower left (k−d)×d

block of Φ vanishes, then ¯̄x remains at ¯̄θ, once there, ¯̄x(t)= ¯̄θ, where θ = (θ̄′, ¯̄θ′)′, because

neither the drift nor the stochastic shocks to the locally stochastic state variables move

¯̄x(t). We provide examples in which standard affine models are obtained in the special

case in which (i) the dynamically consistent curve shape is attained, and (ii) the locally

deterministic state variables happen to be at their long-run levels, so that the affine

model intercept is realized as Ā(τ) = ¯̄B(τ) ¯̄θ. However, the generalization of Ā(τ) to the

time-varying ¯̄B(τ) ¯̄x(t) preserves dynamic consistency, and we show in the empirical section

that allowance for this feature greatly enhances hedging performance.

In ATSM theory, the affine curve shape applies throughout. This is due to the condition

14See Appendix A.8 for details on the ATSM case.
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that the short rate be affine, y(t,0)= δ0+δ′1 x̄(t), say, depending on time t only through the

stochastic state variables x̄(t). This generates an initial condition on the Riccatti ODE,

and the resulting solution for B = (B̄, Ā) leaves all yields affine in x̄(t). In contrast, in the

dynamic consistency approach, there is no condition that any yield need satisfy the curve

shape condition y(t,τ)= B(τ)x(t) at all times.

Thus, though the equations are formally similar, they are used differently in the

dynamic consistency and affine term structure theories.15 The former is more general and

applies to factor models with time-varying deterministic yield components, factor models

with non-affine state variable process (φ, ψ′ψ, ψ′λ non-affine in (25)-(26)), models outside

the factor model case (Propositions 1 and A.7.1, Corollaries 1 and A.5.1), and specifications

not imposing the absence of arbitrage opportunities (Proposition 1, Corollary A.7.1). Of

course, a given affine model, with specified φ̄, ψ̄, λ, and B = (B̄, Ā) solving the resulting

Riccatti equation, is dynamically consistent with the DTSM with HJM volatility σ′ = B̄ψ̄′

and drift (25), but more general curve shapes B = (B̄, ¯̄B) can be dynamically consistent

with the same (λ,σ).

Consider a given volatility function, σ. By (26), dynamic consistency with the factor

model B requires that functions of τ in σ(τ, x)′ should be included among the curve shapes

represented by B(τ). By (27), under the additional no-arbitrage condition, more functions

may be needed in B(τ). The original curve shapes in B(τ) on the right side of (27) must

include all the derived curve shapes arising on the left side. This is because curve shapes,

beside volatility itself, must account for the convexity this gives rise to, as well as slope

adjustments. To see how these requirements can lead to dynamic inconsistency, consider

again the NS case, with loadings (15). Depending on ψ, convexity in (27) can involve the

terms (τ/2)B̃1(τ)2 = τ/2,

τ

2
B̃2(τ)2 = 1

a
(
B̃2(τ)− B̃4(τ)

)
, (28)

15Given B(τ), σ(τ, x), and λ(x), equations (25)-(26) (and hence (27)) form an ordinary linear-quadratic
system in the (unknown) constants φ(x), ψ(x), while for given functions φ(·), ψ(·), λ(·) satisfying the ATSM
conditions (see Appendix A.8), (27) is a system of linear-quadratic ODEs in the (unknown) functions B(·).
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with

B̃4(τ)= 1−e−2aτ

2aτ
, (29)

and

τ

2
B̃3(τ)2 = 1

a
(
B̃2(τ)− B̃4(τ)

)+ τ

2
e−2aτ+τ(

B̃2(τ)−2B̃4(τ)
)

(30)

(the detailed derivations are in (A.7.7), (A.7.8) and (A.7.11)). If volatility (26) involves the

second NS loading, B̃2(τ), then convexity involves (28), and hence (29). As a function of τ,

the latter is linearly independent of the NS loadings (15), and of the slope adjustments

and remaining convexity terms based on these. Ultimately, this leads to violation of (27),

and hence dynamic inconsistency, cf. Corollary 1 (the proof in Appendix A.7 covers all

possible combinations of NS loadings in volatility (26)).

3.2.2. Dynamic consistency

Consider again the case that volatility is proportional to the second NS loading, B̃2(τ), i.e.,

σ(τ, x)=ψ2(x)
(
1−e−aτ

aτ

)
, (31)

with ψ2(x) ̸= 0. By (28), convexity is spanned by B̃2(τ) itself and B̃4(τ) from (29). This

suggests augmenting the set of NS loadings with B̃4(τ), to meet condition (25). Since

volatility is already spanned, cf. (31), convexity is unaltered by this augmentation. Fur-

thermore, in this case, the augmented slope adjustments are spanned by the augmented

loadings, too, hence implying dynamic consistency under the no-arbitrage condition.

Proposition 2. The augmented NS (ANS) curve shape given by loading functions

B̃1:4(τ)=
(

1 1−e−aτ

aτ
1−e−aτ

aτ −e−aτ 1−e−2aτ

2aτ

)
(32)

with fixed a is dynamically consistent with the arbitrage-free DTSM with drift

α(τ, x)=
(
ψ2(x)2

a
+λ(x)ψ2(x)−a(x2 − x3)

)
1−e−aτ

aτ

−ax3

(
1−e−aτ

aτ
−e−aτ

)
−

(
ψ2(x)2

a
+2ax4

)
1−e−2aτ

2aτ

(33)
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and volatility (31), provided φ(x)=Φ(θ− x) given by

φ(x)=



0 0 0 0

0 a −a 0

0 0 a 0

0 0 0 2a







0

ψ2(x)2

a2 + λ(x)ψ2(x)
a

0

−ψ2(x)2

2a2


−



x1

x2

x3

x4




(34)

and ψ(x)= (0,ψ2(x),0,0)′ satisfy Assumption 1.

If ψ2(x)2 and λ(x)ψ2(x) are affine in x, so is φ(x) in (34). In our empirical work, we take ψ,

λ constant, so θ represents the long-run means. By (33)-(34), the reduced ANS (RANS)

curve shape with loadings B̃2:4(τ), i.e., dropping the level B̃1(τ), suffices for dynamic

consistency.16

Once the curve shape y(t,τ) = B(τ)x(t) is attained, the short rate takes the form

y(t,0) = B(0)x(t). By l’Hôpital’s rule, B̃2(0) = B̃4(0) = 1 (see the proof of Corollary 1),

and B̃3(0) = 0, so in the RANS case, y(t,0) = x2(t)+ x4(t). Thus, the RANS yield curve

B̃2:4(τ)x2:4(t) is

y(t,τ)= B̃2(τ)y(t,0)+ B̃3(τ)x3(t)+ (
B̃4(τ)− B̃2(τ)

)
x4(t)

=
(
1−e−aτ

aτ

)
y(t,0)+

(
1−e−aτ

aτ
−e−aτ

)
x3(t)+

(
1−e−2aτ

2aτ
− 1−e−aτ

aτ

)
x4(t) . (35)

The augmenting loading, B̃4(τ), enters with non-zero coefficient unless x4 = 0, a level it

will instantaneously leave due to non-zero drift, −ψ2(x)2/a < 0, cf. (34).

Besides x2, the stochastic state variable, x3 and x4 serve as additional state variables.

Although locally deterministic, ψ3 =ψ4 = 0, they are time-varying. Thus, writing out (18)

in the case from Proposition 2, we have dx3(t) = −ax3(t)dt, dx4(t) = 2a(−ψ2(x)2/(2a2)−
x4(t))dt, and

dx2(t)= a
(
ψ2(x)2

a2 +λ(x)
ψ2(x)

a
− x2(t)+ x3(t)

)
dt+ψ2(x)dW2(t) . (36)

16As for arbitrary (not necessarily arbitrage-free) DTSMs, ANS is dynamically consistent with the
specification in Proposition A.9.1.
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The short rate dynamics are given by adding dx2(t) and dx4(t),

dy(t,0)= a
(
λ(x)

ψ2(x)
a

− y(t,0)+ x3(t)− x4(t)
)
dt+ψ2(x)dW2(t) . (37)

From (37), the rate of mean reversion, a, in the short rate coincides with the rate of

decline of the volatility function (31). Inspection of the spanning condition reveals that

this relation is due to the slope adjustment.17 Further, in (37), the target for mean

reversion in the short rate is moving with the additional locally deterministic state

variables ¯̄x(t)= (x3(t), x4(t))′.

In the square-root case, ψ2(x)=σpx2, as in the Cox, Ingersoll, and Ross (1985) (CIR)

model, x4 is stochastic, as x2 enters its dynamics, dx4(t) = 2a(−σ2x2(t)/(2a2)− x4(t))dt.

In the homoskedastic case, ψ2(x) = σ, the yield volatility function (31) is that from the

Vasicek (1977) model. In this case, the solution for x4(t) is

x4(t)= x4(TY )e−2a(t−TY)− σ2

2a2

(
1−e−2a(t−TY)

)
, (38)

and x3(t)= x3(TY )e−a(t−TY), for t > TY , with TY the first hitting time when the yield curve

assumes RANS shape. Inserting these in (35) shows the evolution of the yield curve

explicitly. Its variation via x3, x4 only ceases when these are at their long-run levels of 0

and −σ2/2a2. In this case, the yield curve takes on standard affine shape,

y(t,τ)=
(
1−e−aτ

aτ

)
y(t,0)+

(
1−e−aτ

aτ
− 1−e−2aτ

2aτ

)
σ2

2a2 , (39)

depending on time t only through y(t,0). This is now the sole state variable, and stochastic,

i.e., x̄(t) can be taken as the short rate, and y(t,τ)= Ā(τ)+ B̃2(τ)y(t,0), with Ā(τ) the last

term in (39), convexity divided by speed of mean reversion. The dynamic consistency

approach accommodates the more general yield curve shape (35), with additional time-

dependence through ¯̄x(t) = (x3(t), x4(t))′. Thus, Ā(τ) is generalized to the time-varying

mixture of loadings ¯̄B(τ) ¯̄x(t) given by the last two terms in (35). The DTSM with d = 1

Wiener process drives the yield curve within the arbitrage-free dynamically consistent

curve family with k = 3 state variables, only reducing to the standard affine case with

k = 1 state variable (the short rate) when the locally deterministic state variables are at

17From (A.9.9), the term −a(x2 − x3) in (36) is required in φ to span the slope adjustment.
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their long-run levels.

It is worth noting that our ANS extension of the Vasicek (1977) model is different from

the extension by Hull and White (1990). The latter replaced the long-run level for the

short rate with a function of time, calibrated to fit the current yield curve. Such calibration

would typically be non-parametric (e.g., a spline), and so not parsimonious. In contrast,

our extension accommodates a fit to the current yield curve using the parsimonious ANS

curve shape with loadings (32), and secures dynamic consistency with this shape.

3.3. A stochastic level, slope and curvature model

The arbitrage-free DTSM from Proposition 2, which is dynamically consistent with ANS

curve shape, involves but a single Wiener process, W2, driving the state variable x2

according to (36). Motivated by the observed level, slope, and curvature structure of

yield curves, we specify a DTSM with three driving Wiener processes and volatility

functions proportional to the three NS loading functions (15). From (30), with B̃3(τ)

included in the volatility function, convexity involves the functions B̃5(τ)= (τ/2)e−2aτ and

B̃6(τ)= τ(
2B̃4(τ)− B̃2(τ)

)
. Therefore, these should be included as additional loadings for

dynamic consistency under the no-arbitrage condition, cf. (27). Also, as noted already,

the level factor loading B̃1(τ) generates convexity τ/2. Spanning this requires a linear

(in maturity) loading function, i.e., diverging for long maturities, which is not realistic,

hence calling reliance on B̃1(τ) into question.18 Further, B̃1(τ) is the limit of B̃2(τ) as a ↓ 0,

and as a reflects the rate of mean reversion for the associated state variable, cf. (36),

the state variable (level factor) associated with B̃1(τ) would exhibit a unit root, which is

empirically unwarranted. Therefore, we henceforth (by slight abuse of notation) employ

the modified loading function B̃1(τ) = (
1−e−bτ) /(bτ) with small b > 0, and 0 < b < a, in

place of the constant specification. As B̃1(τ) takes the same form as B̃2(τ), with b replacing

a, Proposition 2 and the related discussion shows that an additional loading function

B̃7(τ)= (
1−e−2bτ) /(2bτ) (corresponding to (29)) is required, too.

Of the resulting seven state variables, three are associated with the driving Wiener pro-

18Note also that B̃1(τ) dropped out of the reduced ANS curve shape in relation to Proposition 2.
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cesses, and four are locally deterministic. The model accommodates correlation between

the second and third state variables, i.e.,

ψ(x)=


ψ11(x) 0 0 0 0 0 0

0 ψ22(x) ψ23(x) 0 0 0 0

0 ψ32(x) ψ33(x) 0 0 0 0

 . (40)

The DTSM volatility function σ(τ, x)′ = B(τ)ψ(x)′ from (26) in this case takes the form

σ(τ, x)′ =
(
ψ11B̃1(τ) ψ22B̃2(τ)+ψ32B̃3(τ) ψ23B̃2(τ)+ψ33B̃3(τ)

)
(41)

=
(
ψ11

(
1−e−bτ

bτ

)
ψ22

(
1−e−aτ

aτ

)
+ψ32

(
1−e−aτ

aτ −e−aτ
)

ψ23

(
1−e−aτ

aτ

)
+ψ33

(
1−e−aτ

aτ −e−aτ
))

,

suppressing x in ψ. Since for b small the first volatility function is associated with

an approximate level factor, this is a stochastic level, slope, and curvature or SLSC

specification.

For a more compact statement of the drift of the state variables x under the no-

arbitrage condition in the following theorem, writeω(x)=ψ(x)′ψ(x)= diag(ω11(x),ω̃(x),04×4)

for their 7×7 block-diagonal local variance matrix. By (40), ω11(x)=ψ2
11(x), and ω̃(x) is

given by ω22(x) ω23(x)

ω23(x) ω33(x)

=

 ψ2
22(x)+ψ2

32(x) ψ22(x)ψ23(x)+ψ32(x)ψ33(x)

ψ22(x)ψ23(x)+ψ32(x)ψ33(x) ψ2
23(x)+ψ2

33(x)

 .

(42)

Theorem 2. The SLSC curve shape given by loading functions

B̃1:7(τ)=
(

1−e−bτ

bτ
1−e−aτ

aτ
1−e−aτ

aτ −e−aτ 1−e−2aτ

2aτ
τ
2e−2aτ 1

a
(
e−aτ−e−2aτ) 1−e−2bτ

2bτ

)
(43)

with fixed a, b is dynamically consistent with the arbitrage-free DTSM with drift α(τ, x)=
B̃1:7(τ)φ(x) and volatility function (41), provided ψ(x) from (40) and φ(x)=Φ(θ− x) with
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Φ=



b 0 0 0 0 0 0

0 a −a 0 −1 0 0

0 0 a 0 1 1 0

0 0 0 2a 0 −2 0

0 0 0 0 2a 0 0

0 0 0 0 a 2a 0

0 0 0 0 0 0 2b



(44)

and

θ =



1
b2ψ

2
11 + 1

bλ1ψ11

1
4a2 (4ω22 +7ω33 +10ω23)+ 1

a
(
λ2ψ22 + (λ2 +λ3)ψ23 +λ3ψ33

)
1

4a2 (ω33 +2ω23)+ 1
a

(
λ2ψ23 +λ3ψ33

)
− 1

4a2 (2ω22 +5ω33 +6ω23)

1
2aω33

− 1
4a (3ω33 +2ω23)

− 1
2b2ψ

2
11



(45)

satisfy Assumption 1.

Of course, loadings can be combined differently, provided the span is maintained, e.g.,

B̃6(τ) can be replaced by exp(−2aτ) in (43), because exp(−aτ) is spanned by other loadings,

exp(−aτ) = B̃2(τ)− B̃3(τ). An alternative, more elaborate expression for the drift of the

state variables under the arbitrage condition, φ(x), can be obtained by substituting (42)

in (45) (see (A.9.23)).19

For state-independent volatilities, i.e., ωi j(x) = ωi j, i, j = 1,2,3, the drifts of ¯̄x(t) =
(x4(t), . . . , x7(t))′ are deterministic. Thus, the locally deterministic state variables are, in-

deed, deterministic, although in general time-varying, with long run levels ¯̄θ = (θ4, . . . ,θ7)′

given by the last four entries in (45). In this case, if the yield curve y(t,τ)= B̃1:7(τ)x1:7(t) at

any point in time assumes the special shape y(t,τ)= B̃1:3(τ)x1:3(t)+B̃4:7(τ) ¯̄θ, then it retains

this shape, since the drifts and volatilities of the deterministic state variables vanish.

19Regarding arbitrary (not necessarily arbitrage-free) DTSMs, the SLSC curve shape given by (43) is
dynamically consistent with the specification in Proposition A.9.2.
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This restricted version of the SLSC model, with curve shape y(t,τ)= Ā(τ)+ B̃1:3(τ)x1:3(t),

where Ā(τ)= B̃4:7(τ) ¯̄θ, corresponds closely to the AFNS model considered by Christensen,

Diebold, and Rudebusch (2011) (see Appendix A.10).20

To summarize, the results from the present section suggest that if a parametrized

curve shape is adopted for parsimony in hedging, then it should be dynamically consis-

tent with a suitable DTSM. Otherwise, the optimal portfolio from Theorem 1 relies on

information that is in conflict with interest rate dynamics, and hence returns.

4. Empirical Strategy

We exploit dynamic consistency in hedging by imposing increasing structure in the

estimation of (B,Ψ) (required in Theorem 1) over three stages. Assume that initial

estimates have been obtained from the unrestricted yield factor model (5), as well as

from a restricted version imposing a parametric curve shape on B for parsimony. In

the first stage, if the given curve shape is dynamically inconsistent, we use the results

from Section 3 to augment it to achieve dynamic consistency with a suitable DTSM and

impose the augmented curve shape on B instead. In the second stage, we exploit the

consistent dynamics of the DTSM identified in the first stage using a reduced factor model

for slope-adjusted yield changes involving only the stochastic factors, and accommodating

the possibility that the current yield curve does not assume the dynamically consistent

shape. Finally, if it does, then so do future yield curves under the given DTSM, and

information is potentially lost by ignoring this. In the third stage, we fully exploit the

dynamics by jointly imposing the DTSM and the restrictions on the curve shape, leading

to a filtering approach along the dynamically consistent curve family. The second and

third stage approaches are presented in more detail in the following.

20The independent factor AFNS model is obtained by restricting the correlation between the slope and
curvature factors to zero, i.e., ψ23 =ψ32 = 0 in (40). Further, AFNS restricts b = 0, so B̃1(τ)= 1, convexity
diverges in maturity, the first factor is an exact level factor exhibiting a unit root, i.e., there is no mean
reversion or stable long-run level θ1, and in fact no affine representation.
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4.1. Reduced factor model for slope-adjusted yield changes

For the second stage, the model for the slope-adjusted yield changes (4) is obtained from an

Euler approximation to (16), using the arbitrage condition (24) for α(t,τ), and subtracting

the slope adjustments on both sides, producing

ỹt+1,τ = τ

2
σ (xt,τ)′σ (xt,τ)+σ (xt,τ)′λ(xt)+σ (xt,τ)′ wt+1 +υτ+εt+1,τ , (46)

where wt+1 =
∫ t+1

t Wsds, υτ are maturity-specific pricing errors, and εt+1 are zero-mean

measurement errors. For a time-invariant volatility function σ(xt,τ)=σ(τ), specification

(46) corresponds to that in Christensen and van der Wel (2019). This suggests that we

can use a reduced factor analysis (or the Kalman filter, in case of dynamics in λt =λ(xt)),

with the d ≤ k factors given by wt+1, to estimate σ(τ). The analysis in Christensen and

van der Wel (2019) did not use parsimonious parametrization or curve shapes, but instead

focused on estimation with and without the no-arbitrage restriction υτ = 0, and the test of

this. Here, we impose the parametric restrictions from the curve shape B on the loadings

in the reduced factor analysis.

Consider a curve shape (factor model) B and a DTSM (λ,σ) dynamically consistent with

B, with k factors in B, d ≤ k Wiener processes in the DTSM, and coefficents (φ,ψ) in the

state process (18). In (27), split φ(x) into the coefficients for spanning slope adjustments,

and those for spanning convexity and risk compensation,

1
τ

[
B (τ)−B (0)

]
x+ ∂B

∂τ
(τ) x = B(τ)φsa(x) , (47)

τ

2
B(τ)ψ(x)′ψ(x)B(τ)′+B(τ)ψ(x)′λ(x)= B(τ)φcr(x) , (48)

with φ(x)=φsa(x)+φcr(x). From (47), it is clear that φsa(x) is linear in x, φsa(x)=−Φsax,

say. From (48), if ψ(x)′ψ(x) and ψ(x)′λ(x) are affine in x (see Section 3.2.1), so is φcr(x)=
φcr −Φcrx, say. In this case, φ(x) = Φ(θ− x), with Φθ = φcr, Φ = Φsa +Φcr. If ψ(x) = ψ

(Gaussian state variables), then Φcr purely reflects state-dependence in λ(x). Under

the martingale measure (λ(x) = 0), or just constant market prices of risk (λ(x) = λ), we

have Φ=Φsa, i.e., mean reversion corresponds to slope adjustment. Long-run levels θ in

addition reflect convexity and risk compensation, whether or not ψ, λ depend on x. The
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cross-sectional curve shape Y (τ, x)= B(τ)x only involves the parameters in B, so these are

parameters under the martingale measure. The market prices of risk under the physical

measure enter with the dynamics via φcr(x). In our empirical work, we focus on the case

without state dependence in ψ and λ, so Φcr = 0, i.e., market prices of risk enter θ, not

Φ.21

Inserting (26) and (48) in (46), with φcr(x)=Φθ, it follows that

ỹt+1,τ = B(τ)
(
Φθ+ψ′wt+1

)+υτ+εt+1,τ . (49)

The resulting model can be estimated with and without the no-arbitrage restriction υτ = 0

imposed. Thus, shifting the factor analysis from the level of yields to slope-adjusted yield

changes allows reducing the number of factors from k in (5) to d (note that ψ′ in (49) is

k×d, with k ≥ d), and testing the no-arbitrage condition.22

For the ANS-extended Vasicek model, using B, Φ, θ, and ψ from Proposition 2 in (49)

produces

ỹt+1,τ =
(
ψ2

2

a
+ψ2λ

)
B̃2(τ)− ψ2

2

a
B̃4(τ)+ψ2B̃2(τ)wt+1 +υτ+εt+1,τ , (50)

a single-factor representation with loadings restricted to ψ2B̃2(τ), and means in addition

to loadings (volatilities) times market price of risk involving restricted convexity.23 The

specification (50) does not involve the term φsa(x)=−Φsax associated with parametrized

slope adjustments, cf. (47), since the slope-adjusted yield changes ỹt+1,τ from (4) are

modeled, i.e., the current yield curve and the cross section of slope adjustments are taken

from the data. The estimated a is used to construct the remaining loadings B̃3(τ) not

present in (50), but needed in Theorem 1. Similarly, for the SLSC model, B is given by

(43), Φ by (44), θ by (45), and ψ by (40), so (49) is estimated with these specifications and

d = 3 factors in wt+1. We set b = 0.02 to avoid problems with diverging convexity and

non-stationary factor dynamics. For this value, the first loading on the 10-year yield,
21In the ANS-extended Vasicek and SLSC models, Φ in (34) and (44) represent Φsa in the general case,

also corresponding to Φ=Φsa +Φcr under the stated conditions, because the last term vanishes.
22From the discussion, with affine state dependence in ψ′ψ or ψ′λ, the term Φθ in (49) is expanded to

Φθ−Φcrxt, and estimation relies on the Kalman filter (extended, if ψ depends on x) rather than factor
analysis.

23In our empirical work, we use the exact discrete-time version of (50) (see Appendix F.2 for the derivation
in the third-stage filtering case).
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the longest in our data, is B̃1 (10)= 0.91, so the first factor loads nearly evenly over the

relevant range.

4.2. Filtering along the dynamically consistent curve family

The measurement equation in the third-stage filtering approach in the factor model case

is given by

y(t,τ)= B(τ)x(t)+ε(t,τ) , (51)

for the available maturities τ. The state transition equation is a discretized version of

(18). For dynamic consistency between the curve shape B(τ) and a suitable DTSM (λ,σ),

the coefficients (φ,ψ) in (18) are determined by (25)-(26).24 The resulting state space

model can be estimated by maximum likelihood based on the (extended) Kalman filter. In

case of affine state drift φ(x)=Φ(θ− x) (e.g., if (λ,σ) do not depend on x, or if (φ,ψ) satisfy

ATSM restrictions), a simple Euler discretization of the transition equation is

x(t+1)=Φθ+ (Ik −Φ)x(t)+ψ′w(t+1) , (52)

which allows running the linear Kalman filter.25

The state space model (B,φ,ψ) is a realization of the DTSM (λ,σ), with measurement

equation (51) resembling the factor model (5), but now with serially dependent x(t), which

is required for dynamic consistency. Nevertheless, Theorem 1 continues to apply, because

generalized duration matching removes all exposure to x(t), so there are no gains to

exploiting the dynamics to forecast x(t).26 The potential gain in hedging performance

stems from more appropriate model specification and thus improved estimation of the

parsimonious B.

In this third-stage approach, the shape B is imposed on the curve throughout (up to

24Without the no-arbitrage condition, (φ,ψ) instead satisfy (A.7.37) and (26). Outside the factor model
case, the measurement equation is y(t,τ)=Y (τ, x(t))+ε(t,τ), and (φ,ψ) satisfy (A.7.1) and (23) (or (22)-(23),
without the no-arbitrage condition).

25In our empirical work, we base the Kalman filter recursions on the exact discrete-time transition
equation (derived in Appendix F.2), using the Koopman, Shephard, and Doornik (1999) low storage
algorithm, with the updating step inserted in the prediction step to save on calculations, and modified to
the square-root case (see Appendix F.3).

26See also Appendix D.2 on this point.
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measurement error, cf. (51)), and the consistent (φ,ψ) are imposed on the state dynamics.

For comparison, in the first stage, the curve shape B is imposed, but not the dynamics

(φ,ψ). In the second stage, involving the switch from yields yt+1,τ to the slope-adjusted

yield changes ỹt+1,τ from (4), the state dynamics are exploited via (Φθ,ψ) in (49), and B is

imposed on the factor loadings, but not on the full yield curve, as the current (time t) yield

curve and slope adjustments on the left side of (49) are taken directly from the data. This

is in the spirit of the HJM approach of conditioning on the initial (current) yield curve.

The third-stage approach combines the first and second stages by jointly imposing the

curve shape and the consistent dynamics.27

In the ANS-extended Vasicek case, it follows from Proposition 2 that the RANS

loadings B̃2:4 suffice for dynamic consistency. Thus, the measurement equation (51) takes

the form

y(t,τ)= B̃2(τ)x2(t)+ B̃3(τ)x3(t)+ B̃4(τ)x4(t)+ε(t,τ) . (53)

While the second-stage model (50) includes B̃4(τ), to span convexity based on yield volatil-

ity proportional to B̃2(τ), the third-stage model (53) accommodates B̃3(τ), as well, in the

dynamically consistent curve shape. With φ(x) given by the last three coordinates of (34),

and ψ= (ψ2,0,0)′, the transition equation (52) is
x2(t+1)

x3(t+1)

x4(t+1)

=


ψ2

2
a +λψ2

0

−ψ2
2

a

+


1−a a 0

0 1−a 0

0 0 1−2a




x2(t)

x3(t)

x4(t)

+


ψ2w2(t+1)

0

0

 . (54)

If the first hitting time, TY , when the yield curve assumed the dynamically consistent

ANS shape and the associated values xY of the state variables at that time were all

known with certainty, they could be used to initialize the filter. Because they are in fact

uncertain, we use an uninformed prior on x(0), and allow a transition shock of small but

fixed size. Similarly, filtering along the SLSC curve family (43), which is dynamically

27Relative to the second-stage approach, the third stage restricts the current curve and the slope ad-
justments according to the dynamically consistent shape, cf. (25) and (A.7.1). Typically, the second
stage involves as many parameters as the third, because B(τ)(Φθ,ψ′) in (49) generically includes all the
parameters from (B,λ,σ) that enter (B,Φ,θ,ψ′), and this is the case in the models we implement.
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consistent with the arbitrage-free DTSM with volatility function (41), is carried out based

on the linear filter (51)-(52), with Φ, θ, and ψ from (44), (45), and (40), respectively, and

k = 7 state variables, of which four deterministic and d = 3 stochastic.

5. Data

We use data from the Federal Reserve Board’s (FED’s) database of constant maturity zero-

coupon yields on U.S. Treasury bills, notes, and bonds. The terms to maturity considered

are 0.25, 0.5, 1, 2, 3, 5, 7, and 10 years. A weekly frequency data set is constructed by

extracting Wednesday observations drawn from the FED’s daily database, rather than

using their weekly database, which consists of weekly averages of daily data. Our sample

period runs from the first week of 1983 through the last week of 2019, for a total of 1,930

observations in the time series dimension. Starting in 1983 avoids the FED money supply

targeting experiment from 1979 to 1982 (see Sanders and Unal (1988)).

Table 1 shows means and standard deviations of the weekly data on the continuously

compounded annualized yields corresponding to the eight maturities. The term structure

of interest rates is upward sloping on average, with means monotonically increasing from

3.71% to 5.48%. The term structure of volatilities or standard deviations exhibits a hump

shape, with a maximum of 3.10% at two years, and a low of 2.77% at ten years. Figure 1

presents a three-dimensional view of the evolution of yield curves through calendar time,

revealing upward sloping, downward sloping, and hump shapes.

Table 1: Summary statistics
Mean and standard deviation for each of the eight weekly constant maturity zero-coupon yield series from
January, 1983, through December, 2019.

3 mos. 6 mos. 12 mos. 2 yrs. 3 yrs. 5 yrs. 7 yrs. 10 yrs.

Mean (%) 3.71 3.87 4.04 4.39 4.61 4.98 5.27 5.48
Std. Dev. (%) 2.90 2.97 3.02 3.10 3.07 2.96 2.88 2.77

We consider a one-month hedging period, from month-end to month-end. The weekly

yield data are used to estimate model parameters, and the eight associated zero-coupon

bonds are used as hedging instruments on the last trading day of each month. As this is
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Figure 1: Yield curves

This figure provides a three-dimensional view of the weekly yield data from January, 1983, through
December, 2019, at maturities 0.25, 0.5, 1, 2, 3, 5, 7, and 10 years.

not necessarily a Wednesday, the daily files are used again to get the correct zero-coupon

bond prices when constructing the hedge portfolio.

As target asset for assessing hedging performance, we consider a portfolio consisting

of a long position in a five-year coupon bond and short positions in two-year and ten-year

coupon bonds. This specification with short positions in the long and short ends follows

Litterman and Scheinkman (1991).28 The monthly return series is constructed by drawing

information on prices and contractual terms from the CRSP Monthly Treasury files. On

the last trading day of each month, we select among all non-callable and non-flower bonds

the issues with maturities closest to two, five, and ten years.29 Portfolio weights (−1,3,−1)

are then assigned to construct the target asset. As our hedging portfolios are always

based on an estimation period of at least four years, the hedging period starts four years

later than the yield data, and our monthly target data span the period from January, 1987,

through December, 2019. Properties of the resulting T = 395 monthly target returns are

28We also considered a single (five-year) coupon bond target, as in Diebold, Ji, and Li (2006). Overall
conclusions were similar.

29Treasuries are non-convertible. Flower bonds were issued until 1965, with the last outstanding issues
maturing in 1998. Callable bonds and notes were issued until 1985, but many of these subsequently
repurchased by the Treasury and reissued as non-callable, although on a discretionary basis, without
sinking fund provision. We remove all flower and convertible issues and apply a liquidity requirement of
at least $10 million in par value publicly outstanding. Figure B.1 shows the evolution over time in the
resulting number of Treasuries we consider.
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shown in the first row of Table 2. The average return is 49bp, or 0.49%, and the standard

deviation 149bp.30

6. Empirical Results

We first present the results on empirical hedging performance. This is followed by a

discussion of statistical fit and test of the no-arbitrage condition.

6.1. Hedging Performance

Results appear in Table 2. Line 1 reports statistics for the unhedged target return. Each

subsequent line reports bias (mean hedging error), standard deviation, root mean squared

error (RMSE), and mean absolute error (MAE) for a given strategy. Following Chambers,

Carleton, and McEnally (1988), Diebold, Ji, and Li (2006), and others, we will mainly

focus on RMSE in the exposition.

The immunization performance of the traditional duration matching strategy is sum-

marized in line 2.31 It yields a bias (average return to hedged position) of 2.84bp. RMSE is

large relative to unhedged variation, more than one third, indicating that immunization

by simple duration matching is too simplistic.

All other strategies in Table 2 involve generalized duration matching based on esti-

mation of B and Ψ, cf. Theorem 1. Results are shown both for full-period estimation and

for an out-of-sample (OoS) experiment with rolling estimation over the four-year period

prior to forming the hedge. While full period calculations provide the artificial investor

with the benefit of hindsight, the OoS analysis mimics a feasible strategy, in line with

basic duration matching. Although the models involve constant parameters, updating

these is in the spirit of the HJM approach of conditioning on current information (see also

Buraschi and Corielli (2005)). Restricting the estimation window to four years is done in

order to reduce conditioning on obsolete information.

30This is the unhedged return. The column is labeled ‘Bias’ because average hedging errors are reported
in the remainder of the table. More details on the construction and properties of the target asset are
provided in Appendix B.

31Details on basic and generalized duration matching portfolio construction are given in Appendix C.
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Table 2: Hedging performance
The target is a portfolio of (2,5,10)-year coupon bonds in the proportions (−1,3,−1). Statistics in line 1
are for the unhedged target return, and in the remainder of the table for hedging errors from each of the
methods considered for construction of the hedge portfolio with value matching from Theorem 1. The
columns report the average (or bias), standard deviation, root mean squared error, and mean absolute error.
Results are in basis points (0.01%) per month. An S indicates that a given method provides a statistically
significant improvement over traditional duration matching at the 5% level, and MCS that a method is
included in the Model Confidence Set at 5% (only conducted for the rolling strategies).

Model Bias Std. dev. RMSE MAE

1 Target movement 49.20 149.44 157.33 122.63
2 Duration matching 2.84 65.90 65.96 48.72

3 Unrestricted 3-factor
Full period

-0.94 56.39 56.40 41.04

4 Unrestricted 3-factor
Rolling 4-year

-1.23 54.56 54.57
(S,-)

39.55
(S,-)

5 Nelson-Siegel
Full period

-1.34 57.07 57.08 41.36

6 Nelson-Siegel
Rolling 4-year

-0.79 58.63 58.63
(S,-)

41.93
(S,-)

7 Unrestricted 4-factor
Full period

-0.68 41.34 41.34 31.61

8 Unrestricted 4-factor
Rolling 4-year

-2.11 47.54 47.58
(S,-)

34.75
(S,-)

9 Augmented NS
Full period

-1.58 44.56 44.58 33.62

10 Augmented NS
Rolling 4-year

-2.93 39.39 39.50
(S,-)

28.21
(S,MCS)

11 Unrestricted 1-factor, ỹ
Full period

0.80 64.71 64.71 47.15

12 Unrestricted 1-factor, ỹ
Rolling 4-year

1.14 60.96 60.97
(S,-)

44.27
(S,-)

13 ANS-extended Vasicek, ỹ
Full period

-3.69 33.27 33.47 24.75

14 ANS-extended Vasicek, ỹ
Rolling 4-year

-4.77 36.80 37.11
(S,MCS)

27.95
(S,MSC)

15 ANS-extended Vasicek, filter
Full period

-3.26 66.49 66.57 48.84

16 ANS-extended Vasicek, filter
Rolling 4-year

-3.08 64.59 64.66 48.22

17 ANS-extended Vasicek, restricted
Full period

-3.49 62.84 62.94 46.02

18 ANS-extended Vasicek, restricted
Rolling 4-year

-2.88 67.46 67.52 51.00

19 Unrestricted 3-factor, ỹ
Full period

-2.43 55.10 55.16 39.10

20 Unrestricted 3-factor, ỹ
Rolling 4-year

-2.52 58.59 58.64
(S,-)

41.48
(S,-)

21 SLSC, ỹ
Full period

-4.61 34.07 34.38 24.78

22 SLSC, ỹ
Rolling 4-year

-4.58 34.00 34.31
(S,MCS)

24.66
(S,MCS)

23 SLSC, filter
Full period

-4.59 34.06 34.36 24.86

24 SLSC, filter
Rolling 4-year

-4.46 33.46 33.75
(S,MCS)

24.33
(S,MCS)

25 SLSC, restricted
Full period

-1.62 54.13 54.16 39.53

26 SLSC, restricted
Rolling 4-year

-1.06 55.60 55.61
(S,-)

41.08
(S,-)
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From the results in lines 3-4, generalized duration matching based on the unrestricted

three-factor model (5) offers only a modest gain, relative to basic duration matching. From

lines 5-6, the parsimony achieved by imposing the NS curve shape (15) on B comes at

the expense of deteriorating hedging performance, relative to the unrestricted case. This

suggests that the search for gains from parsimony should proceed on a principled basis,

requiring dynamic consistency of the curve shape imposed. Indeed, by Corollary 1, the NS

curve shape is dynamically inconsistent with all non-degenerate arbitrage-free DTSMs.

We exploit dynamic consistency in the three stages outlined in Section 4. Results from

the first stage appear in lines 7-10. Generalized duration matching using four factors

instead of three improves performance. Moreover, the results are broadly supportive of

the importance of dynamic consistency, as imposing the parsimonious ANS curve shape

(32) improves performance relative to NS and, at least in the feasible (rolling estimation)

case, also relative to the unrestricted four-factor factor model.

Results from the second stage (Section 4.1) appear in lines 11-14. First, yields y are

replaced by slope-adjusted yield changes ỹ from (4) in an unrestricted reduced (single-

factor) version of (5). Lines 11-12 show that performance deteriorates in this case.

However, imposing the ANS-extended Vasicek structure and the no-arbitrage condition,

leading to specification (50), generates the best performance so far, lines 13-14. Here,

dynamic consistency provides parsimony in terms of both parameters and number of

factors, and the second-stage approach dominates the first stage in this case.

In the third stage (Section 4.2), the dynamically consistent shape is imposed on

the current curve and the slope adjustments, as well, leading to the filter (53)-(54).32

Lines 15-16 show that hedging results deteriorate, to the level of basic duration matching,

indicating that the yield curve is not of ANS shape at the time of portfolio formation.

Restricting the curve shape further to the standard affine case (39) by freezing the

deterministic state variables at their long-run levels ¯̄θ = (0,−ψ2
2/2a2)′ does not alter this

conclusion, lines 17-18. One possibility is that the DTSM (ANS-extended Vasicek) is

correctly specified, but that the yield curve has not yet reached the dynamically consistent

32We use the exact discrete-time version, see Appendices F.2-F.3.
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shape (ANS), so results are better in the second stage (lines 13-14) than in the third

(lines 15-18). Another possibility is that ANS is too restrictive, hence calling for a more

flexible curve shape that is dynamically consistent with a more general DTSM.

For a more general specification, we turn to the new SLSC model from Section 3.3.

Results for three-factor models for slope-adjusted yield changes appear in lines 19-22.

Imposing the SLSC DTSM structure from (49), lines 21-22, improves performance relative

to the unrestricted three-factor model for ỹ, lines 19-20, thus mirroring the improvement

from imposing ANS-extended Vasicek in the one-factor case, lines 11-14. Results from

third stage filtering based on (51)-(52) (imposing the SLSC curve shape on the current

yield curve and slope adjustments, too) appear in lines 23-24. In contrast to the ANS-

extended Vasicek case, lines 13-16, performance in the third stage in the SLSC case,

lines 23-24, is at least as strong as in the second stage, lines 21-22. This is consistent

with the notion that the SLSC curve shape (43) from Theorem 2 better accommodates

the current yield curve, and hence the slope adjustments, compared to ANS from (32).

Indeed, for feasible (OoS rolling) estimations, the third stage SLSC model proves to be

the strongest performing model. Thus, the SLSC model with three stochastic factors

generates value relative to extended Vasicek with but one. Further, from lines 25-26,

performance deteriorates when freezing the deterministic state variables at their long-run

levels ¯̄θ, thus restricting the model to the standard affine case (here, AFNS). The latter

does not offer any improvement over the classical three-factor yield model, lines 3-4.

For the SLSC model, rolling estimation generates better variation measures than

full-period estimation in both the second and third stages. Since rolling involves an

OoS element, it is not given in advance that it should dominate full-period estimation in

these performance metrics. Thus, the results indicate the importance of conditioning on

non-obsolete information.

As a robustness check, we present in Appendix D.1 the hedging results when using

the FED yields to set the prices of the bonds entering the target assets, rather than using

the CRSP recorded prices directly (bid-ask midpoints plus accrued interest). While the

approach is not applicable in practice, it allows us to evaluate the hedging performance
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in the absence of frictions, microstructure noise, and other features present in the raw

CRSP prices. The results show that the performance of all models improves, compared to

that based on raw target returns in Table 2, with the largest improvement seen in the

SLSC models, which clearly dominate all other approaches. Also, for all second and third

stage models, the hedging biases present for the raw target returns are reduced when

using the cleaned returns.

As a further robustness check, presented in Appendix D.2, we consider again the CRSP

data for the target asset, but replace conditional hedging error variance minimization by

an RMSE criterion. In addition, we relax the generalized duration matching constraint.

This allows trading off hedging error bias and variance, as well as admitting some factor

exposure, if this reduces the criterion. From the results, both ANS-extended Vasicek

and SLSC specifications produce higher RMSE than the third stage SLSC filtering spec-

ification in Table 2, lines 23-24, even though the alternative strategies target RMSE,

rather than conditional hedging error variance. Thus, the evidence is that it pays off to

remove factor exposure, i.e., perform generalized duration matching, and target remaining

idiosyncratic variance, rather than trading this off against average hedging error. Parsi-

mony is again the likely reason. The strategies from Theorem 1 (used in Table 2) involve

only estimated B and Ψ, whereas those in the generalized case depend on parameters

from the factor dynamics, hence increasing exposure to estimation uncertainty.

Overall, the empirical results show that generalized as opposed to traditional duration

matching does not by itself secure a noteworthy improvement in immunization perfor-

mance. Improvements can be achieved through parsimonious restrictions according to a

parametrized yield curve shape, but this must be dynamically consistent with a suitable

DTSM. Based on the latter, strong hedges are obtained for both one- and three-factor

models, by allowing for an arbitrary initial curve. However, the best feasible OoS hedge

is obtained by imposing the SLSC curve shape on current yields, and the consistent

SLSC dynamics on the factors. If affine curve shape is imposed, hedging performance

deteriorates. This is evidence that the deterministic factors move through time and, hence,

the associated loading functions (B̃3:4(τ) and B̃4:7(τ) in the one- and three-factor cases,
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respectively) do not enter yield curves in fixed proportions over time.

6.2. Statistical comparison of hedging performance

For a statistical assessment of the improvements in performance, we construct a standard

t-statistic based on loss differentials, following Diebold and Mariano (1995) and Giacomini

and White (2006), with basic duration matching as benchmark. In addition, we implement

the Model Confidence Set (MCS) procedure of Hansen, Lunde, and Nason (2011) to

compare performance across all approaches considered. Given a significance level, α, the

MCS identifies the subset of approaches containing the best approaches with probability

1−α.33 The comparisons are conducted for the feasible (OoS) strategies, using α= 5%.

In Table 2, an S below a performance measure (RMSE or MAE) indicates that the

approach improves significantly over duration matching, and MCS that it is included

in the Model Confidence Set. The improvements in performance relative to duration

matching are statistically significant throughout, except for the ANS-extended Vasicek

third stage filtering approaches. The best approaches (the MCS) are the second-stage

specifications, both the ANS-extended Vasicek and SLSC based, along with the third-stage

SLSC specification. This is consistent with the notion that if the dynamically consistent

curve shape is imposed on the slope-adjustments, it must be sufficiently flexible.34

6.3. Statistical Fit

Here, we consider the fit of the various models behind the strategies in Table 2. Table 3

reports the estimated (full-period) idiosyncratic standard deviations
√
Ψi ·1000 for each

model, along with the maximized log-likelihood value, number of parameters, and stan-

dard information criteria, AIC and BIC.35 For comparison, results for simple one- and

two-factor versions of (5) are reported in lines 1-2. For the yield factor models (5) in

lines 1-6, besides the parameters in the variance-covariance structure Υ= BΣB′+Ψ (with

Σ= Ik in the unrestricted cases, lines 1-3 and 5), estimates of the means µ are required,

33More details on the t-test and the MCS procedure are provided in Appendix E.
34Based on the MAE criterion, the four-factor yield model with ANS loadings imposed is in the MCS, too.
35More details on estimation methods are provided in Appendix F.
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and these are given by the average yields from Table 1. In the remaining models, the

no-arbitrage condition is imposed on the means. The table shows that unexplained

variation is generally largest at the shortest and longest maturities. To avoid Heywood

cases (factors explaining more than total variation for a given maturity, see Appendix F.1),

a lower bound of 10−4
ϑ2

i is imposed on Ψi, for each maturity, in all models, with ϑ2
i the

total variance at maturity τi.36 The six months, three years, and seven years idiosyncratic

variances hit this lower bound in the three- and four-factor yield models, lines 3-6.

From Table 3, lines 2-3, the LR test of two against three factors in the unrestricted

yield factor model takes the value 2(75,873−71,351)= 9,044, for a p-value of 0.00 in the

asymptotic χ2-distribution on 37−31 = 6 degrees of freedom. This indicates that three

factors are required, which is consistent with the information criteria. From lines 3-4, the

NS restriction on the three-factor model is rejected on all criteria. From line 5, the

unrestricted four-factor model is preferred over the previous models. The ANS-restricted

version, line 6, is preferred over both NS, line 4, and the unrestricted three-factor model,

line 3. This is consistent with the hedging results in Table 2, lines 3-6 and 9-10. In

contrast, while the ANS-restricted factor model also provides a gain in OoS hedging

performance relative to the unrestricted four-factor model (Table 2, line 10 against 8), it

is statistically rejected in favor of the latter (Table 3, lines 5-6).37

The fact that economic and statistical criteria do not necessarily coincide is not

confined to the first-stage approach, i.e., imposing ANS on the yield factor model. In the

second stage (Section 4.1), while the unrestricted single-factor model for slope-adjusted

yield changes ỹt+1 is preferred over the parsimoniously restricted ANS-extended Vasicek

version (50) with factor wt+1 on statistical grounds (Table 3, lines 7-8), the restricted model

provides a gain in hedging performance (Table 2, lines 11-14). Line 12 in Table 3 shows

that the SLSC three-factor model for ỹ produces lower idiosyncratic standard deviations

and better information criteria than the ANS-extended Vasicek and unrestricted single-

factor models, lines 7-8, and the LR test rejects ANS-extended Vasicek in favor of SLSC

36For the yield models, ϑi are the standard deviations given in Table 1.
37Idiosyncratic standard deviations are slightly larger for the restricted models in lines 4 and 6 than for

the corresponding unrestricted models in lines 3 and 5, and smaller with four factors (lines 5-6) than with
three (lines 3-4), consistent with the LR tests.
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(line 8 against 12). Still, the discrepancy between economic and statistical criteria carries

over. The SLSC structure (line 12) is rejected in favor of the unrestricted three-factor

model for ỹ (line 11), but hedging performance is far stronger under the SLSC restrictions

(Table 2, lines 19-22). Thus, parametrizing loadings in accordance with the empirically

well established parsimonious level-slope-curvature pattern pays off in financial terms,

in spite of statistical rejection, provided dynamic consistency of the curve shape (ANS or

SLSC) is respected in the implementation.

The remaining results in Table 3 relate to third-stage filtering (Section 4.2). In the

ANS-extended Vasicek case, line 9, the idiosyncratic standard deviations are high, relative

to those in other models. Hedging performance deteriorates, too (Table 2, lines 15-16),

so second-stage results dominate third-stage results in terms of both statistical fit and

hedging performance. Imposing ATSM restrictions leads to further deterioration in

statistical terms (Table 3, line 10).

For the SLSC model, filtering (Table 3, line 13) generates idiosyncratic standard

deviations that are smaller than those for ANS-extended Vasicek filtering (line 9) and

comparable to those based on three- and four-factor analysis of yields (lines 3-6). However,

information criteria are far better, reinforcing the importance of the dynamics. The

LR test rejects the reduction to ANS-extended Vasicek (line 9 against 13), and hedging

performance is strongest in the SLSC case, too (Table 2, lines 23-24 against 15-16). Thus,

SLSC is preferred according to both economic and statistical criteria. Further, both fit and

hedging performance deteriorate when ATSM restrictions are imposed (Table 3, line 14;

Table 2, lines 25-26).

Estimates of the curve shape parameter a and market prices of risk λ for models

with parsimoniously parametrized loadings appear in Table 4. From line 1, the NS

estimate of a for the full period is 0.679, and quite precise, with a standard error of 0.005.

When inserted in B = B̃1:3(a) from (15), the estimated a generates the three NS loading

functions shown in the right exhibit of Figure F.1 in Appendix F.1. Although capturing a

level-slope-curvature pattern similar to that of the unrestricted three-factor model in the

left exhibit (up to scale) in a parsimonious fashion, the NS restrictions do not improve
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Table 4: Estimates of a and market prices of risk
This table shows full-period estimates of a and market prices of risk, with standard errors below estimates,
as well as time-series averages of four-year rolling estimates, for NS and generalizations. Models for
slope-adjusted yield changes are indicated with a ỹ, and the remaining models are for yield levels y.

Line Model a λ1 λ2 λ3

1 Nelson-Siegel
Full period

0.679
0.005

2 Nelson-Siegel
Rolling 4-year

0.838

3 Augmented NS
Full period

0.686
0.006

4 Augmented NS
Rolling 4-year

0.612

5 ANS-extended Vasicek, ỹ
Full period

-0.033
0.002

-0.623
0.165

6 ANS-extended Vasicek, ỹ
Rolling 4-year

-0.070 -0.780

7 ANS-extended Vasicek, filter
Full period

0.034
0.001

-0.073
0.002

8 ANS-extended Vasicek, filter
Rolling 4-year

0.214 -0.047

9 ANS-extended Vasicek, restr.
Full period

0.033
0.001

-0.070
0.002

10 ANS-extended Vasicek, restr.
Rolling 4-year

0.201 -0.029

11 SLSC, ỹ
Full period

0.773
0.015

-0.327
0.167

-0.369
0.167

-0.314
0.178

12 SLSC, ỹ
Rolling 4-year

0.737 -0.308 -0.331 -0.294

13 SLSC, filter
Full period

0.656
0.005

-0.410
0.162

-0.540
0.165

-0.205
0.159

14 SLSC, filter
Rolling 4-year

0.758 -0.373 -0.647 -0.007

15 SLSC, restricted
Full period

0.669
0.005

-0.389
0.158

-0.732
0.157

-0.151
0.156

16 SLSC, restricted
Rolling 4-year

0.791 -0.425 -0.761 -0.112

hedging performance (Table 2, lines 5-6), and are rejected statistically (Table 3, line 4).

This factor model approach to NS is an alternative to the cross-sectional regressions

of Diebold, Ji, and Li (2006), who fit the NS curve (14) each month by OLS, treating

the factors f t, j as regression coefficients, and fixing a throughout at a value 0.0609 to

position the maximum (or hump) in the third loading function at the 30 months maturity

around which the yield curve hump is commonly observed.38 Setting a at an externally

prespecified value implies that B is not estimated from data at all. Further, as Diebold,

38The value 0.0609 is for τ measured in months and corresponds to a = 0.731 in our case, with τ in annual
terms, i.e., outside the confidence band around our estimate of 0.679 at conventional levels. We find that
a = 0.731 generates a maximum at 29.4 months, whereas a maximum at 30 months would require a = 0.717
(or 0.0598 in monthly terms). At the empirical estimate, a = 0.679, the hump is at τ= 31.8 months.
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Ji, and Li (2006) do not minimize hedging error variance, w′T ΨT w, cf. (9), but instead

follow Ingersoll (1983) and minimize w′w, the sum of squared hedging weights, Ψ is not

needed, either, and the resulting hedge does not utilize any information from empirical

(regression or factor) analysis of the data.

From Table 4, line 2, rolling estimation produces an average a of 0.838. Figure G.1

(Appendix G) shows that there is considerable variation in estimated a over time. One

possibility is to consider NS with time-varying a, which is dynamically consistent with a

DTSM of the type in Corollary A.5.1 (Appendix A). However, by Corollary 1, NS curve

shape implies arbitrage opportunities, whether a is constant or time-varying.

Estimates of a from the first-stage approach to dynamic consistency, imposing ANS

curve shape on loadings, rather than NS, are shown in lines 3-4. The full-period ANS and

NS estimates are similar, and the rolling ANS estimate is closer to these than to rolling

NS, consistent with ANS being less misspecified than NS. The loading functions in the

unrestricted four-factor and ANS analyses are shown in Figure G.2 (Appendix G). The

fourth unrestricted loading has two small humps, whereas the fourth restricted loading

(the augmentation (29)) corresponds to a second (steeper) slope factor.

For the second-stage approach, results from (50) are reported in lines 5-6. Estimated

a in the ANS-extended Vasicek for ỹ is now very close to zero.39 The factor is associated

with the slope loading B̃2 (τ;a), but for a close to zero, it is nearly flat, so the stochastic

factor is essentially a level factor. The loadings in the unrestricted single-factor model

for ỹ exhibit an initial slope, then a flat structure for maturities three years and longer

(see Table G.1 in Appendix G). Thus, the discrepancy between economic and statistical

criteria, with the ANS restrictions formally rejected (Table 3, lines 7-8), but improving

hedging performance (Table 2, lines 11-14), is seen to be related to the importance of the

level factor in hedging. This explains why the discrepancy disappears in the SLSC model,

with both level and slope stochastic. Further, the estimated market price of risk λ in (50)

is negative, at −0.62 over the full period, corresponding to the negative relation between

39In the reported results, we relax the stationarity condition a > 0 to highlight the information about
the specification available in the data. The stationarity condition is satisfied in the SLSC model and in all
models for yields y.
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yields and bond prices, and significant, with a t-statistic of −3.78.

Results of third-stage filtering for the ANS-extended Vasicek model appear in lines 7-

10. Although estimates of a are between those from cross-sectional curve fitting or factor

analysis, lines 1-4, and those based on slope-adjusted yield changes, lines 5-6, consistent

with the notion that the Kalman filter combines cross-sectional and intertemporal infor-

mation, they remain small in magnitude, at 0.22 or less. In contrast, for the SLSC model,

estimates of a based on both slope-adjusted yields, lines 11-12, and filtering, lines 13-16,

are large in magnitude, at 0.65 or higher. The results confirm the need for three stochastic

factors. With only one included, it is fit to level in the second and third stages (a ≈ 0).

Figure 2 shows the evolution through time of the filtered stochastic factors. Level is

the smoothest, and curvature the most volatile, changing sign most frequently. Thus, the

NS interpretation of level, slope, and curvature as long-, short-, and medium-term factors

is replaced by a long-, medium-, and short-term understanding of the three.40

Correspondingly, from the upper exhibit of Figure 3, the rolling estimates of the

volatilities ψ of level and slope are similar period by period and relatively stable over

time, whereas the volatility of curvature is higher and more variable, with peaks around

2005 and 2011. Nevertheless, on average, curvature risk is unpriced, as seen from the last

column of Table 4. Slope gets the largest market price, λ2, and both level and slope are

significantly priced over the full period. Finally, the lower exhibit of Figure 3 shows that

the risk prices switch signs over time. In particular, medium-term or slope risk switches

from a regime of large negative prices before the financial crisis to one of predominantly

positive prices after the crisis.

Figure 4 offers a visualization of the decomposition of the fitted yield curve into its

separate stochastic and deterministic components, y(t,τ)= ys(t,τ)+ yd(t,τ), say, and the

evolution of this through calendar time in the rolling estimation case. The upper left

exhibit shows the stochastic portion, ys(t,τ)= B̃1:3(τ)x1:3(t), of the general SLSC model,

and the upper right exhibit the associated deterministic component, yd(t,τ)= B̃4:7(τ)x4:7(t).

The lower exhibits show the corresponding terms for the restricted (AFNS) version, where

40The correlation between slope and curvature is negligible, estimated at 0.0128 over the full period by
filtering, and 0.0124 in the slope-adjusted yield change analysis.
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Figure 2: SLSC factors filtered along dynamically consistent curve family
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This figure shows the time series evolution of fitted factors (state variables) from filtering along the
dynamically consistent curve family in the SLSC model, calculated using the full sample and the Kalman
smoother, E( x(t) | y1, . . . , yT ), with the level, slope, and curvature factor in the upper, middle, and lower
exhibit, respectively.

there is no factor dependence in the deterministic part, i.e., time-variation in yd(t,τ)= Ā(τ)

is solely due to changing parameter estimates. For example, a dip in the stochastic part

of the curve between 2009 and 2015 is countered by a raised Ā(τ) function. In the SLSC

model (top exhibits), the stochastic and deterministic components of the curve move more

freely, separately from each other, due to the presence of factors in yd(t,τ). The results

on statistical fit and hedging performance suggest that this added flexibility matters for

yield curves, and that this can be exploited by investors.

6.4. The No-Arbitrage Condition

The reported second- and third-stage results are obtained with the no-arbitrage condition

imposed. We also consider testing this condition. Results of second-stage estimation with

and without υτ = 0 imposed on (49) are shown in Table 5. The first two columns refer to
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Figure 3: Estimated volatilities and market prices of risk in SLSC model
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The upper exhibit shows the rolling estimates of the volatility parameters (ψ11,ψ22,ψ33) from filtering in
the SLSC model. The lower exhibit shows the rolling estimates of the market prices of risk (λ1,λ2,λ3). In
each exhibit, the parameter indexed by 1, 2, and 3 is represented by the solid, dashed, and dotted line,
respectively.

the ANS-extended Vasicek model. In the first column, the mean of ỹ, denoted µ̃, is

restricted to (ψ2
2/a+ψ2λ)B̃2(τ;a)− (ψ2

2/a)B̃4(τ;a), cf. (50). The second column leaves µ̃

free, hence introducing eight mean parameters in place of λ, so the difference in degrees

of freedom is seven.41 While a is similar in the two estimations, µ̃ is upward-sloping

when unrestricted, but nearly flat under no arbitrage, because a ≈ 0, and the condition

is rejected (the LR test takes the value 50.1, compared to a critical value of 14.1 at the

5% level in the χ2
7-distribution). This confirms the need for further specification searches,

and hence the SLSC approach.

The last two columns of Table 5 show results of estimation of the SLSC model with and

without the no-arbitrage condition imposed, implying µ̃= B̃1:7(τ)Φθ in the former case, cf.

(49). The two resulting µ̃ vectors are similar, i.e., the slope is now accommodated. The LR

test gets a p-value of 21% in the asymptotic χ2
5-distribution (the restriction introduces

three market prices of risk and drops eight parameters in µ̃). Thus, the test fails to reject

41Under the alternative, a is identified from the volatility structure, only, so this is a straight Vasicek
(1977) specification, without extension.
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Figure 4: Decomposition of fitted yield curves in the unrestricted and restricted SLSC model

This figure provides three-dimensional views of the stochastic, ys(t,τ), and deterministic parts, yd(t,τ),

from filtering along the dynamically consistent yield curve families, y(t,τ)= ys(t,τ)+ yd(t,τ), in the rolling

(unrestricted) SLSC model and the rolling restricted SLSC model, respectively. The stochastic part in the

SLSC model is given by ys(t,τ)= B̃1:3(τ)x1:3(t) (upper left exhibit), and the deterministic part is given by

yd(t,τ)= B̃4:7(τ)x4:7(t) (upper right exhibit). The stochastic part in the restricted SLSC model is given by

ys(t,τ)= B̃1:3(τ)x1:3(t) (lower left exhibit), and the deterministic part is given by yd(t,τ)= Ā(τ) (lower right

exhibit). The fitted factors used to compute ys(t,τ) and yd(t,τ) are the final fitted values, x(t)= x(T), from

each four-year rolling estimation window, [1,T].

at all conventional levels for the SLSC model.

7. Conclusion

We consider generalized duration matching, i.e., removal of factor exposure, as an alterna-

tive to traditional immunization. Optimal hedging weights depend on factor loadings and

idiosyncratic variances. However, the empirical results indicate that generalized duration

matching by itself does not generate a noteworthy improvement in hedging performance,

not even when imposing a flexible, parsimonious yield curve shape on loadings. Instead,

performance can be enhanced by exploiting dynamic consistency, thus preventing that

the hedging strategy relies on information that is in conflict with interest rate dynamics,

and hence returns.

Our first empirical approach is to restrict the loadings in a factor model for yields

50



Table 5: Test of no-arbitrage condition
This table reports results from estimation of the ANS-extended Vasicek and SLSC models for slope-
adjusted yield changes, with and without the no-arbitrage condition, υτ = 0 in (46), imposed. Reported
means µ̃ are in basis points, estimated freely in the unrestricted case, and as functions of the parameters
a, ψ, and λ under no arbitrage. The bottom portion of the table shows the value of the maximized log
likelihood function, number of parameters, information criteria, and the LR test of the restrictions implied
by the no-arbitrage condition.

ANS-extended Vasicek, ỹ Vasicek, ỹ SLSC, ỹ SLSC, ỹ
No arbitrage Unrestricted No arbitrage Unrestricted

a -0.033 -0.035 0.773 0.751
λ1 -0.327
λ2 -0.623 -0.369
λ3 -0.314

µ̃1 -1.070 -1.720 -1.754 -1.720
µ̃2 -1.072 -1.651 -1.757 -1.651
µ̃3 -1.077 -1.694 -1.728 -1.694
µ̃4 -1.087 -1.481 -1.603 -1.481
µ̃5 -1.097 -1.355 -1.457 -1.355
µ̃6 -1.116 -1.204 -1.210 -1.204
µ̃7 -1.134 -1.005 -1.039 -1.005
µ̃8 -1.159 -0.780 -0.870 -0.780

logL 90539 90564 95306 95309
# params. 11 18 15 20
AIC -181056 -181092 -190582 -190579
BIC -180972 -180954 -190467 -190426

LR 50.088 7.193
χ2

0.95 14.067 11.070
p-value 0.000 0.207

according to a parsimonious curve shape that is dynamically consistent with a suitable

dynamic term structure model. The second is to estimate the same restricted loadings in

a factor model for returns (or slope-adjusted yield changes), rather than yields, without

imposing that the yield curve satisfies a particular shape (e.g., affine, or Nelson-Siegel)

at all times. The third approach combines the first two. Thus, the restrictions from the

curve shape are imposed on both the cross section and the dynamics, leading to a filtering

approach for consecutive yield curves along the dynamically consistent curve family. In

our application, the second approach generates stronger hedging performance gains than

the first. At least as strong performance is achieved in the third approach by adopting a

sufficiently rich dynamic term structure model, in particular, the new SLSC model, such

that the dynamically consistent curve shape is flexible enough to capture the current yield

curve and associated slope adjustments. This indicates that the yield curve is dynamically
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consistent with the stochastic process driving it. The SLSC model generates the strongest

hedging performance of all specifications considered, and passes the test of absence of

arbitrage opportunities. The results show the importance for practical immunization

purposes of an approach that is both dynamically consistent and parsimonious, yet

sufficiently general to accommodate the level, slope, and curvature structure of the

market. On the other hand, performance deteriorates when the restrictions reducing the

general specifications to standard affine form are imposed, or when trading off bias and

variance and admitting factor exposure.

Our work paves the way to a number of natural future extensions. One is state-

dependent market prices of risk. In this case, our second-stage factor analysis of the slope-

adjusted yield changes is replaced by a Kalman filter approach, following Christensen

and van der Wel (2019). Second, some of the driving latent processes can be replaced

by observable macro series, as in the latter study, but now imposing restrictions on

loadings, for parsimony and dynamic consistency. A further generalization would be to

allow for state-dependence in the volatilities in the transition equation, hence requiring

an extended filter in both the second and third stages. Our theory covers these cases.

Far from mundane, the traditional topic of fixed income immunization has proved

related to advanced geometry. It is somewhat eerie that Nelson and Siegel without any

particular justification wrote down a curve shape including some of the essential features

required for consistency with dynamic term structure models. Thus, the same coefficient

−a on maturity was used in both exponents in the proposed functional form. Without

this common coefficient restriction, there would be no hope for dynamic consistency with

the mean-reverting homoskedastic model. With the restriction, dynamic consistency is

achieved by adding one more term to the curve shape, with double coefficient −2a in the

exponent. This corresponds to the loading on a new deterministic state variable. The

approach is general, and extends to models with multiple deterministic and stochastic

state variables. The evidence indicates that the loadings on deterministic state variables

do not enter yield curves in fixed proportions over time, hence reinforcing the value of the

dynamic consistency approach.
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A. Proofs

This Appendix provides the proofs of propositions, theorems, and related results in the

paper.

A.1. Proof of (3)-(4) as an exact relation

The log excess return is given by

r t+1,τ− yt,1 =−τ ỹt+1,τ ,

with ỹt+1,τ the slope-adjusted yield change from (4).

Proof of (3).

r t+1,τ− yt,1 = log pt+1,τ− log pt,τ+1 − yt,1

=−τyt+1,τ+ (τ+1)yt,τ+1 − yt,1

=−τ(
yt+1,τ− yt,τ

)−τyt,τ+ (τ+1)yt,τ+1 − yt,1

=−τ∆yt+1,τ+τ
(
yt,τ+1 − yt,τ

)+ yt,τ+1 − yt,1

=−τ
(
∆yt+1,τ−

yt,τ+1 − yt,1

τ
− (

yt,τ+1 − yt,τ
))

=−τ ỹt+1,τ ,

which is (3).

A.2. Proof of Theorem 1

Proof of Theorem 1. By (9) and (10), under generalized duration matching, the optimal

portfolio solves

min
w

w′T ΨT w s.t. w′T B = (τb)∗ . (A.2.1)

This is equivalent to the problem (A.2.2) in Lemma A.2.1 below, with A = T ΨT , g = 0,

D = B′T , and c = (τb)′∗. Further, in the Lemma, wu = A−1 g = 0 because g = 0. Thus, by

(A.2.3), the solution to (A.2.1) is

w̃ = (T ΨT )−1T B
(
B′T (T ΨT )−1T B

)−1 (τb)′∗ = T −1
Ψ

−1B
(
B′Ψ−1B

)−1 (τb)′∗ ,
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which is (11) in the Theorem. When the value matching constraint w′ι= 1 is added to the

minimization problem (A.2.1), the corrected weights are found from (A.2.4) in Lemma

A.2.1,

w∗ = w̃+ (
1− w̃′ι

) Λι
ι′Λι

,

with

Λ= (T ΨT )−1− (T ΨT )−1T B
(
B′T (T ΨT )−1T B

)−1B′T (T ΨT )−1

= T −1(
Ψ

−1−Ψ−1B
(
B′Ψ−1B

)−1B′Ψ−1)T −1 ,

thus confirming (12).

Lemma A.2.1. For a symmetric, positive definite matrix A, and a conformable vector g,

let wu = A−1 g be the solution to the unconstrained problem minw (1/2)w′Aw−w′g. If D

has linearly independent rows, then the solution to the constrained problem

min
w

1
2

w′Aw−w′g s.t. Dw = c (A.2.2)

is given by

wc = wu + A−1D′ (DA−1D′)−1 (c−Dwu) . (A.2.3)

When further adding the scaling constraint w′ι= 1 to the problem (A.2.2), then the solution

is

w∗ = wc +
(
1−w′

cι
) Λι
ι′Λι

, (A.2.4)

with Λ= A−1− A−1D′ (DA−1D′)−1DA−1.

Proof of Lemma A.2.1. The Lagrangian for (A.2.2) is

L= 1
2

w′Aw−w′g−ζ′ (Dw− c) ,

where ζ contains the Lagrange multipliers. The first order conditions are Awc−g−D′ζ= 0,

such that

wc = A−1(g+D′ζ
)= wu + A−1D′ζ . (A.2.5)

Substituting wc for w in the constraint Dw = c yields Dwu+DA−1D′ζ= c, so ζ= (
DA−1D′)−1
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(c−Dwu). Substitution in (A.2.5) gives the solution

wc = wu + A−1D′ (DA−1D′)−1 (c−Dwu) , (A.2.6)

which is (A.2.3). When the constraint w′ι= 1 is added to (A.2.2), the new solution can be

found by substituting (D′, ι)′ for D and (c′,1)′ for c in the solution (A.2.6), yielding

w∗ = wu + A−1
(

D′ ι

) DA−1D′ DA−1
ι

ι′A−1D′ ι′A−1
ι

−1  c−Dwu

1− ι′wu

 . (A.2.7)

By the formula for the inverse of a partitioned matrix,

S−1 =
 DA−1D′ DA−1

ι

ι′A−1D′ ι′A−1
ι

−1

=
 (

DA−1D′)−1+Fιι′F ′/ι′Λι −Fι/ι′Λι

−ι′F ′/ι′Λι 1/ι′Λι


for F = (

DA−1D′)−1DA−1, where the Schur complement of DA−1D′ in S is ι′A−1
ι− ι′A−1D′(

DA−1D′)−1DA−1
ι= ι′Λι. Using that wc −wu = F ′ (c−Dwu), we get

S−1

 c−Dwu

1− ι′wu

=
 (

DA−1D′)−1 (c−Dwu)+Fιι′ (wc −wu) /ι′Λι−Fι
(
1− ι′wu

)
/ι′Λι

−ι′ (wc −wu) /ι′Λι+ (
1− ι′wu

)
/ι′Λι

 .

Multiplication from the left by
(

A−1D′ A−1
ι

)
produces the last term in (A.2.7), such that

w∗ = wu +F ′ (c−Dwu)+ (
A−1D′F − A−1)

ιι′ (wc −wu) /ι′Λι

+ (
A−1− A−1D′F

)
ι
(
1− ι′wu

)
/ι′Λι .

Substituting in Λ= A−1− A−1D′F, the solution is obtained,

w∗ = wu + (wc −wu)− Λι

ι′Λι
ι′ (wc −wu)+ Λι

ι′Λι
(
1− ι′wu

)
= wc + Λι

ι′Λι
(
1− ι′wc

)
,

which is (A.2.4).

A.3. Interpolation and hedging for general payment streams

First, consider the case that the claim to be hedged is a future payment τ∗ periods hence,

and no zero-coupon bond with term to maturity τ∗ (the ideal hedging instrument) is

available. The factor loadings b∗ (a 1×k vector) of the target claim (precisely, of the yield

to the missing ideal hedge) may be obtained by interpolation between the maturities of
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the hedging instruments,

b∗ = (τi+1 −τ∗)bi + (τ∗−τi)bi+1

τi+1 −τi
= s(τ∗)B , (A.3.1)

with τi < τ∗ < τi+1, i.e., s(τ∗) is 1×m, selecting and weighting the appropriate loadings

corresponding to maturities adjacent to τ∗. If the future payment occurs before the

shortest maturity, τ∗ < τ1, we set b∗ = b1, the loadings for the shortest instrument.

Similarly, if τm < τ∗, we set b∗ = bm (other extrapolation schemes could be used). Target

generalized durations are now set to (τb)∗ = τ∗b∗.

Suppose next that the target to be hedged at time t is a stream of payments ch at

future dates τh periods hence, h = 1, . . . ,H. Then the value of the claim is v∗ =∑H
h=1 pt,τh ch,

with pt,τ = exp(−τyt,τ) the discount function, obtained by interpolation between observed

yields, yt,τ = s(τ)yt. By Theorem 1, payment ch is hedged by allocating the amount

pt,τh ch across the m hedging instruments in the proportions indicated by (11), i.e., w̃h =
T −1

Ψ−1B
(
B′Ψ−1B

)−1
τhb′

h, with the k-vector of loadings bh obtained by interpolation

as in (A.3.1), bh = s(τh)B. The overall strategy is to allocate the amount v∗ across the

instruments according to w̃ =∑H
h=1 pt,τh chw̃h/v∗. This is equivalent to applying the rule

(11) directly to the target payment stream, assessing its generalized duration vector as

(τb)∗ =
H∑

h=1

pt,τh ch

v∗
τhbh =

H∑
h=1

v∗hτhbh, (A.3.2)

the value-weighted average of the generalized duration vectors τhbh of the individual

payments, each of dimension 1×k, with value weights v∗h = pt,τh ch/v∗. This is a portfolio-

of-portfolios argument. Thus, Theorem 1 applies directly to general target payment

streams. If value matching is desired, (12) is applied to w̃.

Finally, the expression (A.3.2) for the generalized duration vector of a payment stream

facilitates not only the hedging of such a stream, but also the use of streams as hedging

instruments. This includes hedging with coupon bonds. If there are M coupon-bearing

hedging instruments, we use expression (A.3.2) to calculate the generalized duration

vectors (τb)∗ and (τb)ℓ, ℓ = 1, . . . , M of both the target and each of these instrument
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streams. Thus,

(τb)ℓ =
H∑

h=1
vℓhτhbh =

H∑
h=1

vℓhτhs(τh)B =βℓS(τ)B , (A.3.3)

where vℓh contains the value weights for instrument ℓ, S(τ) is H ×m with typical row

s(τh), and the vector βℓ = {vℓhτh}h of value weights times maturities is 1×H. Suppose

the preceding yield factor analysis for estimation of B and Ψ is still applied to a balanced

panel of m zero-coupon bonds. The main difference is that the hedging instruments are

now different, and may vary from period to period as bonds age, mature, etc. Thus, the

relevant M×k matrix of generalized durations Ξ has typical row (τb)ℓ from (A.3.3). This

Ξ is the matrix that specializes to T B in the zero-coupon instrument case. Further, from

the construction (see (6)), the M × M idiosyncratic (non-factor related) error variance

matrix for the coupon bond returns is Θ = ΠΨΠ′, where Π is M ×m with typical row

βℓS(τ). With B and Ψ estimated in the zero-coupon yield factor analysis, applied to data

from the preceding periods, and all other required variables given by contractual terms

and interpolation, hedging is based on a direct generalization of Theorem 1. The hedging

portfolio for general instruments is given by

w̃ =Θ−1
Ξ

(
Ξ′Θ−1

Ξ
)−1 (τb)′∗ .

Again, (12) is used to obtain value matching (full investment), now with

Λ=Θ−1−Θ−1
Ξ

(
Ξ′Θ−1

Ξ
)−1
Ξ′Θ−1 .

In case of more hedging instruments than zero-coupon bonds, M > m, Θ−1 is understood

as a (Moore-Penrose) generalized inverse.

A.4. The NS yield curve representation

The NS yield curve parametrization takes the form (14), i.e., the loading functions B̃ j(τ),

j = 1,2,3, are those given in (15). Throughout, we focus on the case a > 0, since (15) is

undefined for a = 0, and for a < 0 diverges for large maturities. By direct differentiation,

we have the following results.

Lemma A.4.1. For a,τ> 0, the slopes of the NS loading functions (15) in the maturity
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direction are

∂

∂τ
B̃1(τ)= 0 , (A.4.1)

∂

∂τ
B̃2(τ)=−1

τ
B̃3(τ) , (A.4.2)

∂

∂τ
B̃3(τ)=−1

τ
B̃3(τ)+ae−aτ . (A.4.3)

It is noted that the slope (A.4.3) of the third loading function is unambiguously greater

than that of the second, in (A.4.2).

The loading functions B̃ j(τ) are associated with the fixed term yield parametrization

of the term structure, y(t,τ). Alternative parametrizations include those by the fixed

maturity date spot yields s(t,T), with T the maturity date, the instantaneous forward

rates f (t,T), or the fixed term to maturity forward rates F(t,τ)= f (t, t+τ). The relations

between these follow from writing the price at t of the zero-coupon bond maturing at T > t

as

p(t,T)= e−(T−t) y(t,T−t) = e−(T−t) s(t,T) = e−
∫ T

t f (t,u)du = e−
∫ T−t

0 F(t,v)dv . (A.4.4)

In the latter parametrization, by fixed term forward rates, the NS curve is the well known

F(t,τ)= f t,1 + f t,2e−aτ+ f t,3aτe−aτ . (A.4.5)

It is evident that f t,1, f t,2, and f t,3 are level, slope, and curvature factors in this parametriza-

tion, since the respective loadings are constant, exponentially declining for a > 0, and

hump shaped, i.e., the linear component dominates the third loading function for short

maturities τ, and the exponential for long. It is less obvious that f t, j are level, slope, and

curvature factors in the yield parametrization (14), too. To be sure, we first clarify that

the representations are equivalent.

Corollary A.4.1. The NS yield curve (14) and forward rate curve (A.4.5) are equivalent

representations of the term structure.

Proof of Corollary A.4.1 . By (A.4.4), with term to maturity τ= T−t, we have τy(t,τ)=∫ τ
0 F(t,v)dv. Differentiation with respect to τ produces

F(t,τ)= y(t,τ)+τ∂y(t,τ)
∂τ

. (A.4.6)
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In the NS case, inserting y(t,τ)= B̃1:3(τ) f t,

F(t,τ)=
(
B̃1:3(τ)+τ∂B̃1:3(τ)

∂τ

)
f t . (A.4.7)

The right side is evaluated separately for each of the three loading functions B̃1:3(τ) from

(15). For the second, B̃2(τ), using (A.4.2), the component multiplying f t,2 on the right side

of (A.4.7) is

B̃2(τ)+τ
(
−1
τ

B̃3(τ)
)
= B̃2(τ)− B̃3(τ)= e−aτ ,

confirming that the second loading function in the (fixed term) yield parametrization,

B̃2(τ), transforms to the second loading in the (fixed term) forward rate parametrization

(A.4.5). Similarly, for B̃3(τ), and using (A.4.3),

B̃3(τ)+τ
(
−1
τ

B̃3(τ)+ae−aτ
)
= aτe−aτ , (A.4.8)

i.e., the third loading function in the yield and forward rate parametrizations correspond,

too. Finally, the first (level) loading is flat, cf. (A.4.1), hence common.

The qualitative interpretation of the factors in the NS yield parametrization in terms of

level, slope, and curvature corresponds to that in the equivalent forward rate represen-

tation, as we show in the next corollary, where we further collect some results from the

analysis.

Corollary A.4.2. For a,τ> 0, the factors f t,1, f t,2, and f t,3 in the NS yield curve (14) are

level, slope, and curvature factors, i.e., the respective loading functions are flat, downward

sloping, and hump shaped. All three loading functions are positive. The third loading

function is smaller than the second, but has greater slope.

Proof of Corollary A.4.2 . The first is obvious, f t,1 is a level factor, since the associated

loading function is flat, cf. (A.4.1). Next, write the third loading function as

B̃3(τ)= 1−e−aτ

aτ
−e−aτ = 1− (1+aτ)e−aτ

aτ
. (A.4.9)

Recall that the exponential function x → ex is strictly convex, so its graph lies above its

tangent at x = 0, given by the first order Taylor approximation, which is 1+ x. Thus,

ex > 1+ x for x > 0, so (1+ x)e−x < 1. Using this with x = aτ in (A.4.9) shows that B̃3(τ)> 0.
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From (14), B̃2(τ)= B̃3(τ)+e−aτ > B̃3(τ)> 0, so all three loading functions are positive. From

(A.4.2), since B̃3(τ) > 0, B̃2(τ) is downward sloping, so f t,2 is a slope factor. Comparing

(A.4.2) and (A.4.3), the slope of B̃3(τ) exceeds that of B̃2(τ) by ae−aτ > 0. It remains to

show that f t,3 is a curvature factor. Use (A.4.3) and (A.4.9) to write the derivative of the

third loading function as

∂

∂τ
B̃3(τ)=−1

τ

(
1− (1+aτ)e−aτ

aτ

)
+ae−aτ = (1+aτ+a2τ2)e−aτ−1

aτ2 . (A.4.10)

Signing this involves comparing eaτ to 1+aτ+a2τ2, rather than to 1+aτ, as in (A.4.9),

so convexity no longer suffices. For large τ, the exponential does dominate, so (A.4.10)

is negative. On the other hand, for τ > 0 sufficiently near 0, the quadratic dominates,

and (A.4.10) is strictly positive. This is seen by applying l’Hôpital’s rule twice to (A.4.10),

producing a ratio a/2> 0 at τ= 0. Thus, B̃3(τ) has an interior maximum, or a hump.

By the corollary, f t,1 is a level factor, and changes in this induces parallel shifts in the NS

yield curve. Movement in f t,2 changes the slope, and f t,3 governs curvature, just as in the

forward rate parametrization.

A.5. Proofs of Proposition 1, Corollary A.5.1, and (24)

Proof of Proposition 1. Under the stated assumptions, dynamic consistency implies

that if the evolution of y(t,τ) is governed by (α,σ), as in (16), then y(t,τ)=Y (τ, x(t)), for

t ≥ TY , with x(t) governed by (18), and the latter has a strong solution. Applying Itô’s

lemma to y(t,τ)=Y (τ, x(t)) produces (22)-(23). Conversely, given φ, ψ such that (22)-(23)

hold, and (18) has a strong solution, consider y(t,τ) governed by (α,σ), as in (16), for

t ≥ TY . By (22), (23) and (18), y(t,τ) is represented in the form Y (τ, x(t)).

Corollary A.5.1. Let φ(x(t),a(t)), a 3×1 vector, φ4(x(t),a(t)), a scalar, and ψ(x(t),a(t)), a

d×3 matrix, rank(ψ)= d = dim(W(t)), be such that (18) along with da(t)=φ4(x(t),a(t))dt

has a solution (x(t),a(t)), but otherwise arbitrary. Then the NS curve shape (19) is dynami-
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cally consistent with the DTSM (16) with

α(τ, x(t),a(t))=φ4(x(t),a(t))
[
τe−a(t)τx3(t)− 1

a(t)
B̃3(τ,a(t)) (x2(t)+ x3(t))

]
+ B̃(τ,a(t))φ(x(t),a(t)) , (A.5.1)

σ(τ, x(t),a(t))′ = B̃(τ,a(t))ψ(x(t),a(t)) .

The corollary provides a non-trivial example of a DTSM (α,σ) that generates NS curves.

In the special case φ4 = 0 and φ, ψ constant, the discrete time version is the DNS model

considered by Diebold and Li (2006), who emphasize the constant a(t)= a. The model in

Corollary A.5.1 is more general, and for non-zero φ4, the coefficient a(t) in the exponent

in NS is not constant. Thus, this is not a factor model.

Proof of Corollary A.5.1. For the coefficients φ, ψ in Proposition 1, consider those from

the corollary, namely, (φ′,φ4)′ and (ψ,0), appending a fourth column of zeroes to the latter.

In this case, the trace term vanishes in (22), since nonlinearity of Y (τ, x) only enters via

the locally deterministic a(t), not xi, i = 1,2,3. Inserting (20)-(21) for ∂Y /∂x′ in (22)-(23)

produces the drift and volatility in (A.5.1). The result follows from Proposition 1.

Proof of (24). Writing the price of the zero-coupon bond trading at t and maturing at T

as p(t,T)=G(t, y(t,T−t)), with G(t, y)= exp(−(T−t)y), we have ∂G/∂t = yp, ∂G/∂y=−(T−
t)p, and ∂2G/∂y2 = (T − t)2 p. By the chain rule, dG(t, y(t,T − t))/dt = ∂G/∂t−∂G/∂y ·∂y/∂τ,

with τ= T − t. Combining, we have dG(t, y(t,T − t))/dt = yp+τp∂y/∂τ. By Itô’s lemma,

dp(t,T)=
(
y(t,τ)+τ∂y

∂τ
(t,τ)−τα(t,τ)+ τ2

2
σ(t,τ)′σ(t,τ)

)
p(t,T)dt−τp(t,T)σ(t,τ)′dWt

= p(t,T)αp(t,T)dt+ p(t,T)σp(t,T)′dWt , (A.5.2)

where αp(t,T) and σp(t,T) are the expected return and return volatility of the bond. By

no arbitrage, we have

αp(t,T)= y(t,0)+σp(t,T)′λt , (A.5.3)

for suitable market prices of risk λt. Inserting the expressions for αp(t,T) and σp(t,T)

from (A.5.2) in (A.5.3) and solving, the no-arbitrage condition on the yield drift is

α(t,τ)= 1
τ

[
y (t,τ)− y (t,0)

]+ ∂y
∂τ

(t,τ)+ τ

2
σ (t,τ)′σ (t,τ)+σ (t,τ)′λt . (A.5.4)
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For y(t,τ)=Y (τ, x) and λt =λ(x), this is (24).

A.6. Fixed term to maturity yields

We verify the claims in footnote 12 in the main text, namely, that (a) the yield spread

enters (24) because we consider yields, as opposed to forward rates (as in HJM), (b) for

the same reason, convexity in (24) replaces the term involving an integral in HJM, (c) the

local slope enters (24) because our fixed term to maturity analysis avoids the bond aging

effect, and (d) our no-arbitrage condition (24) is consistent with that in HJM, with risk

compensation appearing under the physical measure. To this end, we derive the relations

between drifts and volatilities of fixed term to maturity yields, y(t,τ), fixed maturity date

spot yields, s(t,T), and instantaneous forward rates, f (t,T). In the main text, we consider

an HJM framework for the fixed term to maturity yields. Available panel data sets are of

the fixed term to maturity type. Equation (16) is restated as

dy (t,τ)=αy (t,τ) dt+σy (t,τ)′ dWt , (A.6.1)

with subscript y on the drift and volatility functions highlighting that these are for the

fixed term to maturity yield specification.

From (A.4.4), we have (T − t)y(t,T − t) = (T − t)s(t,T) = ∫ T
t f (t,u)du. Differentiating

with respect to T, we have in analogy with (A.4.6) that

f (t,T)= y(t,T − t)+ (T − t)
∂y
∂τ

(t,T − t)= s(t,T)+ (T − t)
∂s
∂T

(t,T) . (A.6.2)

The analysis in HJM is cast in terms of forward rates,

d f (t,T)=α f (t,T) dt+σ f (t,T)′ dWt . (A.6.3)

Clearly, αy and σy in (A.6.1) differ from α f and σ f in (A.6.3), both because the former

coefficients are for yields, as opposed to forward rates, and because we consider fixed

terms to maturity τ in (A.6.1), but fixed maturity dates T in (A.6.3), i.e., T − t shrinks as

t increases in the latter case. The first of these two differences arises for fixed maturity

date spot yields, too. To isolate this effect, use (A.4.4) to write

s(t,T)= 1
T − t

∫ T

t
f (t,u)du . (A.6.4)
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By letting T ↓ t, we have s(t, t)= f (t, t), the short spot and forward rates coincide. Since t

enters in three places on the right side of (A.6.4), there are three terms in the stochastic

differential. Using Leibniz’ rule for the second term, we get

ds(t,T)= 1
(T − t)2

∫ T

t
f (t,u)dudt− 1

T − t
f (t, t)dt+ 1

T − t

∫ T

t
d f (t,u)du

= 1
T − t

(s(t,T)− s(t, t)) dt+ 1
T − t

∫ T

t
α f (t,u)dudt+ 1

T − t

∫ T

t
σ f (t,u)dudWt ,

where the second equality follows from (A.6.4), (A.6.3), s(t, t)= f (t, t), and Fubini. Thus,

in the representation

ds (t,T)=αs (t,T) dt+σs (t,T)′ dWt ,

the spot and forward drifts and volatilities are related as

αs(t,T)= s(t,T)− s(t, t)
T − t

+ 1
T − t

∫ T

t
α f (t,u)du ,

σs(t,T)= 1
T − t

∫ T

t
σ f (t,u)du .

(A.6.5)

By (A.6.4), moving from forward rates to spot yields clearly involves an integration, and

by (A.6.5), the drift is in addition adjusted for the average slope, or yield spread. This

verifies (a).

For fixed term yields y(t,τ), there is an additional adjustment. To see this, use (A.4.4)

for fixed term τ= T − t to write

y(t,τ)= 1
τ

∫ t+τ

t
f (t,u)du . (A.6.6)

Again, as in (A.6.4), t enters three times on the right side of (A.6.6). Differentiating first

in the upper limit of the integral, then the lower, and then the integrand, we have

dy(t,τ)= 1
τ

f (t, t+τ)dt− 1
τ

f (t, t)dt+ 1
τ

∫ t+τ

t
d f (t,u)du

= 1
τ

(
y(t,τ)+τ ∂y

∂τ
(t,τ)

)
dt− 1

τ
y(t,0)dt+ 1

τ

∫ t+τ

t
d f (t,u)du

= 1
τ

(y(t,τ)− y(t,0)) dt+ ∂y
∂τ

(t,τ)dt+ 1
τ

∫ t+τ

t
α f (t,u)dudt+ 1

τ

∫ t+τ

t
σ f (t,u)dudWt ,

where the second equality follows from (A.6.2). Thus, the fixed term yield and forward

12



drifts and volatilities are related as

αy(t,τ)= 1
τ

(y(t,τ)− y(t,0))+ ∂y
∂τ

(t,τ)+ 1
τ

∫ t+τ

t
α f (t,u)du ,

σy(t,τ)= 1
τ

∫ t+τ

t
σ f (t,u)du .

(A.6.7)

In addition to the adjustment for the average slope or yield spread, shared with that

for fixed maturity date yields in (A.6.5), the move to fixed term yields involves a further

adjustment in the drift, by the local slope of the yield curve, ∂y/∂τ. The reason that this is

not present in (A.6.5) is the bond aging effect noted by Litterman and Scheinkman (1991),

i.e., as t increases, the bond p(t,T) becomes shorter (it ages). Hence, so does s(t,T), but

not y(t,τ) in the fixed term to maturity panel. This verifies (c).

Next, we show that the no-arbitrage yield drift condition (24) is consistent with that

given in HJM for forward rates under the risk-neutral measure. Writing α(t,τ)=αy(t,τ),

σ(t,τ)=σy(t,τ) in the no-arbitrage condition (A.5.4) and comparing with (A.6.7), we have

1
T − t

∫ T

t
α f (t,u)du = τ

2
σy (t,τ)′σy (t,τ)+σy (t,τ)′λt , (A.6.8)

with τ= T − t. Under the risk-neutral measure, λt = 0. In this case, isolating the HJM

forward rate drift from (A.6.8),

α f (t,T)= d
dT

∫ T

t
α f (t,u)du = d

dT

(
(T − t)2

2
σy (t,T − t)′σy (t,T − t)

)
= (T − t)σy (t,T − t)′σy (t,T − t)+ (T − t)2σy (t,T − t)′

d
dT

σy (t,T − t)

= (T − t)σy (t,T − t)′σy (t,T − t)

+ (T − t)2σy (t,T − t)′
d

dT

(
1

T − t

∫ T

t
σ f (t,u)du

)
= (T − t)σy (t,T − t)′σy (t,T − t)

+ (T − t)2σy (t,T − t)′
(
− 1

(T − t)2

∫ T

t
σ f (t,u)du+ 1

T − t
σ f (t,T)

)
= (T − t)σy (t,T − t)′σy (t,T − t)

+ (T − t)2σy (t,T − t)′
(
− 1

T − t
σy (t,T − t)+ 1

T − t
σ f (t,T)

)
= (T − t)2σy (t,T − t)′

(
1

T − t
σ f (t,T)

)
= (T − t)

∫ T

t
σ f (t,u)′du

(
1

T − t
σ f (t,T)

)

13



=σ f (t,T)′
∫ T

t
σ f (t,u)du , (A.6.9)

using (A.6.7) in the third, fifth, and seventh equality. This reproduces the HJM no-

arbitrage forward rate drift condition under the risk-neutral measure, cf. Footnote 12,

which is therefore consistent with the no-arbitrage yield drift condition (A.5.4), and hence

(24). This verifies (d).

Finally, as noted in relation to (A.6.4), moving from forward rates to yields involves an

integration, and this is why both yield drifts (fixed maturity date, (A.6.5), and fixed term,

(A.6.7)) involve the integrated forward rate drift. From (A.6.9), under the risk-neutral

measure, the forward rate drift is exactly the term involving an integral in the HJM

forward rate condition, and from (A.6.8), upon integration in the yield case, this term is

simply convexity. This completes (b).

A.7. Proofs of Proposition A.7.1 and Corollaries 1, A.7.1, and 2

Proposition A.7.1. Dynamic consistency between the arbitrage-free DTSM (λ,σ) and the

yield curve family Y is equivalent to the existence of suitable φ, ψ satisfying Assumption 1,

condition (23), and

1
τ

[
Y (τ, x)−Y (0, x)

]+ ∂Y
∂τ

(τ, x)+ τ

2
σ (τ, x)′σ (τ, x)+σ (τ, x)′λ(x)

= ∂Y
∂x′

(τ, x)φ(x)+ 1
2

tr
(
∂2Y
∂x∂x′

(τ, x)ψ(x)′ψ(x)
)

,
(A.7.1)

for all (τ, x).

Proof of Proposition A.7.1. This follows from Proposition 1 by inserting the no-arbitrage

condition (24) for the drift in (22).

Proof of Corollary 1. We first prove the result for NS with fixed a. Subsequently, we

extend the proof to include a among the time-varying state variables. Thus, suppose first

that an arbitrage-free DTSM (λ,σ) is dynamically consistent with NS with fixed a. We

show that this leads to the condition σ= 0, hence implying that all arbitrage-free DTSMs

that are non-degenerate, i.e., with σ ̸= 0, are dynamically inconsistent with the NS curve

14



shape with fixed a.

For NS with fixed a, the state vector is x = (x1, x2, x3)′, and we have the factor model

Y (τ, x)= B̃(τ)x, with B̃(τ)= B̃1:3(τ;a) from (15). By Proposition A.7.1, dynamic consistency

under the no-arbitrage condition requires the conditions (23) and (A.7.1), with ∂Y /∂x′ = B̃.

In (A.7.1), the trace term vanishes due to the factor structure, ∂2Y /∂x∂x′ = ∂B̃/∂x′ = 0.

Condition (23) requires

σ(τ, x)′ = B̃(τ)ψ(x)′ , (A.7.2)

with ψ(x) d×3. This implies that convexity takes the form τ
2 B̃(τ)ψ(x)′ψ(x)B̃(τ)′. Inserting

this in (A.7.1), together with (A.7.2) for σ(τ, x)′, average yield spread 1
τ

[
Y (τ)−Y (0)

] =
1
τ

[
B̃ (τ)− B̃ (0)

]
x, local slope adjustment ∂Y /∂τ= (∂B̃/∂τ)x, and dropping the trace term,

(A.7.1) reduces to

1
τ

[
B̃ (τ)− B̃ (0)

]
x+ ∂B̃

∂τ
(τ) x+ τ

2
B̃(τ)ψ(x)′ψ(x)B̃(τ)′ = B̃(τ)

(
φ(x)−ψ(x)′λ(x)

)
, (A.7.3)

with φ(x) a 3×1 vector and λ(x) a d×1 vector. Condition (A.7.3) requires that convexity,

when viewed as a function of maturity τ, be spanned by the loadings (15) and the functions

in the slope adjustments. To compute B̃ (0) as a limit for τ ↓ 0, we apply l’Hôpital’s rule to

B̃2 (τ)= (1−e−aτ) /aτ. Differentiating in numerator and denominator separately produces

e−aτ, so B̃2 (0)= 1. Using this to find B̃3 (0), too, we have B̃ (0)= (1,1,0). Thus, in (A.7.3),

the contributions from B̃ to the yield spreads are

1
τ

[
B̃ (τ)− B̃ (0)

]= 1
τ

(
B̃1(τ)−1 B̃2(τ)−1 B̃3(τ)−0

)
=

(
0 1−e−aτ

aτ2 − 1
τ

1−e−aτ

aτ2 − e−aτ

τ

)
. (A.7.4)

The contributions from B̃ to the local slope adjustments in (A.7.3) are obtained from (15)

and Lemma A.4.1,

∂B̃
∂τ

(τ)=
(

0 −1
τ
B̃3(τ) −1

τ
B̃3(τ)+ae−aτ

)
=

(
0 e−aτ

τ
− 1−e−aτ

aτ2
e−aτ

τ
− 1−e−aτ

aτ2 +ae−aτ
)

. (A.7.5)

Write ψi(x) for the ith column in ψ(x), a d ×1 vector, ωi j(x) = ψi(x)′ψ j(x), and ω(x) =
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{ωi j(x)}i, j for ψ(x)′ψ(x), a 3×3 matrix. Convexity τ
2 B̃(τ)ψ(x)′ψ(x)B̃(τ)′ in (A.7.3) is then

τ

2

3∑
i=1

3∑
j=1

ωi j(x)B̃i(τ)B̃ j(τ)= τ

2
(
ω11(x)+ω22(x)B̃2(τ)2 +ω33(x)B̃3(τ)2)

+τ(
ω12(x)B̃2(τ)+ω13(x)B̃3(τ)+ω23(x)B̃2(τ)B̃3(τ)

)
.

(A.7.6)

Because we will use the calculations repeatedly, we present them explicitly here. First, in

(A.7.6),

B̃2(τ)2 =
(
1−e−aτ

aτ

)2
= 1−2e−aτ+e−2aτ

a2τ2 = 2(1−e−aτ)− (
1−e−2aτ)

a2τ2 = 2
aτ

(
B̃2(τ)− B̃4(τ)

)
,

(A.7.7)

hence introducing the function

B̃4(τ)= 1−e−2aτ

2aτ
, (A.7.8)

which will play an important role in the analysis. Next, from (15) we clearly have

B̃3(τ)= B̃2(τ)−e−aτ , (A.7.9)

so in (A.7.6) we will need the product

B̃2(τ)e−aτ =
(
1−e−aτ

aτ

)
e−aτ = e−aτ−e−2aτ

aτ
= 2

(
1−e−2aτ)

2aτ
− (1−e−aτ)

aτ
= 2B̃4(τ)− B̃2(τ).

(A.7.10)

Thus, using (A.7.9) and the calculations (A.7.7) and (A.7.10) for the next term in convexity

(A.7.6),

B̃3(τ)2 = 2
aτ

(
B̃2(τ)− B̃4(τ)

)+e−2aτ−2
(
2B̃4(τ)− B̃2(τ)

)
. (A.7.11)

Using (A.7.7) and (A.7.10), an alternate version of (A.7.11) is

B̃3(τ)2 = 2(1−e−aτ)− (
1−e−2aτ)

a2τ2 +e−2aτ− 2
(
e−aτ−e−2aτ)

aτ
. (A.7.12)

For the last term in (A.7.6), we need but a portion of (A.7.11) (or (A.7.12)), i.e., using

(A.7.7) and (A.7.10) again,

B̃2(τ)B̃3(τ)= B̃2(τ)
(
B̃2(τ)−e−aτ)

= 2
aτ

(
B̃2(τ)− B̃4(τ)

)− (
2B̃4(τ)− B̃2(τ)

)
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= 2(1−e−aτ)− (
1−e−2aτ)

a2τ2 − e−aτ−e−2aτ

aτ
. (A.7.13)

Combining (15), (A.7.6), (A.7.7), (A.7.12), and (A.7.13), convexity in (A.7.3) is

τ

2
B̃(τ)ψ(x)′ψ(x)B̃(τ)′ =ω11(x)

τ

2
+ ω22(x)

a

(
1−e−aτ

aτ
− 1−e−2aτ

2aτ

)
+ω33(x)

[
1
a

(
1−e−aτ

aτ
− 1−e−2aτ

2aτ

)
+ τ

2
e−2aτ− 1

a
(
e−aτ−e−2aτ)]

+ω12(x)
1−e−aτ

a
+ω13(x)

(
1−e−aτ

a
−τe−aτ

)
+ω23(x)

[
2
a

(
1−e−aτ

aτ
− 1−e−2aτ

2aτ

)
− 1

a
(
e−aτ−e−2aτ)] . (A.7.14)

For dynamic consistency, the spanning condition (A.7.3) requires that convexity (A.7.14),

as a function of maturity τ, be spanned by the loadings B̃(τ) from (15) and the functions in

the slope adjustments (A.7.4)-(A.7.5). The spanning coefficents are x, the state variables,

on the slope adjustments, and φ(x)−ψ(x)′λ(x), risk-adjusted state drifts, on the loadings.

The first term in convexity (A.7.14), multiplying ω11, is the linear, τ/2. Evidently,

this is linearly independent of the functions of τ in the remaining convexity terms in

(A.7.14), in the loadings (15), and in the slope adjustments (A.7.4)-(A.7.5), since these are

all spanned by exponential functions, the reciprocal, 1/τ, the constant function, products

of these, and the linear-exponential functions τe−aτ and τe−2aτ/2 appearing in (A.7.14)

(recall a > 0). This implies ω11(x)= 0, so ψ1(x)= 0. Thus, the first state variable is locally

deterministic, and ω1 j(x)=ψ1(x)′ψ j(x)= 0, j = 2,3, too. Only the terms multiplying ω22(x),

ω33(x), and ω23(x) remain in convexity (A.7.14), which therefore simplifies to

τ

2
B̃(τ)ψ(x)′ψ(x)B̃(τ)′ = ω22(x)

a

(
1−e−aτ

aτ
− 1−e−2aτ

2aτ

)
+ω33(x)

[
1
a

(
1−e−aτ

aτ
− 1−e−2aτ

2aτ

)
+ τ

2
e−2aτ− 1

a
(
e−aτ−e−2aτ)]

+ω23(x)
[

2
a

(
1−e−aτ

aτ
− 1−e−2aτ

2aτ

)
− 1

a
(
e−aτ−e−2aτ)] .

Using (A.7.7), this is equivalently expressed as

τ

2
B̃(τ)ψ(x)′ψ(x)B̃(τ)′ = ω22(x)+ω33(x)+2ω23(x)

a
(
B̃2(τ)− B̃4(τ)

)+ω33(x)
τ

2
e−2aτ

− ω23(x)+ω33(x)
a

(
e−aτ−e−2aτ) ,

(A.7.15)
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thus involving B̃4(τ) from (A.7.8). As a function of τ, this is clearly linearly independent of

the NS loading functions (15). Because it is linearly independent of the slope adjustments

(A.7.4)-(A.7.5) and the remaining terms in convexity (A.7.15), too, (A.7.3) implies the

condition

ω22(x)+ω33(x)+2ω23(x)= 0 . (A.7.16)

Thus, convexity (A.7.15) reduces to

τ

2
B̃(τ)ψ(x)′ψ(x)B̃(τ)′ =ω33(x)

τ

2
e−2aτ− ω33(x)+ω23(x)

a
(
e−aτ−e−2aτ) . (A.7.17)

The functions τe−2aτ/2 and e−2aτ are linearly independent of each other, and of those

in the loadings (15), the slope adjustments (A.7.4)-(A.7.5), and the remaining function

e−aτ in (A.7.17), so avoiding dependence on these requires the conditions ω33(x)= 0 and

ω33(x)+ω23(x)= 0, and hence ω23(x)= 0, too. From (A.7.16), ω22(x)=−ω33(x)−2ω23(x)= 0.

Because ω j j(x)=ψ j(x)′ψ j(x), we have ψ j(x)= 0, j = 2, 3, and we had ψ1(x)= 0 from earlier,

so ψ(x) = 0. By (A.7.2), dynamic consistency requires σ(τ, x)′ = B(τ)ψ(x)′, so σ(τ, x) = 0.

If the arbitrage-free DTSM is dynamically consistent with NS with fixed a, then it

is degenerate. We conclude that NS with fixed a is dynamically inconsistent with all

non-degenerate arbitrage-free DTSMs.

Next, we show how how each of the steps in the preceding argument is extended in case

a is considered an additional state variable. By Proposition 1, dynamic consistency under

the no-arbitrage condition requires the conditions (23) and (A.7.1), with x = (x1, x2, x3)′

expanded to xa = (x′,a)′. In this case, ψ(xa) is d×4, and ∂Y /∂x′a is no longer simply given

by B̃1:3(τ) from (15), but is instead expanded to (20), including the additional component

∂Y /∂a from (21). Since this depends on x, we no longer have a factor model. First, write

the curve shape (19) as

Y (τ, xa)= B̃1:3(τ;a)x = x1 + B̃2(τ;a)x2 + B̃3(τ;a)x3 , (A.7.18)

with B̃1:3(τ;a) from (15) depending on a. The slope adjustments 1
τ

[
Y (τ, xa)−Y (0, xa)

]
and

∂Y
∂τ (τ, xa) in (A.7.1) are computed for given xa, and so are still obtained by multiplying
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each of (A.7.4) and (A.7.5) by x = (x1, x2, x3)′. For ∂Y /∂a, we need the derivative

∂B̃2(τ;a)
∂a

= ∂

∂a

(
1− e−aτ

aτ

)
=−1

a

(
1− e−aτ

aτ
−e−aτ

)
=−1

a
B̃3(τ;a) , (A.7.19)

highlighting that the third NS loading function is (proportional to) the derivative of the

second with respect to a. Using (A.7.9) and (A.7.19), we immediately get

∂B̃3(τ;a)
∂a

= ∂B̃2(τ;a)
∂a

+τe−aτ =−1
a

(
1− e−aτ

aτ
−e−aτ

)
+τe−aτ =−1

a
B̃3(τ;a)+τe−aτ .

(A.7.20)

Combination of (A.7.18)-(A.7.20) produces

∂Y
∂a

=−1
a

B̃3(τ;a)(x2 + x3)+τe−aτx3 , (A.7.21)

thereby verifying (21).

The trace term in (A.7.1) involves the second derivative of Y with respect to a. By

direct differentiation of (A.7.21), using (A.7.20),

∂2Y
∂a2 = 1

a2 B̃3(τ;a)(x2 + x3)− 1
a

(
−1

a
B̃3(τ;a)+τe−aτ

)
(x2 + x3)−τ2e−aτx3

= 1
a2

(
2B̃3(τ;a)−aτe−aτ) (x2 + x3)−τ2e−aτx3 .

The trace term in (A.7.1) further involves the cross-derivatives with respect to a and

either x2 or x3, and they are given by (A.7.19) and (A.7.20), respectively. Since ∂2Y /∂x1∂a

and terms of the type ∂2Y /∂xi∂x j vanish, there are no further terms in the trace in (A.7.1),

which therefore takes the form

1
2

tr
(
∂2Y

∂xa∂x′a
(τ, xa)ψ(xa)′ψ(xa)

)
=ω44(xa)

[
1
a2

(
2B̃3(τ;a)−aτe−aτ) (x2 + x3)−τ2e−aτx3

]
− 2(ω24(xa)+ω34(xa))

a
B̃3(τ;a)+2ω34(xa)τe−aτ . (A.7.22)

Condition (23) requires

σ(τ, xa)′ = B̃1:3(τ)ψ1:3(xa)′+ ∂Y
∂a

(τ, xa)ψ4(xa)′ , (A.7.23)

with the d×3 matrix ψ1:3(x) given by the first three columns of ψ(xa). Thus, convexity

in (A.7.1) is (A.7.14) plus the terms involving ∂Y /∂a. One term involves the square of
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(A.7.21),

τ

2

(
∂Y
∂a

)2
= τ

2

(
−1

a
B̃3(τ;a)(x2 + x3)+τe−aτx3

)2
. (A.7.24)

Using (A.7.11)-(A.7.12) allows writing (A.7.24) as

τ

2

(
∂Y
∂a

)2
= 1

a2

[
1
a

(
B̃2(τ)− B̃4(τ)

)+ τ

2
e−2aτ− 1

a
(
e−aτ−e−2aτ)] (x2 + x3)2

+ τ3

2
e−2aτx2

3 −
τ2

a
B̃3(τ)e−aτ(x2 + x3)x3 .

(A.7.25)

Convexity further involves the three cross-products between (A.7.21) and the loadings in

(15), multiplied by τ,

τB̃1(τ)
∂Y
∂a

=−τ
a

B̃3(τ)(x2 + x3)+τ2e−aτx3 , (A.7.26)

τB̃2(τ)
∂Y
∂a

=−τ
a

B̃2(τ)B̃3(τ)(x2 + x3)+τ2B̃2(τ)e−aτx3 , (A.7.27)

τB̃3(τ)
∂Y
∂a

=−τ
a

B̃3(τ)2(x2 + x3)+τ2B̃3(τ)e−aτx3 . (A.7.28)

Rewriting (A.7.27) using (A.7.13) yields

τB̃2(τ)
∂Y
∂a

=−τ
a

[
2
aτ

(
B̃2(τ)− B̃4(τ)

)− (
2B̃4(τ)− B̃2(τ)

)]
(x2 + x3)+τ2B̃2(τ)e−aτx3 . (A.7.29)

Similarly, rewriting (A.7.28) using (A.7.11) yields

τB̃3(τ)
∂Y
∂a

=−τ
a

[
2
aτ

(
B̃2(τ)− B̃4(τ)

)+e−2aτ−2
(
2B̃4(τ)− B̃2(τ)

)]
(x2 + x3)+τ2B̃3(τ)e−aτx3 .

(A.7.30)

Writing (A.7.14) in terms of the NS loadings, using (A.7.15), and extending with (A.7.25),

(A.7.26), (A.7.29) and (A.7.30) yields convexity

τ

2
∂Y
∂x′a

ψ(xa)′ψ(xa)
∂Y
∂xa

=ω11(xa)
τ

2
+ ω22(xa)+ω33(xa)+2ω23(xa)

a
(
B̃2(τ)− B̃4(τ)

)
+ω33(xa)

τ

2
e−2aτ+ω12(xa)τB̃2(x)+ω13(xa)τB̃3(x)− ω23(xa)+ω33(xa)

a
(
e−aτ−e−2aτ)

+ω44(xa)
1
a2

[
1
a

(
B̃2(τ)− B̃4(τ)

)+ τ

2
e−2aτ− 1

a
(
e−aτ−e−2aτ)] (x2 + x3)2

+ω44(xa)
[
τ3

2
e−2aτx2

3 −
τ2

a
B̃3(τ)e−aτ(x2 + x3)x3

]
+ω14(xa)

[
−τ

a
B̃3(τ)(x2 + x3)+τ2e−aτx3

]
+ω24(xa)

{
−τ

a

[
2
aτ

(
B̃2(τ)− B̃4(τ)

)− (
2B̃4(τ)− B̃2(τ)

)]
(x2 + x3)+τ2B̃2(τ)e−aτx3

}
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−ω34(xa)
τ

a

[
2
aτ

(
B̃2(τ)− B̃4(τ)

)+e−2aτ−2
(
2B̃4(τ)− B̃2(τ)

)]
(x2 + x3).

+ω34(xa)τ2B̃3(τ)e−aτx3 . (A.7.31)

The steps analyzing (A.7.14) as convexity in (A.7.3) in the case of fixed a are now extended

to (A.7.31) as convexity in (A.7.1), thus accommodating time-varying a. For dynamic

consistency, (A.7.1) requires that convexity (A.7.31), as a function of maturity τ, be

spanned by the loadings (15), ∂Y /∂a from (A.7.21), the functions in the slope adjustments

(A.7.4)-(A.7.5), and the trace (A.7.22). The first term in (A.7.31), multiplying ω11(xa),

is the linear, τ/2. This is linearly independent of the functions of τ in the remaining

convexity terms in (A.7.31), and in (15), (A.7.21), (A.7.4)-(A.7.5), and (A.7.22), since these

are all spanned by functions involving exponentials, the reciprocal, 1/τ, the constant

function, products of these, the functions τe−aτ and τe−2aτ/2, and those involving τ2

and τ3 in (A.7.31). To be sure, the argument has already been made for the case with

constant a, which has the same loadings (15) and slope adjustments, so attention can

be restricted to the new terms in the time-varying a case, i.e., ∂Y /∂a from (A.7.21), the

trace (A.7.22), and the terms in convexity (A.7.31) involving ω j4(xa), j = 1, . . . ,4. In two

cases, these new terms do involve τ multiplied by B̃ j(τ;a), j = 2, 3, 4, without involving

further exponentials, but never τ alone (or multiplied by B̃1(τ;a), the constant). Thus,

using (A.7.10), we have in (A.7.31) that

τ

a
(
2B̃4(τ;a)− B̃2(τ;a)

)= e−aτ−e−2aτ

a2 , (A.7.32)

whereas

τB̃3(τ;a)= 1−e−aτ

a
−τe−aτ .

The constant function appears, but never the linear, τ/2 (recall that a > 0). This implies

that, again, ω11(xa)= 0, so ψ1(xa)= 0. The first state variable is locally deterministic, and
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ω1 j(xa)=ψ1((xa))′ψ j((xa))= 0, j = 1, . . . ,4. Convexity (A.7.31) simplifies to

τ

2
∂Y
∂x′a

ψ(xa)′ψ(xa)
∂Y
∂xa

= ω22(xa)+ω33(xa)+2ω23(xa)
a

(
B̃2(τ)− B̃4(τ)

)
+ω33(xa)

τ

2
e−2aτ− ω23(xa)+ω33(xa)

a
(
e−aτ−e−2aτ)

+ω44(xa)
1
a2

[
1
a

(
B̃2(τ)− B̃4(τ)

)+ τ

2
e−2aτ− 1

a
(
e−aτ−e−2aτ)] (x2 + x3)2

+ω44(xa)
[
τ3

2
e−2aτx2

3 −
τ2

a
B̃3(τ)e−aτ(x2 + x3)x3

]
+ω24(xa)

{
−τ

a

[
2
aτ

(
B̃2(τ)− B̃4(τ)

)− (
2B̃4(τ)− B̃2(τ)

)]
(x2 + x3)+τ2B̃2(τ)e−aτx3

}
−ω34(xa)

τ

a

[
2
aτ

(
B̃2(τ)− B̃4(τ)

)+e−2aτ−2
(
2B̃4(τ)− B̃2(τ)

)]
(x2 + x3)

+ω34(xa)τ2B̃3(τ)e−aτx3 . (A.7.33)

The first function of τ in convexity, B̃2(τ;a)− B̃4(τ;a), especially the portion B̃4(τ;a) from

(A.7.8), is not in any other term in (A.7.1), i.e., neither in remaining convexity (A.7.33),

nor in (15), (A.7.21), (A.7.4)-(A.7.5), (A.7.22), and it is linearly independent of all other

terms (B̃4 appears in the terms involving ω24(xa) and ω34(xa) in (A.7.33), too, but there,

it is multiplied by τ). It follows that the first term in convexity vanishes, yielding the

condition

ω22(xa)+ω33(xa)+ω44(xa)(x2 + x3)2

a2 +2ω23(xa)−2(ω24(xa)+ω34(xa)) (x2 + x3)
a

= 0 . (A.7.34)

Thus, convexity (A.7.33) reduces to

τ

2
∂Y
∂x′a

(τ, xa)ψ(x)′ψ(x)
∂Y
∂xa

(τ, xa)=ω33(xa)
τ

2
e−2aτ− ω23(xa)+ω33(xa)

a
(
e−aτ−e−2aτ)

+ω44(xa)
1
a2

[
τ

2
e−2aτ− 1

a
(
e−aτ−e−2aτ)] (x2 + x3)2

+ω44(xa)
[
τ3

2
e−2aτx2

3 −
τ2

a
B̃3(τ;a)e−aτ(x2 + x3)x3

]
+ω24(xa)

{τ
a

(
2B̃4(τ;a)− B̃2(τ;a)

)
(x2 + x3)+τ2B̃2(τ;a)e−aτx3

}
(A.7.35)

+ω34(xa)
{τ

a
[−e−2aτ+2

(
2B̃4(τ;a)− B̃2(τ;a)

)]
(x2 + x3)+τ2B̃3(τ;a)e−aτx3

}
.

The function τ3e−2aτ in the term involving ω44(xa) is not in any of the remaining terms in

(A.7.1), either, and it is linearly independent of these. It follows that either (i) ω44(xa)= 0,
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or (ii) x3 = 0. We consider these two cases separately.

In case (i), if ω44(xa)= 0, then ψ4(xa)= 0, so ω j4(xa)= 0, j = 1, . . . ,4, because ωi j(xa)=
ψi(xa)′ψ j(xa). Thus, convexity (A.7.35) reduces to (A.7.17), and as before, τe−2aτ is not

spanned, this time because it does not appear in the additional trace terms (A.7.22),

either. It follows that ω33(xa)= 0, so ψ3(xa)= 0, and therefore ω23(xa)= 0. From (A.7.34),

ω22(xa)= 0, and ω(xa)= 0, because ω j j(xa)= 0, j = 1, . . . ,4.

In case (ii), x3 = 0, if ψ3(xa) ̸= 0, then x3 ̸= 0 the next instant, and case (i) applies.

If ψ3(xa) = 0, then x3 is locally deterministic, so ω j3(xa) = 0, j = 1, . . . ,4, and convexity

(A.7.35) reduces to

τ

2
∂Y
∂x′a

(τ, xa)ψ(x)′ψ(x)
∂Y
∂xa

(τ, xa)=ω44(xa)
1
a2

[
τ

2
e−2aτ− 1

a
(
e−aτ−e−2aτ)]x2

2

+ω24(xa)
τ

a
(
2B̃4(τ)− B̃2(τ)

)
x2 .

(A.7.36)

The function e−2aτ is neither in remaining convexity, nor in (15), (A.7.21), (A.7.4)-(A.7.5),

(A.7.22), and it is linearly independent of these. It follows that either (a) ω44(xa)= 0, or

(b) x2 = 0. If (a) ω44(xa)= 0, then ω j4(xa)= 0, j = 1, . . . ,4. From (A.7.34), ω22(xa)= 0, and

ω(xa) = 0, because ω j j(xa) = 0, j = 1, . . . ,4. If (b) x2 = 0, then convexity (A.7.36) vanishes.

The trace term (A.7.22) in (A.7.1) involves the function ω44τ
2e−aτ. Since this is not in (15),

(A.7.21), (A.7.4)-(A.7.5), and it is linearly independent of these, it follows that ω44(xa)= 0.

Again, this implies ω j4(xa) = 0, j = 1, . . . ,4, so from (A.7.34), ω22(xa) = 0, and ω(xa) = 0,

because ω j j(xa)= 0, j = 1, . . . ,4.

Thus, we have have ψ(xa)′ψ(xa) = ω(xa) = 0, both in case (i) and (ii), and these

are exhaustive, so ψ(xa) = 0. By (A.7.23), dynamic consistency requires σ(τ, xa)′ =(
B̃1:3(τ;a),∂Y /∂a

)
ψ(xa)′, so σ(τ, xa)= 0. If the arbitrage-free DTSM is dynamically consis-

tent with NS, then it is degenerate. We conclude that the NS curve shape is dynamically

inconsistent with all non-degenerate arbitrage-free DTSMs, whether a is fixed or time-

varying.

Corollary A.7.1. Dynamic consistency between the DTSM (α,σ) and the factor model B is
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equivalent to the existence of suitable φ, ψ satisfying Assumption 1 and the conditions

α(τ, x)= B(τ)φ(x) , (A.7.37)

σ(τ, x)′ = B(τ)ψ(x)′ , (A.7.38)

for all (τ, x).

Proof of Corollary A.7.1. This follows from Proposition 1 for Y (τ, x)= B(τ)x.

Proof of Corollary 2. This follows from Proposition A.7.1 for Y (τ, x)= B(τ)x.

A.8. Affine models

In affine term structure models (ATSMs), the yield is written in the form Y (τ, x̄(t))= Ā(τ)+
B̄(τ)x̄(t), where B̄(τ) satisfies a Riccatti ODE. This is clearly the special case of the general

form Y (τ, x) = B(τ)x in which one of the state variables is constant, i.e., x(t) = (x̄(t)′,1)′,

B(τ) = (B̄(τ), Ā(τ)), k = d + 1. In this case, (φ̄,ψ̄) pertain to the d non-constant state

variables, only, with ψ̄ d×d and invertible. Viewing (27) as an equation in the unknown

B(·), assuming elementwise affine forms (in x̄) for φ̄ and ψ̄′ψ̄, and setting λ= 0 reduces

the equation to the linear-quadratic Riccatti ODE, which under an initial condition giving

the short rate as an affine function of x̄ determines the solution B = (B̄, Ā).42 The state

drift is affine under both the physical and the martingale measure under the additional

assumption that λ(x)= ψ̄(x)λ0+(ψ̄(x)−1)′(λ1+Λ1x), where λ0, λ1 are d×1 and Λ1 d×d, so

that ψ̄′λ is affine, see Cheridito, Filipović, and Kimmel (2007).43 The dynamic consistency

approach accommodates the more general structure Y (τ, x(t)) = B̄(τ)x̄(t)+ ¯̄B(τ) ¯̄x(t), say,

where ¯̄x(t) is a vector of locally deterministic but potentially time-varying state variables,

with loadings ¯̄B(τ). Thus, the time-invariant ATSM intercept Ā(τ) is generalized to the

time-varying form ¯̄B(τ) ¯̄x(t) under dynamic consistency, x = (x̄′, ¯̄x′)′, φ= (φ̄′, ¯̄φ′)′, say, and

ψ′ = (ψ̄,0)′ is k×d, where k ≥ d – indeed, typically k > d+1, as we demonstrate.

42Since λ= 0, φ̄ is the state drift under the martingale measure in this case, φ̄= φ̄Q , say.
43With λ non-zero, φ̄ is the drift under the physical measure, so φ̄Q = φ̄P − ψ̄′λ.
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A.9. Proofs of Propositions 2, A.9.1, A.9.2, and Theorem 2

Proof of Proposition 2. By Corollary 2, conditions (25)-(26) must be verified. Inserting

(31) for σ(τ, x), ψ(x) = (0,ψ2(x),0,0)′, and B̃1:4(τ) from (32) for B(τ) in (26) verifies the

condition. Next, by (31), the volatility function takes the form σ(τ, x) =ψ2(x)B̃2(τ), and

using (A.7.7), convexity in (25) is

τ

2
σ(τ, x)′σ(τ, x)= τ

2
ψ2(x)2B̃2(τ)2

= ψ2(x)2

a

(
1−e−aτ

aτ
− 1−e−2aτ

2aτ

)
= ψ2(x)2

a
(
B̃2(τ)− B̃4(τ)

)
= B̃1:4(τ)

(
0,
ψ2(x)2

a
,0,−ψ2(x)2

a

)′
. (A.9.1)

This is spanned in (25) by the loadings from B(τ) = B̃1:4(τ) from (32). From (A.9.1), the

spanning coefficients are (
0,
ψ2(x)2

a
,0,−ψ2(x)2

a

)′
, (A.9.2)

which are therefore part of φ(x) in (25). Similarly, in (25), we have

σ(τ, x)′λ(x)=ψ2(x)B̃2(τ)λ2(x)= B̃1:4(τ)(0,ψ2(x)λ2(x),0,0)′ , (A.9.3)

so

(0,ψ2(x)λ2(x),0,0)′ (A.9.4)

is another term in φ(x) in (25). It remains to check that the resulting slope adjustments

are spanned by the loadings in B̃1:4 in (25). This is done easily, because the fourth

loading in (32) is of the same type as the second, with 2a replacing a. Thus, when (15) is

augmented to (32), then the average yield spreads (A.7.4) are expanded to

1
τ

[
B̃1:4 (τ)− B̃1:4 (0)

]= 1
τ

(
B̃1(τ)−1 B̃2(τ)−1 B̃3(τ)−0 B̃4(τ)−1

)
=

(
0 1−e−aτ

aτ2 − 1
τ

1−e−aτ

aτ2 − e−aτ

τ
1−e−2aτ

2aτ2 − 1
τ

)
, (A.9.5)
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and the local slope adjustments in (A.7.5) are expanded to

∂B̃1:4

∂τ
(τ)=

(
0 e−aτ

τ
− 1−e−aτ

aτ2
e−aτ

τ
− 1−e−aτ

aτ2 +ae−aτ e−2aτ

τ
− 1−e−2aτ

2aτ2

)
. (A.9.6)

The total slope adjustment in (25) is therefore(
1
τ

[
B̃1:4 (τ)− B̃1:4 (0)

]+ ∂B̃1:4

∂τ
(τ)

)
x =−1−e−aτ

τ
x2 +ae−aτx3 − 1−e−2aτ

τ
x4

=−aB̃2(τ)x2 +ae−aτx3 −2aB̃4(τ)x4 . (A.9.7)

Using the relation

e−aτ = B̃2(τ)− B̃3(τ) , (A.9.8)

total slope slope adjustment is written as(
1
τ

[
B̃1:4 (τ)− B̃1:4 (0)

]+ ∂B̃1:4

∂τ
(τ)

)
x =−aB̃2(τ)x2 +a

(
B̃2(τ)− B̃3(τ)

)
x3 −2aB̃4(τ)x4

= B̃1:4(τ) (0,−a (x2 − x3) ,−ax3,−2ax4)′

This is spanned in (25), with coefficients

(0,−a (x2 − x3) ,−ax3,−2ax4)′ . (A.9.9)

Total spanning coefficients on B̃1:4 in (25) for convexity, risk compensation, and slope

adjustment are therefore obtained by adding (A.9.2), (A.9.4), and (A.9.9), i.e.,

φ(x)= (0,
ψ2(x)2

a
+ψ2(x)λ2(x)−a (x2 − x3) ,−ax3,−ψ2(x)2

a
−2ax4)′ . (A.9.10)

Given spanning, dynamic consistency of ANS with the arbitrage-free DTSM with market

prices of risk λ(x) and volatility (31) follows from Corollary 2. The expression (33) for the

drift follows by inserting (A.9.10) in α(τ, x)= B̃1:4(τ)φ(x).

Proposition A.9.1. The augmented NS (ANS) curve shape given by loading functions

B̃1:4(τ)=
(

1 1−e−aτ

aτ
1−e−aτ

aτ −e−aτ 1−e−2aτ

2aτ

)
(A.9.11)

with fixed a is dynamically consistent with the DTSM with drift

α(τ, x)=φ1(x)+φ2(x)
1−e−aτ

aτ
+φ3(x)

(
1−e−aτ

aτ
−e−aτ

)
+φ4(x)

1−e−2aτ

2aτ
(A.9.12)

and volatility function (31), provided φ(x) = (φ1(x), . . . ,φ4(x))′ and ψ(x) = (0,ψ2(x),0,0)′
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satisfy Assumption 1.

Proof of Proposition A.9.1. By Corollary A.7.1, conditions (A.7.37)-(A.7.38) must be

verified. Inserting (A.9.12) for α(τ, x) and B̃1:4(τ) from (A.9.11) for B(τ) in (A.7.37) verifies

the condition. Inserting (31) for σ(τ, x), ψ(x)= (0,ψ2(x),0,0)′, and B̃1:4(τ) from (32) for B(τ)

in (A.7.38) verifies the condition. The conclusion follows.

Proof of Theorem 2. By Corollary 2, conditions (25)-(26) must be verified for B(τ) =
B̃1:7(τ) from (43) and ψ(x) from (40). Inserting these in the condition on σ(τ, x) in (26)

produces (41). By slight abuse of notation, we write ˜̃B1 = (
1−e−bτ) /(bτ) for the first

loading function in B̃1:7. Using (A.7.7), (A.7.11), (A.7.13), and the definition of B̃7(τ) from

(43), convexity in (25) is

τ

2
σ(τ, x)′σ(τ, x)= τ

2

(
ψ1(x)2 ˜̃B1(τ)2 +ψ2(x)2B̃2(τ)2 +ψ3(x)2B̃3(τ)2 +2ω23B̃2(τ)B̃3(τ)

)
= ψ1(x)2

b

(
1−e−bτ

bτ
− 1−e−2bτ

2bτ

)
+ ψ2(x)2

a

(
1−e−aτ

aτ
− 1−e−2aτ

2aτ

)
+ψ3(x)2

(
1
a

(
B̃2(τ)− B̃4(τ)

)+ τ

2
e−2aτ−τ(

2B̃4(τ)− B̃2(τ)
))

+2ω23

(
1
a

(
B̃2(τ)− B̃4(τ)

)− τ

2
(
2B̃4(τ)− B̃2(τ)

))
= ψ1(x)2

b

(
˜̃B1(τ)− B̃7(τ)

)
+ ψ2(x)2 +ψ3(x)2 +2ω23

a
(
B̃2(τ)− B̃4(τ)

)
+ψ3(x)2 τ

2
e−2aτ− (

ψ3(x)2 +ω23
)
τ
(
2B̃4(τ)− B̃2(τ)

)
.

Using the definitions of B̃5(τ) and B̃6(τ) from (43), we have that τ
(
2B̃4(τ)− B̃2(τ)

)= B̃6(τ),

by (A.7.10), and that convexity is written as

τ

2
σ(τ, x)′σ(τ, x)= ψ1(x)2

b

(
˜̃B1(τ)− B̃7(τ)

)
+ ψ2(x)2 +ψ3(x)2 +2ω23

a
(
B̃2(τ)− B̃4(τ)

)
+ψ3(x)2B̃5(τ)− (

ψ3(x)2 +ω23
)
B̃6(τ) .

This is spanned in (25) by the loadings from B(τ) = B̃1:7(τ) from (43). The spanning

coefficients are(
ψ1(x)2

b
,
ψ2(x)2 +ψ3(x)2 +2ω23

a
,0,−ψ2(x)2 +ψ3(x)2 +2ω23

a
,ψ3(x)2,−ψ3(x)2 −ω23,−ψ1(x)2

b

)′
,

(A.9.13)
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which are therefore part of φ(x) in (25). Similarly, in (25), we have

σ(τ, x)′λ(x)= B̃1:7(τ)ψ(x)′λ(x)= B̃1:7(τ)



ψ11(x)λ1(x)

ψ22(x)λ2(x)+ψ23(x)λ3(x)

ψ23(x)λ2(x)+ψ33(x)λ3(x)

04

 ,

with 04 a four-vector of zeroes, so

(
ψ11(x)λ1(x),ψ22(x)λ2(x)+ψ23(x)λ3(x),ψ23(x)λ2(x)+ψ33(x)λ3(x),0′

4
)′ (A.9.14)

is another term in φ(x) in (25). It remains to check that the resulting slope adjustments

are spanned in (25). The corresponding analysis for B̃1:4(τ) from (32) was done in (A.9.5)-

(A.9.7). This is extended to B̃1:7(τ) from (43), now using ˜̃B1(τ)= (
1−e−bτ) /(bτ) for the first

loading function, which is of the same type as the second, but with a replaced by b. Thus,

when (15) is augmented to (43), then the average yield spreads (A.7.4) are expanded to(
B̃1:7(τ)− B̃1:7(0)

)
/τ given by the functions

1−e−bτ

bτ2 − 1
τ

,
1−e−aτ

aτ2 − 1
τ

,
1−e−aτ

aτ2 − e−aτ

τ
,

1−e−2aτ

2aτ2 − 1
τ

,

1
2

e−2aτ ,
1
aτ

(
e−aτ−e−2aτ) ,

1−e−2bτ

2bτ2 − 1
τ

.

The corresponding local slope adjustments are given by the functions

e−bτ

τ
− 1−e−bτ

bτ2 ,
e−aτ

τ
− 1−e−aτ

aτ2 ,
e−aτ

τ
− 1−e−aτ

aτ2 +ae−aτ ,
e−2aτ

τ
− 1−e−2aτ

2aτ2 ,

1
2

e−2aτ−aτe−2aτ , −e−aτ+2e−2aτ ,
e−2bτ

τ
− 1−e−2bτ

2bτ2 .

The total slope adjustment in (25) is therefore(
1
τ

[
B̃ (τ)− B̃ (0)

]+ ∂B̃
∂τ

(τ)
)

x =−1−e−bτ

τ
x1 − 1−e−aτ

τ
x2 +ae−aτx3 − 1−e−2aτ

τ
x4

+ (
e−2aτ−aτe−2aτ)x5 +

[
1
aτ

(
e−aτ−e−2aτ)+ (−e−aτ+2e−2aτ)]x6 − 1−e−2bτ

τ
x7 .

(A.9.15)

We must show that this is indeed spanned by the functions in B̃1:7(τ). First off, the

functions of τ multiplying x1, x2, x4, and x7 in (A.9.15) are proportional to B̃1(τ), B̃2(τ),
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B̃4(τ), and B̃7(τ), respectively, so they are spanned, with coefficients read off directly as

(−bx1,−ax2,0,−2ax4,0,0,−2bx7)′ , (A.9.16)

which is therefore another term in φ(x) in (25). Next, by (A.9.8), we have e−aτ = B̃2(τ)−
B̃3(τ), so the term involving x3 in (A.9.15) is a

(
B̃2(τ)− B̃3(τ)

)
x3, and hence spanned, with

coefficients

(0,ax3,−ax3,0,0,0,0)′ , (A.9.17)

also a term in φ(x) in (25). Further, we have

e−2aτ =−aB̃6(τ)+e−aτ =−aB̃6(τ)+ B̃2(τ)− B̃3(τ) , (A.9.18)

using (A.9.8) in the second equality. Thus, the function involving x5 in (A.9.15) is (−aB̃6(τ)

+ B̃2(τ)− B̃3(τ)−2aB̃5(τ))x5, and hence spanned, with coefficients

(0, x5,−x5,0,−2ax5,−ax5,0)′ , (A.9.19)

again a term in φ(x) in (25). Finally, using (A.7.10), (A.9.8) and (A.9.18), the function

multiplying x6 in (A.9.15) is

1
aτ

(
e−aτ−e−2aτ)−e−aτ+2e−2aτ = (

2B̃4(τ)− B̃2(τ)
)− (

B̃2(τ)− B̃3(τ)
)

+2
(−aB̃6(τ)+ B̃2(τ)− B̃3(τ)

)
=−B̃3(τ)+2B̃4(τ)−2aB̃6(τ) , (A.9.20)

so the term in (A.9.15) given by x6 multiplied by (A.9.20) is spanned, with coefficients

(0,0,−x6,2x6,0,−2ax6,0)′ . (A.9.21)

The total spanning coefficients φ(x) on B̃1:7(τ) in (25) are given by the sum of the coeffi-

cients for convexity, (A.9.13), risk compensation, (A.9.14), and slope adjustments, (A.9.16),

(A.9.17), (A.9.19), and (A.9.21). Thus,
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φ(x)=



1
bψ11(x)2 +ψ11(x)λ1(x)−bx1

1
a (ω22(x)+ω33(x)+2ω23(x))+ψ22(x)λ2(x)+ψ23(x)λ3(x)−ax2 +ax3 + x5

ψ23(x)λ2(x)+ψ33(x)λ3(x)−ax3 − x5 − x6

− 1
a (ω22(x)+ω33(x)+2ω23(x))−2ax4 +2x6

ω33(x)−2ax5

−ω33(x)−ω23 −ax5 −2ax6

− 1
bψ11(x)2 −2bx7


, (A.9.22)

yielding the expression for φ(x) in Theorem 2. The conclusion follows from Corollary 2.

To restate φ(x) from (A.9.22) with the local variance matrix ω(x) of the state variables

expressed in terms of the volatilities ψ(x), recall from the proof of Corollary 1 (in Appendix

A.7) that the notation is ω(x) =ψ(x)′ψ(x), a 3×3 matrix, with ωi j(x) =ψi(x)′ψ j(x), and

ψi(x) for the ith column in ψ(x). From (40),

ψ1(x)=


ψ11(x)

0

0

 , ψ2(x)=


0

ψ22(x)

ψ32(x)

 , ψ3(x)=


0

ψ23(x)

ψ33(x)

 .

It follows that

ω22(x)=ψ2
22(x)+ψ2

32(x) ,

ω33(x)=ψ2
23(x)+ψ2

33(x) ,

ω23(x)=ψ22(x)ψ23(x)+ψ32(x)ψ33(x) ,

which is (42). Therefore,

ω22(x)+ω33(x)+2ω23(x)=ψ2
22(x)+ψ2

32(x)+ψ2
23(x)+ψ2

33(x)+ 2ψ22(x)ψ23(x)+2ψ32(x)ψ33(x) ,

ω33(x)+ω23(x)=ψ2
23(x)+ψ2

33(x)+ψ22(x)ψ23(x)+ψ32(x)ψ33(x) .
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Using these expressions (A.9.22) produces

φ(x)=



1
bψ11(x)2 +ψ11(x)λ1(x)−bx1

1
a

(
ψ2

22(x)+ψ2
32(x)+ψ2

23(x)+ψ2
33(x)+ 2ψ22(x)ψ23(x)+2ψ32(x)ψ33(x)

)
+ψ22(x)λ2(x)+ψ23(x)λ3(x)−ax2 +ax3 + x5

ψ23(x)λ2(x)+ψ33(x)λ3(x)−ax3 − x5 − x6

− 1
a

(
ψ2

22(x)+ψ2
32(x)+ψ2

23(x)+ψ2
33(x)+ 2ψ22(x)ψ23(x)+2ψ32(x)ψ33(x)

)−2ax4 +2x6

ψ2
23(x)+ψ2

33(x)−2ax5

−ψ2
23(x)−ψ2

33(x)−ψ22(x)ψ23(x)−ψ32(x)ψ33(x)−ax5 −2ax6

− 1
bψ11(x)2 −2bx7



(A.9.23)

as an alternative to the expression for φ(x) in Theorem 2.

Proposition A.9.2. The SLSC curve shape given by loading functions

B̃1:7(τ)=
(

1−e−bτ

bτ
1−e−aτ

aτ
1−e−aτ

aτ −e−aτ 1−e−2aτ

2aτ
τ
2e−2aτ 1

a
(
e−aτ−e−2aτ) 1−e−2bτ

2bτ

)
with fixed a, b is dynamically consistent with the DTSM with drift α(τ, x) = B̃1:7(τ)φ(x)

and volatility function (41), provided φ(x) = (φ1(x), . . . ,φ7(x))′ and ψ(x) from (40) satisfy

Assumption 1.

Proof of Proposition A.9.2. By Corollary A.7.1, conditions (A.7.37)-(A.7.38) must be

verified for B(τ)= B̃1:7(τ) from (43) and ψ(x) from (40). Inserting B̃1:7(τ) for B(τ) in (A.7.37)

produces the condition α(τ, x) = B̃1:7(τ)φ(x) from the Proposition. Inserting B̃1:7(τ) and

ψ(x) from (40) in the condition on σ(τ, x) in (26) produces (41). The conclusion follows.

A.10. Relation between SLSC and AFNS

The SLSC model has HJM volatility function (41) which by Theorem 2 is dynamically

consistent with the SLSC curve shape (43) under the no-arbitrage condition, with state

dynamics

dx(t)=Φ(θ− x(t))dt+ψ(x(t))′dW(t),

where Φ,θ, and ψ(x) are given by (44), (45), and (40), respectively. For state-independent

volatilities, i.e., ψi j(x) =ψi j (or ωi j(x) =ωi j), i, j = 1,2,3, the locally deterministic state

variables, ¯̄x(t)= x4:7(t)= (x4(t), . . . , x7(t))′, are deterministic, with long-run levels ¯̄θ = θ4:7 =
(θ4, . . . ,θ7)′. Hence, if x4:7(t′) at some point t′ takes the value ¯̄θ, then it remains constant
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at this level. In this case, since the last four rows of (θ− x(t)) vanish, the stochastic state

variables x1:3 (t) have drift not depending on the deterministic state variables, so they

satisfy

dx1:3 (t)=Φ1:3(θ1:3 − x1:3 (t))dt+ψ′dWt ,

with Φ1:3 the upper left 3×3 submatrix of Φ. As in Christensen, Diebold, and Rudebusch

(2011), we translate to factors, x̃t, of zero mean under Q, i.e., x̃t ≡ x1:3 (t)−θQ1:3, where θQ1:3

is θ1:3 with λ1:3 = 0 imposed. Thus, using (45), we have

dx̃t =Φ1:3(θ̃− x̃t)dt+ψ′dWt ,

with

θ̃ = θ1:3 −θQ1:3 =


1
bλ1ψ11

1
a
(
λ2ψ22 + (λ2 +λ3)ψ23 +λ3ψ33

)
1
a
(
λ2ψ23 +λ3ψ33

)
 .

For t ≥ t′, all subsequent yield curves assume the shape

y(t,τ)= B̃1:3(τ)x1:3(t)+ B̃4:7(τ) ¯̄θ = B̃1:3(τ)x̃t + B̃(τ)

 θ
Q

1:3

¯̄θ

= B̃1:3(τ)x̃t − Ã(τ),

with the function Ã(τ) given by

−Ã(τ)= B̃(τ)
[

1
b2ψ

2
11

1
4a2 (4ω22 +7ω33 +10ω23)

1
4a2 (ω33 +2ω23)

− 1
4a2 (2ω22 +5ω33 +6ω23)

1
2a

ω33 − 1
4a

(3ω33 +2ω23) − 1
2b2ψ

2
11

]′
=ψ2

11

(
1
b3

1− e−bτ

τ

)
+ω22

(
1
a3

1− e−aτ

τ

)
+ω33

(
7

4a3
1− e−aτ

τ

)
+ω23

(
10
4a3

1− e−aτ

τ

)
+ω33

(
1

4a3
1− e−aτ

τ
− 1

4a2 e−aτ
)
+ω23

(
1

2a3
1− e−aτ

τ
− 1

2a2 e−aτ
)
+ω22

(
− 1

4a3
1− e−2aτ

τ

)
+ω33

(
− 5

8a3
1− e−2aτ

τ

)
+ω23

(
− 3

4a3
1− e−2aτ

τ

)
+ω33

(
τ

4a
e−2aτ

)
+ω33

(
3

4a2 e−2aτ− 3
4a2 e−aτ

)
+ω23

(
1

2a2 e−2aτ− 1
2a2 e−aτ

)
+ψ2

11

(
1

4b3
1− e−2bτ

τ

)
=ψ2

11

(
1
b3

1− e−bτ

τ
− 1

4b3
1− e−2bτ

τ

)
+ω22

(
1
a3

1− e−aτ

τ
− 1

4a3
1− e−2aτ

τ

)
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+ω33

(
2
a3

1− e−aτ

τ
− 5

8a3
1− e−2aτ

τ
− 1

a2 e−aτ+ 1
4a

τe−2aτ+ 3
4a2 e−2aτ

)
+ω23

(
3
a3

1− e−aτ

τ
− 1

a2 e−aτ− 3
4a3

1− e−2aτ

τ
+ 1

2a2 e−2aτ
)

.

This corresponds closely to the AFNS yield curve shape. More precisely, it corresponds to

the model that would result from carrying out the program from Footnote 6 of Christensen,

Diebold, and Rudebusch (2011), modifying the mean-reversion matrix KQ (their notation)

to include a sufficiently small ε> 0 in the upper left corner. In any case, the general SLSC

specification accommodates time-varying deterministic state variables, ¯̄x(t) ̸= ¯̄θ, and thus

yield curves outside the AFNS class.

Finally, for uncorrelated state variables, as in the independent-factor AFNS model,

i.e., ω22 =ψ2
22, ω33 =ψ2

33, ω23 = 0, the yield curve under the affine restriction ( ¯̄x(t) = ¯̄θ)

reduces to y(t,τ)= B̃1:3(τ)x̃t − Ã(τ) with

−Ã(τ)=ψ2
11

(
1
b3

1− e−bτ

τ
− 1

4b3
1− e−2bτ

τ

)
+ψ2

22

(
1
a3

1− e−aτ

τ
− 1

4a3
1− e−2aτ

τ

)
+ψ2

33

(
2
a3

1− e−aτ

τ
− 5

8a3
1− e−2aτ

τ
− 1

a2 e−aτ+ 1
4a

τe−2aτ+ 3
4a2 e−2aτ

)
.

A.11. Proof of Theorem D.1.1

The statement of Theorem D.1.1 is in Appendix D.2, on trading off hedging error bias and

variance.

Proof of Theorem D.1.1. Writing out the objective function from (D.2.2), we have

Et

[(
r∗t+1 −w′r t+1

)2
]
= Et

[(
r∗t+1

)2
]
+w′Et

(
r t+1r′t+1

)
w−2w′Et

(
r t+1r∗t+1

)
. (A.11.1)

The solution to the first order conditions with respect to w is the linear projection of r∗t+1

on r t+1,

w̃ = [
Et

(
r t+1r′t+1

)]−1
Et

(
r t+1r∗t+1

)
. (A.11.2)

The conditional expected returns of the hedging instruments (6) are

Et [r t+1]=−T B
(
µt+1|t −µt|t

)
(A.11.3)
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when Et [∆εt+1]= 0. Using (5) to rewrite (6) as

r t+1 =−T (
Bf t+1 +εt+1 −

(
yt −µ

))
, (A.11.4)

the conditional variance is given by

vart [r t+1]= T
(
BΣt+1|tB′+Ψ)

T . (A.11.5)

From (A.11.3) and (A.11.5), the second moment is

Et
[
r t+1r′t+1

]= vart [r t+1]+Et [r t+1]Et [r t+1]′

= T
(
BΣt+1|tB′+Ψ)

T +T B
(
µt+1|t −µt|t

)(
µt+1|t −µt|t

)′B′T

= T
[
B

(
Σt+1|t +

(
µt+1|t −µt|t

)(
µt+1|t −µt|t

)′)B′+Ψ
]
T . (A.11.6)

Similarly, the conditional expected target return is

Et
[
r∗t+1

]=− (τb)′∗
(
µt+1|t −µt|t

)
when Et

[
∆ε∗t+1

]= 0. Combining with (A.11.4), the conditional covariance is

covt
[
r t+1, r∗t+1

]= T BΣt+1|t (τb)∗ .

This implies that

Et
[
r t+1r∗t+1

]= covt
[
r t+1, r∗t+1

]+Et [r t+1]Et
[
r∗t+1

]
= T BΣt+1|t (τb)∗+T B

(
µt+1|t −µt|t

)(
µt+1|t −µt|t

)′ (τb)∗

= T B
(
Σt+1|t +

(
µt+1|t −µt|t

)(
µt+1|t −µt|t

)′) (τb)∗ . (A.11.7)

Inserting (A.11.6) and (A.11.7) in (A.11.2),

w̃ = T −1
[
B

(
Σt+1|t +

(
µt+1|t −µt|t

)(
µt+1|t −µt|t

)′)B′+Ψ
]−1

× B
(
Σt+1|t +

(
µt+1|t −µt|t

)(
µt+1|t −µt|t

)′) (τb)∗ .
(A.11.8)

From Woodbury’s lemma,

(A+USV )−1 = A−1 − A−1U
(
S−1 +V A−1U

)−1 V A−1
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for conformable matrices such that A, S, and S−1 +V A−1U are invertible. Thus,

(A+USV )−1US = A−1US− A−1U
(
S−1 +V A−1U

)−1 V A−1US

= A−1U
[
I − (

S−1 +V A−1U
)−1 V A−1U

]
S

= A−1U
(
S−1 +V A−1U

)−1 (
S−1 +V A−1U −V A−1U

)
S

= A−1U
(
S−1 +V A−1U

)−1
.

Application of this to (A.11.8) with A =Ψ, U = B, S = Σt+1|t +
(
µt+1|t −µt|t

)(
µt+1|t −µt|t

)′,
and V = B′ yields

w̃ = T −1
Ψ

−1B
[(
Σt+1|t +

(
µt+1|t −µt|t

)(
µt+1|t −µt|t

)′)−1 +B′Ψ−1B
]−1

(τb)∗ , (A.11.9)

which is (D.2.3).

Imposing that weights sum to unity is done using Lemma 1. The original problem

(D.2.2) is unconstrained. From (A.11.1), in the notation of (A.2.2), A = 2Et
[
r t+1r′t+1

]
,

g = 2Et
[
r t+1r∗t+1

]
, and D = 0, the latter due to relaxation of generalized duration matching.

By (A.2.4), the optimal portfolio under value matching is

w∗ = w̃+ (
1− w̃′ι

) Λtι

ι′Λtι

with w̃ from (A.11.9), and Λt = A−1 = [
Et

(
r t+1r′t+1

)]−1 /2. Inserting the expression (A.11.6)

for Et
(
r t+1r′t+1

)
produces Λt from the Theorem.

B. Target Asset

On the last trading day of each month, we select among all non-callable and non-flower

bonds the issues with maturities closest to two, five, and ten years. Figure B.1 shows the

evolution over time in the resulting number of Treasuries used in the construction of our

target asset.

Figure B.2 shows characteristics of the five-year coupon bonds. The upper left exhibit

shows the term to maturity for each selected bond in the time series. Since many bonds

are issued and mature close to the 15th of the month, many maturities are a half month

above or below five years. The upper right exhibit shows that the received coupon rates
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Figure B.1: Number of Treasuries
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This figure shows the number of Treasuries considered in the empirical application in each month from

January, 1983, through December, 2019.

decrease over the sample period.

The lower left exhibit shows the resulting durations of the selected five-year coupon

bonds, which increase from below 4.0 to above 4.9 due to the drop in rates. The target

portfolio further includes the two-year and ten-year coupon bonds, and the corresponding

coupon rates are shown in Figure B.3, along with the resulting target durations.

C. Basic and Generalized Duration Matching

Basic duration matching (line 2 of Table 2) requires only two instruments in order to

simultaneously match duration and ensure that hedge portfolio weights sum to one. The

target portfolio usually has duration between three and five years, so we use the three-

and five-year zero-coupon bonds for immunization, except that we replace the five-year

with the two-year zero-coupon bond when portfolio duration falls short of three years,

cf. Figure B.3. Next, to match generalized rather than basic durations (lines 3 through

26 of Table 2), loadings B and idiosyncratic variances Ψ are estimated in the relevant

model. Based on B, the k-vector (τb)∗ of target generalized durations is calculated by

interpolation (see Appendix A.3) and used in Theorem 1, together with estimated B and

Ψ, to construct the hedging weights. As discount functions, coupon rates, and target

durations (Figures B.2 and B.3) vary over time, so does (τb)∗ (see (A.3.2)), and therefore
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Figure B.2: Characteristics of five-year coupon bond
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This figure shows characteristics of the five-year coupon bonds used in the hedging target. The upper

exhibits show time to maturity (left) and coupon rate (right), and the lower left exhibit shows duration.

The characteristics were retrieved from the CRSP monthly Treasury files, each month selecting the coupon

bond with maturity closest to five years, given a liquidity condition. The lower right exhibit shows the

percentage excess of the price of the selected bond as implied by the FED yield curve above the CRSP

recorded price. The monthly data span the period from January, 1987, through December, 2019.

hedging weights. Further time-variation in weights is induced via estimated B and Ψ in

the rolling case.

D. Robustness Checks

D.1. Alternative Target Asset

In the main text, target asset prices are based on CRSP data. The issue arises that raw

CRSP prices (bid-ask midpoints plus accrued interest) might reflect frictions, microstruc-

ture noise, and other features not present in the FED yields used for model estimation.

For comparison, we also used the FED yields to set the prices of the bonds entering the

target asset, rather than using the CRSP recorded prices directly. That is, the contractual

terms are taken from CRSP, then priced using the eight zero-coupon yields on the last

trading day of the month and linear interpolation. This produces a monthly series that
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Figure B.3: Characteristics of portfolio target
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This figure shows the coupon rates of the two-year bonds (left exhibit) and the ten-year bonds (center
exhibit) in the target portfolio, which is the combination of the (2,5,10)-year coupon bonds in proportions
(−1,3,−1). The right exhibit shows the durations of the target portfolio. The characteristics were retrieved
from the CRSP monthly Treasury files, each month selecting the coupon bonds with maturities closest to
two, five, and ten years, given a liquidity condition. The monthly data span the period from January, 1987,
through December, 2019.

we use as an alternative target for one-month ahead hedging using the corresponding

eight zero-coupon bonds. The differences between raw CRSP prices and the FED valu-

ations fluctuate within a 1% band, shown in the lower right exhibit of Figure B.2. The

possibility exists that comparisons of methods depend on which are better at picking up

these discrepancies, likely stemming from different noise in CRSP prices and FED yields.

Results on hedging performance when pricing the target asset based on the FED yields,

to be compared with the results in Table 2, based on CRSP data for the target, are shown

in Table D.1. The performance of all models improves, compared to that based on raw

target returns, with the largest improvement seen in the SLSC models, which clearly

dominate all other approaches.

D.2. Trading Off Hedging Error Bias and Variance

Our focus has been on minimization of conditional hedging error variance (1). The

generalized duration matching approach immunizes factor exposure, and the portfolio in

Theorem 1 minimizes remaining hedging error variance (9). An alternative to (1) is the

minimization of conditional mean squared hedging error,

min
w
Et

[(
r∗t+1 −w′r t+1

)2
]

, (D.2.1)
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Table D.1: Hedging performance using FED yields to price target
The target is a portfolio of (2,5,10)-year coupon bonds in the proportions (−1,3,−1). The prices used to
compute the target return are set using the FED yields. Statistics in line 1 are for the unhedged target
return, and in the remainder of the table for hedging errors from each of the methods considered for
construction of the hedge portfolio with value matching from Theorem 1. The columns report the average
(or bias), standard deviation, root mean squared error, and mean absolute error. Results are in basis points
(0.01%) per month. An S indicates that a given method provides a statistically significant improvement over
traditional duration matching at the 5% level, and MCS that a method is included in the Model Confidence
Set at 5% (only conducted for the rolling strategies).

Model Bias Std. dev. RMSE MAE

1 Target movement 53.84 143.77 153.52 119.94
2 Duration matching 8.03 55.60 56.18 40.73

3 Unrestricted 3-factor
Full period

4.31 47.34 47.53 34.45

4 Unrestricted 3-factor
Rolling 4-year

4.03 46.62 46.79
(S,-)

34.13
(S,-)

5 Nelson-Siegel
Full period

3.91 48.13 48.29 34.86

6 Nelson-Siegel
Rolling 4-year

4.42 49.74 49.94
(S,-)

36.09
(S,-)

7 Unrestricted 4-factor
Full period

4.61 28.77 29.13 22.56

8 Unrestricted 4-factor
Rolling 4-year

3.21 36.34 36.48
(S,-)

24.38
(S,-)

9 Augmented NS
Full period

3.69 29.94 30.17 22.67

10 Augmented NS
Rolling 4-year

2.41 26.28 26.39
(S,-)

16.89
(S,-)

11 Unrestricted 1-factor, ỹ
Full period

6.07 55.18 55.52 39.27

12 Unrestricted 1-factor, ỹ
Rolling 4-year

6.38 51.90 52.29 37.16
(S,-)

13 ANS-extended Vasicek, ỹ
Full period

1.64 15.87 15.96 12.06

14 ANS-extended Vasicek, ỹ
Rolling 4-year

0.56 22.38 22.39
(S,-)

15.28
(S,-)

15 ANS-extended Vasicek, filter
Full period

2.06 62.62 62.65 45.06

16 ANS-extended Vasicek, filter
Rolling 4-year

2.21 56.64 56.68 40.08

17 ANS-extended Vasicek, restricted
Full period

1.79 56.59 56.62 40.54

18 ANS-extended Vasicek, restricted
Rolling 4-year

2.41 58.76 58.81 42.21

19 Unrestricted 3-factor, ỹ
Full period

2.87 45.53 45.62 32.55

20 Unrestricted 3-factor, ỹ
Rolling 4-year

2.76 50.01 50.09
(S,-)

34.78
(S,-)

21 SLSC, ỹ
Full period

0.72 8.71 8.74 6.88

22 SLSC, ỹ
Rolling 4-year

0.74 9.08 9.11
(S,MCS)

7.12
(S,MCS)

23 SLSC, filter
Full period

0.75 9.49 9.52 7.36

24 SLSC, filter
Rolling 4-year

0.86 8.31 8.36
(S,MCS)

6.40
(S,MCS)

25 SLSC, restricted
Full period

3.64 44.85 45.00 32.59

26 SLSC, restricted
Rolling 4-year

4.18 45.72 45.91
(S,-)

33.22
(S,-)
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thus trading off conditional hedging error bias and variance, corresponding to the RMSE

criterion from the performance evaluation. For zero conditional mean hedging errors, the

alternative objectives (1) and (D.2.1) coincide. From (8), under generalized duration match-

ing, w′T B = (τb)∗, the hedging errors are of conditional mean zero if the idiosyncratic

errors are, i.e., if Et
(
∆εt+1,τ

)= 0, for all τ, and Et
(
∆ε∗t+1

)= 0. As a further generalization,

we relax the generalized duration matching constraint, thus admitting some factor risk

in the hedged position. Minimizing the objective (D.2.1) without the generalized duration

matching constraint, the optimal strategy strikes a balance between minimizing factor

and idiosyncratic variance (by relaxation of the constraint), while trading off the total

against resulting bias (by using the RMSE criterion for the optimization).

The following theorem, supplementing Theorem 1, provides the optimal strategy under

the zero conditional mean idiosyncratic error condition. It involves the conditional factor

prediction, µt|t = Et ( f t), based on yield data through t, the one step ahead prediction,

µt+1|t = Et ( f t+1), and the conditional variance, Σt+1|t = vart ( f t+1), all from the Kalman

filter.44

Theorem D.2.1. The immunization portfolio w̃ that minimizes conditional mean squared

hedging error

min
w

Et

[(
r∗t+1 −w′r t+1

)2
]

(D.2.2)

under the assumptions Et
(
∆εt+1,τ

)= 0 and Et
(
∆ε∗t+1

)= 0 is given by

w̃ = T −1
Ψ

−1B
[(
Σt+1|t +

(
µt+1|t −µt|t

)(
µt+1|t −µt|t

)′)−1 +B′Ψ−1B
]−1

(τb)∗ . (D.2.3)

Further imposing value matching, w′ι= 1, changes the optimal portfolio to

w∗ = w̃+ (
1− w̃′ι

) Λtι

ι′Λtι
, (D.2.4)

with w̃ from (D.2.3), and

Λt = T −1
[
B

(
Σt+1|t +

(
µt+1|t −µt|t

)(
µt+1|t −µt|t

)′)B′+Ψ
]−1

T −1 .

In general, if factors are predictable, then this can be exploited in hedging, as shown

in Theorem D.2.1. Predictable factors arise under dynamic consistency, leading to the
44The proof is in Appendix A.11.
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filtering approach from Section 4.2. In the special cases of either (i) no factor exposure

in hedging errors due to generalized duration matching, or (ii) excessive uncertainty

about future factors (Σt+1|t tending to infinity, so no predictability after all), the prediction

components drop out, i.e., the strategy (D.2.3) reduces to (11), and (D.2.4) to (12).

The performance of the hedging approach from Theorem D.2.1 is documented in

Table D.2. All the previous (third stage) specifications estimated using the Kalman filter

are considered. Throughout, performance is poorer in Table D.2 than in the corresponding

cases in Table 2. This includes performance according to the RMSE criterion, although

the objective (D.2.2) is targeting this. Interestingly, within Table D.2, there is no penalty

to imposing the affine restriction. Still, the evidence is that it pays off to remove factor

exposure, i.e., perform generalized duration matching, and target remaining idiosyncratic

variance, Table 2, rather than trading this off against average hedging error. Parsimony

is again the likely reason. The strategies from Theorem 1 involve only estimated B and

Ψ, whereas those from Theorem D.2.1 involve all model parameters, via the output from

the Kalman filter.

E. Statistical Comparison of Hedging Performance

For the analysis in Section 6.2, the loss differentials from the ith approach relative to the

benchmark (denoted by b) are

di,t =
(
r∗t −w′

i,t−1r t

)2 −
(
r∗t −w′

b,t−1r t

)2

in the MSE case, with | · | replacing (·)2 for MAE. Following Diebold and Mariano (1995)

and Giacomini and White (2006), the test of equal hedging performance is conducted

using Si,b = T1/2d̄V̂−1/2, where d̄ = T−1 ∑T
t=1 di,t, and V̂ is a HAC estimate of the long-run

variance, using the data-dependent bandwidth selection of Andrews (1991) based on an

AR(1) approximation and a Bartlett kernel.

For the Model Confidence Set (MCS) procedure of Hansen, Lunde, and Nason (2011),

denote by M0 the set of all competing approaches. The procedure is conducted recursively

based on an equivalence test for arbitrary M ⊆ M0 and an elimination rule which identifies
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and removes an approach from M in case the equivalence test rejects. The equivalence

test is based on pairwise comparisons using the t-statistic Si, j, for all i, j ∈ M, and the

range statistic TM = maxi, j∈M {|Si, j|}. If the test rejects, the kth approach is eliminated

from M, where k = argmaxi∈M sup j∈M{Si, j}. Following Hansen, Lunde, and Nason (2011),

we implement the procedure using a block bootstrap and 104 replications.

Table D.2: Hedging performance under RMSE objective
The target is a portfolio of (2,5,10)-year coupon bonds in the proportions (−1,3,−1). The first line shows
statistics for the unhedged target return, and the remainder of the table for hedging errors from each of
the methods considered for construction of the hedge portfolio under the root mean squared error (RMSE)
objective with value matching from Theorem D.1.1. The columns report the average (or bias), standard
deviation, RMSE, and mean absolute error. Results are in basis points (0.01%) per month. An S indicates
that a given method provides a statistically significant improvement over traditional duration matching at
the 5% level.

Model Bias Std. dev. RMSE MAE

Target Movement 49.20 149.44 157.33 122.63
Duration matching 2.84 65.90 65.96 48.72

ANS-extended Vasicek, filter
Full period

3.01 72.98 73.05 53.43

ANS-extended Vasicek, filter
Rolling 4-year

2.55 82.78 82.82 59.73

ANS-extended Vasicek, restricted
Full period

2.59 65.79 65.84 48.32

ANS-extended Vasicek, restricted
Rolling 4-year

1.80 83.32 83.34 60.49

SLSC, filter
Full period

-0.32 59.66 59.66 43.08

SLSC, filter
Rolling 4-year

-0.49 58.49 58.50
(S)

41.88

SLSC, restricted
Full period

-0.03 59.63 59.63 43.10

SLSC, restricted
Rolling 4-year

0.23 60.75 60.75 43.82

F. Estimation

F.1. Factor models

The implementation of each strategy considered in Table 2 involves some choices, and

except duration matching, each includes an estimation step. First, the classical factor

analysis is applied to (5). Maximization of the factor analysis log likelihood function

over the full period produces the idiosyncratic standard deviations
√
Ψi ·1000 shown in
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lines 1, 2, 3, and 5 of Table 3, along with the maximized log-likelihood value, number of

parameters, and standard information criteria, AIC and BIC. For the model with k = 3

factors, the loadings Bi j = B j(τi) are given in percent in Table F.1, and a visualization

of the three loading functions B j(·), j = 1, 2, 3 is given in the left exhibit of Figure F.1.

The level, slope, and curvature pattern highlighted by Litterman and Scheinkman (1991)

is evident. In the reported rotation, factor j explains the jth highest proportion of total

variation. Specifically, with B2
i j/ϑ

2
i the proportion of the total variance ϑ2

i of yτi from

Table 1 explained by factor j, and 1
m

∑m
i=1 B2

i j/ϑ
2
i the average proportion across maturities,

the latter is jth highest for factor j. To avoid Heywood cases (factors explaining more

than total variation for a given maturity, i.e., communality
∑k

j=1 B2
i j/ϑ

2
i exceeding unity),

a lower bound of 10−4
ϑ2

i is imposed on Ψi, for each maturity τi, in all models.

Table F.1: Loading functions in unrestricted three-factor model
This table shows the loading functions B j(τ), j = 1, 2, 3 given by the columns (in percent) of the loading
matrix B in the unrestricted three-factor model, and displayed graphically in Figure F.1, left exhibit.

τ B1(τ) B2(τ) B3(τ)

3 mos. 2.84 0.53 -0.14
6 mos. 2.93 0.49 -0.07

12 mos. 3.00 0.37 0.02
2 yrs. 3.10 0.12 0.10
3 yrs. 3.06 -0.05 0.09
5 yrs. 2.94 -0.31 0.01
7 yrs. 2.84 -0.45 -0.06

10 yrs. 2.70 -0.56 -0.14

For the restricted models, corresponding to parsimonious yield curve shape, lines 4

and 6 of Table 3, the factor analysis log likelihood function is maximized subject to

the restriction that B takes NS or ANS form, depending only on a, and with k = 3 and

4, respectively. Thus, the parameters estimated are (µ,a,Σ,Ψ). Although Σ does not

enter the hedging weights, cf. Section 3.1, estimation of the restricted models allows for

correlated factors. For NS, from the estimated Σ (not reported), the correlation between

the level and slope factors is −0.08, between level and curvature 0.61, and between slope

and curvature 0.49.

For the models for ỹ, lines 7-8 and 11-12 of Table 3, yields are replaced by slope-
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Figure F.1: Loading functions in three-factor models
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The left exhibit shows the loadings B j(τ), j = 1, 2, 3, in the unrestricted three-factor model, as functions of
maturity, τ. Numerical values (in percent) are given in Table F.1. The right exhibit shows the NS loading
functions B̃ j(τ), j = 1,2,3, from (15).

adjusted yield changes in the factor analysis log likelihood function. The second-stage

models (Section 4.1), i.e., lines 8 and 12 of Table 3, are restricted according to (49).

The remaining models in Table 3, lines 9-10 and 13-14, relate to third-stage Kalman

filtering (Section 4.2). In the estimations, rather than the Euler discretization of the

transition equation (18) (see (52) and (54)), we use the exact discretization derived in

Appendix F.2, and a low-storage square-root filter (see Appendix F.3).

F.2. Exact state transition for dynamically consistent specifications

Here, we derive the exact discrete-time state process for the third-stage approach from

Section 4.2. We focus on the case of affine drift and state-independent volatility in (18),

i.e.,

dx(t)=Φ(θ− x(t))dt+ψ′dW(t).

To solve the SDE, recall that for the ansatz eΦt we have

d
(
eΦtx (t)

)= eΦtΦx (t)dt+eΦtdx (t)= eΦtΦθdt+eΦtψ′dWt .

Integrating from t to t+∆ produces

x(t+∆)= e−Φ∆x(t)+
∫ ∆

0
e−Φudu ·Φθ+

∫ ∆

0
e−Φuψ′dW(t+u) . (F.2.1)
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Define the function H (u)= e−Φu, which has H′ (u)=−H (u)Φ. Then
∫

H (u)du =−H (u)Φ−1,

so
∫ ∆

0 e−Φudu ·Φ= (I −H(∆)). It follows that the exact discrete-time state process is

x(t+∆)= H (∆) x(t)+ (I −H (∆))θ+v(t+∆) , (F.2.2)

with v(t+∆)= ∫ ∆
0 H (u)ψ′dW(t+u). For data with time increment ∆ between observations,

the terms v(t+∆) are based on increments to the driving Wiener processes over non-

overlapping intervals, so they are serially independent innovations. Further, by linearity

and the Itô isometry, v(t+∆)∼ Nk (0,Ω(∆)), with Ω(∆)= ∫ ∆
0 H (u)ψ′ψH (u)′du.

The SLSC model has HJM volatility function (41), which by Theorem 2 is dynamically

consistent with the SLSC curve shape (43) under the no-arbitrage condition, with state

dynamics where Φ, θ, and ψ are given by (44), (45), and (40), respectively. To calculate

H (u) forΦ from (44), let d (Φ) be the diagonal ofΦ, and Φ̃=Φ−d (Φ) the matrix containing

the off-diagonal elements. Then Φ̃ is nilpotent of degree four, and the only non-zero entry

in Φ̃3 is [Φ̃3]2,5 =−a2. By the rules of matrix exponentials, we find that

H (u)= e−Φu = e−d(Φ)ue−Φ̃u = e−d(Φ)u (
I − Φ̃u+ Φ̃2u2/2− Φ̃3u3/6

)

=



e−bu 0 0 0 0 0 0

0 e−au aue−au 0 (a2u3/6−au2/2+u)e−2au −au2e−2au/2 0

0 0 e−au 0 (au2/2−u)e−2au −ue−2au 0

0 0 0 e−2au −au2e−2au 2ue−2au 0

0 0 0 0 e−2au 0 0

0 0 0 0 −aue−2au e−2au 0

0 0 0 0 0 0 e−2bu



.

This is used in (F.2.2). For Ω =Ω(∆), the innovation variance, note that the lower left

4×3 submatrix of H(u) is zero. For ψ′ from (40), the lower 4×4 submatrix of ψ′ is zero,

as well. It follows that the last four rows of H(u)ψ′ are zero, and therefore only the

upper left 3×3 submatrix Ω1:3(∆) of Ω(∆) is non-zero. This corresponds to the stochastic

state variables. Thus, the exact state transition in the SLSC model, which we use in our

empirical work, in place of the Euler discretization (52), is given by (F.2.2), with this Ω(∆)

as the variance-covariance matrix of the discrete-time transition shocks, and H(·) given
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above.

As an example, in case of uncorrelated state variables (slope and curvature), ψ23 =
ψ32 = 0,

Ω1:3 (∆) =
∫ ∆

0
H1:3 (u)diag

(
ψ2

11,ψ2
22,ψ2

33
)
H1:3 (u)′du

=
∫ ∆

0


ψ2

11e−2bu 0 0

0 ψ2
22e−2au +ψ2

33a2u2e−2au ψ2
33aue−2au

0 ψ2
33aue−2au ψ2

33e−2au

du

=


ψ2

11
1−e−2b∆

2b∆ 0 0

0 ψ2
22

1−e−2a∆

2a∆ +ψ2
33

[
1−e−2a∆

2a∆ − e−2a∆−a∆e−2a∆
]

/2 ψ2
33

[
1−e−2a∆

2a∆ − e−2a∆
]

/2

0 ψ2
33

[
1−e−2a∆

2a∆ − e−2a∆
]

/2 ψ2
33

1−e−2a∆

2a∆

∆

=


ψ2

11B7 (∆) 0 0

0 ψ2
22B4 (∆)+ψ2

33 [B4 (∆) /2−B5 (∆) (1/∆+a)] ψ2
33(B4 (∆) /2−B5 (∆) /∆)

0 ψ2
33(B4 (∆) /2−B5 (∆) /∆) ψ2

33B4 (∆)

∆ ,

with H1:3 (u) the upper left 3×3 submatrix of H(u). The remaining entries of Ω(∆) are

zero. Further, in (F.2.2), H(·) is unchanged, whereas long-run means simplify, because by

(42) we have ω23 = 0, i.e.,

θ =



1
b2ψ

2
11 + 1

bλ1ψ11

1
4a2 (4ω22 +7ω33)+ 1

a
(
λ2ψ22 +λ3ψ33

)
1

4a2ω33 + 1
aλ3ψ33

− 1
4a2 (2ω22 +5ω33)

1
2aω33

− 3
4aω33

− 1
2b2ψ

2
11



(F.2.3)

replaces (45) in the uncorrelated state variable case.

The exact discrete-time state process for the ANS-extended Vasicek model, which we

use in place of the Euler discretization (54) in our empirical work, is obtained by writing

ψ22 =ψ2, λ2 =λ, and setting all of x1, x5:7, λ1, λ3, b, and the remaining coefficients in the

ψ-matrix equal to zero. This leaves a transition equation of the same form as (F.2.2), but
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with

θ =
(

0
ψ2

2
a2 + λψ2

a 0 − ψ2
2

2a2

)′
,

H (u)=



0 0 0 0

0 e−au aue−au 0

0 0 e−au 0

0 0 0 e−2au


,

and the only non-zero element of the innovation variance matrix Ω (∆) that corresponding

to slope, Ω22 (∆)=ψ2
2(1−e−2a∆) / (2a).

F.3. A low-storage square-root filter

For the third-stage approach from Section 4.2, we base the Kalman filter recursions on

the exact discrete-time transition equation (derived in Appendix F.2), using the Koopman,

Shephard, and Doornik (1999) low storage algorithm, with the updating step inserted

in the prediction step to save on calculations, and modified to the square-root case. The

modified recursions generate a sequence of yield vector innovations or prediction errors

ζt = yt −E(yt|Yt−1), with Yt−1 = (y1, . . . , yt−1), and associated prediction error variances

Γt = var(ζt|Yt−1). The parameters are estimated by maximizing the log-likelihood based

on ζt i.i.d. N(0,Γt). The third-stage specifications can be written in the state space form

yt
m×1

= c
m×1

+ B
m×k

xt
k×1

+ εt
m×1

, εt ∼ N (0,Ψ) ,

xt = Φ0
k×1

+Φ1
k×k

xt−1 + vt
k×1

, vt ∼ N (0,Ω) .

For example, corresponding to (F.2.2), we have Φ1 = H(1), Φ0 = (I − H(1))θ, and Ω =
Ω(1). The optimal portfolio from Theorem 1 depends on B and Ψ. The observed yield

data are (y1, . . . , yT), and we write Yt = (y1, . . . , yt) for observations up to time t. Denote

the filtered state at t by µt|t = E (xt|Yt), and the one step ahead prediction by µt+1|t =
E (xt+1|Yt). The associated conditional variance-covariance matrices are Σt|t = var(xt|Yt)

and Σt+1|t = var(xt+1|Yt). We start with an initial condition for the first factor vector given

by x1|0 ∼ N(µ1|0,Σ1|0), where µ1|0 = x̄ and Σ1|0 solves Σ1|0 =Φ1Σ1|0Φ′
1 +Ω. The innovation
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in the observation yt is the prediction error ζt = yt−
(
c+Bµt|t−1

)
, with variance-covariance

matrix Γt = BΣt|t−1B′+Ψ. The Kalman filter prediction step is

µt+1|t =Φ0 +Φ1µt|t ,

Σt+1|t =Φ1Σt|tΦ′
1 +Ω ,

and the update step is

µt|t =µt|t−1 +Σt|t−1B′Γ−1
t ζt ,

Σt|t =Σt|t−1 −Σt|t−1B′Γ−1
t BΣt|t−1 .

The low storage filter is implemented by substituting the update step in the prediction

step, and so iterates only on µt+1|t and Σt+1|t in

µt+1|t =Φ0 +Φ1µt|t−1 +K tζt , (F.3.1)

Σt+1|t =Φ1Σt|t−1Φ1 +Ω−K tΓtK ′
t , (F.3.2)

using the Kalman gain K t =Φ1Σt|t−1B′Γ−1
t . The contribution to log-likelihood from each

new observation is

log p
(
ytt |Yt−1

)=−m
2

log(2π)− 1
2

log |Γt|− 1
2
ζ′tΓ

−1
t ζt ,

and the prediction-error decomposition of the log-likelihood function is therefore

logL =
T∑

t=1
log p

(
ytt |Yt−1

)=−mT
2

log(2π)− 1
2

T∑
t=1

(
log |Γt|+ζ′tΓ−1

t ζt
)
. (F.3.3)

This is constructed recursively, with only µt|t−1 and Σt|t−1 stored from the most recent

period, calculating ζt, Γt, and K t from these and the new observation yt, and then µt+1|t

and Σt+1|t by (F.3.1) and (F.3.2). By minimizing storage need and circumventing the

update step, the algorithm speeds up the filter, which must be run many times in the

iterative maximization of (F.3.3) over parameters.

In the iterations towards the maximum of (F.3.3), the matrix Σt+1|t may fail to be

positive semi-definite. We solve this problem using a square-root filter, i.e., running the

low-storage filter for St+1|t satisfying Σt+1|t = St+1|tS′
t+1|t instead, as done by Carraro

(1988) for the original Kalman filter. To this end, we rewrite the prediction step (F.3.2) in
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terms of St+1|t. First, write

Σt+1|t =Φ1Σt|t−1Φ1 +Ω−K tBΣt|t−1Φ
′
1

= (Φ1 −K tB)Σt|t−1Φ1 +Ω

= (Φ1 −K tB)Σt|t−1 (Φ1 −K tB)′+ (Φ1 −K tB)Σt|t−1B′K ′
t +Ω

= (Φ1 −K tB)Σt|t−1 (Φ1 −K tB)′+K tΓ
−1
t K ′

t −K t (Γt −Ψ)K ′
t +Ω

= (Φ1 −K tB)Σt|t−1 (Φ1 −K tB)′+K tΨK ′
t +Ω .

Then, defining Ψ= NN ′ and Ω= MM′, write

Σt+1|t =
[
(Φ1 −K tB)St|t−1,K tN, M

]


S′
t|t−1 (Φ1 −K tB)′

NK ′
t

M

≡ S̃t+1|tS̃′
t+1|t ,

where S̃t+1|t is a k×(2k+m) matrix. To construct a k×k matrix that has the same product

with its own transpose as S̃t+1|t, we use the QR decomposition, expressing a rectangular

matrix as the product of an orthogonal matrix Q and an upper triangular matrix R. Thus,

S̃′
t+1|t =Qt+1|tRt+1|t ,

so that

Σt+1|t = S̃t+1|tS̃′
t+1|t = R′

t+1|tQt+1|tQt+1|tRt+1|t = R′
t+1|tRt+1|t .

Therefore, set St+1|t = R′
t+1|t, which is a lower triangular square matrix. Instead of Σt+1|t,

the filter uses St+1|t, and the resulting Σt+1|t is positive semi-definite by construction.

G. Additional Empirical Results

This appendix provides some additional empirical results supplementing those in Sec-

tion 6.

49



Figure G.1: Time series evolution of estimated a in Nelson-Siegel

1987 1993 1998 2004 2009 2015

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

This figure shows the rolling four-year NS estimates of a, with 95% confidence bands in red. The solid
horizontal line indicates the full period NS estimate, with 95% confidence band in red, and the dashed
black line the Diebold, Ji, and Li (2006) value.

Figure G.2: Loading functions in four-factor models
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The left exhibit shows the loadings B j(τ), j = 1,2,3,4, in the unrestricted four factor model, as functions of
maturity, τ. The right exhibit shows the ANS loading functions B̃ j(τ), j = 1,2,3,4, from (32).

Table G.1: Loadings in unrestricted single-factor model for ỹ
This table shows the loadings B(τ) (in percent) as function of maturity τ in the unrestricted single-factor
model for slope-adjusted yield changes ỹ.

τ 3 mns. 6 mns. 12 mns. 2 yrs. 3 yrs. 5 yrs. 7 yrs. 10 yrs.

B(τ) 0.062 0.081 0.097 0.124 0.136 0.144 0.141 0.132

50


	1 Introduction
	2 The Hedging Framework
	3 Parsimonious Curve Shape and Dynamic Consistency 
	3.1 Flexible parsimonious forms
	3.2 Intra-period yield curve movements and dynamic consistency
	3.3 A stochastic level, slope and curvature model

	4 Empirical Strategy
	4.1 Reduced factor model for slope-adjusted yield changes
	4.2 Filtering along the dynamically consistent curve family

	5 Data
	6 Empirical Results
	6.1 Hedging Performance
	6.2 Statistical comparison of hedging performance
	6.3 Statistical Fit
	6.4 The No-Arbitrage Condition

	7 Conclusion
	References
	A Proofs
	A.1 Proof of (3)-(4) as an exact relation
	A.2 Proof of Theorem 1
	A.3 Interpolation and hedging for general payment streams
	A.4 The NS yield curve representation
	A.5 Proofs of Proposition 1, Corollary [corNScons]A.5.1, and (24)
	A.6 Fixed term to maturity yields
	A.7 Proofs of Proposition [prop2new]A.7.1 and Corollaries 1, [cor1new app]A.7.1, and 2 
	A.8 Affine models
	A.9 Proofs of Propositions 2, [Proposition3 app]A.9.1, [theorem 3b]A.9.2, and Theorem 2
	A.10 Relation between SLSC and AFNS
	A.11 Proof of Theorem [thm: fully expl. dyn.]D.1.1

	B Target Asset
	C Basic and Generalized Duration Matching
	D Robustness Checks
	D.1 Alternative Target Asset
	D.2 Trading Off Hedging Error Bias and Variance

	E Statistical Comparison of Hedging Performance
	F Estimation
	F.1 Factor models
	F.2 Exact state transition for dynamically consistent specifications
	F.3 A low-storage square-root filter

	G Additional Empirical Results

