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The role of jumps in anticipating volatility 

Abstract 

This paper investigates whether jumps predict future volatility. The results for S&P 500 

index show that dividing volatility into jumps and continuous variation improves volatility 

forecasting. And this improvement becomes more prominent when the volatility 

decomposition is associated with more reliable jump tests, longer volatility lags, or jump sign 

disentanglement. Besides, our results show that although jumps only have limited in-sample, 

the models including jumps lead to significantly better out-of-sample. Our results are robust 

when accounting for drift bias, intraday volatility pattern, and ultra-high frequency sampling. 

Keywords: high frequency; volatility forecasting; drift, jumps 
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1 Introduction 

Forecasting price volatility allows us to know how future prices vary, which is key 

to the financial industry for asset pricing (Black and Scholes, 1973), derivative pricing 

(Duffie et al., 2000), asset allocation (Merton, 1969), and risk management 

(Christoffersen and Diebold, 2000).  

Literature has extensively studied the predictive usefulness of dividing past 

volatility into jumps and continuous variation, motivated by the fact that the return 

volatility consists of a continuous volatility component, which accommodates the 

smooth price dynamic, and of a jump component, which takes care of the rough price 

movements. However, whether this decomposition helps predict future volatility is still 

under debate. Some researchers show that dividing volatility into jumps and continuous 

variation does not contribute to explaining future volatility or forecasting precision 

(Andersen et al., 2007a, Santos and Ziegelmann, 2014, Sévi, 2014, Prokopczuk et al., 

2016, Caporin, 2022). Whereas others argue that this decomposition explains future 

volatility or improves volatility forecasting accuracy (Corsi et al., 2010, Patton and 

Sheppard, 2015, Duong and Swanson, 2015, Clements and Liao, 2017, Ma et al., 2018). 

To provide the literature controversy with more evidence, we revisit the impact of 

volatility decomposition on future volatility. Our results for the S&P 500 index show 

that the volatility decomposition leads to significantly better out-of-sample forecasts. 

Besides, our out-of-sample analysis indicates that including jumps can significantly 

increase models’ forecasting precision, although we find only limited in-sample 

evidence of jumps. 

1.1 The jump tests 

The nonparametric class of tests is widely applied as the methods for disentangling 

jumps in the above jump literature as its statistic inference relaxes the distribution 
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assumption and more fits into the empirical distribution of the sample. The above 

literature centres on using the nonparametric method by Barndorff-Nielsen and 

Shephard (2006) (BNS) 2 . However, recent simulation studies show that some 

alternative jump tests may be more reliable in detecting jumps. The simulation analysis 

by Maneesoonthorn et al. (2020) shows that for different sampling frequencies, the Med 

and Min tests by Andersen et al. (2012) have an empirical size that is closer to the 

nominal value than the BNS test. Maneesoonthorn et al. (2020) also show that the test 

by Jiang and Oomen (2008) (JO) has better size and power performance than the BNS 

test. Further, Dumitru and Urga (2012) find that the test by Andersen et al. (2007b) and 

Lee and Mykland (2008) (ABD-LM) has a more accurate size and stronger power in 

detecting jumps, especially in the presence of microstructure noise, which is an 

indispensable fact in high-frequency prices. Moreover, Dumitru and Urga (2012) show 

that the power of the ASJ test by Aït-Sahalia and Jacod (2009) (ASJ)3 is less sensitive 

to sample frequencies than the BNS test. 

Motivated by the superiority of these alternative jump tests in detecting jumps, we 

apply them for decomposing volatility into jumps and continuous variation, in addition 

to the BNS test. Our results of the S&P 500 index show that the predictive superiority 

of decomposing volatility is mainly attributed to the use of these alternative jump tests. 

In contrast, decomposing volatility by the BNS test fails to provide significantly better 

forecasts.  

 
2 Caporin (2022) uses the alternative jump test by Andersen et al. (2007b). But their results are largely based on a 

group of different modified BNS test. Besides, the test by Corsi et al. (2010) is very similar to the BNS test, with the 

downward bias corrected. But this test is subject to a pre-specified threshold, which may be delicate when (latent) 

volatility is time varying. We consider the later Med and Min test as they are free from a pre-specified threshold. 
3 We use the power variation version of the ASJ test as opposed to the threshold version, since the threshold ASJ 

test has a very limited power to detect jumps (see simulation results in Maneesoonthorn et al., 2020 and Dumitru 

and Urga, 2012). 
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1.2 The longer lagged jumps 

A large volume of papers decomposes daily lagged volatility only thus ignoring the 

information on more historical (or longer lagged) jumps (Corsi et al., 2010, Sévi, 2014, 

Patton and Sheppard, 2015, Clements and Liao, 2017, Ma et al., 2018, Prokopczuk et 

al., 2016). Are longer-lagged jumps important to volatility forecasting? The following 

paragraph shows our view on this question. 

Daily lagged jumps give a timely measure of agents’ perceptions of jump risk. 

However, it is noteworthy that the daily lagged jumps can also be very noisy since 

jumps are rare events. As discussed in Tauchen and Zhou (2011), jumps at longer lags 

may be less noisy. This is because longer lagged jumps estimate the average jumps 

within a longer previous window. Of course, longer-lagged jumps are less timely. To 

balance the trade-off between noisiness and timeliness, we suggest not omitting the 

weekly and monthly lagged jumps for forecasting future volatility. The empirical 

results for the S&P 500 index support our rationale: the decomposition of weekly and 

monthly-lagged volatility into jumps and continuous variations provides significantly 

better out-of-sample forecasts.  

1.3 Separating jump signs 

There seems a debate on the forecasting value of separating jump signs. Some 

researchers show that separating jump signs benefits volatility forecasting (Patton and 

Sheppard, 2015, Duong and Swanson, 2015). While others find that separating jump 

signs only provides limited forecasting value (Sévi, 2014, Caporin, 2022, Prokopczuk 

et al., 2016). We contribute to the literature by providing more evidence on this debate. 

Our results show that separating jump signs benefits predicting volatility, especially for 

the long-term horizons. Forecasting long-term volatility has some important 

implications, for example, it benefits option pricing (Ederington and Guan, 2010). 
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1.4 The jump test bias 

Literature shows that the jump tests may be largely biased due to the microstructure 

noise contamination in the high-frequency sampling. For alleviating this bias, we use 

the noise-robust version of the jump tests. Moreover, we also consider other versions 

which immune to the distortion by drifts, intraday volatility pattern, and volatility bursts.  

Adjusting the jump tests for alleviating the drift bias is important. For the finite 

sample, the drift component may harm the jump tests’ power (Laurent and Shi, 2020). 

And the loss of power of the jump tests implies a large underestimation of the jump 

component (or overestimation of the continuous component). To the best of our 

knowledge, no paper has associated drift bias with volatility forecasting. We find that 

accounting for drift bias does not influence our above main findings.  

Modifying the jump tests for the intraday volatility pattern is essential, as the jump 

tests may generate spurious jumps because of the U-shape pattern of intraday volatility. 

While linking this pattern with volatility forecasting remains a new research question 

in the literature. Only very recently, Caporin (2022) recently find modifying the jump 

tests for the intraday volatility pattern has a minor influence on their findings. Our 

findings are consistent with theirs: accounting for the intraday volatility pattern does 

not qualitatively change our results. 

Our main results are based on the 5-minute frequency sample. However, 

Christensen et al. (2014) argue that the jump tests generally overestimate the jumps for 

the 5-minute sampling due to the volatility burst distortions. To alleviate this bias, they 

suggest testing jumps at ultra-high frequency. We check our results by increasing the 

frequency to 10-second, based on the volatility estimates and the jump tests adjusted to 
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this frequency. The results for the ultra-high frequency are in line with what we find for 

the 5-minute frequency. 

The remainder of the paper is organized as follows. Section 2 describes various 

jump tests for dividing volatility into jumps and continuous variation. Section 3 

describes the data. Section 4 reports the empirical results for both in-sample and out-

of-sample. Section 4 is the robustness checks. Section 5 concludes. 
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2 The jump tests for decomposing volatility 

The volatility decomposition builds on the general theory that the logarithmic prices 

process follows a jump& drift-diffusion process defined by: 

𝑑𝑝𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 + 𝜅𝑡𝑑𝑁𝑡, 1 ≤ 𝑡 ≤ 𝑇, 

where 𝜇𝑡 is the drift process, 𝜎𝑡 is the càdlàg stochastic (continuous) volatility process, 

𝑊𝑡 is a standard Brownian motion, 𝜅𝑡 represents the random jump size at time t, and 

the counting process 𝑁𝑡 denotes the jumps amounts up to time 𝑡.  

Given by the above difference equation, the price variation (𝑉) (squared volatility) 

of log prices 𝑝𝑡 over one trading day 𝑡 can be decomposed into drift, continuous, and 

jump variation: 

𝑉𝑡 = 𝐷𝑡 + 𝐶𝑡 +  𝐽𝑡 , 

where the 𝐷𝑡 = ∫ 𝑎𝑠
2𝑑𝑠

𝑡

0
 denotes the drift variation (D), 𝐶𝑡 = ∫ 𝜎𝑡𝑠

2𝑡

0
 denotes the 

continuous variation (𝐶) and 𝐽𝑡 = ∑ 𝜅𝑠
2

1<𝑠≤𝑡 stands for the jump variation (𝐽). The drift 

variation is generally ignorable in the literature thus price variation equals the sum of 

jump and continuous variations, 𝑉𝑡 = 𝐶𝑡 +  𝐽𝑡 . As in Shephard et al. (2008), jump 

variation can be further decomposed into positive jumps (𝐽𝑡
+ = ∑ 𝜅𝑠

2
1<𝑠≤𝑡 𝐼(𝜅𝑠 > 0)) 

and negative jumps (𝐽𝑡
− = ∑ 𝜅𝑠

2
1<𝑠≤𝑡 𝐼(𝜅𝑠 < 0)), with signed jumps defined as their 

difference (𝐽𝑡
∆ = 𝐽𝑡

+ − 𝐽𝑡
−).  

In practice, all components (including 𝑉, 𝐶, and different 𝐽s) need to estimate. For 

the full variation 𝑉, we use a natural Realized Variance (RV) estimator by Andersen et 

al. (2000). This RV is defined as follows. Assume log prices 𝑝𝑡𝑖
 are observed for 𝑖 =

1, … , 𝑀 at day 𝑡, with returns 𝑟𝑡𝑖
= 𝑝𝑡𝑖

− 𝑝𝑡𝑖−1
, 𝑅𝑉𝑡 = ∑ 𝑟𝑡𝑖

2𝑀
𝑖=1 . For the observed prices, 

we sample the prices at the conventional 5-minute frequency. 
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For estimating the continuous variation and (signed) jumps, we use the BNS test 

and a range of alternative jump tests. These tests have a variety of forms and 

transformations. We only choose the one with the best performance or the most widely 

applied in the literature. we use the ratio version of the BNS test. This version is 

identical to the one used by Andersen et al. (2007a) and has been shown most powerful 

based on the simulation analysis by Huang and Tauchen (2005). Besides, we also 

consider a sequential version of the BNS test by Andersen et al. (2010) (we term this 

test the s-BNS test), motivated by the fact the s-BNS test locates jumps more precisely 

(e.g., at the intraday level) than other versions (normally at daily level).  

As the Med and Min tests have a similar argument as the BNS test, we again apply 

the ratio test version, which has been widely applied in the literature (Andersen et al., 

2012, Maneesoonthorn et al., 2020, Dumitru and Urga, 2012). We also use the ratio 

form for the JO test as the simulation study in Jiang and Oomen (2008) indicates the 

ratio form is superior to other forms, in terms of detection power. Following Dumitru 

and Urga (2012), we use the ABD and LM tests jointly (ABD-LM) due to their similar 

structure and performance improvement in size and power.  

The market microstructure noise may bias the reliability of these jump tests, for the 

high-frequency sampling. We use the BNS test that incorporates the staggered returns 

to alleviate the bias due to microstructure noise contamination. This is the same noise-

robust BNS test used in Andersen et al. (2007a) and has been proven to be noise robust 

replying to the simulation study of Huang and Tauchen (2005). For the noise reduction, 

we also apply the staggered returns to the Bi-power type spot volatility estimator in the 

ABD-LM test.  

The use of the truncation technique in the Med and Min tests makes it trivial to gain 

robustness to microstructure noise from the staggered approach (Andersen et al., 2012), 
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especially for 5-minute frequency. Therefore, we discard using the staggered return 

method for these two tests. Also, we do not use the noise-adjusted version of the ASJ 

and JO tests, since the noise-robust version of these two tests is specially designed for 

the ultra-high frequency sampling and thus is subject to power loss for the 5-minute 

frequency (the loss of power is evidenced by the simulation results in Jiang and Oomen 

(2008) and Maneesoonthorn et al. (2020)). However, in the robustness section, we will 

apply these noise robust tests for the robustness checks. 

The details of the above jump tests are listed in the appendix, where we also include 

the procedures for using these tests for separating volatility into (signed) jumps and 

continuous variation. As in Andersen et al. (2007a) and Dumitru and Urga (2012), we 

use 0.1% significance level for these jump tests. This lower significance level helps 

reduce a high number of spurious jumps  
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3 Data Description 

We use the sample of SPRD S&P500 ETF (SPY) from Tick Data Inc. SPY is 

actively traded and tracks the S&P 500 index. The data is two decades of tick-by-tick 

records from January 2, 1997, to December 31, 2020 (𝑇 = 6222 days). SPY Tick data 

is cleaned as following procedures, following Barndorff‐Nielsen et al. (2009),  and 

Patton and Sheppard (2015).  

1. Transactions outside of 9:30:00 and 16:00:00 were removed 

2. Transactions with a 0 price or volume were removed 

3. Retain entries originating from the most active exchange of each day and delete 

other entries. 

4. Only trades with sale conditions ‘E’, ‘F’ or blank (blank, ‘*’, and ‘@’ in tick 

data) were retained. 

5. If multiple transactions have the same timestamp, use the median price. 

6. Delete entries with corrected trades 

In addition to the realized measures, we obtain an alternative option-based S&P 

500 index volatility measure (labelled SV ) by Todorov (2019). The SV  can be 

downloaded on www.tailindex.com website, ranging from January 2008 until 

December 2020. The SV is originally the percentage of annualized volatility, and we 

transform it to daily level variance to be consistent with the realized measures. As 

discussed by Andersen et al. (2021), the SV is constructed exclusively from option 

prices, and thus is void of the specific form for noise structure present in the high-

frequency asset prices. 

Table 1 reports the results for the statistical description. The upper panel shows the 

proportion of days in which jumps are not zero, across the jump tests. The empirical 
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ranks are consistent with previous research (Dumitru and Urga, 2012, Maneesoonthorn 

et al., 2020, Bajgrowicz et al., 2016): a) the BNS test ranks higher than the Med and 

Min test; a) the Med test ranks higher than the Min test; b) ABD and LM tests rank 

higher than other tests; d) the JO test ranks higher than the BNS test.  

Table 1. The proportion of jump days and the average proportion of jumps relative to RV 

The proportion of jump days 

 𝑇−1 ∑ 𝐼(𝐽𝑡
∆ ≠ 0)𝑇

1   𝑇−1 ∑ 𝐼(𝐽𝑡
+ ≠ 0)𝑇

1   𝑇−1 ∑ 𝐼(𝐽𝑡
− ≠ 0)𝑇

1    
BNS 0.042 0.022 0.020  
Med 0.031 0.016 0.016  
Min 0.010 0.006 0.005  
ASJ 0.022 0.011 0.011  
JO 0.048 0.026 0.022  
ABD-LM 0.073 0.030 0.043  
s-BNS 0.042 0.021 0.021  

The average proportion of jumps relative to RV 

  
1

𝑇
∑ (𝐽𝑡 𝑅𝑉𝑡⁄ )𝑇

1   
1

𝑇
∑ (𝐽𝑡

∆ 𝑅𝑉𝑡⁄ )𝑇
1   

1

𝑇
∑ (𝐽𝑡

+ 𝑅𝑉𝑡⁄ )𝑇
1   

1

𝑇
∑ (𝐽𝑡

− 𝑅𝑉𝑡⁄ )𝑇
1   

BNS 1.502 0.260 0.788 -0.528 

Med 1.364 0.178 0.584 -0.406 

Min 0.568 0.080 0.241 -0.161 

ASJ 0.331 0.021 0.245 -0.224 

JO 1.265 0.378 1.295 -0.917 

ABD-LM 2.267 -0.277 0.929 -1.207 

s-BNS 1.228 0.037 0.537 -0.499 

 

The lower panel of Table 1 reports the averaged ratio for jump variation relative to 

the 𝑅𝑉. The results for the jump proportion across the jump tests (first column) are 

consistent with Dumitru and Urga (2012): there is a higher jump size for the ABD- LM 

test than those of the BNS, JO, Med, and Min tests.  
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4 Empirical analysis 

4.1 Volatility forecasting setup and models 

For investigating the predictive value of jumps, we use the popular HAR model by 

Corsi (2009): 

𝑉𝑡+ℎ−1|𝑡 = 𝛽0 + 𝛽𝑑 𝑅𝑉𝑡−1 + 𝛽𝑤 𝑅𝑉𝑡−1|𝑡−5 + 𝛽𝑚 𝑅𝑉𝑡−1|𝑡−22 + 𝜀𝑡, (1)  

while 𝑉𝑡+ℎ−1|𝑡 is the ex-post realized value of the volatility proxy we seek to forecast 

over [t+1, t+h]. Often, 𝑉𝑡+ℎ−1|𝑡 = 𝑅𝑉𝑡+ℎ−1|𝑡, but we also forecast the nonparametric 

option-based volatility by Todorov (2019)4, as in Andersen et al. (2021). This volatility 

measure, unlike RV, is robust to jumps and is also less sensitive to microstructure noise. 

The basic HAR model has subsequently been modified in numerous ways. In 

particular, Patton and Sheppard (2015) split the daily lagged RV of the model into 

continuous and jump components, 

𝑉𝑡+ℎ−1|𝑡 = 𝛽0 + 𝛽𝑑 𝐶𝑡−1 + 𝛽𝑑,𝑗 𝐽𝑡−1 + 𝛽𝑤 𝑅𝑉𝑡−1|𝑡−5 + 𝛽𝑚 𝑅𝑉𝑡−1|𝑡−22 + 𝜀𝑡, (2) 

𝑉𝑡+ℎ−1|𝑡 = 𝛽0 + 𝛽𝑑 𝐶𝑡−1 + 𝛽𝑑,𝐽∆𝐽𝑡−1
∆ + 𝛽𝑤 𝑅𝑉𝑡−1|𝑡−5 + 𝛽𝑚 𝑅𝑉𝑡−1|𝑡−22 + 𝜀𝑡, (3) 

𝑉𝑡+ℎ−1|𝑡 = 𝛽0 + 𝛽𝑑 𝐶𝑡−1 + 𝛽𝑑,𝐽+  𝐽𝑡−1
+ + 𝛽𝑑,𝐽−  𝐽𝑡−1

− + 𝛽𝑤 𝑅𝑉𝑡−1|𝑡−5 + 𝛽𝑚 𝑅𝑉𝑡−1|𝑡−22

+ 𝜀𝑡. (4) 

And we term the above three daily decomposed models the CdJd, CdJd
∆, and CdJd

± 

model, where the subscript 𝑑 indicates the daily lag. Andersen et al. (2007) and Corsi 

and Renò (2012) suggest also including the weekly and monthly lagged jumps,  

𝑉𝑡+ℎ−1|𝑡 = 𝛽0 + 𝛽𝑑 𝐶𝑡−1 + 𝛽𝑑,𝑗 𝐽𝑡−1 + 𝛽𝑤 𝐶𝑡−1|𝑡−5 + 𝛽𝑤,𝑗  𝐽𝑡−1|𝑡−5 + 𝛽𝑚 𝐶𝑡−1|𝑡−22

+ 𝛽𝑚,𝑗  𝐽𝑡−1|𝑡−22 + 𝜀𝑡, (5) 

 
4 Following Andersen et al. (2021), we scaled SV so that its average value coincides with that of the ex-post TV 

measure:  

𝑇𝑉𝑡 =
1

2
∑ (𝑟𝑖)2𝑀

𝑖=1 𝐼(|𝑟𝑖| ≤ 3𝜎̂𝑡
𝑚𝑒𝑑/√𝑀), with (𝜎̂𝑡

𝑚𝑒𝑑)
2

=
𝜋

𝜋+6−4√3
(

𝑀

𝑀−2
) ∑ med(|𝑟𝑡𝑖−2

|, |𝑟𝑡𝑖−1
|, |𝑟𝑡,𝑖|)

2𝑀
𝑖=3 . 
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𝑉𝑡+ℎ−1|𝑡 = 𝛽0 + 𝛽𝑑 𝐶𝑡−1 + 𝛽𝑑,𝐽∆𝐽𝑡−1
∆ + 𝛽𝑤 𝐶𝑡−1|𝑡−5 + 𝛽𝑤,𝐽∆𝐽𝑡−1|𝑡−5

∆ + 𝛽𝑚 𝐶𝑡−1|𝑡−22

+ +𝛽𝑚,𝐽∆𝐽𝑡−1|𝑡−22
∆ + 𝜀𝑡, (6) 

𝑉𝑡+ℎ−1|𝑡 = 𝛽0 + 𝛽𝑑 𝐶𝑡−1 + 𝛽𝑑,𝐽+  𝐽𝑡−1
+ + 𝛽𝑑,𝐽−  𝐽𝑡−1

− + 𝛽𝑤 𝐶𝑡−1|𝑡−5 + 𝛽𝑤,𝐽+  𝐽𝑡−1|𝑡−5
+

+ 𝛽𝑤,𝐽−  𝐽𝑡−1|𝑡−5
− + 𝛽𝑚 𝐶𝑡−1|𝑡−22 + 𝛽𝑚,𝐽+  𝐽𝑡−1|𝑡−22

+ + 𝛽𝑚,𝐽−  𝐽𝑡−1|𝑡−22
−

+ 𝜀𝑡, (7) 

We term the above three fully decomposed models the Cd−mJd−m, Cd−mJd−m
∆ , and 

Cd−mJd−m
±  model, where the d − m subscripts indicate the daily, weekly and monthly 

lags. 

We use the Ordinary Least Square (OLS) method for estimating the above models. 

The coefficient statistical inference depends on the Heteroskedasticity- and 

autocorrelation-consistent (HAC) robust t-statistics by Newey and West (1987), with 

the bandwidth HAC equal to 2(h +1) as in Corsi and Renò (2012), where ℎ is the lead 

length of the left-hand-side variable. 

For the pseudo-out-of-sample, we forecast one-day, one-week, and one-month 

ahead volatility as in Corsi (2009), and we also consider three-month ahead horizons 

(h=66) as in Patton and Sheppard (2015). In addition, we make forecasts based on a 

1000-rolling window (RW) and an expanding window (IW) based on the initial 1000 

observations. To avoid abnormal forecasts (e.g., negative volatility forecasts), we apply 

the “insanity filter” suggested by Bollerslev et al. (2016) and Patton and Sheppard 

(2015). In detail, the “insanity filter” algorithm replaces any forecast falling outside the 

range of values of the target variable observed during the estimation period by the 

unconditional mean of the variable over that period. 

The comparison of forecasting accuracy also, of course, requires a metric for 

measuring accuracy. Patton (2011a) shows that QLIKE is an unbiased loss function. 
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And this loss function is widely applied in key research (Andersen et al., 2021, 

Bollerslev et al., 2016). Thus, we measure forecast accuracy by the QLIKE loss function 

5, defined as, 

QLIKE(𝑉𝑡, 𝐹𝑡) =
𝑉𝑡

𝐹𝑡
− ln

𝑉𝑡

𝐹𝑡
− 1, 

The statistical significance difference in forecasting precision is evaluated via the 

Model Confidence set (MCS) of Hansen et al. (2011) 6. The MCS procedure consists of 

a sequence of tests which permits the construction of a set of “superior” models, where 

the null hypothesis of Equal Predictive Ability (EPA) is not rejected at a certain 

confidence level. The model in the superior model set, ℳ̂∗ significantly outperforms 

the models outside this set ℳ̂0. Since the MCS should be used with caution when 

forecasts are based on estimated parameters and models are nested (Hansen et al., 2011), 

we complement a 90% confidence level MCS. This indicates that a model is in the 

superior set only if its p-value is larger than 10%. 

For ease of comparison for a large group of paired models, the statistical 

significance is evaluated via the Diebold–Mariano-West (DMW) statistic 7 developed 

by Diebold and Mariano (1995) and  West (1996), with adjustment to the Newey–West 

Heteroskedasticity and Autocorrelation Corrected (HAC) standard errors. 

 
5 Simulation based evidence by Patton and Sheppard (2009) suggests the use of QLIKE rather than MSE due to the 

superior power of QLIKE in Diebold and Mariano (1995) and West (1996) type tests for equal predictive accuracy 

(EPA). But we confirm that the MSE results are qualitatively consistent. To save space, we do not report these results. 

6 The MCS results presented here were obtained using the mcs function from the Oxford MFE Toolbox developed 

by Kevin Sheppard, https://www.kevinsheppard. com/code/matlab/mfe-toolbox/. We implement MCS by the SQ 

approach with 1000 stationary bootstrap replications and the average block size equal to 10). The results are 

consistent for an alternative R approach. 
7 The DMW results in this paper were obtained using the robust_loss_1 function from Andrew Patton's Matlab code 

page, http://public.econ.duke.edu/~ap172/ 
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4.2 Alternative jump tests 

The purpose of this section is to explore whether the above more reliable alternative 

jump tests also provide better volatility forecasts than the BNS test. We begin the 

analysis by the in-sample estimation. Figure 1 depicts the coefficient estimates of 

(signed) jumps in the CdJd, CdJd
∆, and CdJd

± models, across different jump tests, for the 

one-day-ahead forecast (ℎ = 1). The upper panel shows the results for the RV forecast. 

As the panel shows, the impact of (signed) jumps is generally not highly significant, 

across the BNS and other BNS-alternative tests. Moreover, the lower panel for SV 

forecast again show limited in-sample evidence of (signed) jumps across these jump 

tests. In addition, unreported results show that the coefficient of the continuous 

variation is overwhelmingly significant for all the above cases. Overall, the limited 

(strong) in-sample evidence of jumps (continuous variation) is consistent with 

Andersen et al. (2007a), and the BNS-alternative jump tests appear to not make 

differences in the impact of jumps. 

We then investigate the out-of-sample forecast. Table 2 compares the HAR model 

with the daily decomposed models by various jump tests, for the RV forecast. The top, 

middle, and bottom panel reports the results for the CdJd , CdJd
∆ , and CdJd

±  models, 

respectively. The numbers in the table indicate the loss ratios relative to the HAR model. 

For each row, the lowest ratio is indicated in bold while the models included in the 

superior set ℳ̂∗ is indicated in asterisks. 

As the table shows, the HAR model is substantially excluded from the superior set 

ℳ̂∗  thus is significantly outperformed by some CdJd , CdJd
∆ , and CdJd

±  models. 

Comparing the models across different jump tests, we find the models associated with 

the BNS-alternative tests generally perform better. For example, the lowest loss is 

always provided by the model with the BNS-alternative tests. Further, the model 
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associated with the ABD-LM test has the lowest loss and significantly outperforms the 

model with the BNS test, for the daily forecast (h=1), for the CdJd
∆, and CdJd

± models, 

and for both RW and IW forecasts. Moreover, for these different cases, the model with 

the s-BNS test systematically has lower loss and sometimes provides significantly 

better forecasts against the BNS test. The superiority of the s-BNS test indicates the 

importance of locating intraday jumps for volatility forecasting. 

Figure 1. The coefficient estimates of jumps in the CdJd, CdJd
∆, and CdJd

± models, for the daily volatility 

forecast.  

Panel A: RV forecast 

 

Panel B: SV forecast 

 

Note: the solid lines denote the coefficient estimates while the dashed lines indicate the 95% 

confidence intervals.
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Table 2. Out-of-sample loss ratios for the daily decomposed models for RV forecasts  
      BNS Med Min ASJ JO ABD-LM sBNS 

    HAR CdJd 

h=1 RW 1.000* 1.004* 0.995 1.001* 0.955* 0.869* 0.873* 0.985* 

 IW 1.000 0.962 0.998 1.002 1.003 0.969 0.947* 0.960 

h=5 RW 1.000 0.997 1.001 1.000 0.972* 0.983* 1.016 0.992* 

 IW 1.000 0.976 0.998 1.001 1.001 0.982 0.965* 0.973 

h=22 RW 1.000* 1.004* 0.995* 1.000* 0.999* 0.999* 0.982* 1.024* 

 IW 1.000 0.990* 1.000 1.000 1.000 0.992 0.987* 0.989* 

h=66 RW 1.000* 1.004* 1.004* 1.003* 0.997* 1.002* 1.006* 1.001* 

  IW 1.000 0.997 1.000 1.000 1.000 0.998 0.996* 0.996* 

  HAR CdJd
∆ 

h=1 RW 1.000 0.989 1.003 0.999 0.947* 0.885* 0.870* 0.987 

 IW 1.000 0.960 0.997 1.002 1.002 0.965 0.944* 0.957 

h=5 RW 1.000 0.996 0.997 1.001 0.963* 1.007 1.013 0.996 

 IW 1.000 0.975 0.996 1.000 1.000 0.977 0.965* 0.971 

h=22 RW 1.000* 1.002* 0.994* 0.999* 0.998* 1.002* 0.994* 0.999* 

 IW 1.000 0.988* 0.999 0.999 0.999 0.990 0.990* 0.986* 

h=66 RW 1.000 0.998* 0.989* 1.001 0.994* 0.999* 0.996* 0.998* 

  IW 1.000 0.997 1.000 1.000 1.000 0.998 0.997 0.996* 

   HAR CdJd
±

 

h=1 RW 1.000 1.002 0.997 1.002 0.941* 0.881* 0.868* 0.985 

 IW 1.000 1.028 0.997 1.002 1.002 0.968 0.944* 0.959 

h=5 RW 1.000 0.994 0.997 1.001 0.966* 1.000 1.026 0.993 

 IW 1.000 0.977 0.996 1.000 1.003 0.978 0.969* 0.973* 

h=22 RW 1.000* 1.005* 0.993* 1.001* 1.001* 1.001* 1.000* 1.013* 

 IW 1.000 0.988* 1.000 0.999 0.999 0.990* 0.991* 0.987* 

h=66 RW 1.000* 1.003* 0.995* 1.002* 0.999* 0.998* 0.999* 1.003* 

  IW 1.000 0.997 1.001 1.001 1.001 0.998 0.998 0.996* 

Notes: The top, middle, and bottom panel reports the results for the CdJd, CdJd
∆, and CdJd

± 

models, respectively. The numbers in the table indicate the loss ratios relative to the 

benchmark HAR model, with the smallest ratio at each row in bold. Asterisks indicate the 

models included in the superior set ℳ̂∗. 
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Table 3. Out-of-sample loss ratios for the daily decomposed models for SV forecasts  
      BNS Med Min ASJ JO ABD-LM sBNS 

    HAR CdJd 

h=1 RW 1.000 1.006 1.002 1.002 0.947* 1.009 0.979* 1.008 

 IW 1.000 1.001 0.996 0.997 0.999 0.989* 0.990* 1.001 

h=5 RW 1.000 1.003 0.999 0.999 0.964* 0.997 1.001 1.003 

 IW 1.000 0.999 0.993* 0.999 0.999 0.996 0.994* 1.000 

h=22 RW 1.000 1.011 1.000 0.999 0.982* 0.999 0.970* 1.009 

 IW 1.000 0.998* 0.998* 0.999* 1.001* 0.997* 1.001 0.999* 

h=66 RW 1.000 1.007 1.007 1.002 0.993* 1.016 0.995* 1.004 

  IW 1.000* 1.000* 1.002* 1.000* 1.000* 0.995* 1.000* 1.000* 

  HAR CdJd
∆ 

h=1 RW 1.000 1.005 1.004 1.008 0.943* 1.014 0.906* 1.010 

 IW 1.000 1.002 0.994 1.003 1.000 1.011 0.985* 1.002 

h=5 RW 1.000 1.003 0.998 1.001 0.960* 0.998 0.981* 1.003 

 IW 1.000 1.002 0.991* 1.001 0.999 1.002 0.990* 1.000 

h=22 RW 1.000 1.005 1.000 0.999 0.982* 0.997 0.969* 1.008 

 IW 1.000 1.003 0.996* 1.001 0.998* 1.001 1.000 1.000* 

h=66 RW 1.000 0.996* 0.987* 1.002 0.993* 1.002* 1.005 0.999* 

  IW 1.000* 1.003* 1.004* 1.002* 0.998* 0.999* 1.002* 1.003* 

   HAR CdJd
±

 

h=1 RW 1.000 1.007 0.999 1.005 0.933* 1.016 0.990* 1.012 

 IW 1.000 1.001 0.993 0.996 1.000 0.990* 0.986* 1.000 

h=5 RW 1.000 1.003 0.999 1.000 0.958* 0.998 1.008 1.002 

 IW 1.000 1.000 0.991* 0.999 0.998 0.993* 0.992* 0.999 

h=22 RW 1.000 1.009 0.998 0.999 0.985* 1.003 0.973* 1.011 

 IW 1.000 1.001 0.996* 0.999 0.999 0.994* 1.010 0.998* 

h=66 RW 1.000* 0.998* 0.996* 1.002* 0.999* 0.997* 1.001* 1.003* 

  IW 1.000 1.000 1.003 1.001 0.999* 0.992* 0.999* 1.001 

Notes: The top, middle, and bottom panel reports the results for the CdJd, CdJd
∆, and CdJd

± 

models, respectively. The numbers in the table indicate the loss ratios relative to the 

benchmark HAR model, with the smallest ratio at each row in bold. Asterisks indicate the 

models included in the superior set ℳ̂∗. 

 

In addition, we also check the out-of-sample for the SV forecast, reported in Table 

3. The results reveal even stronger evidence 8. Specifically, the HAR model, with only 

very few exceptions for h=66, is overwhelmingly cut off from the superior set ℳ̂∗, thus 

is clearly outperformed by the CdJd, CdJd
∆, and CdJd

± models. In addition, the superiority 

 
8 The discrepancies between Table 2 and Table 3 also reflect the different sample periods, as the SV forecasts are 

initiated only during the great financial crisis of 2008-2009. However, we confirm that the difference remains 

substantial, even if we generate the forecasts over the identical time period. 
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of these decomposed models is almost achieved by the BNS alternatives. Specifically, 

the model with the BNS test generally fails to beat the HAR model, with most loss 

ratios greater than one. In contrast, the model associated with the alternative jump tests 

(e.g., Med, ASJ, JO, or LM) always provides the lowest ratio and is substantially 

included in the superior set ℳ̂∗, across all of these scenarios. However, the model with 

the sequential BNS test somewhat makes no obvious difference. This indicates that this 

sequential version is not able to increase the predictive value of the BNS test for the SV 

forecast. 

Overall, we find the BNS-alternative jump tests are more important than the BNS 

test, for both SV and RV forecasts. For the remaining analysis in this paper, we only 

report the results for the SV forecast in the interest of brevity, with the results for the 

RV forecast (qualitatively similar but with a clear-cut for short horizons) reported in 

the appendix. 

 

4.3 The longer lagged jumps 

This section aims to study whether the decomposition of longer-lagged RV is 

important for volatility forecasting. To explore this, we begin by presenting the in-

sample estimation results for the fully decomposed models, including Cd−mJd−m , 

Cd−mJd−m
∆ , and Cd−mJd−m

±  models. Figure 2 shows the jump coefficients for these three 

models for SV forecasts. As the figure shows, across all different jumps, tests, and lags, 

the impact of jumps tends to be statistically insignificant. These results are again in line 

with Andersen et al. (2007a). Table 4 compares the above fully decomposed models 

(lower panel) with the daily decomposed models (upper panel), in terms of the in-

sample goodness fits, for the SV forecast. The evaluation criteria rely on the 𝑅2 ratio 

for the competing models relative to the HAR model. Comparing these two panels, the 
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improvement of 𝑅2 in the upper panel is generally minor (only around 0.1%) while this 

improvement in the lower panel is much more prominent (e.g., for the Med test 𝑅2 

increase by 3.1%). This finding indicates that the decomposing weekly and monthly 

lagged RV leads to the much better in-sample performance of the models. However, 

whether the in-sample improvement is of practical importance remains an empirical 

question to be answered in the out-of-sample forecasting exercise below. Besides, the 

results for both panels also imply that the in-sample advantage of these alternative tests 

is robust to both daily and fully decomposed model types. Specifically, for both panels, 

the models with the alternative jump tests (except for the sequential test) systematically 

have a greater 𝑅2 than that with the BNS test.  

Table 4. Full in-sample R2 for the models associated with different jump tests for 

SV forecast.  

  BNS Med Min ASJ JO 
ABD-LM 

sBNS 

Daily decomposed models 

CdJd 1.0000 1.0013 1.0003 1.0025 1.0016 1.0008 1.0000 

CdJd
∆ 0.9999 1.0016 0.9996 1.0008 1.0024 1.0008 1.0000 

CdJd
± 1.0001 1.0017 1.0003 1.0020 1.0034 1.0008 1.0001 

Fully decomposed models 

Cd−mJd−m 1.0018 1.0295 1.0027 1.0074 1.0052 1.0098 1.0007 

Cd−mJd−m
∆  1.0000 1.0289 1.0027 1.0140 1.0134 1.0200 1.0001 

Cd−mJd−m
±  1.0029 1.0317 1.0045 1.0167 1.0164 1.0288 1.0016 

 

Notes: This table reports the R2 ratio for the competing models relative to the  
HAR model. The greatest ratio in each row is indicated in bold. 

 

We next investigate the out-of-sample results. For the out-of-sample analysis, we 

compare the fully decomposed models with the daily decomposed models, as reported 

in Table 5. The results are for the daily forecast, but we confirm that the results are 

similar for longer horizons. The left panel compares the CdJd model with the Cd−mJd−m 

model, via their loss ratios relative to that of the HAR model, across different jump tests 
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and both rolling and increasing windows. And the asterisks indicate the models 

included in the superior set ℳ̂∗ among these three models.  

Figure 2. The jump coefficient estimates for the Cd−mJd−m, Cd−mJd−m
∆ , and Cd−mJd−m

±  models for daily 

SV forecast. 

 

Note: the solid lines denote the coefficient estimates while the dashed lines indicate the 95% confidence 

intervals. 

 

As the left panel shows, the Cd−mJd−m model generally win the lowest ratio and 

are substantially included in the superior set ℳ̂∗ , across these different cases. The 
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middle panel for comparing the CdJd
∆  model with the Cd−mJd−m

∆  model is somewhat 

mixed: the Cd−mJd−m
∆  model with the BNS, Med, and s-BNS tests, fail to beat the HAR 

and the CdJd
∆ model with the equivalent tests while the results of the Cd−mJd−m

∆  model 

with other tests is still consistent. The right panel for comparing the CdJd
± model with 

the Cd−mJd−m
±  the model reveals a cleaner picture: the Cd−mJd−m

±  model exhibits the 

lowest loss for almost all of these different cases. The above results are for the SV 

forecast, but we confirm that the (unreported) results for RV are qualitatively very 

similar, with a clear-cut for short-term forecasts. 

In addition, we also check whether the out-of-sample advantage of alternative jump 

tests is robust in the case of the fully decomposed models. Table 6 compares the HAR 

model with the Cd−mJd−m, Cd−mJd−m
∆ , and Cd−mJd−m

±  models by various jump tests, in 

terms of the out-of-sample performance. The results again reveal that the models with 

the alternative jump tests perform better: the models with the BNS struggle to beat the 

HAR model and are substantially excluded from the superior model set ℳ̂∗, while the 

model with the alternative tests always has the lowest loss and is included in the set 

ℳ̂∗. These results imply that the predictive advantage of alternative jump tests found 

in Table 3 is robust when the models are fully decomposed into jumps and continuous 

variation. 
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Table 5. Comparing the daily decomposed models with the fully decomposed models for daily SV forecast 

    𝐶𝑑𝐽𝑑 - 𝐶𝑑−𝑚𝐽𝑑−𝑚  𝐶𝑑𝐽𝑑
∆- 𝐶𝑑−𝑚𝐽𝑑−𝑚

∆   𝐶𝑑𝐽𝑑
±- 𝐶𝑑−𝑚𝐽𝑑−𝑚

∆±  

   HAR  CdJd Cd−mJd−m   HAR  CdJd
∆-  Cd−mJd−m

∆    HAR  CdJd
±-  Cd−mJd−m

∆±  

BNS RW 1.000* 1.006 1.044  1.000* 1.005* 1.086*  1.000* 1.007 1.081 

 IW 1.000 1.001 0.965*  1.000* 1.002 1.019  1.000 1.001 0.952* 

Med RW 1.000 1.002 0.967*  1.000* 1.004* 0.993*  1.000 0.999 0.956* 

 IW 1.000 0.996 0.938*  1.000 0.994* 0.958*  1.000 0.993 0.935* 

Min RW 1.000 1.002 0.983*  1.000* 1.008 1.032  1.000* 1.005* 0.996* 

 IW 1.000 0.997 0.947*  1.000* 1.003 1.016  1.000 0.996 0.968* 

ASJ RW 1.000 0.947 0.881*  1.000 0.943 0.910*  1.000 0.933* 0.924* 

 IW 1.000* 0.999* 1.001*  1.000 1.000 0.987*  1.000 1.000 0.982* 

JO RW 1.000* 1.009* 1.028  1.000 1.014 0.961*  1.000* 1.016 0.966* 

 IW 1.000 0.989 0.966*  1.000 1.011 0.962*  1.000 0.990 0.885* 

ABD-LM RW 1.000* 0.979* 0.992*  1.000* 0.906* 1.211*  1.000* 0.990* 1.320* 

 IW 1.000 0.990* 1.065  1.000 0.985 0.864*  1.000 0.986* 0.904* 

sBNS RW 1.000* 1.008 1.056  1.000* 1.010 1.098  1.000* 1.012 1.087 

  IW 1.000* 1.001 0.978*   1.000* 1.002 1.017   1.000* 1.000* 0.978* 
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Table 6. Out-of-sample results for the fully decomposed model for SV forecast.  
    BNS Med Min ASJ JO LM sBNS 

    HAR CJd−m 

h=1 RW 1.000 1.044 0.967 0.983 0.881* 1.028 1.003 1.056 

 IW 1.000 0.965* 0.938* 0.947* 1.001 0.966* 0.940* 0.978 

h=5 RW 1.000 1.037 0.990 0.990 0.928* 1.009 0.983* 1.050 

 IW 1.000 0.969 0.951* 0.954* 0.989 0.953* 0.916* 0.980 

h=22 RW 1.000* 1.047 1.030* 0.996* 0.992* 1.096 1.068* 1.042 

 IW 1.000 0.997 0.982* 0.986* 0.991* 0.974* 0.958* 1.000 

h=66 RW 1.000* 1.015* 0.974* 0.994* 0.981* 0.965* 0.955* 1.005* 

  IW 1.000 0.989 1.029* 0.996 0.999 0.920* 0.952* 0.995 

   HAR CJd−m
∆  

h=1 RW 1.000 1.086 0.993 1.032 0.910* 0.961 1.450 1.098 

 IW 1.000 1.019 0.958* 1.016 0.987 0.962* 1.006 1.017 

h=5 RW 1.000 1.062 0.992 1.027 0.930* 0.979 1.295 1.056 

 IW 1.000 1.022 0.939* 1.012 0.979 0.982 1.043 1.020 

h=22 RW 1.000 0.998* 0.995* 1.010 0.973* 1.034 1.166 1.004 

 IW 1.000 1.021 0.969* 1.001 0.991 1.027 1.027 1.018 

h=66 RW 1.000* 0.848* 0.734* 0.948* 0.979* 0.845* 0.956* 0.901* 

  IW 1.000 1.033 1.095 1.026 0.989* 0.974* 0.979* 1.022 

   HAR CJd−m
±  

h=1 RW 1.000 1.081 0.956* 0.996 0.924* 0.966* 1.114 1.087 

 IW 1.000 0.952 0.935* 0.968 0.982 0.885* 0.916* 0.978 

h=5 RW 1.000 1.107 0.981 0.995 0.943* 0.969* 1.198 1.065 

 IW 1.000 0.959 0.938* 0.973 0.968 0.895* 0.905* 0.983 

h=22 RW 1.000* 1.036 1.011* 1.000* 0.990* 1.033* 1.155 1.063 

 IW 1.000 0.994* 0.969* 0.987* 0.988* 0.958* 0.960* 1.004 

h=66 RW 1.000* 0.940* 0.842* 0.922* 0.980* 0.838* 0.882* 0.986* 

  IW 1.000 0.974 1.091 1.007 0.992 0.922* 0.924* 0.993 

Notes: The competing model is CJd−m , CJd−m
∆ , and CJd−m

±  model while the benchmark 

model is the HAR model. 

 

4.4 Separating jump signs 

The aim of this section is to investigate whether separating jump signs benefit 

volatility forecasting. For this investigation, we compare the CJ model with the CJ∆ and 

CJ± models. The (unreported) daily SV forecast results are mixed across these different 

scenarios: only for the cases of the Med test, the CJ∆ and CJ± models outperform the CJ 
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model, while for the cases of other tests, there is no clear evidence of one model type 

dominating another.  

Table 7. Comparing the CJ model with the CJ∆  and CJ±  models for seasonal SV 

forecast (h=66).  
      HAR CJ CJ∆ CJ± 

BNS Daily RW 1.000* 1.007 0.996* 0.998* 

  IW 1.000* 1.000* 1.003* 1.000* 

 Fully RW 1.000* 1.015* 0.848* 0.940* 

  IW 1.000* 0.989* 1.033* 0.974* 

Med Daily RW 1.000* 1.007* 0.987* 0.996* 

  IW 1.000* 1.002* 1.004* 1.003* 

 Fully RW 1.000* 0.974* 0.734* 0.842* 

  IW 1.000* 1.029* 1.095* 1.091* 

Min Daily RW 1.000* 1.002* 1.002* 1.002* 

  IW 1.000* 1.000* 1.002* 1.001* 

 Fully RW 1.000 0.994 0.948 0.922* 

  IW 1.000* 0.996* 1.026* 1.007* 

ASJ Daily RW 1.000 0.993* 0.993* 0.999* 

  IW 1.000 1.000 0.998* 0.999* 

 Fully RW 1.000 0.981* 0.979* 0.980* 

  IW 1.000 0.999 0.989* 0.992* 

JO Daily RW 1.000* 1.016* 1.002* 0.997* 

  IW 1.000 0.995* 0.999 0.992* 

 Fully RW 1.000* 0.965* 0.845* 0.838* 

  IW 1.000 0.920* 0.974 0.922* 

ABD-LM Daily RW 1.000* 0.995* 1.005* 1.001* 

  IW 1.000* 1.000* 1.002* 0.999* 

 Fully RW 1.000 0.940* 0.947* 0.884* 

  IW 1.000 0.997 0.930* 0.876* 

sBNS Daily RW 1.000* 1.004 0.999* 1.003* 

  IW 1.000* 1.000* 1.003* 1.001* 

 Fully RW 1.000* 1.005* 0.901* 0.986* 

   IW 1.000* 0.995* 1.022* 0.993* 

Notes: This table reports the loss ratios of CJ, CJ∆ and CJ± models relative to the HAR 

model, across various jump tests, both daily and fully decomposed model versions, 

and both forecasting windows. “Daily” indicates that the competing models are based 

on the daily decomposed model specification while “Fully” indicates that the 

competing models are based on the fully decomposed model specification. 

 

However, the long-term SV forecast (h=66), reported in Table 7, exhibits a much 

cleaner picture: the CJ∆  and CJ±  models substantially outperform the CJ  model. 

Moreover, unreported results show that the predictive superiority of jump signs holds 

for long-term RV forecasts. The finding that separating jump signs is important for 

long-term volatility forecasting is consistent with Patton and Sheppard (2015).  
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5 Robustness analysis 

The robustness checks involve alternative benchmark models, drift bias and intraday 

volatility pattern, and ultra-high frequency sampling.  

5.1 Exploring the contribution of jumps via alternative benchmark models  

The limited in-sample evidence of jumps reported in section 4 indicates that jumps weakly 

affect future volatility, which motivates that the jump component should be excluded from the 

model, as in Bollerslev et al. (2016) and Andersen et al. (2021). However, the null in-sample 

evidence does not necessarily imply that jumps have no contribution to the out-of-sample, 

which is the primary interest of this paper. Based on alternative benchmark models, this section 

studies whether jumps should be excluded or not for the out-of-sample. To explore the 

contribution of daily lagged jumps, we compare the competing CdJd, CdJd
∆, and CdJd

± models 

with the benchmark Cd model by Patton and Sheppard (2015), 

𝑉𝑡+ℎ−1|𝑡 = 𝛽0 + 𝛽𝑑 𝐶𝑡−1 + 𝛽𝑤 𝑅𝑉𝑡−1|𝑡−5 + 𝛽𝑚 𝑅𝑉𝑡−1|𝑡−22 + 𝜀𝑡. (8) 

Setting the Cd  as the benchmark model facilitates investigating whether jumps provide an 

incremental value, as the Cd model only excludes jumps from the three competing models.  

To investigate the importance of longer lagged jumps, we compare the competing 

Cd−mJd−m, Cd−mJd−m
∆ , and Cd−mJd−m

±  models with the Cd−mJd, Cd−mJd
∆, and Cd−mJd

± models, 

respectively. The latter three models are the benchmark models and are defined by Corsi et al. 

(2010),  

𝑉𝑡+ℎ−1|𝑡 = 𝛽0 + 𝛽𝑑 𝐶𝑡−1 + 𝛽𝑑,𝑗  𝐽𝑡−1 + 𝛽𝑤 𝐶𝑡−1|𝑡−5 + 𝛽𝑚 𝐶𝑡−1|𝑡−22 + 𝜀𝑡, (9) 

𝑉𝑡+ℎ−1|𝑡 = 𝛽0 + 𝛽𝑑 𝐶𝑡−1 + 𝛽𝑑,𝐽∆𝐽𝑡−1
∆ + 𝛽𝑤 𝐶𝑡−1|𝑡−5 + 𝛽𝑚 𝐶𝑡−1|𝑡−22 + 𝜀𝑡, (10) 

𝑉𝑡+ℎ−1|𝑡 = 𝛽0 + 𝛽𝑑 𝐶𝑡−1 + 𝛽𝑑,𝐽+  𝐽𝑡−1
+ + 𝛽𝑑,𝐽−  𝐽𝑡−1

− + 𝛽𝑤 𝐶𝑡−1|𝑡−5 + 𝛽𝑚 𝐶𝑡−1|𝑡−22 + 𝜀𝑡. (11) 

The only difference between these two groups of models is the inclusion of weekly and monthly 

jump lags, which facilitates studying the value of longer lagged jumps.  
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Table 8 reports the daily out-of-sample forecasting results for the comparisons of the above 

models. Since the competing models and the benchmark models are compared in a large 

number of pairs, we report the DMW statistics for presentation purposes. The left panel shows 

the DMW statistics of the CdJd, CdJd
∆, and CdJd

± models, relative to the benchmark Cd model, 

across different tests and both forecasting windows. The results show that for all jump tests, 

the competing models can significantly outperform the benchmark model. But this result is 

sensitive to different forecasting windows. 

The right panel exhibits the DMW statistics of the Cd−mJd−m, Cd−mJd−m
∆ , and Cd−mJd−m

±  

models, relative to their benchmark models. As the results show, for all jump tests, these 

competing models again can significantly outperform the benchmark model. Moreover, the 

superiority of the competing models (except the models by the BNS and s-BNS test) is robust 

to both rolling and increasing windows. This indicates the out-of-sample importance of 

including longer lagged jumps in the model. 

Table 8. The out-of-sample contribution of jumps  

  Daily decomposed  Fully decomposed 

    CdJd CdJd
∆ CdJd

±  Cd−mJd−m Cd−mJd−m
∆  Cd−mJd−m

±  

BNS RW -1.51 -1.66 -1.76  -3.21 -1.36 -2.12 

 IW 1.75 -0.30 2.32  2.69 -1.86 4.49 

Med RW 0.69 -1.31 1.12  3.71 2.38 4.49 

 IW -6.01 2.06 3.04  3.02 0.57 1.63 

Min RW 0.92 -1.63 -0.88  2.27 -1.93 1.24 

 IW 4.40 -0.70 3.47  4.75 -0.52 7.70 

ASJ RW 3.24 5.91 5.75  5.29 2.52 0.12 

 IW -0.28 -3.85 -2.02  -0.60 9.38 3.35 

JO RW -1.10 -1.64 -1.48  -1.46 3.43 2.57 

 IW 4.53 -3.79 5.18  2.32 6.37 7.38 

ABD-LM RW 0.41 0.96 0.14  -1.06 -1.27 -1.19 

 IW 1.34 5.25 4.57  -6.53 8.50 1.43 

sBNS RW -1.69 -1.69 -2.31  -3.68 -2.00 -2.64 

  IW 1.18 -0.22 1.35   2.03 -2.16 2.07 

Notes: The left panel reports the DMW statistics for the competing CdJd, CdJd
∆, and CdJd

± models 

relative to the benchmark Cd  model while the right panel reports the DMW statistics for the 

competing Cd−mJd−m , Cd−mJd−m
∆ , and Cd−mJd−m

±  models relative to the Cd−mJd , Cd−mJd
∆ , and 

Cd−mJd
± benchmark models. The positive and significant DMW statistics are indicated in bold. 
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5.2 The drift bias 

Reducing drift bias for the jump tests is essential. Laurent and Shi (2020) show that 

although the drift component is asymptotically small, it may harm the jump test power for the 

5-minute sample. As a result, the loss of power in the jump tests leads to underestimated jumps. 

To reduce drift bias, we modify the jump tests based on the method by Laurent and Shi (2020). 

In detail, we substitute the intraday return 𝑟𝑡𝑖
 with the drift-robust returns, which are defined 

by centring 𝑟𝑡𝑖
 with its median 9,  

𝑟̅𝑡𝑖
= 𝑟𝑡𝑖

− median(𝑟𝑡𝑖
). 

For comparison, we only modify the jump test statistics 10 and we do not make any changes 

to the volatility estimates. For the BNS test, for example, we only modify the test statistic 

𝑇𝐵𝑁𝑆,𝑡 by using the centred return 𝑟̅𝑡𝑖
, but we do not alter any volatility measures such as 𝑅𝑉𝑡, 

𝑅𝑉𝑡
+, 𝑅𝑉𝑡

−, 𝐵𝑉𝑡.  

We find that the jump tests corrected for drift bias generally detect more jumps, and this is 

consistent with Laurent and Shi (2020), who find that the drift bias correction helps improve 

the testing power. The forecasting results based on the drift-bias adjusted jump tests are quite 

similar to those based on unadjusted jump tests, which confirms the drift-bias robustness of our 

out-of-sample results. While the forecasting results from these robustness checks are not 

reported here, they are available upon request. 

 

 
9 The drift-robust returns can also be obtained by mean. But mean is sensitive to jumps thus the more jump-robust median is 

preferred, as argued in Laurent and Shi (2020). 
10 All test statistics are modified by simply using centred returns, expect for the LM test. For the LM test, we follow the 

procedure by Laurent and Shi (2020). We first define 𝑚∗(𝑟𝑡,𝑖) = median(𝑟𝑡,𝑖−𝑘+1 … 𝑟𝑡,𝑖), and then modify the test as 𝑇𝐿𝑀,𝑡,𝑖 =

|𝑟𝑡,𝑖 − 𝑚∗(𝑟𝑡,𝑖)| 𝜎̂𝑡,𝑖⁄ ,where 𝜎̂𝑡,𝑖 = (
𝜋

2

1

𝑘−2
∑ |𝑟𝑡,𝑖 − 𝑚∗(𝑟𝑡,𝑖)||𝑟𝑡,𝑖−1 − 𝑚∗(𝑟𝑡,𝑖)|

𝑗−1
𝑖=𝑗−𝑘+2 )

1/2
. The modified LM test is only for 

identifying the location of intraday jumps but not for generating realized measures. Instead, the realized measures are still 

obtained by returns centred within one trading day, 𝑟̃𝑡,𝑖 = 𝑟𝑡,𝑖 − median(𝑟𝑡,𝑖 , … , 𝑟𝑡,𝑀), consistent with those of other jump tests. 



Working paper 3 

29 
 

5.3 The intraday volatility pattern 

The jump tests may erroneously identify many spurious jumps because of the well-known 

U-shape pattern of intraday volatility. Therefore, the spurious jumps may largely contribute to 

our results. As a robustness check of our results, we modify the jump tests for reducing the 

intraday volatility pattern bias. Specifically, we modify these jump tests by using the returns 

divided by the WSD corrector (𝑟𝑡𝑖
/𝑓𝑊𝑆𝐷𝑖

) of Boudt et al. (2011). The method to obtain the 

corrector 𝑓𝑊𝑆𝐷𝑖
 is as follows. 

First, define, 

𝑟̅𝑡,𝑖
=

𝑟𝑡𝑖

√𝑀−1𝐵𝑉𝑡

 , 

Then, 

𝑆ℎ𝑜𝑟𝑡𝐻𝑖 = 0.741 ∙ min{𝑟̅(ℎ𝑖),𝑖 − 𝑟̅(1),𝑖, … , 𝑟̅(𝑇𝑖),𝑖 − 𝑟̅(𝑇𝑖−ℎ𝑖+1),𝑖}, 

where 𝑇𝑖 is the total number of observations of intraday 𝑖, say, the number of observation 

days,  𝑟̅(𝑗),𝑖 are the order statistics of 𝑟̅𝑡,𝑖, and ℎ𝑖 = ⌊𝑇𝑖/2⌋ + 1. 

Then, 

𝑠̂𝑆ℎ𝑜𝑟𝑡𝐻𝑖

2 =
𝑀 ∙ 𝑆ℎ𝑜𝑟𝑡𝐻𝑖

2

∑ 𝑆ℎ𝑜𝑟𝑡𝐻𝑖
2𝑀

𝑖=1

 . 

 The WSD estimator is then given by, 

𝑊𝑆𝐷𝑖
2 = 1.081

∑ 𝑤𝑡𝑖
𝑟̅𝑡𝑖

2𝑇
𝑡=1

∑ 𝑤𝑡𝑖

𝑇
𝑡=1

 , 

where 𝑤𝑡𝑖
= 𝑤 (

𝑟̅𝑡𝑖

𝑠̂𝑆ℎ𝑜𝑟𝑡𝐻𝑖

) and 𝑤(𝑧) = 1 if 𝑧2 ≤ 6.635 and 0 otherwise. 

Finally, the estimator for the intraday volatility corrector 𝑓𝑖 is obtained by, 

𝑓𝑊𝑆𝐷𝑖
= √

𝑀 ∙ 𝑊𝑆𝐷𝑖
2

∑ 𝑊𝑆𝐷𝑖
2𝑀

𝑖=1

 . 
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As in section 5.1. we only modify the jump test statistics while we do not make any changes 

to the volatility estimates. Again, the WSD corrector is only for finite sample performance and 

does not influence the asymptotic property of the jump tests. Therefore, there is no need to 

make further adjustments. Unreported results show that the WSD-corrected jump tests 

generally identify fewer jumps. This is consistent with Boudt et al. (2011), who find the WSD 

corrector reduces the possibility of detecting the spurious jumps caused by the intraday 

volatility pattern.  

Unreported results for the jump tests corrected for the intraday volatility pattern are very 

similar. We again find the out-of-sample worthiness of dividing volatility, BNS-alternative 

jump tests, longer-lagged jumps, and jump signs. Thus, our results are robust when the jump 

test is modified for the intraday volatility pattern.  

 

5.4 Ultra-high frequency 

Christensen et al. (2014) argue that the jump tests generally overestimate the jumps for 5-

minute sampling due to the volatility burst distortions. And they suggest that testing jumps for 

the ultra-high frequency sample can alleviate this bias. This section studies whether our results 

hold at the ultra-high frequency setting. For the ultra-high frequency, Christensen et al. (2014) 

suggest modifying the RV by using the pre-averaged noisy returns, 

𝑅𝑉𝑡
∗ =

𝑀

𝑀 − 𝐻 + 2

1

𝐻𝜓𝐻
∑ |𝑟𝑡𝑖

∗ |
2

𝑀−𝐻+2

𝑖=1

−
𝜔̂𝑡

2

𝜃2𝜓𝐻
, 

with 𝐻 = ⌈𝜃√𝑀⌉ , 𝜓𝐻 = (1 + 2𝐻−2) 12⁄ , 𝑟𝑡𝑖

∗ = ∑ 𝑔(𝑗 + 1 𝐻⁄ )𝑟𝑡𝑖+𝑗

𝐻−2
𝑗=0 , 𝑔(𝑥) =

min(𝑥, (1 − 𝑥)) and 𝜔̂𝑡
2 = (1 2(M − 1)⁄ ) ∑ |𝑟𝑡𝑖

||𝑟𝑡𝑖−1
|𝑀

𝑖=2 . 

For the ultra-high frequency, all jump tests are based on their noise robust version. 

Literature has shown that in some noise-robust jump tests: the BNS∗ and ABD-LM∗ tests by 

Christensen et al. (2014), the ASJ∗ test by Aït-Sahalia et al. (2012), and the JO* test by Jiang 
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and Oomen (2008). For notation purposes, we term the modified jump tests using an asterisk. 

In the spirit of Christensen et al. (2014), we also modify the Med and Min, tests (termed by 

Med* and Min*) for the ultra-high frequency. We use these robust jump tests for decomposing 

the previously defined RV∗ into jumps and continuous variation, with the significance level 

still 0.1%. The details of these tests are provided in appendix.  

Table 9. Out-of-sample loss ratios for daily decomposed models for ultra-high frequency 

      BNS* Med* Min* ASJ* JO* ABD-LM* 

    HAR∗ CJ∗ 

h=1 RW 1.000* 1.004* 1.001* 1.001* 1.002* 0.998* 1.225* 

 IW 1.000* 1.001 1.001 1.000 1.001 1.000* 1.006 

h=5 RW 1.000* 1.002* 1.001* 1.001* 0.999* 1.000* 1.005* 

 IW 1.000* 1.001 1.001 1.000* 1.003 0.999* 1.004 

h=22 RW 1.000* 1.002* 1.017* 1.009* 1.071* 1.005* 1.016* 

 IW 1.000* 1.001 1.000 1.000* 0.997* 1.001 0.993* 

h=66 RW 1.000* 0.973* 1.000* 1.000* 1.000* 0.978* 0.980* 

  IW 1.000* 1.001 1.000* 1.000* 0.996* 0.998* 0.998* 

  HAR∗ CdJd
∆∗ 

h=1 RW 1.000* 1.004* 1.000* 1.001* 1.003* 1.017* 1.224* 

 IW 1.000 1.002 1.001 1.001 1.012 0.999* 1.003 

h=5 RW 1.000* 1.002* 1.000* 1.001* 0.999* 1.000* 1.006* 

 IW 1.000 1.001 1.001 1.001 1.003 0.995* 1.001 

h=22 RW 1.000* 1.004* 1.002* 1.002* 1.027* 1.004* 1.044* 

 IW 1.000 1.000 1.001 1.001 1.002 0.987* 0.992 

h=66 RW 1.000* 1.001* 1.000* 1.000* 0.970* 0.999* 0.977* 

  IW 1.000* 1.000* 1.000* 1.000* 0.998* 0.998* 0.998* 

   HAR∗ CdJd
±∗ 

h=1 RW 1.000* 1.006* 1.001* 1.001* 0.998* 1.005* 1.232* 

 IW 1.000 1.002 1.002 1.002 0.983* 0.999 1.005 

h=5 RW 1.000 1.004 1.002 1.002 0.994* 1.002 1.008 

 IW 1.000 1.002 1.002 1.001 0.988* 0.995 1.006 

h=22 RW 1.000* 1.005* 1.000* 0.999* 1.026* 1.006* 1.015* 

 IW 1.000 1.001 1.001 1.001 0.981* 0.987 0.994 

h=66 RW 1.000* 0.973* 0.998* 0.999* 0.976* 1.004* 0.980* 

  IW 1.000* 1.000* 1.000* 1.000* 0.993* 0.998* 0.998* 

 

Following Bajgrowicz et al. (2016), we sample the SPY prices at 10-second for the ultra-

high frequency setting. Unreported results show that the (signed) jumps detected in 10-second 

frequency overwhelmingly have a smaller size and occurrence than in 5-minute frequency. 

This evidence corroborates that testing jumps for ultra-high frequency alleviates the upward 

bias due to the volatility bursts, and is in line with Christensen et al. (2014) and Bajgrowicz et 
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al. (2016), who also find decreased jumps size and occurrences in ultra-high frequency asset 

prices.  

We check the robustness of the out-of-sample results. The results again evidence the out-

of-sample importance of dividing volatility, BNS-alternative jump tests, longer lagged jumps, 

and jump signs. For brevity, we only report the results for the former two findings. Table 9 

compares the HAR∗ model with the CdJd
∗ , CdJd

∆∗, and CdJd
±∗ models 11 by various jump tests, for 

the out-of-sample. The results are qualitatively in line with those in Table 2. The results show 

that the daily decomposed model is able to beat the HAR∗ model, but mostly due to the use of 

alternative tests such as ASJ* and JO*.  

  

 
11 As the benchmark model and different competing models are all based on the volatility estimates under 10-second frequency, 

we term these modified models their original names with an asterisk, 
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6 Conclusion 

This paper investigates whether jumps predict future volatility. The results for S&P 500 

index show that dividing volatility into jumps and continuous variation can significantly 

improve volatility out-of-sample forecast. But this improvement is mainly attributed to the use 

of the jump tests which are more powerful and accurate than the BNS test. In addition, we find 

decomposing longer volatility lags is essential as this makes significant contributions to the 

out-of-sample.  

Although our results show that the jumps have only limited in-sample, we still find that 

including jumps to the model significantly enhances out-of-sample. Moreover, we find 

separating the signs of jumps is also important for the out-of-sample, especially for the long-

term horizons. Besides, our results are robust when the jump tests are adjusted for drift bias, 

intraday volatility pattern, and ultra-high frequency sampling. 
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