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1.  Introduction 

The implementation of International Financial Reporting Standards (IFRS) in 2005 for all 

European public firms has led to many debates about the quality of the standards (Ahmed et 

al., 2013; Paananen & Lin, 2009; Soderstrom & Sun, 2007). In terms of R&D accounting 

treatment, debate focuses on IAS 38. IAS 38 dictates that research expenditures must be 

expensed while under circumstances, when certain criteria are met, development expenditures 

are required to be capitalized. On the contrary, in some countries, like United Kingdom or 

France, the National GAAPs leave to the discretion of the firm whether to capitalize or not.  

There are two main theories about R&D capitalization. Those in favor of 

capitalization support that it allows the management to convey information about the R&D 

program future success and it acts as a signal to the market (Lev & Zarowin, 1999), while 

those against support that it is used for earnings management or as a way to slow down the 

amortization of failed R&D projects (Prencipe et al., 2008). 

 The focus of this study is twofold; Our first objective is to develop an R&D 

accounting choice prediction model out of sample by using financial statement data from 

European listed firms. The second objective is to discover if financial ratios or raw financial 

data from the financial statements can predict this accounting choice better. There is a large 

stream of accounting research on the determinants of R&D accounting treatment (Ball, 1980; 

Canace et al., 2022; Cazavan-Jeny et al., 2011; Dinh et al., 2016; Healy et al., 2002; Landry 

& Callimaci, 2003; Oswald, 2008; Wyatt, 2005).  

In doing so, we extend the existing R&D accounting related literature which focuses 

on explaining accounting choice within sample, and thus emphasizing at causality. We 

approach the issue in a different way, by predicting the R&D accounting treatment out of 

sample. Thus, although the explanatory analysis is the mainstream approach in the literature, 
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we focus on the neglected importance of the prediction problems in business and economics 

(Kleinberg et al., 2015).  

 In the literature, models containing financial ratios as predictors, estimated with a 

logistic regression is the most common approach. These ratios are chosen by researchers or 

financial analysts based on economic theory. We use the model of Cazavan-Jeny et al. (2011) 

as a Benchmark and we obtain out of sample predictions using the logistic regression. Next, 

we use five models, all containing raw data items derived by the financial statements. We 

employ Cecchini et al. (2010), a replication of Cecchini et al. (2010) by Bao et al. (2020), the 

Dechow et al. (2011) model, a decomposition of the ratios included in Cazavan-Jeny et al. 

(2011) and finally a combination of all the raw data items from the financial statements we 

have available, as predictors of R&D accounting choice, using the logistic regression. It is 

impossible to know beforehand, whether ratios identified by experts and analysts are more 

powerful than raw data prepared by accountants. Existing theories about R&D determinants 

of accounting treatment may be incomplete, so ratios that have been constructed based on 

these theories may lack predictive power. On the other hand, raw data may convey useful 

information. There is no need to specify a specific structure, and raw data can be described by 

more complex algebraic forms of relationship (Bao et al., 2020). 

 To compare in depth these two approaches, ratios versus raw data, we use state of the 

art machine learning (ML) algorithms. We compare the benchmark with the best performing 

raw data set from the initial analysis (in which we have used the Logistic regression) and test 

if machine learning can extract any “hidden” information from the raw data. Our results 

indicate the following. Machine learning outperforms traditional econometric methods, and 

as well as raw data have greater predictive power than ratios. We also examine the 

performance of a Hybrid model, in which we mixed ratios with raw data. This model 

outperformed any other model in this research.  
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 Our sample includes public firms from 15 countries from Europe, which share 

common economic characteristics and can be characterized as advanced economies. Our 

sample size is 18,957 firm-year observations of R&D engaged firms. We start our analysis in 

2005, since that was the year IFRS became mandatory for all listed firms in most European 

countries. 

 Our research varies from the existing literature as we provide out of sample 

predictions of R&D accounting treatment. Moreover, we use machine learning algorithms, a 

methodology that yields better results than the traditionally used logistic regression. 

Additionally, following Bao et al. (2020) approach on using raw financial items in accounting 

research, we provide evidence that indeed raw data are informative and can outperform 

ratios. 

 This paper is structured in the following way. In Section 2, we make a brief 

introduction to machine learning. Section 3 describes the data. In Section 4, we discuss the 

way we evaluate the performance of the models. In Section 5, the empirical results are 

presented, while in Section 6, we conduct a sensitivity analysis. Finally, Section 7 offers 

concluding remarks. 

2. An Introduction to Machine Learning 

The dominant approach of creating econometric models is to specify an algebraic form of 

relationship between a dependent variable and its regressors. The relationship between the 

dependent variable and the regressors, thus the type of the functional form (e.g. simple linear, 

double log) is determined by the economic theory. The relationship is specified by a function 

of the form 𝑦	 = 	𝑓	(𝑏, 𝑥) where 𝑦 is the dependent variable, 𝑥 are the independent variables 

(regressors) and 𝑏 their parameters (Anand et al., 2019). Econometrics focus to estimate 

parameters 𝛽+  by solving an optimization problem, either by minimizing a loss function 

(Mullainathan & Spiess, 2017) or by maximizing a likelihood function (MLE estimator).  
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On the other hand, a machine learning approach seeks to produce predictions by 

finding patterns in the data. ML produces a function, which is used to make predictions on 𝑦 

by using data 𝑥 (Varian, 2014). Traditional econometric methods create predictions by 

relying on the estimated 𝛽+and use them in another sample, different than the one used for 

estimation, to produce out of sample predictions (Elliott & Timmermann, 2008). To sum up, 

as mentioned by Mullainathan and Spiess (2017), simply put, the difference between ML and 

econometrics is that ML focuses on 𝑦, while the latter focuses on 𝛽+ .  

In the analyses that follow, we introduce the K-Nearest Neighbor (KNN) and Random 

Forest (RF) algorithms. The KNN is a non-parametric, supervised learning algorithm. The 

classification is made based on the majority vote of the object’s neighbors, with the object 

being classified in the class of its nearest neighbors. On the other hand, RF is an ensemble 

learning method based on Decision Trees. The classification of an object is based on the 

majority vote of the individual trees in the forest. 

3. The Sample and Data 

Our sample size is 18,957 firm-year observations and includes publicly listed firms from 13 

European Union countries (Austria, Belgium, Denmark, Finland, France, Germany, Greece, 

Ireland, Italy, Netherlands, Norway, Portugal, Spain) plus Switzerland and the United 

Kingdom. These countries share some common characteristics. First, since 2005, they all 

have adopted IFRS, thus they treat R&D costs using the same accounting policies. In addition 

to that, most of these countries can be classified as advanced economies, yet they exhibit 

different levels of R&D activity. 

 We start the sample in 2005 since that was the year the adoption of IFRS became 

mandatory in Europe. Before the implementation of IFRS, R&D costs accounting treatment 

was different in each country. In general, there are two ways to treat R&D costs. Either they 
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are expensed as incurred, or they are capitalized as an intangible asset in the balance sheet. 

Both major accounting principles US GAAP (SFAS 72) and IFRS (IAS 38) dictate that R&D 

costs must be expensed. Their main difference is that under IAS 38, R&D activity is 

separated in two distinctive phases, that is the research phase and development phase. In the 

research phase, all occurred costs are expensed, like US GAAP. In the development phase, if 

the criteria for intangible asset recognition are met, then the costs must be capitalized. These 

criteria, in general, require that the firm proves that the asset will be completed and generate 

future economic benefit to the firm. In contrast, before the implementation of IFRS, local 

GAAP in countries like the UK, France, and Italy, allowed firm’s management to decide 

whether costs in the development will be capitalized. The capitalization criteria were almost 

identical to current IAS 38 criteria for intangible assets recognition. The specific difference 

between IFRS and the local GAAP in force before IFRS adoption in 2005, is the limitation of 

management’s discretion in the latter.  
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3.1. The R&D Sample  

Our R&D sample has been retrieved by the WorldScope-Datastream database. We have 

followed the approach of Cazavan-Jeny et al. (2011) , and have removed from the sample 

firm-years that they did not develop any R&D activity, meaning that neither development 

costs (WC02505) nor expensed research costs (WC01201) were not reported at their financial 

statements. Firms classified as financials have been excluded from the sample as they follow 

different accounting principles. After having obtained the R&D firms sample, we have 

divided our firms into capitalizers and expensers. We classify a firm as a capitalizer if the 

firm reports capitalized development or as an expenser, if it only reports research expenditure 

(Cazavan-Jeny et al., 2011;Oswald & Zarowin, 2007;   Oswald, 2008). 

 As shown in Figure 1, since the adoption of IFRS (IAS 38), there has been a constant 

upwards trend in the capitalization rate; That was expected since, in all cases where the 

standard’s requirements were met, the capitalization became mandatory rather than optional. 

By 2013, capitalizing firms had surpassed the expensers. In general, we noticed a shift from 

expensing to capitalization. From 2014 to 2020, there is a relatively stable ratio between 

capitalizers and expensers (55%-45%). 

[Insert Figure 1 here] 

 Our prediction models require a training and a test period. To ensure that our training 

sample takes under consideration all trends in the R&D accounting treatment, we use the 

period from 2005 to 2014 as the training sample, and the last six years of the sample as the 

test period. For the test year 2015, the training period is 2005-2014, for the test year 2016, the 

training period is 2005-2015, for the test year 2017 the training period is 2005-2016 and so 

on. 
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3.2. The Benchmark Model 

Cazavan-Jeny et al. (2011) created their R&D choice determinants model, guided by theory. 

Based on White et al. (2002), they stated that capitalization improves leverage ratios and was 

used to smooth earnings. They stated that according to Aboody & Lev (1998) larger firms 

tended to expense more R&D costs compared to smaller firms, as well as that profitable firms 

avoided to capitalize R&D (Cazavan-Jeny & Jeanjean, 2006), and that managers used R&D 

capitalization to achieve smoother earnings (Lev et al., 2005;Penman, 1996). To examine 

these hypotheses, they used eight accounting ratios1 (Size, ROA, CF_RD, DebtCap, CV 

_ROA, CV_CFRD and CAPEX). We have used their suggested model as a benchmark and 

compared it with other models containing raw data from the financial statements. 

3.3. Raw Data 

To obtain our initial raw data items, we have decomposed the seven accounting ratios from 

the Cazavan-Jeny et al. (2011) model. In this way we derived our initial nine raw items from 

the financial statements.  In their groundbreaking and much discussed2  article examining the 

detection of accounting fraud, Bao et al. (2020) used three sets of raw items derived from two 

detection fraud models. Initially, they used a list of raw financial data selected by Cecchini et 

al. (2010) who had reviewed the relative literature and selected 40 raw financial items used in 

fraud prediction. Cecchini et. al. included in their final sample only items that do not contain 

more than 25% missing values, by that way, they ended up to 23 raw items. Bao et al. (2020) 

followed the same procedure and in their replication of Cecchini et al. (2010), they created a 

sample containing 24 raw financial items.  

 In addition to that, Bao et al. (2020) chose 11 financial ratios used by Dechow et al. 

(2011) that could be calculated by 23 raw items derived from the financial statements. We 

 
1 Variable definitions are provided in Appendix A 
2 See: Bao et al. (2021);Walker (2021) 
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have followed their approach, and have created a list of raw items, which have been used to 

calculate the eight ratios of our benchmark model. Our initial list contained 10 raw items, all 

of which can be found in the financial statements. We have noticed that from these 10 items, 

three of them (Capitalized Development Costs, Amortized Development Costs and Research 

Expenses) have caused data leakage. This can be explained by the fact that our target variable 

(capitalizer or expenser) is coded (1 or 0) based on the values of these items. We have noticed 

that for Expensers (firms that do not report capitalized development costs), Development 

Costs and Amortized Development costs are reported as missing3. This creates a pattern 

which is leaked to the target variable and for these reasons, we decided to exclude these three 

items and use seven raw financial items instead. 

 In our approach, to obtain more sets of raw financial items, we use the raw items used 

by Bao et al. (2020) in their replication of Cecchini et al. and Dechow et al. models plus 

items from the original Cecchini et al. Our initial list of the available at the time raw financial 

items, contains 32 items, i.e., 17 items from the Statement of Financial Position, nine items 

from the Statement of Comprehensive Income, four items from the Cash-Flow Statement, 

two Market Value items and two items from the Disclosures. We use these items to replicate 

the Cecchini and the Dechow models. Even though the raw items used in Bao’s et al. research 

are focused on the accounting fraud literature, they are important items used to calculate 

widely used ratios in the accounting literature. 

[Insert Table 1 here] 

  

 
3 These values are not missing at random. There are firms that always expense and never capitalize their R&D 
costs. We attempted to fill the missing values of Capitalized Development Costs with zero, but this approach 
still creates a data leakage. For this reason, these items were excluded.  
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4. Evaluation of the Models 

In the studies that use machine learning in accounting and finance, it is well established that 

financial data cannot be randomly split in train and test sets because they are intertemporal in 

nature (see: Bertomeu et al., 2021; Zhu et al., 2022). Therefore, as correctly highlighted by 

Bao et al. (2020), a k-fold cross validation is unsuitable4 for our data, as in the random splits 

of the cross-validation, values from future data points may be used to predict values from past 

data points. 

 Anand et al. (2019), in their working paper, suggested the use of time-series cross 

validation. Data are split in k-folds, taking under consideration their intertemporal nature. We 

have followed their paradigm and have used the TimeSeriesSplit from the scikit-learn library 

in Python (Pedregosa et al., 2011), in order to split our data. In this type of cross-validation, 

the training data are partitioned in blocks of years. The algorithms are trained in the first 

block and are validated in the second block. Then the first and second block are trained, and 

they are validated in the third block. This is repeated for k-1 times, where k is the number of 

the folds. During the training phase, we use grid search to find the optimum set of 

hyperparameters for our algorithm. In the end of the training phase, we have obtained the 

hyperparameters that performed better. We train the algorithm containing with the best 

hyperparameters in the whole training subsample and we predict the testing fold we left 

aside, to obtain our out of sample performance. In the next step we repeat the process by 

adding to the training set the test fold we just used to make our predictions, and when we 

have obtained the new set of hyperparameters, we retrain the algorithm, and we predict the 

next test fold. In our case, this procedure repeats in the following way: 

1. Training 1: 2005-2014; Test 1: 2015 

 
4 In the case of purely autoregressive time-series, the standard k-fold Cross-Validation is the preferred method 
(Bergmeir et al., 2018). 
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2. Training 2: 2005-2015; Test 2: 2016 

3. Training 3: 2005-2016; Test 3: 2017 

We repeat this process until we get out of sample predictions for the whole initial set we set 

aside for testing. In total, we obtain six out of sample predictions. The reported out of sample 

performance score is the average score for all the test years 𝑂𝑂𝑆𝑠𝑐𝑜𝑟𝑒 = !
"
∑ 𝑆𝑐𝑜𝑟𝑒""
!   

  

4.1 Performance Evaluation Metrics 

The R&D accounting choice issue can be converted to a binary classification task (capitalize 

vs expense) and therefore to evaluate the prediction performance we need to use the 

appropriate metrics used in classification. The most easy and straightforward way to measure 

performance is the Accuracy score which is defined as 𝐴𝐶𝐶 = #$%#&
#$%#&%'&%'$

, where TP (True 

Positive) are the instances in the positive class (capitalizer) which are classified correctly as 

capitalizers, TN (True Negative) are the instances in the negative class (expenser) which are 

classified correctly as expensers, FP (False Positive) are the instances which are expensers 

but they have been classified as capitalizers  and FN (False Negative) are the instances which 

are capitalizers but they have been classified as expensers. From the definition of the 

Accuracy score it is obvious that in an unbalanced classification scenario, this metric is 

biased towards the class with the more instances.  

 Another scoring option would be the F1 score, which is defined 𝐹1 = 2 ∗

()*+,-,."∗)*+011
()*+,-,."%)*+011

, or alternatively in terms of TP and TN, as 𝐹1 = #$
#$%!"∗('$%'&)	

. Precision or 

positive rate is the number of positive class predictions that indeed belong to the positive 

class to the total number of predicted positives, both correctly and incorrectly classified 

( #$
#$%'$

), while Recall is the number of positive class predictions correctly classified as 
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positives to the total number of positive instances ( #$
#$%'&	

). However, F1 score requires us to 

choose a threshold5. 

 To address this issue, we have used the ROC-AUC score, like many other researchers 

in the ML discipline ( Bao et al., 2020; Bertomeu et al., 2021; Larcker & Zakolyukina, 2012). 

As Fawcett (2006) explained, the ROC curve depicts the classifiers performance at all 

possible classification thresholds. In fact, the F1 Score can be calculated for any point on the 

ROC curve, so the ROC curve “averages” the F1 score for all possible thresholds. To get a 

single number as a score, we calculate AUC (Area Under Curve). AUC value ranges from 0 

to 1, with a value of 0.5 denoting that the classifier makes random guesses.  

[Insert Figure 2 here] 

5.  The Out of Sample Performance of the Benchmark Model 

In this section we use the most common and classic algorithm used in classification, the 

logistic regression (LR) to obtain out of sample predictions using the benchmark model 

which contains only financial ratios selected from the theory. In the next step, we use the raw 

financial data models and test if they can outperform the benchmark. 

Before we train our models, it is necessary to preprocess our data. The ratios and the 

raw items used in our study exhibit scale differences. Data scaling, although it is uncommon 

in accounting literature, it is very common in ML and operations research. Even in the case of 

the benchmark model that consists of ratios which are in fact raw financial items divided by 

Total Assets, predictions can be improved by normalizing or standardizing the data (Shanker 

et al., 1996). By normalizing our data, we rescale the firm-year observations in the range 

[0,1]. This is also called Min-Max normalization, which is achieved by applying the formula 

𝑥5 = 6789:	(6)
8;<(6)789:	(<)

 , where 𝑥5  is the scaled value, in every firm-year observation. In the end, 

 
5 Refer to Chicco & Jurman (2020) for a detailed study on the F1 Score’s limitations and drawbacks 
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all features will have the same scale. We train the benchmark model two times, one with 

normalized features and one without, using the LR. The results are in line with the relative 

literature about the effect of normalization, as the normalized features model performs better. 

The Cazavan-Jeny et al. model achieves an AUC score of 0.73, which is our benchmark 

score. 

[Insert Table 2 here] 

5.1 Can Raw Financial Items beat the Benchmark Model? 

In this step of our analysis, we use the raw financial items to predict accounting choice for 

R&D and compare their out of sample performance with the performance of our benchmark 

model. We use five models with raw financial items as described in Section 3.3. 

[Insert Table 3 here] 

We notice that all raw data models have an average AUC score of approximately 0.7, which 

is close to the performance of our benchmark. However, they cannot beat the Benchmark. To 

further investigate the issue, we pick the best performing set of raw financial items, that is the 

one with the 32 items from the financial statements and compare it with the benchmark 

model, by using more complex algorithms. We seek to investigate whether a more complex 

algorithm would capture more patterns in the raw data and if that could help to beat the 

Benchmark model. 

5.1.1 K-Nearest Neighbors  

K-Nearest Neighbors (KNN) algorithm (Fix and Hodges, 1951)6 is a simple, non- parametric 

algorithm which can be used both for classification and regression problems. KNN can be 

used for linear and non-linear problems. While it can be easily and fast implemented 

 
6 There is not an official publication about the KNN method; Fix and Hodges introduced the KNN in an 
unpublished US Air Force School of Aviation Medicine report in 1951 (Silverman & Jones, 1989). 
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algorithm (relatively to the sample size), it is considered an effective algorithm with many 

applications (Triguero et al., 2019). 

 A KNN algorithm maps every class instance of the training sample to the real n-

dimensional space. The number of the dimensions is equal to the number of model’s features. 

The basic assumption of KNN is that similar data points (data points of the same class) are in 

proximity. This proximity in mathematics is called distance. To measure the distance, we rely 

on distance metrics. The most widely used metric is the Minkowski distance7. The distance is 

calculated in the following way. For two data points 𝐴 = (𝑎!, 𝑎=, … , 𝑎")	𝑎𝑛𝑑	𝐵 =

(𝛽!, 𝛽=, … , 𝛽") 	∈ 	ℝ", the Minkowski distance of order 𝑝 is defined as: 

𝐷(𝐴, 𝐵) = DE(|𝑎, − 𝛽,|
"

,>!

)(H

!
(

 

By changing the p-value to 1 we get the Manhattan distance: 

𝐷?&@(𝐴, 𝐵) =E|𝑎, − 𝛽,|
"

,>!

 

And when p equals to 2, we get the Euclidean distance: 

𝐷ABC(𝐴, 𝐵) = IE(𝑎, − 𝛽,

"

,>!

)= 

When the distance between data points is calculated and stored in the training set (those are 

the Neighbors), the algorithm is “fed” with the test set. The algorithm will search for the K-

Nearest Neighbors to the data point of the test set in order to classify it. The number of K 

ranges from 1 to the total number of instances. We have used a grid search to find the number 

of K that maximizes the AUC score. However, we must note that a K=1 will cause the 

algorithm to overfit the data and a K equal to the sample size is computationally expensive. 

 
7 Other distance metrics like Cosine, Jaccard or any other custom distance measure can be used. 
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[Insert Figure 3 here] 

5.1.2. Random Forest 

The Random Forest algorithm is based on the Decision Trees and was introduced by Breiman 

(2001). It is a versatile, general purpose, but rather complicated algorithm, which is suitable 

for all types of data and problems. Random Forest can be described as a collection of 

Decision Trees, whose predictions are averaged. As Anand et al. (2019) explained, this 

procedure can be parallelized to the Fama-Macbeth procedure which averages regression 

coefficients estimated in different years.  

 A unique Decision Tree is grown for a bootstrap sample of the training set by using a 

random sample of features. This is repeated as many times as the number of the trees that 

have been specified by the user of the algorithm, and a forest is grown. When the training has 

been completed, the test data are fed to the trees of the forest, and the prediction is the result 

of the majority vote of each unique tree. The complexity of the algorithm is the fact that the 

user has to hyper tune many parameters. First a decision must be made regarding the number 

of the trees in the Forest. Many researchers believe that the number of the trees is not a 

parameter to tune and that a large number of trees is sufficient. Adding more trees in the 

forest increases accuracy, but adding more trees requires more computational power and does 

not guarantee a perpetual improvement in accuracy (Probst & Boulesteix, 2017).  

We have used grid search to find the optimal hyperparameters for our Random Forest. 

Among many possible hyperparameters, we have chosen to tune the maximum depth of the 

trees, the minimum number of samples required to split a node and the minimum number of 

samples required in each leaf node. It is also possible to determine the criterion based on 

which each split occurs. The Gini impurity or the entropy can be used. However, performing 

a grid search examining both criteria at the same time is computationally expensive and most 
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of the times performance is the same. For this reason, we have used the Gini impurity as the 

splitting criterion. 

[Insert Figure 4 here] 

 

5.1.3 The Out of Sample Performance of the Complex Algorithms  

When we use more complex algorithms, the raw data model achieves better AUC score 

compared to the benchmark model. In the case of KNN, the difference between the two 

models is indisputably significant. Despite this, we have noticed that this difference is not 

caused by better performance of the raw data model but by the worse performance of the 

benchmark model (compared to the LR). 

[Insert Table 4 here] 

 When we use the Random Forest, performance is marginally better for the raw data 

model, but only by 2%. Random Forest has boosted the performance of both models and 

clearly is a better classifier than KNN for the given data. 

To sum up, we have an indication that raw data perform better than ratios or in the worst-case 

scenario, they perform equally well. 

5.2. Introducing a Hybrid Model: Ratios and Raw Data Combined 

In this approach, we take advantage of the data Normalization, and we combine the 

benchmark model which consists of ratios, with the 32 raw financial data. We use the best 

performing algorithm (Random Forest) to fit the data. By that, we have achieved a further 5% 

AUC score improvement compared to the best performing model (raw data only) fitted with 

Random Forest. 

[Insert Table 5 here] 
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5.2.1 Does Data Preprocessing Affects Random Forest? 

We further extend our analysis by fitting a Random Forest to the Hybrid Model without any 

data preprocessing. We do not winsorize the dataset, so outliers will be present, and we do 

not normalize it. We input ratios and raw data items, all with different scaling. In this 

approach, we followed the analysis of Anand et al. (2019), who showed that Random Forest 

is insensitive to outliers and data scaling. Our results are in line with theirs and we also 

concluded that when Random Forest is used, no data preprocessing is necessary at all. 

[Insert Table 6 here] 

5.2.2 Is Random Forest a Black Box? 

One of the criticisms of the ML methods (and especially neural networks) is that they are 

considered “black box” methods. The user can just pick an algorithm, fit it to the data and 

obtain some results. This is also the case too with the Random Forest, especially if it is 

compared to a single Decision Tree. The single Decision Tree is interpretable while the 

Random Forest contains so many trees that no visual interpretation is possible.  

[Insert Figures 5 and 6] 

 Even though visual interpretation is impossible with Random Forest, we can calculate 

feature importance. Feature importance provides us with evidence of how important each 

feature was in the classification (Tuv et al., 2009). Each individual tree in the Forest performs 

feature selection by selecting splitting points. In each split, there is a change in Gini impurity. 

The bigger the change, the greater the importance (Breiman, 1984). In Figure 7 we report the 

top 10 most important features based on their contribution to the prediction, starting with the 

most important, as ranked by their average importance throughout the test period 2015-2020. 

[Insert Figure 7 here] 
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We notice that four features are ratios, and the rest are raw financial items. The importance of 

the four features (which are used in the Cazavan-Jeny et al. model) is adequately documented 

in their study.  

What is of great interest, is the raw data items. “Other Intangible Assets” is the most 

important raw item.  Other Intangible Assets contain intangibles like computer software, 

patents, copyrights. There is evidence that firms that disclose patents and citations, these are 

more value relevant to accounting choice than capitalized R&D (Ciftci & Zhou, 2016). We 

can think of patents as the output of successful R&D investments. So, there is a causal 

relationship between the two features. The second most important raw item is the “Audit 

Fees”. Audit fees are reported in the notes on the financial statements. It is well documented 

in the literature that there is a connection between capitalized R&D and audit fees. Auditors 

believe that some firms capitalize R&D in order to manage earnings and thus charge higher 

fees (Cheng et al., 2016). Furthermore, R&D intensive firms prefer Big 4 audit firms and 

auditors who specialize in auditing R&D and charge higher fees (Godfrey & Hamilton, 

2005). 

The importance of “Property, Plant and Equipment” (or PPE) can be explained by the 

relationship between R&D and tangible investments. R&D activities may require facilities, 

machinery or a tangible asset to introduce to the market new products generated by an R&D 

project (Carboni & Medda, 2019). The relationship between sales and R&D activity is well 

documented too. The more research the better the sales growth (Morbey & Reithner, 1990). 

However, there is not solid evidence which accounting choice for R&D affects more the sales 

growth. Cazavan-Jeny et al. (2011) suggest that not only the choice but also the amount of 

R&D affects sales growth. The impact of “Common Shares Outstanding” maybe is related to 

the ownership effect on R&D investments (see: Choi et al., 2015). 
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Despite the fact that feature importance is a useful tool and offers insights on how the 

algorithm makes predictions, we do not have an indication in which direction our features 

affect the R&D accounting choice. We can only make assumptions relying on theory and past 

research. In our effort to shed light in the “black box” of ML, we use Partial Dependence 

Plots (PDP)8 to visualize the interaction of our features with the target variable. 

[Insert Figure 8 here] 

From the PDP plots we have a clear explanation on how our features affect the decision to 

capitalize R&D costs. We notice a positive relation between the volatility of R&D cashflows 

(CV_CFRD). The more volatile the cashflows are, the more probable it is that the 

management will capitalize the R&D costs. This is in line with Fudenberg & Tirole (1995) 

who support that managers prefer smooth earnings and cashflows, and in this case, they use 

R&D capitalization to achieve it. We notice a negative association between ROA and the 

decision to capitalize, which is supported by Aboody & Lev. (1998), who suggest that 

profitable companies do not capitalize in order not to harm the perception of the analysts on 

the quality of their earnings. The same negative relationship is observed with the cash flows 

from R&D (CF_RD) too. There is a positive relationship between Other Intangible Assets 

and the decision to capitalize, as it is supported by prior evidence. From the rest of the plots, 

all seem not to effect capitalization much, apart from PPE and Audit Fees. Although it is 

documented that R&D investments lead to tangible investments, there is a negative 

relationship between PPE and R&D capitalization. Firms with zero or small PPE assets tend 

to capitalize R&D, but as PPE value grows, firms seem to avoid capitalization. As the Audit 

Fees increase, the possibility of capitalization decreases. A possible explanation would be 

that more reputable and specialized auditors in R&D (who charge high audit fees) question 

 
8 For more info about the PDP, mathematical definition, and computation methods, refer to https://scikit-
learn.org/stable/modules/partial_dependence.html 



 20 

the management’s decision to capitalize and they examine more thoroughly whether the firm 

meets the capitalization criteria. 

 In the final step of the Partial Dependence Plots analysis, we examine the interaction 

between the two most important features, CV_CFRD and ROA and how this interaction 

affects capitalization.  

[Insert Figure 9 here] 

According to the PDP, firms with ROA higher than 0.06 and CV_CFRD lower than 0.7 are 

more likely to capitalize. In other words, firms with less volatile cash flows from R&D and 

higher ROA are more likely to be classified as capitalizers. 

6. Sensitivity Analysis 

How we split our data for training and testing affects the classification performance. It is 

important to have a sensible balance between training and testing sample size; Very small or 

very large training sample may have a negative effect on performance (Xu & Goodacre, 

2018). This is the reason we did not make an explicit train-test split, but we rather used cross-

validation and made several splits, reporting the average performance across all test sub-

samples.  

 Despite this, we made a design choice on where the first split should occur; Based on 

Figure 1, we made the split in the point captures most of the trends in the R&D accounting 

choice, as previously stated. To verify our design choice, we use an alternative test period, 

from 2010 to 2020. We fit the best performing model (Hybrid model) with a Random Forest 

and report the out of sample performance. The results indicate that the alternate test period 

does not change the performance, as well as that our approach is robust. 

[Insert Table 7 here] 
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7. Conclusion 

Accounting treatment for R&D, and more specifically the determinants of R&D 

capitalization is an important stream of research in the accounting literature. In this study we 

aim to develop a novel out of sample capitalization prediction model based on a sample of 

European listed firms over the period 2005-2020. Because of the intertemporal nature of our 

data, we use the last six years of our sample (2015-2020) as the out of sample test period and 

the years before that as the training period. To validate the robustness of our model, we have 

used an alternate test period from 2010 to 2020. Our results are valid in the alternate period, 

as well. 

 Our research differs from the existing literature in several ways. First, in the best of 

our knowledge, we are the first that predict out of sample accounting choice for R&D rather 

than trying to explain capitalization determinants within sample. Secondly, we use raw 

financial data from the financial statements rather than financial ratios to predict 

capitalization. With this approach we provide evidence that raw data are also informative, 

and, under certain circumstances, they may have better predictive ability compared to ratios. 

Thirdly, we use powerful Machine Learning algorithms rather than the commonly used logit 

regression used in similar research. Our results show that ML outperforms traditional 

econometric methods. 

 We used the Cazavan-Jeny et al. (2011) model, which uses financial ratios to explain 

the determinants of R&D capitalization, as a Benchmark. Afterwards, we compared the 

performance of the Benchmark against different sets of raw financial data using the Logistic 

regression. We found that none of the sets of raw data can beat the Benchmark model. In the 

next step of our analysis, we compared the best performing raw financial data model against 

the Benchmark by using more complex ML algorithms like KNN and Random Forest. We 

discovered that by using more advanced techniques the raw data model performs better than 
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the model which uses financial ratios. To find the optimal model, we combined the raw data 

items with the ratios, thus creating a Hybrid model. We used Random Forest, as the best 

performing algorithm, to fit the data. We conclude this study by providing evidence that the 

Hybrid model achieves the best performance compared to any other model used in this 

approach.  

 The empirical results presented in this study hold implications for the existing 

accounting literature. First, from an economic point of view, the utilization of raw data in our 

model has revealed new possible determinants of R&D accounting treatment. Our results 

indicate that apart from earnings management, income smoothing and signaling, which are 

the main theories behind R&D accounting choice, there are other determinants that should be 

considered, like the tangible assets of the firm and the reported other intangible assets. 

 Second, for future researchers, we have introduced a new approach to study the R&D 

accounting treatment phenomenon. We provide evidence that raw data and a combination of 

raw data and ratios can be used to create better models compared to the traditional ratio 

approach. Moreover, we suggest that machine learning is a useful alternative to standard 

econometric methods, and it is possible that it provides better performing models.  

 Our study is relevant to the R&D capitalization determinants literature (Cazavan-Jeny 

et al, 2011; Oswald, 2008) and research about the financial ratios versus raw financial data 

debate (Bao et al., 2020). One limitation of our study is that we were not able to obtain 

adequate enough R&D data prior to 2005 and make a comparison of R&D capitalization prior 

and after the implementation of IAS 38. For future research, we suggest a “brute force” 

approach, by comparing a model that contains all available fields in the financial statements 

versus our Hybrid model. 
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Appendix A: Variable Definition 

Table A: WorldScope-Datastream Items 

Variable Definition Measurement 

RDCAP Development Costs- Gross WC02505 

TA Total Assets WC02999 

RDAM Development Costs – Accumulated Amortization WC02506 

RDEXP Research & Development Expense WC01201 

NETSAL Net Sales or Revenues WC01001 

NETINC Pre-tax Income (Income before tax, extraordinary items 

and preferred dividends) 

WC01401 

IIN Interest Income WC04149 

IP Interest Paid WC04148 

CAPEX Capital Expenditures (Additions to Fixed Assets) WC04601 

 

Table B: Computed Variables 

 

Variable Defintition Measurement 

TAFR Total Assets TA-RDCAP-RDAM 

SIZE Natural Logarithm of TAFR ln(TAFR) 

NFE Net Financial Expenditure IP-IINC 

ROA Return on Assets IBT+NFE+RDAM+RDEXP/0.5*(TAFR+TAFRt-1) 

RDS R&D Intensity RDEXP/NETSALES 

CF_RD Cash Flow of R&D (irrespective of its Acc. 

Treat.) 

RDS+NETSALES+ΔRDCAP/0.5*(TAFR+TAFRt-1) 

 

CV_CFRD Coefficient of Variation in CFRD SD CFRD/Abs. Mean CFRD 

CV_ROA Coefficient of Variation in ROA ˜ 

DEBTCAP Gearing TD/0.5*(TAFR+TAFRt-1) 

CAPEX Natural Logarithm of Cap.Expen. CAPEX/0.5*(TAFR+TAFRt-1) 
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APPENDIX B: Algorithm Hyperparameters 

1. Logistic regression 

{"C":np.logspace(-3,3,7), "penalty":["l1","l2"], "solver":["lbfgs", "liblinear","saga} 

2. K Nearest Neighbors 

k_range = [2,5,10,15,20,25,30,35,40,45,50,55],{'n_neighbors': k_range} 

3. Random Forest 

n_estimators=700 

# Number of features to consider at every split 

max_features = [ 'sqrt'] 

# Maximum number of levels in tree 

max_depth = [1,5,8,10] 

# Minimum number of samples required to split a node 

min_samples_split = [2, 5] 

# Minimum number of samples required at each leaf node 

min_samples_leaf = [ 10,15,20] 

# Method of selecting samples for training each tree 

bootstrap = [True, False] 
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Figures & Tables 

Table 1. List of Raw Financial Data Items 

Available DataStream items (1) Cecchini et al. 

(2010) raw items 

(2) 

Dechow et al. 

(2011) raw 

items derived 

from financial 

ratios (3)  

Replicated 

Cecchini et 

al. (2010) by 

Bao et al. 

(2020) (4)  

Cazavan-

Jeny et al. 

(2011) (5) 

     

Statement of Financial Position 

items 

    

Cash & cash equivalents YES YES YES - 

Accounts Receivables YES YES YES - 

Inventories YES YES YES - 

Short-term investments YES YES YES - 

Current assets YES YES - - 

Property, plant & equipment YES YES YES - 

Total Assets YES YES YES YES 

Current Liabilities YES YES YES - 

Total Liabilities YES YES YES - 

Equity Capital & Reserves YES YES YES - 

Development Costs- gross - - - YES 

Other intangible assets - - - - 

Deferred taxes - - - - 

Loans-net - - - - 

Development costs- amortized    - 

Total Debt - - - - 

Long term liabilities - - - - 

     

Income statement items     
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Net sales YES YES YES YES 

Cost of goods sold YES YES YES - 

Depreciation & amortization YES - YES - 

Interest income YES - - YES 

Interest paid YES - YES YES 

Research & Development expense - - - - 

Income before tax, extraordinary items 

and preferred dividends 

YES YES YES YES 

Net income YES - YES - 

Income taxes YES - YES - 

     

Cash Flow statement items     

Long Term Borrowings - - - - 

Net proceeds from sale/issue Of 

common & pref. stocks 

YES YES - - 

Capital Expenditure (CAPEX) - - - YES 

Cash dividends paid - - - - 

Extraordinary items - - - - 

     

Market value items     

Common shares outstanding YES YES YES - 

Market Price, Year End YES - - - 

     

Other disclosure items     

Employees YES - - - 

Audit fees - - - - 

Column (1) lists all the available raw data items and column (2) our replication of Cecchini et al. (2010). Column (3) shows our replication 

of Dechow et al. (2011) derived from financial ratios while column (4) presents the replication of Cecchini et al. (2010) by Bao et al. (2020). 

Finally, column (5) contains the raw items from which the ratios of Cazavan-Jeny et al. (2011) were derived. 
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Table 2. The Out of Sample Performance Evaluation Metrics of the Benchmark Model 
for the Test Period 2015–20 
        

 Performance Metrics Averaged over the Test Period 2015–2020 
  Metric  
Input variables Method AUC  
8 financial ratios 1) Logistic Regression 0.71  
  2) Logistic Regression (Normalized Data) 0.73  

 

Table 3. The Out of Sample Performance Evaluation Metrics of the Raw Financial Items for the Test Period 2015–20 
        

 Performance Metrics Averaged over the Test Period 2015–2020 
  Metric  
Input variables Method AUC   

7 raw items from Cajavan-Jeny et al. 
1) Logistic Regression 
(Normalized Data) 0.69  

17 raw items from Bao et al. (Repl. Cecchini et al.) 0.69  
15 raw items from Repl. Dechow et al.  0.69  
22 raw items from Repl. Cecchini et al.  0.70  
32 raw items from the financial statements  0.71  

 

 

Table 4. The Out of Sample Performance Evaluation Metrics of the Raw Financial Items vs 
Benchmark for the Test Period 2015–20 
        

 Performance Metrics Averaged over the Test Period 2015–2020 
  Metric  
Input variables Method AUC   
8 financial ratios 1)KNN (Normalized Data) 0,63  
32 raw items from the financial 
statements  0,71  
 2) Random Forest (Normalized Data) 0,82  
  0,84  
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Table 5. The Out of Sample Performance Evaluation Metrics of the Hybrid Model for the Test Period 
2015–20 
        

 Performance Metrics Averaged over the Test Period 2015–2020 
  Metric  
Input variables Method AUC   
8 financial ratios plus 1) Random Forest (Normalized Data) 0,89  
32 raw items from the financial 
statements       

 

 

 

Table 6. Processed versus Unprocessed Data 
        

 Performance Metrics Averaged over the Test Period 2015–2020 
  Metric  
Input variables Method AUC   
8 financial ratios plus 1) Random Forest (Normalized Data) 0,89  
32 raw items from the financial 
statements 2) Random Forest (Raw Data) 0,9   

 
 

Table 7. The Out of Sample Performance Evaluation Metrics of the Hybrid Model for the Test Period 
2010–20 
        

 Performance Metrics Averaged over the Test Period 2015–2020 
  Metric  
Input variables Method AUC   
8 financial ratios plus 1) Random Forest (Normalized Data) 0,89  
32 raw items from the financial 
statements       
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Figure 1. Accounting treatment of R&D per year 

 

 

Figure 2. Example of ROC-AUC Curve 
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Figure 3. KNN decision boundary plot 

 

Figure 4. Random Forest decision boundary plot 
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Figure 5. Pruned (four levels) Decision Tree 

 

 

Figure 6. Fully grown single tree from the forest 
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Figure 7. Top 10 feature importance 

 
 
 
 
 

  

Figure 8. Partial Dependence Plot of the 10 most important features 

 

 

Figure 9. Two-way Partial Dependence Plot of the two most important features 


