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future market returns. I argue that the presence of these extrapolative investors can

help resolve the equity premium puzzle if the elasticity of intertemporal substitution

(EIS) is greater than unity. Extrapolators’ overreaction to dividend news generates

countercyclical expected returns. Rational investors respond by making their con-

sumption growth more procyclical. The equity premium is high because extrapolators

believe stocks are a bad hedge and rational investors have high consumption growth

covariance with stocks. I match the U.S. data with a relative risk aversion of 4 and an

EIS of 2.
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1 Introduction

Models seeking to explain the high, time-varying equity premium must contend with

the growing body of evidence that the typical investor does not seem to have rational expec-

tations about the premium. Survey and experimental studies show that the mean subjective

forecast of the aggregate stock market return is positively correlated with recent returns

(Andreassen and Kraus (1990), De Bondt (1993), Durell (2001), Fisher and Statman (2000),

Qiu and Welch (2004), Vissing-Jørgensen (2003)), even though actual market returns exhibit

no positive serial correlation (Fama and French (1988b)).1 In fact, Durell (2001) finds that

average investor optimism about the stock market negatively predicts future returns. Fur-

ther evidence that these extrapolative beliefs are mistaken comes from the return forecasts

of more sophisticated market observers–such as professional economists, institutional in-

vestors, and investment newsletter editors–which are contrarian (De Bondt (1991), Shiller

(2000), Clarke and Statman (1998)).

Even if extrapolative beliefs were present only among poor to moderately wealthy stock-

holders, they would play an important role in the response of aggregate consumption to stock

returns because these households’ share of aggregate consumption is large. The bottom two

stockholder consumption deciles accounted for 10.6% of total stockholder nondurable and

services consumption in 1998. The next three deciles accounted for 23.3%.2

However, the incidence of extrapolative beliefs does not diminish swiftly with wealth. Qiu

and Welch (2004) report a 97% correlation between the returns expectations of the wealthy

and poor. Graham and Harvey (2001) find that U.S. chief financial officers have extrapolative

returns forecasts. Therefore, extrapolative beliefs are likely to have a significant price impact

as well.

This paper argues that the presence of return extrapolators can help resolve the equity

premium puzzle. I present a general equilibrium model of an endowment economy where

aggregate consumption growth has low covariance with market returns and relative risk

aversion is low. Nonetheless, the average equity premium is high. Furthermore, stock returns

are much more volatile than dividend growth and do not predict future dividend growth,

1It is true that there is a small amount of postive serial correlation in index returns over a horizon of a
few months (Lo and MacKinlay (1988)). However, investor expectation surveys typically ask about longer
horizons, where return autocorrelations are negative.

2I use the classification of stockholders used by Vissing-Jørgensen (2002) to compute nondurable and
services consumption from the Consumer Expenditure Survey, where observations are dropped for households
reporting wages less than the statutory minimum wage. Nondurable and services consumption is the ND
measure used in Krueger and Perri (2005).
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which implies that stock returns are mean-reverting.3 The riskfree rate is low, stable, and

does not predict aggregate consumption growth. I find that I can match the postwar U.S.

equity Sharpe ratio and mean riskfree rate with a relative risk aversion coefficient of 4 and

an elasticity of intertemporal substitution (EIS) of 2 when extrapolators constitute 75% of

the population.

Extrapolators generate an anomalously high equity premium through three channels.

First, they make stocks highly risky, even though stocks are claims to a fundamentally low-

risk technology. Extrapolators are more willing to buy stocks when there has been recent

good news, and they are less willing to buy stocks when there has been recent bad news.

In equilibrium, this generates procyclical price-dividend ratios, which lead to countercyclical

expected stock returns because dividend growth is independently and identically distributed

over time. Sophisticated investors with rational expectations respond by making their con-

sumption more procyclical, since an EIS greater than 1 causes lower expected returns to

increase consumption today. Sophisticates’ consumption growth therefore has a high covari-

ance with equity returns, leading sophisticates to demand a high average equity return. This

is consistent with Aït-Sahalia, Parker, and Yogo’s (2003) finding that the consumption of

the very rich, who are likely to be disproportionately (although not universally) rational,

can be better reconciled with the equity premium.

Second, extrapolators believe stocks to be a poor hedge, since they think that low stock

returns today predict low future stock returns. Therefore, they too demand a high equity

premium on average. In my model, extrapolators’ unconditional expectation of the equity

premium is correct. It is only their conditional expectations that are incorrect.

Third, extrapolators obscure the risk they create in stocks. Extrapolators’ returns expec-

tations move in the opposite direction of sophisticates’ contrarian expectations. Therefore,

when sophisticates decrease their savings rate in response to a positive innovation in stock

prices, extrapolators increase their savings rate because they think investment prospects have

improved. Choi et al. (2004) find empirically that 401(k) investors cut their consumption

growth in response to positive capital gains. Aggregate consumption statistics add together

sophisticate and extrapolator consumption, creating an aggregate series whose growth has

low covariance with stock returns.
3Shiller (1981) and LeRoy and Porter (1981) document excess volatility in stock returns relative to

dividend growth. Cochrane (1992) finds stock returns do not predict future dividend growth. Cochrane
(1991), Campbell and Shiller (1988a, 1988b), Fama and French (1988a), and Hodrick (1992) document mean
reversion in stock returns.
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The riskfree rate is low because sophisticates’ consumption growth is very volatile, gener-

ating a strong precautionary savings motive, while extrapolators are irrationally afraid that

stocks are bad hedges. The riskfree rate is stable because the procyclicality of extrapolator

demand for the riskfree asset is offset by the countercyclicality of sophisticate demand. Fur-

thermore, both extrapolator and sophisticate demands are individually stable because their

high EIS implies a weak consumption smoothing motive.

The model’s results rest crucially on the assumption that the EIS is greater than unity.

Although the empirical literature has not come to a consensus on the size of the EIS, a number

of studies using micro data have found the EIS to be large. Gourinchas and Parker (2002)

and Gruber (2006) estimate an EIS of 2, Attanasio, Banks, and Tanner (2002) estimate an

EIS of 1.54, and Vissing-Jørgensen and Attanasio (2003) obtain estimates between 1.03 and

2.34.

It is commonly argued that even if individuals’ beliefs are irrational, their choices are

rational because they are delegated to financial institutions. However, it is doubtful that

financial institutions completely neutralize the effect of extrapolative beliefs because insti-

tutions’ role is typically restricted to allocating money within an asset class. They usually

do not control the household’s consumption-savings decision and the fraction of household

wealth allocated to each asset class.4 If extrapolators decide to invest more in equities, it is

the money manager’s job to allocate that additional money optimally among stocks, even if

she thinks that equities overall are overvalued. The model’s results hold even if every stock

is correctly valued relative to every other stock.

Previous theoretical work has also shown that the presence of irrational noise traders can

affect stock prices despite the presence of rational arbitrageurs (De Long et al. (1990), Camp-

bell and Kyle (1993), Shleifer and Vishny (1997), Barberis and Shleifer (2003)). Empirical

studies that find important limits to the extent arbitrageurs can move prices towards funda-

mental values include Lee, Shleifer, and Thaler (1991), Froot and Dabora (1999)̀, Mitchell,

Pulvino, and Stafford (2002), Wurgler and Zhuravskaya (2002), and Lamont and Thaler

(2003). To date, however, there has been little exploration of the effect noise traders have

on the joint behavior of consumption and asset returns.5

4Financial institutions may not be given such a role because they cannot credibly communicate optimal
savings rates and asset allocations when their compensation is based on total assets under management and
varies by asset class.

5An exception is Ingram (1990), who models an economy populated by sophisticates and noise traders
who follow rule-of-thumb consumption and portfolio rules. She obtains an equity premium and volatility
that are both an order of magnitude below the values observed in the data. De Long et al. (1990) suggest,
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Section 2 presents the model. Section 3 describes the parameter values used to generate

the results in Section 4. Section 5 concludes. An appendix describes the computational

procedure used to numerically solve the model.

2 Model description

Following Lucas (1978) and Mehra and Prescott (1985), I consider an infinite-horizon

endowment economy where there is one share of equity that pays the aggregate consumption

endowment as a stochastic perishable dividend C̄t each period. There is also a riskfree asset

present in zero net supply. The ex-dividend price of the risky asset at time t is Pt, and the

riskfree rate is Rf,t+1.

There are two types of finitely-lived agents: extrapolators, present in measure Q, and

sophisticates, present in measure 1−Q. Both types have recursive utility of the form derived
by Epstein and Zin (1989) and Weil (1989),

Ut =
h
(1− β)C

(1−γ)/θ
t + β

¡
EtU

1−γ
t+1

¢1/θiθ/(1−γ)
, (1)

where Ct is the investor’s consumption at time t, γ is the coefficient of relative risk aversion,

ψ is the EIS, θ ≡ (1− γ) / (1− 1/ψ), and β < 1 is the time discount factor.6 Investors have

no bequest motive.7

Log dividend growth is independently and identically normally distributed with mean ḡ

and variance σ2g. Sophisticates know the true dividend growth process, but extrapolators

believe next period’s log dividend growth, log(C̄t+1/C̄t), is normally distributed with mean

ĝt and variance σ2g, where ĝt is the geometrically weighted mean of present and past log

dividend growth realizations:

ĝt = (1− φ)
∞X
τ=0

φτt−τ log
¡
C̄t−τ/C̄t−τ−1

¢
, 0 < φ < 1. (2)

as I do, that the riskiness of stocks may be both caused and hidden by noise trader consumption. However,
they do not formally model this effect.

6When γ = 1/ψ, Epstein-Zin-Weil utility is equivalent to constant relative risk aversion utility.
7Hurd (1989) and Gan et al. (2004) find that nearly all bequests in the U.S. are accidental. In the absence

of a bequest motive, there would be a strong desire among investors to annuitize their wealth (Yaari (1965)).
Annuitization is exogenously precluded in the model. Empirically, very few people hold private annuities.
This outcome could be achieved endogenously by giving individuals private information about their mortality
risk, causing adverse selection to dry up the annuity market.
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This inference is rational if the expected log dividend growth rate is a random walk. (See

Barsky and De Long (1993)).

Because the support of the log dividend growth distribution is infinite, investors are

unwilling to leverage or short the risky asset for fear of ending up with negative wealth and

infinite marginal utility. The risky asset is the only asset in positive net supply, so all investors

invest their entire portfolio in the risky asset. This restriction considerably simplifies the

calculation of equilibrium because the risky asset portfolio share policy function need not

be solved for and asset prices do not affect wealth dynamics except through their effect on

agents’ consumption behavior.8

The timing of the model is as follows. At the beginning of each period, securities pay

their dividend. Securities are then traded and consumption occurs. At the end of the period,

a fixed positive fraction δ ≤ 1 − β of the population is stochastically chosen to die. New

investors are born to replace deceased investors, whose assets are evenly distributed among

the newborns.9 The number of newborns each period is fixed to maintain a constant total

population, and the fraction of extrapolators among newborns is Q.

Let ωt be the total number of risky asset shares held by extrapolators at the beginning

of period t, and Ĉt/Ŵt be their consumption-wealth ratio. To clear the asset market, so-

phisticates hold 1 − ωt shares. After consumption and trading, but before mortality and

redistribution, extrapolators hold ω̃t shares, where

ω̃t =

µ
C̄t

Pt
+ 1

¶Ã
1− Ĉt

Ŵt

!
ωt (3)

The right side of equation (3) is the extrapolators’ wealth at the beginning of the period

times the savings rate divided by the price of an equity share.

After mortality and redistribution, the number of shares extrapolators hold going into

period t+ 1 is

ωt+1 = (1− δ) ω̃t + δQ. (4)

The first term on the right side of this equation is the number of shares held by extrapolators

8If there are multiple traded assets, next period’s wealth distribution depends not only on investors’
consumption and portfolio choices, but also on assets’ return realizations. However, next period’s asset
prices will be a function of next period’s wealth distribution. Therefore, a fixed-point problem must be
solved in order to compute wealth dynamics.

9I assume that death occurs suddenly, so that there is no opportunity for an investor to liquidate all
of his assets for consumption upon learning that death is imminent. The distribution rule is equivalent to
assuming that a sophisticate’s heir is not disproportionately likely to be sophisticated him or herself.
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who survive into t + 1. The second term is the total number of shares that are bequested

multiplied by the proportion of those shares that go to extrapolators.

Equities are priced to satisfy both investor types’ Euler equations. Let C∗t be aggregate

sophisticate consumption, Ĉt be aggregate extrapolator consumption, and Ê represent the

expectations operator under the extrapolators’ probability measure. The Euler equations

are

Et

"
βθ
µ
1− ω̃t

1− ωt+1
· C

∗
t+1

C∗t

¶− θ
ψ
µ
Pt+1/C̄t+1 + 1

Pt/C̄t

¶θ µ
C̄t+1

C̄t

¶θ
#
= 1 (5)

Êt

⎡⎣βθÃ ω̃t

ωt+1
· Ĉt+1

Ĉt

!− θ
ψ µ

Pt+1/C̄t+1 + 1

Pt/C̄t

¶θ µ
C̄t+1

C̄t

¶θ
⎤⎦ = 1, (6)

subject to the consumption market clearing condition C̄t = C∗t + Ĉt for all t.

Notice that the consumption growth in the Euler equations does not equal the aggregate

consumption growth of the investor’s type. This is because of mortality and redistribu-

tion; simply using aggregate consumption growth of the investor type would include the

consumption of investors not alive when assets are being traded in time t. Instead, the

relevant consumption growth is that of investors who are alive at the beginning of both t

and t+1. The homotheticity of the Epstein-Zin-Weil utility function implies that surviving

sophisticates’ share of aggregate sophisticate consumption each period equals their share

of aggregate sophisticate wealth. Survivors hold (1− δ) (1− ω̃t) equity shares coming into

period t + 1, whereas on aggregate sophisticates hold 1 − ωt+1 shares coming into period

t+1. Coming into period t, sophisticates who survive into period t+1 hold (1− δ) (1− ωt)

shares, whereas aggregate sophisticate shares coming into period t is 1− ωt. Hence, aggre-

gate sophisticate growth must be multiplied by (1− ω̃t) / (1− ωt+1) in the Euler equation.

Analogous reasoning applies for extrapolator consumption growth.

Because the riskfree asset is not traded, the riskfree rate is the shadow riskfree rate,

determined by the minimum riskfree rate (i.e. highest riskfree asset price) any investor is

willing to accept. Let R∗f,t+1 be the sophisticates’ shadow riskfree rate and R̂f,t+1 be the
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extrapolators’ shadow riskfree rate. The Euler equations for the riskfree rate are

1 = Et

"
β

µ
1− ω̃t

1− ωt+1
· C

∗
t+1

C∗t

¶− θ
ψ
µ
Pt+1/C̄t+1 + 1

Pt/C̄t

¶θ−1µ
C̄t+1

C̄t

¶θ−1#
R∗f,t+1 (7)

1 = Êt

"
β

µ
ω̃t+1

ωt+1
· C

∗
t+1

C∗t

¶− θ
ψ
µ
Pt+1/C̄t+1 + 1

Pt/C̄t

¶θ−1µ
C̄t+1

C̄t

¶θ−1#
R̂f,t+1. (8)

The economy’s shadow riskfree rate is then

Rf,t+1 = min{R∗f,t+1, R̂f,t+1}. (9)

I solve for equilibrium numerically. In order to do so, I discretize the dividend growth

process using the Tauchen and Hussey (1991) approximation to a normally distributed

process based on a Gauss-Hermite quadrature rule. The approximation can be described

by the set of ordered pairs, {(gk, πk)}Kk=1, where πk is the probability that the log growth
realization is gk, and

PK
k=1 πk = 1. I set K = 9.

I now construct K mappings {π̂j : [g1, gK ]→ R}Kj=1 between ĝ, extrapolators’ expecta-

tions of mean log dividend growth, and their beliefs about the probability that πj will be

the log growth realization next period. The goal is to create a discrete approximation of the

belief that log dividend growth is distributed N
¡
ĝt, σ

2
g

¢
while holding fixed the discrete set

of possible dividend growth realizations.

I begin by defining π̂j over the domain {g1, g2, ..., gK} (that is, when ĝ is equal to

one of the possible discrete realizations of log dividend growth). Define the mappings©
ξj : {g1, g2,..., gK}→ R

ª
K
j=1 as

ξj (gk) =

(
πj−(k−dK/2e) if k − dK/2e < j < k + dK/2e

0 otherwise
. (10)

Then

π̂j (gk) =
ξj (gk)PK
i=1 ξi (gi)

. (11)

In words, what I have done is give extrapolators the correct probability beliefs when ĝt

is equal to gdK/2e, which is the unconditional mean of ĝ when K is odd as I have stipulated.

When ĝt equals, say, gdK/2e+2, I shift the probability mass that is on gdK/2e under the true

probability measure to gdK/2e+2, the probability mass on gdK/2e−1 under the true measure

8



to gdK/2e+1, and so on. Because the true probability masses on gK−1 and gK run “off the

grid” under this shifting algorithm, I eliminate their mass and renormalize the remaining

probability masses so they sum to 1.

I then define values of π̂j when ĝ /∈ {g1, g2, ..., gK} using cubic spline interpolation with
“not-a-knot” end conditions, where the spline nodes are {g1, g2, ..., gK} and the values at
those nodes are {π̂j (g1) , π̂j (g2) , ..., π̂j (gK)}.10

Figure 1 shows how well this mapping succeeds at making the expected log dividend

growth equal to ĝt and the expected standard deviation constant at σg. The top panel

plots the extrapolators’ expected log dividend growth against ĝ. The bottom panel plots

extrapolators’ belief about the standard deviation of log dividend growth against ĝ. A perfect

approximation would lie on the gray 45-degree line in the top panel and on the gray horizontal

line in the bottom panel. The figure demonstrates that the mapping comes extremely close

to this benchmark.

I solve for a recursive equilibrium defined over the state space S ≡ (ω, ĝ) using the

time-iteration algorithm described in Judd, Kubler, and Schmedders (2000). There are two

functions to solve for: the price-dividend ratio and the extrapolator consumption-wealth

ratio. Details of the computational procedure are in the Appendix.

3 Model calibration

There are eight parameters that must be chosen for the model, which is simulated at a

quarterly frequency. These parameters are summarized in Table 1, where I have annualized

numbers when appropriate. I choose the mean of log consumption dividend growth, ḡ,

to match the U.S. postwar aggregate per capita mean for nondurables and services. The

annual standard deviation of aggregate postwar per capita consumption growth is 1.07%,

but empirical studies have found that stockholder consumption is significantly more volatile

than nonstockholder consumption. This paper is concerned with stockholder behavior, since

one does not expect the Euler equation for equities to hold for agents whose portfolios are

at a corner solution. Therefore, I wish to choose consumption dividend volatility to match

stockholder consumption volatility.11 I use the midpoint of the Mankiw and Zeldes (1991)

and Vissing-Jørgensen (2002) estimates for 2σg.

10See de Boor (2001) for an introduction to the theory of splines.
11Mimicking the more volatile stockholder consumption series makes the equity premium puzzle easier to

resolve because the puzzle is fundamentally about the smoothness of consumption growth.
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The parameter φ, which is the autocorrelation of Ĝ, is chosen to match the first-order

autocorrelation of the postwar price-dividend ratio because I find that the simulated price-

dividend ratio autocorrelation is usually very close to φ. I set the quarterly death rate δ so

that each agent has an expected investing lifetime of 1/4δ = 50 years, roughly corresponding

to the number of years a U.S. resident lives after reaching age 21. There is little guidance

from the empirical literature on the exact proportion of extrapolators in the population.

However, the evidence is strong that extrapolators outnumber contrarians. I therefore set

Q, the proportion of extrapolators in the stockholding population, to 0.75.

Finally, I choose the preference parameters. I fix the EIS ψ at 2, which is the point

estimate of Gourinchas and Parker (2002) and Gruber (2005). I then vary risk aversion γ

and time discount factor β as free parameters until the model’s results match the data. I

find that a γ of 4 and an annualized β of 0.974 produce the desired results.

4 Results

4.1 Asset returns and prices

I draw a 207-quarter period of the economy (corresponding to the length of the post-war

period reported in Campbell (2003)) by starting the system at ω = Q and ĝ = ḡ, simulating

a 1,207-quarter sample, and then discarding the first 1,000 quarters of data. I repeat this

procedure 1,000 times in order to obtain a distribution of return paths.

Table 2 shows the model’s simulated moments, as well as the corresponding moments

when there are only sophisticates in the economy. The sophisticate-only case demonstrates

the classic equity premium and riskfree rate puzzles: the equity premium and volatility

are much too low and the riskfree rate is much too high. On the other hand, the model

with extrapolators can closely match the data’s 0.90% mean log riskfree rate in its median

simulation run with reasonable preference parameters. In addition, the riskfree rate is very

stable. Campbell (2003) observes that the true riskfree rate must be more stable than the

real riskfree rate calculated from the data, since the latter includes ex post inflation shocks.

90% of the simulation runs yield riskfree rate standard deviations between 0.09% and 0.34%,

a range considerably below the 1.75% standard deviation observed in the postwar period.

The model’s median equity Sharpe ratio is close to that in the data. The corresponding

equity premium and volatility are high but a little below the moments of the postwar data.

This is to be expected, since equity in the model is a claim to the entire economy’s consump-
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tion, whereas in reality, equity is a leveraged claim to consumption. Between 1945 and 1998,

debt as a percent of total firm market value averaged 35.8% for U.S. nonfarm nonfinancial

corporations, according to the Flow of Funds Accounts. To see how much leverage is required

for the model’s median result to match the data, I start with the formula

Rl,t+1 =
(1 +Rt+1)− (1 +Rf,t+1)Dt/Vt

1−Dt/Vt
, (12)

where Rl,t+1 is the levered return, Vt is the value of the entire firm, and Dt is the market

value of debt that pays the riskfree rate.12 I assume the firm maintains a constant debt-to-

value ratio through debt-for-equity or equity-for-debt swaps that all shareholders participate

in proportionally at fair market value. I ignore general equilibrium price effects that may

arise from carving the claim to all corporate cash flows into levered equity and corporate

debt securities.

I can then take unconditional expectations of both sides of (12) and rearrange to obtain

the following expression for the leverage required to reconcile the observed levered return

with the model’s unlevered return:

D

V
=

E (Rl,t+1)−E (Rt+1)

E (Rl,t+1)−E (Rf,t+1)
. (13)

The average quarterly real arithmetic return on the market in the data is 2.02%. The

mean arithmetic return in the model’s median simulation run is 1.16% for the risky asset

and 0.24% for the riskfree asset. This yields a required debt-to-value ratio of 48.9% to

appropriately scale up the model’s equity return and volatility, which is somewhat higher

than the historical average.

Recall that I have set Q, the proportion of extrapolators in the economy, to 0.75. Because

they hold incorrect conditional beliefs, extrapolators are on average poorer than sophisti-

cates. In the median simulation run, extrapolators hold 47.9% of the economy’s wealth on

average, and there is not much variation in this figure across simulation runs. In the 1st

percentile run, extrapolators hold 46.1% of the wealth on average, and in the 99th percentile

run, extrapolators hold 50.1% of the wealth. The median difference between the maximum

and minimum extrapolator wealth share within a run is only 1.8 percentage points.

12The formula ignores the convexity induced by equity’s limited liability, since it is implausible that the
entire corporate equity market would lose all its value. By a similar token, the minimal chance of aggregate
corporate bankruptcy causes the corporate bond to pay the riskfree rate.

11



Because it is difficult to visualize three-dimensional surfaces when drawn on a two-

dimensional page, and because the extrapolator wealth share is so stable, I will graph the

model solutions at the cross-section of the state space where extrapolators have 50% of the

wealth. Figure 2 graphs the shadow riskfree rates of both investor types at this cross-section.

The prevailing riskfree rate is the lower envelope of these two series. The distance between

adjacent data markers in a series represents a one-standard-deviation movement in ĝ, with

the middle marker denoting the solution when ĝ = ḡ, its mean.

There are three things to note in this graph. The first is that extrapolator and sophis-

ticate riskfree asset demand move in opposite directions with respect to recent dividend

growth, consistent with the differing cyclicality of each type’s optimism about the risky as-

set. The second is that the extrapolators’ shadow riskfree rate is less than the sophisticates’

over the majority of the ĝ range. Even when extrapolators have correct beliefs about next

period’s dividend growth distribution (at ĝ = ḡ), they have a much greater demand for the

riskfree asset. This is due to hedging concerns. Because extrapolators believe risky asset

returns exhibit positive serial correlation, they believe that risky asset returns are positively

correlated with future investment opportunities. In contrast, sophisticates know that stocks

are a good hedge, which increases their willingness to hold them. Finally, the extrapolator

shadow riskfree rate is less volatile than the sophisticate rate. This is partly because, as we

will see in Section 4.2, extrapolators’ expected consumption growth does not vary as much

as sophisticates’.

Figure 3 shows the price-dividend ratio at the 50% extrapolator wealth cross-section. Ex-

trapolators’ procyclical optimism about stocks generates a procyclical price-dividend ratio.

Because the price-dividend ratio is stationary and the dividend growth process is indepen-

dently and identically distributed, procyclical price-dividend ratios must lead to countercycli-

cal expected stock returns in the absence of bubbles. Table 3 shows the results of regressions

predicting excess log returns over the next 1, 2, and 4 years using the log price-dividend

ratio. Consistent with the regressions using the historical data, the R2 and coefficient on

the log price-dividend ratio in the median simulation run increase with horizon. The median

log price-dividend ratio coefficient is more negative and the median R2 smaller than the

corresponding historical estimates. However, the empirical values fall comfortably within

the middle 90 percentile range of simulation outcomes.

Figure 4 plots the expected stock return and volatility at the 50% extrapolator wealth

cross-section under the true and extrapolators’ probability measures. Extrapolators’ return

beliefs move in the wrong direction in response to realized dividend growth. On the other
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hand, their procyclical volatility expectations are very accurate. The procycliality of stock

volatility is consistent with the findings of Campbell (1987) and Glosten, Jagannathan, and

Runkle (1993) that stock volatility is negatively related to expected returns.13

4.2 Investor actions

Figure 5 shows the consumption-wealth ratio of sophisticates and extrapolators at the

50% extrapolator wealth cross-section. Because investors have an EIS greater than unity,

higher expected returns lead to a lower consumption-wealth ratio. Hence, sophisticates have

procyclical consumption-wealth ratios and extrapolators have countercyclical ratios. In ad-

dition, extrapolators’ consumption-wealth ratio is everywhere above the sophisticates’. This

is because extrapolators believe stocks have poor hedging properties, and hence they perceive

the investment opportunity set to be less attractive than sophisticates do. Deteriorations in

the investment opportunity set will decrease the savings rate when the EIS is greater than

unity. This result suggests a new mechanism that might explain some of the negative correla-

tion between financial sophistication and savings rates, a phenomenon frequently attributed

to differential self-control or foresight.

Figure 6 shows the first and second moments of consumption growth for investors who

survive into the next period, along with the beliefs extrapolators have about these moments

for themselves. Consistent with the consumption-wealth ratio graph, sophisticate expected

consumption growth is decreasing in ĝ but extrapolator expected consumption growth is

increasing. Extrapolators believe that the relationship between their consumption growth

and ĝ is steeper than it actually is. This is becauuse when ĝ is above its mean, extrapolators

are not as rich next period as they had expected, whereas the reverse is true when ĝ is below

its mean.

Although extrapolators are consistently mistaken about their conditional mean consump-

tion growth, they have very accurate beliefs about their consumption growth volatility. So-

phisticate consumption growth volatility is strongly procyclical, whereas extrapolator volatil-

ity is mildly countercyclical. Furthermore, the annualized standard deviation of log sophis-

ticate consumption growth is substantially higher than that of extrapolators: 11.8% versus

1.8% in the median simulation run. The sophisticate consumption growth volatility is not far

13On the other hand, Bollerslev, Engle, andWooldridge (1988) and French, Schwert, and Stambaugh (1987)
find a weak positive correlation between stock volatility and returns. Also, the model is not consistent with
the negative correlation between stock return innovations and volatility innovations in empirical data.
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from the 15.8% average standard deviation Aït-Sahalia, Parker, and Yogo (2003) estimate

for the extremely wealthy, who are likely to be disproportionately sophisticated.

5 Conclusion

This paper has argued that the equity premium and volatility puzzles arise from the

presence of extrapolative investors who believe that high past stock market returns predict

high future returns. When the elasticity of intertemporal substitution is greater than unity,

this belief causes extrapolator savings rates to vary procyclically, pushing up price-dividend

ratios during consumption booms and pushing down price-dividend ratios during consump-

tion busts. The resulting predictability of stock returns causes sophisticated investors with

rational expectations to make their savings rates countercyclical, increasing the covariance

between their consumption growth and stock returns. Sophisticates therefore demand a high

unconditional equity premium because of this high covariance. Extrapolators do not have

high consumption growth covariance with stock returns, but they demand a high uncondi-

tional equity premium because they believe stocks are a poor hedge due to their perceived

positive return serial correlation. Aggregate consumption statistics include both extrap-

olator and sophisticate consumption, hiding from the econometrician the stock market’s

consumption risk to sophisticates.

I numerically solve a general equilibrium model of an endowment economy that is pop-

ulated by sophisticated investors and extrapolators. I find that I can generate a low, stable

riskfree rate and a high equity Sharpe ratio consistent with the postwar U.S. data with a

relative risk aversion coefficient of 4 and an elasticity of intertemporal substitution (EIS) of

2 when extrapolators constitute 75% of the population.

Numerous empirical studies have documented that extrapolative beliefs about stock re-

turns are commonly held in the population, even among the rich. Nonetheless, it seems

plausible that the rich are more likely to hold rational beliefs than the poor. Consistent

with this notion, empirical studies have shown that the covariance of consumption growth

with stock returns is higher for the rich. The model in this paper predicts that identifying

the subset of investors who understand that stock returns are mean-reverting and measuring

their consumption growth will yield an even higher covariance. Furthermore, the uncondi-

tional average portfolio share in cash and Treasury bills will be increasing with the strength

of a household’s extrapolative tendencies, since knowledge of mean reversion in stock returns
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generates a positive hedging demand for equities.

6 Appendix: Computational algorithm

I solve the model numerically using the time-iteration algorithm described in Judd,

Kubler, and Schmedders (2000). I approximate the price-dividend and extrapolator consumption-

wealth functions by using a two-dimensional cubic spline with knots at the grid points

{ωk} × {ĝk} and the “not-a-knot” end condition. There are 21 knots in {ωk} distributed
evenly between 0 and 1 inclusive. I use 7 knots in {ĝk}, where there is one knot at ḡ and
3 knots spaced evenly in each direction around the center knot, such that a 6-standard-

deviation range of ĝ is covered. I constrain ĝt+1 to remain at the boundary if a dividend

realization would take it off the grid.

The time-iteration algorithm continues until the maximum absolute difference between

successive policy functions evaluated at any grid point is less than 10−5.

The time-iteration algorithm is not globally convergent; like most numerical algorithms,

it requires a starting point that is not too far from the final solution. My initial guesses for

the policy functions are the solutions when there are only extrapolators in the economy.

Riskfree rates for the simulations are determined by calculating the riskfree rate at each

grid point and using cubic spline interpolation to approximate the riskfree rate for points

not on the grid.
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Table 1: Parameter Values 

This table gives the parameter values used for the model. Where appropriate, numbers 

have been annualized, and any calculations used to annualize the numbers are reflected 

in the second column. For example, in order to annualize mean log consumption 

dividend growth, the variable g  has been multiplied by 4, so the corresponding entry in 

the second column is 4g . 

 

Parameter Variable Value 

Mean log consumption dividend growth 4g  1.964% 

Standard deviation of log consumption dividend growth 2σg 4.449% 

Extrapolator belief persistence coefficient φ4 0.784 

Expected investing lifespan 1/4δ 50 years 

Proportion of extrapolators in population Q 0.75 

Elasticity of intertemporal substitution ψ 2 

Coefficient of relative risk aversion γ 4 

Time discount factor β4 0.974 

 



Table 2: Simulated Annualized Moments 

The second column gives annualized moments from simulating the model for 

1,207 quarters and discarding the first 1,000 quarters. The top number in each cell is the 

median moment from 1,000 simulation runs. The numbers in brackets below are the 5th 

and 95th percentile moments from the simulation runs. The third column gives the 

moments from an economy populated only by sophisticated investors. The fourth column 

gives actual moments from postwar U.S. data, taken from the data in Campbell (2003). 

To obtain the log equity premium, I calculate the mean of the equity return divided by 

the riskfree rate, and then I take the log of that mean. The log equity Sharpe ratio is the 

log equity premium divided by the log equity return standard deviation. 

 

 Model  

simulation results 

Sophisticate-only 

economy 

U.S. data, 

1947.2-1998.4 

Mean log riskfree rate 0.95% 

[0.76, 1.07] 

5.39% 0.90% 

Log riskfree rate 

standard deviation 

0.16% 

[0.10, 0.29] 

0% 1.75% 

Log equity premium 3.65% 

[2.56, 4.82] 

0.60% 7.19% 

Log equity return 

standard deviation 

7.98% 

[7.19, 8.70] 

4.45% 15.74% 

Log equity Sharpe ratio 0.458 

[0.339, 0.589] 

0.135 0.457 

 



 Table 3: Predicting Excess Log Returns with the Log Price-Dividend Ratio 

This table presents the results of regressions that predict future excess equity returns 

using the log price-dividend ratio. The dependent variables are the log of the mean of 

equity returns divided by the riskfree rate over the next 1, 2, and 4 years, scaled to give 

an average quarterly excess return. The explanatory variables are the log price-dividend 

ratio and a constant. The first column gives the results from running the regression on 

each of 1,000 simulation runs of the model. For each simulation run, 1,207 quarters were 

simulated and the first 1,000 quarters were discarded. The top number in each cell of the 

second column is the median coefficient from the 1,000 regressions. The numbers in 

brackets below are the 5th and 95th percentile coefficients. The third column gives the 

results from running the regression on postwar U.S. data taken from Campbell (2003). 

 

 Model 

simulation 

U.S. data,  

1947.2-1998.4 

Panel A: 1-year future returns 

Slope -0.3682 

[-0.8346, -0.0330] 

-0.1709 

R2 4.7% 

[0.2, 15.2] 

9.6% 

Panel B: 2-year future returns 

Slope -0.6648 

[-1.4304, -0.0472] 

-0.3459 

R2 8.7% 

[0.3, 26.3] 

20.2% 

Panel C: 4-year future returns 

Slope -1.1185 

[-2.1896, -0.0825] 

-0.5526 

R2 14.8% 

[0.4, 41.2] 

29.9% 
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Figure 1: Extrapolator Beliefs About the Moments of Log Dividend Growth. The top panel shows 

extrapolators’ belief about mean log dividend growth in the next period as a function of ĝ , the 

weighted average of current and past log dividend realizations. The bottom panel shows 

extrapolators’ belief about the standard deviation of log dividend growth as a function of ĝ . The 

grey line in each figure denotes what those beliefs should be if the discrete approximation used to 

generate these beliefs were perfect.  
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Figure 2. Shadow Annualized Log Riskfree Rates for Each Investor Type. The graph is from the 

cross-section of the state space where extrapolators hold 50% of the wealth. The distance between 

adjacent data markers in a series represents one standard deviation of ĝ , and the middle marker 

lies at the unconditional mean of ĝ . The prevailing riskfree rate is the lower envelope of the two 

series. 
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Figure 3. Equity Price-Dividend Ratio. The graph is from the cross-section of the state space where 

extrapolators hold 50% of the wealth. The dividend in the denominator has been multiplied by 4 to 

annualize it. The distance between adjacent data markers represents one standard deviation of ĝ , 

and the middle marker lies at the unconditional mean of ĝ . 

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

-0.5% 0.0% 0.5% 1.0% 1.5%

Lo
g 

ri
sk

fre
e 

ra
te

Extrapolator shadow rate
Sophisticate shadow rate

30

35

40

45

50

-0.5% 0.0% 0.5% 1.0% 1.5%

Pr
ic

e-
di

vi
de

nd
 r

at
io



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      ĝ  
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Figure 4. Expected Equity Return and Standard Deviation. The graphs show the actual moments of 

equity returns and what extrapolators believe them to be at the cross-section of the state space 

where extrapolators hold 50% of the wealth. Moments have been annualized. The distance between 

adjacent data markers in a series represents one standard deviation of ĝ , and the middle marker 

lies at the unconditional mean of ĝ . 
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Figure 5. Consumption-Wealth Ratios. The graph shows consumption-wealth ratios of sophisticates 

and extrapolators at the cross-section of the state space where extrapolators hold 50% of the wealth. 

The distance between adjacent data markers in a series represents one standard deviation of ĝ , and 

the middle marker lies at the unconditional mean of ĝ . 
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Figure 6. Investor Consumption Growth Moments. These graphs show what extrapolators believe 

the first two moments of their consumption growth will be, their actual moments, and sophisticates’ 

consumption growth moments. They are taken from the cross-section of the state space where 

extrapolators hold 50% of the wealth. Consumption growth is measured only for investors who are 

alive in both the current period and the subsequent period. The distance between adjacent data 

markers in a series represents one standard deviation of ĝ , and the middle marker lies at the 

unconditional mean of ĝ . 
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