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Abstract

We study the relationship between return uncertainty and behavioral finance by introducing

an information portfolio which combines multiple return forecasts for a single asset into an esti-

mate of its unknown expected return. Our optimal information portfolio minimizes the aggregate

forecast error of an asset’s estimated expected return when combining the return forecasts. The

expected return from this minimization exhibits momentum as well as the appearance of overcon-

fidence, biased self-attribution, representativeness, conservatism and limited attention. Although

these characteristics coincide with expected return uncertainty, they are induced by the optimal

information portfolio weights assigned to return forecasts rather than behavioral biases. Em-

pirically, our optimal information portfolio yields testable implications distinct from psychology

which we verify using analyst earnings forecasts and their revisions.
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1 Introduction

When testing market efficiency using historical return data, the empirical asset pricing literature

usually ignores the range of return forecasts for an asset that were available to investors. For example,

multifactor asset pricing models estimate a single expected return after conditioning on realized factor

returns. However, a consensus regarding the correct multifactor formulation continues to be elusive

since the number of required factors and their composition are controversial. More importantly, even

if market participants agreed on a multifactor model, factor returns and the corresponding factor

loadings for an individual asset are unknown ex-ante. Consequently, these unknown inputs are sources

of expected return uncertainty. Furthermore, price targets and intrinsic value measures, such as the

residual income valuation model in Lee, Myers and Swaminathan (1999), can exacerbate expected

return uncertainty by providing alternative return forecasts.

Motivated by this uncertainty, we examine multiple return forecasts for an individual asset whose

expected return is unknown. Return forecasts are issued by information sources after interpreting

state variables such as the firm’s projected earnings or the prospects for its industry. However, the

true accuracy of each information source is unknown. Instead, the accuracy of an information source is

estimated according to its time series of prior forecast errors. This estimated accuracy depends on the

return implications and dynamics of the information source’s underlying state variable. Covariances

between the forecast errors of different information sources are also estimated.

The information portfolio combines the return forecasts for an individual asset into an estimated

expected return. This is accomplished by assigning each information source a portfolio weight. In

contrast to existing portfolio theory for multiple assets with known expected returns, our information

portfolio examines multiple return forecasts for a single asset whose expected return is unknown.1

The optimal information portfolio minimizes the aggregate forecast error of an asset’s expected return

estimate by assigning higher portfolio weights to more accurate information sources.2 The estimated

1To illustrate our notion of expected return uncertainty, a BusinessWeek survey reported annual return forecasts for

the S&P 500 ranging between -29.5% and 31.0% with a standard deviation of 7.61%. This uncertainty is magnified for

individual stocks whose expected returns are determined, at least in part, by the market’s expected return. Furthermore,

the average forecast of 7.87% is not the optimal estimate for the S&P 500’s expected return unless the 76 forecasts are

equally accurate.
2After imposing a common distributional assumption on the set of return forecasts, this minimization is equivalent

to solving for the best linear unbiased estimate (BLUE) of an asset’s true expected return. However, we refrain from
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expected return of an asset implied by the optimal information portfolio is labeled the investor’s

perceived return.

With regards to behavioral finance, the perceived return exhibits the appearance of overconfidence

and biased self-attribution as well as representativeness and conservatism. These two pairs of psy-

chological biases have previously been incorporated into the behavioral finance literature by Daniel,

Hirshleifer and Subrahmanyam (1998) and Barberis, Shleifer and Vishny (1998) respectively. For ex-

ample, the optimal information portfolio emphasizes accurate sources of private information, while

downplaying the investor’s less accurate private return forecasts. Furthermore, state variables with

trends in their dynamics are assigned larger information portfolio weights whenever this predictabil-

ity improves forecast accuracy. A property which mimics limited attention is also instilled into the

perceived return since return forecasts receive smaller information portfolio weights if they are posi-

tively correlated with forecasts from more accurate information sources. All of these perceived return

characteristics are induced by our optimal information portfolio weights rather than psychology. Mo-

mentum and subsequent reversals in the perceived return also result from the dynamic updating of the

information portfolio weights. These optimal portfolio fluctuations reflect changes in the estimated

accuracy of each information source as additional forecast errors become available.

Momentum as well as the appearance of psychological biases are most salient during periods of high

expected return uncertainty when fewer forecast errors are available. Intuitively, events that alter a

firm’s capital structure or investment strategy as well as technological innovations reduce the number

of relevant previous forecast errors and increase expected return uncertainty. Therefore, information

portfolio theory does not assume the return implications of such idiosyncratic events are immediately

understood and agreed upon by all information sources. Indeed, every return forecast would be

without error and identical under this extreme assumption. Thus, our framework examines the limits

to available information when determining an investor’s perceived return. Although compatible with

multifactor asset pricing models, information portfolio theory allows information sources to disagree on

ex-ante factor returns as well as the factor loadings of an individual asset.3 Consequently, the market’s

expected return is not assumed to be known, nor are the firm’s future earnings when implementing

referring to the information portfolio weights as linear regression coefficients since their optimality is independent of any

distributional assumption and does not require unbiased return forecasts.
3In the context of information portfolio theory, ex-ante factor returns serve as state variables while factor loadings

represent their return implications.
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intrinsic value measures.

Unlike Bayesian models in behavioral finance which incorporate psychological biases by imposing

assumptions on the investor’s prior distribution, we examine the optimal aggregation of multiple return

forecasts. Therefore, characteristics of the perceived return which mimic behavioral biases are outputs

from information portfolio theory rather than inputs. This important distinction yields unique testable

implications of information portfolio theory. In contrast, Brav and Heaton (2002) demonstrate the

difficulty of distinguishing between behavioral and rational explanations for return anomalies using

Bayesian techniques.4

Jackson and Johnson (2006) document that momentum and post-earnings announcement drift

both coincide with firm-specific events that alter a firm’s earnings, while the composite share issuance

variable of Daniel and Titman (2005) also indicates return predictability. In addition, Kumar (2005)

and Zhang (2005) report that behavioral biases appear stronger during periods of high uncertainty.

Besides event and time dependence, Baker and Wurgler (2005) report that firm characteristics such

as size and age explain a firm’s sensitivity to investor sentiment, while Vassalou and Apedjinou (2004)

report that momentum strategies are most profitable for firms with high levels of corporate innova-

tion. These empirical regularities appear to be consistent with information portfolio theory as well as

psychological biases. However, a relative ranking of the information sources by their estimated accu-

racies is equivalent to the existence of an information portfolio. Thus, for a given level of uncertainty,

information portfolio theory posits that accurate sources of information have the greatest influence on

the investor’s perceived return. In contrast, this optimal weighting is not predicted by psychology.

As a consequence, after controlling for state variable uncertainty, information portfolio theory

asserts that investors focus their attention on state variables which have experienced the highest cor-

relation with realized returns. Empirically, we verify the main testable implications of information

portfolio theory by examining earnings momentum. For a given level of earnings uncertainty, psychol-

ogy predicts stronger momentum when earnings are less informative, while information portfolio theory

predicts the opposite. Therefore, the first aspect of our empirical study measures the sensitivity of

returns to earnings revisions by computing firm-specific correlations between these variables. We find

momentum profits increase monotonically from low to high sensitivity stocks by 50%. This evidence is

consistent with investors focusing on earnings when this state variable has been informative. The sec-

4Section 4 contains further details on the distinction between information portfolio theory and the Bayesian approach.
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ond aspect of our empirical study considers the role of earnings uncertainty. As documented in Zhang

(2005), momentum profits are larger for stocks with higher earnings dispersion. Most importantly,

portfolios derived from double sorts on the sensitivity and uncertainty measures continue to display

both relationships. Consequently, after controlling for earnings uncertainty, firms whose earnings are

more informative experience greater momentum. This finding is consistent with the central prediction

of information portfolio theory. Several robustness checks verify that our results are not driven by

book-to-market, size and analyst coverage.

However, if knowledge of investor psychology improves forecast accuracy, then information portfolio

theory and psychology are compatible. Therefore, the exact decomposition of the perceived return

into the effects of psychology versus information portfolio theory is ultimately an empirical question.

Nonetheless, our empirical implementation demonstrates that the contribution of information portfolio

theory is crucial.

Information portfolio theory also enhances applications of utility maximization by providing a

general formulation to estimate an investor’s perceived return and its aggregate forecast error. For

example, an investor with exponential utility reduces their exposure to a risky asset when the aggregate

forecast error is high.

The remainder of this paper begins with the introduction of the optimal information portfolio in

Section 2. Section 3 illustrates the impact having a limited number of forecast errors when estimating

the accuracy of an information source, and examines the ability of time-varying optimal information

portfolio weights to induce momentum (and reversals) in the perceived return. Section 4 links the

optimal information portfolio with return characteristics which have previously been attributed to

psychology. Testable implications of information portfolio theory are provided in Section 5 along with

an empirical implementation. Our conclusions and suggestions for further research are contained in

Section 6.

2 Information Portfolio Theory

As in Daniel, Hirshleifer and Subrahmanyam (1998) as well as Barberis, Shleifer and Vishny (1998), we

consider a single-investor, single-asset model. Thus, we restrict our attention to an investor functioning

as a price-setter who does not “free-ride” on market prices.
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Underlying our framework are state variables, examples of which include forecasts for the earnings

or sales of an individual firm as well as industry and macroeconomic conditions. Each state variable

forecast is interpreted by an information source who expresses its estimated return implications for

a particular asset.5 In practice, an individual analyst can issue earnings forecasts and long term

growth rate projections along with price targets and buy versus sell recommendations, while firms

often disclose their earnings and sales figures in conjunction with “guidance” for these state variables.

Therefore, multiple sources of information can originate from an individual analyst, the firm or the

investor.

To simplify the exposition of our framework, but without loss of generality, each return forecast

is generated by a single state variable.6 From an academic perspective, this structure enables our

framework to address issues related to which sources of information influence expected returns. For

example, Brav and Lehavy (2003) examine the marginal importance of analyst price targets to the

price formation process in the presence of earnings forecast revisions and stock recommendations. Fur-

thermore, this structure allows the information portfolio to aggregate over the widest possible array of

return forecasts. Although the economic intuition underlying our framework is identical if information

sources interpret multiple state variables before issuing their return forecasts, this modification reduces

the amount of aggregation performed by the information portfolio.

The return forecast issued by an information source can possess private as well as public char-

acteristics. For example, state variables such as earnings forecasts, while publically available when

issued by sell-side analysts, require additional interpretation by the investor to become return fore-

casts. Conversely, the conversion of analyst price targets into return forecasts is immediate, implying

these sources of information are entirely public. The prior returns of an asset also constitute a source

of public information whose corresponding return forecasts are similar to buy/sell signals in technical

analysis. For emphasis, information sources are only assumed to issue return forecasts. The mechanism

for estimating their accuracy is addressed in the next subsection.

In summary, we consider J > 1 return forecasts for a single asset originating from J unique

5Although sales are usually reported in millions of dollars and earnings stated on a per share basis, information

portfolio theory abstracts from these scale complications by aggregating across their return implications.
6The next section demonstrates that information portfolio theory is able to replicate the expected return estimates

from multifactor asset pricing models.
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information sources who evaluate the return implications of K ≥ 1 state variable forecasts.7 The

inequality J ≥ K enables information sources to disagree on the return implications of a forecasted

state variable.

2.1 Estimating Information Source Accuracy

The accuracy of each information source is critical to the information portfolio’s solution. This property

is estimated from the previous forecast errors of an information source. Specifically, at time t− 1, the

time series of forecast errors for the jth information source consists of the following vector⎡
⎢⎢⎢⎣

εj
t−1

...

εj
t−n

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

yt−1

...

yt−n

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

μj,t−1

...

μj,t−n

⎤
⎥⎥⎥⎦ for j = 1, 2, . . . , J (1)

over the previous n periods. At time t − 1, the jth information source issues the return forecast μj,t

for the (t − 1, t] horizon, while yt denotes the asset’s realized return at time t. The calendar time

corresponding to the (t− 1, t] interval is arbitrary.

At t − 1, the accuracy of the jth information source is estimated as

σ2
j,t =

1

n

n∑
i=1

(
εj
t−i

)2
, (2)

according to their previous forecast errors over the last n periods. By replacing the t subscript in σ2
j,t

with an asterix, we denote the true but unknown accuracy of the jth information source as σ2
j,∗ which

proxies for their true skill at forecasting the asset’s expected return.8 Therefore, σ2
j,t in equation (2) is

the investor’s estimate of σ2
j,∗ based on the information source’s prior n forecast errors. Intuitively, this

estimate represents the credibility of the μj,t forecast issued at t − 1. From a statistical perspective,

equation (2) calculates the mean-squared error (MSE) of equation (1).9

7When state variable dynamics are random, K represents the number of state variable forecasts rather than the

number of actual state variables. This structure allows each state variable forecast to generate a distinct return forecast.
8The true accuracy σ2

j,∗ of the jth information source may be time-varying and state-dependent. However, this

parameter is written as a constant for notational simplicity since only the estimated accuracies from equation (2) are

involved in the solution for the optimal information portfolio.
9This property follows from E

[
ε2
]

= V ar [ε] + (E [ε])2 with the bias in a forecast equaling E[ε]. Information sources

may employ Bayesian methods when generating their return forecasts with the usual tradeoff between variance and
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Throughout the remainder of our paper, the accuracy of an information source refers to its esti-

mate in equation (2). However, with the true accuracy of each information source being unknown,

accuracy and estimated accuracy are used interchangeably. Observe that the estimated accuracy of an

information source is derived from its time series of prior return forecasts, with state variable forecasts

serving an intermediate role.

The covariance between the time series of forecast errors for the jth and kth information source is

estimated as

σj,k,t =
1

n

n∑
i=1

εj
t−i εk

t−i , (3)

for j �= k. Equation (3) represents the investor’s estimate of the true but unknown covariance σj,k,∗

between the return forecasts of two information sources at t−1. For emphasis, although the estimates

in equations (2) and (3) should be denoted as σ̂2
j,t and σ̂j,k,t respectively, the hats are omitted for

notational simplicity.

In our current exposition, the value of n in equations (1), (2) and (3) is specific to an individual

asset.10 Intuitively, established firms in stable industries have ample forecast errors to estimate the

accuracy of each information source. Conversely, initial public offerings and companies undergoing a

significant restructuring, undertaking a large investment, or experiencing major technological innova-

tions have fewer relevant forecast errors. This notion of relevance has n being reduced after significant

corporate events, and parallels Brav and Heaton (2002)’s concept of a random change point in the econ-

omy. However, the arrival of a change point is not necessarily unknown in our framework. Instead,

the change point’s impact on expected returns is uncertain.11 Thus, we examine whether expected

bias arising from an informative prior. By computing the mean-squared error of prior forecast errors, the potential for

optimism to bias analyst earnings forecasts, price targets and stock recommendations is addressed. Nonetheless, the

investor can adjust the return forecasts to account for known biases, although decomposing forecast errors into their

bias and variance components is not required.
10If n is specific to an individual information source, then nj would denote the number of relevant forecast errors for

the jth information source. For example, nj could proxy for the experience of an information source. Chen, Liu and

Qian (2005) document the importance of experience to the credibility of buy-side analyst forecasts, while Nicolosi, Peng

and Zhu (2004) report that experienced individual investors earn higher returns. However, for ease of exposition, all J

information sources are evaluated using n previous forecast errors since our initial focus is on a firm-specific information

environment.
11From an empirical perspective, a reduction in n after corporate events is motivated by the estimation of time-
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return uncertainty is responsible for causing momentum and the appearance of return characteristics

that mimic behavioral biases. Empirical evidence linking corporate events and return predictability

is documented by Jackson and Johnson (2006) as well as Daniel and Titman (2005). Vassalou and

Apedjinou (2004) also report that corporate innovation increases return predictability.

Overall, the vector of return forecasts available at time t − 1 equals

μt =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ1,t

μ2,t

...

μJ,t

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4)

A time series of μt−1, . . . , μt−n vectors over the last n periods yields a Θt matrix summarizing the

estimated accuracy for the J information sources as well as their estimated covariances which are

described by equations (2) and (3) respectively. Therefore, the Θt matrix is an estimate of the true

but unknown variance-covariance matrix for the J return forecasts in equation (4). To simplify our

notation, we suppress the t subscripts on μ and Θ for the remainder of this paper.

2.2 Optimal Information Portfolio

When combining the J return forecasts, the investor minimizes the aggregate forecast error of the

asset’s estimated expected return by solving the following optimization problem

min
W

1

2
W T ΘW

(5)

subject to: W T1 = 1 ,

where 1 denotes a J -dimensional vector of ones. The solution for W is referred to as the optimal

information portfolio. The objective function in equation (5) is related to Peng and Xiong (2004)’s

minimization for the variance of beliefs regarding subsequent dividends. Hong, Scheinkman and Xiong

(2005) also minimize the variance of different information sources.

varying parameters in the empirical asset pricing literature. For example, a company’s market beta is typically not

estimated using all returns since the firm’s inception. Instead, to account for changes in the company and its operating

environment, firm-specific factor sensitivities are calibrated over different subperiods.
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As proven in the next subsection, after imposing a common distributional assumption on every

return forecast, the objective function in equation (5) is equivalent to finding the best linear unbiased

estimator (BLUE) of the asset’s expected return given available forecasts. Therefore, equation (5) is

consistent with linear regression models used throughout the empirical finance literature. The optimal

information portfolio is solved in the following proposition whose proof is in Appendix A.

Proposition 1. The solution for the optimal information portfolio W in equation (5) equals

W =
Θ−11

1TΘ−11
. (6)

When private information sources are evaluated by the investor, this optimal information portfolio

is investor-specific in addition to being firm-specific.

An information portfolio which equally-weights each return forecast, until there is statistically

significant evidence that σ2
j,∗ differs across the J information sources, and the optimal information

portfolio in equation (6) converge as the number of forecast errors in equation (1) increases. The

equally-weighted portfolio has the investor utilizing W = 1
J
1 unless the σ2

j,t estimates from equation

(2) enable them to reject the null hypothesis that the true accuracy of each information source is

identical. Besides earlier research by Peng and Xiong (2004) as well as Hong, Scheinkman and Xiong

(2005), support for the objective function in equation (5) is provided below in equation (15) for all

values of n.

2.3 Regression Interpretation of Optimal Information Portfolio

Denote the asset’s true return distribution as N (η, ν) with η being its unknown expected return.

Corporate or macroeconomic events that generate expected return uncertainty may also cause η to

vary over time but this parameter is written as a constant for notational simplicity.

The main result of this subsection is that after imposing a common distributional assumption on

every return forecast

μ
d∼ N (η1, Θ) , (7)

the objective function in equation (5) is equivalent to finding the best linear unbiased estimate of η.

Specifically, from a linear regression perspective, the true model for the asset’s return is described by

y = η + e , (8)
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where the error terms e are i.i.d. random variables from a N (0, ν) distribution. Therefore, the asset’s

realized return y is emitted by the true N (η, ν) distribution. Appendix B considers a special case of

equation (8) which has η generated by a N -factor model

y =

[
β0 +

N∑
j=1

βj fj

]
+ e . (9)

However, regardless of η’s specification, its corresponding linear estimator ŷ equals

ŷ = W T μ . (10)

A linear regression procedure minimizes the mean-squared error of the y − ŷ deviations

y − ŷ = η − W Tμ + e , (11)

by choosing the optimal coefficients W given a set of independent variables which are the return

forecasts μ in our framework. The coefficients are required to produce an unbiased estimator which

implies

0 = E [y − ŷ]

= η − E
[
W TN (η1, Θ)

]
= η − ηW T1 . (12)

The W T 1 = 1 constraint is an immediate consequence of equation (12) which follows from the distri-

butional assumption in equation (7).12 With W T μ being an unbiased estimate of η, minimizing the

mean-squared error in equation (11) is equivalent to minimizing

V ar [y − ŷ] = V ar
[
η −W T μ + e

]
= V ar

[
W TN (η1, Θ) + e

]
= W T ΘW + ν , (13)

since the N (0, ν) distribution for the error terms is independent of the normal distribution in equation

(7) while η is not random. Equation (13) implies the investor minimizes W TΘW since the asset’s true

12Equation (7) implies WT μ is an unbiased estimator of η but this property does not imply that WT μ equals η.

Indeed, confidence intervals and hypothesis tests evaluate the point estimates from linear regression models.
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return variance ν is not a function of the information portfolio. In summary, the best linear unbiased

estimate of the asset’s expected return minimizes W TΘW subject to the W T1 = 1 constraint.13

Consequently, statistical justification underlying linear regression models also applies to our objective

function in equation (5). To clarify, W TΘW is not an estimate of ν. Indeed, even if W T ΘW equals

zero or η is known (as in classical portfolio theory), the asset is not riskless provided ν is non-zero.

To determine the asset’s ex-ante return distribution, consider the prediction interval for next pe-

riod’s return

ỹp = W Tμ + e , (14)

which is conditioned on W and a vector of return forecasts. For emphasis, equation (14) is not intended

to calibrate the W coefficients since ỹp is the asset’s unobserved (random) ex-ante return as signified

by the tilde. Instead, conditional on W , the asset’s ex-ante return distribution equals

ỹp
d∼ N (

W Tμ, W T ΘW + ν
)

, (15)

according to equation (13). Thus, return uncertainty reflects the asset’s true variability denoted ν as

well as the aggregate forecast error W TΘW of the J forecasts. Consequently, equation (15) provides

further justification for the objective function in equation (5). Observe that equation (15) is valid

under a weaker assumption than equation (7) which simply requires

W Tμ
d∼ N (

η, W TΘW
)

. (16)

Equation (7) immediately implies equation (16) but the converse is not true. Intuitively, equation

(7) assumes all J return forecasts are unbiased estimates of η, while equation (16) only assumes the

aggregate forecast W Tμ is an unbiased estimate. From an practical perspective, equation (16) does not

require individual information sources to issue unbiased forecasts. Instead, the investor’s information

portfolio is assumed to combine the return forecasts into an unbiased estimate of the asset’s true

expected return. The distribution of ỹp in equation (15) is invoked when the relationship between our

optimal information portfolio and momentum is examined.

For emphasis, the objective function in equation (5) is independent of the distributional assump-

tions in equation (7) as well as equation (16). In particular, the optimal information portfolio in

13Minimizing WT ΘW in equation (13) is equivalent to minimizing 1
2WT ΘW in equation (5).
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Proposition 1 does not require the J return forecasts or their optimal combination to be unbiased

estimates for η since equations (2) and (3) evaluate the mean-squared forecast error of an information

source. More importantly, fluctuations in the optimal information portfolio weights over time are

crucial to our interpretation of the investor’s perceived return in the next two sections. Therefore, we

refrain from referring to our information portfolio weights as linear regression coefficients.

2.4 Perceived Return and Return Uncertainty

By aggregating across the return forecasts, the optimal information portfolio immediately generates an

estimate for the asset’s expected return. This estimate summarizes the information provided by the J

return forecasts and is referred to as the investor’s perceived return. Proposition 2 below computes the

perceived return and its aggregate mean-squared forecast error using the optimal information portfolio.

Proposition 2. The perceived return implied by the optimal information portfolio weights in Propo-

sition 1 equals

W Tμ =
1T Θ−1μ

1TΘ−11
, (17)

while

W TΘW =
1

1TΘ−11
, (18)

is the aggregate forecast error of the perceived return in equation (17).

Proof: The perceived return follows immediately from equation (6) while the aggregate forecast error

is computed as14

W TΘW =
1

1T Θ−11
1TΘ−1 ΘΘ−11

1

1T Θ−11

=
1

1T Θ−11
. (19)

Ex-ante, the investor is unaware of the asset’s true expected return denoted η. As a consequence,

the investor is compelled to combine the J return forecasts and rely on the perceived return in equation

14A negative portfolio weight implies the investor reverses the sign of this information source’s return forecast when

computing their perceived return.
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(17) which has the lowest aggregate forecast error amongst all other estimates for the asset’s expected

return.

The cross-sectional dispersion across the J forecasts of the μ vector in equation (4) equals

σ2
μ =

1

J − 1

J∑
j=1

(μj − μ̄)2 , (20)

where μ̄ is defined as the average return forecast

μ̄ =
1

J

J∑
j=1

μj , (21)

does not have an explicit role in our solution for the information portfolio. Nonetheless, equation (20)

offers an economically intuitive definition for expected return uncertainty. For example, dispersion in

the return forecasts inferred from price targets immediately generates a proxy for σ2
μ although sources

of information besides price targets are also available to the investor. Note that μ̄ in equation (21)

is not the optimal estimate for an asset’s expected return unless every information source is equally

skilled with an identical true but unknown accuracy.

To clarify, W T ΘW and σ2
μ are not equivalent. Indeed, if all information sources issue identical

return forecasts, then σ2
μ in equation (20) is zero and the information portfolio is irrelevant since

any combination of return forecasts yields the same perceived return under the W T1 = 1 constraint.

However, provided η remains unknown, the aggregate forecast error W TΘW is positive.

Intuitively, the optimal information portfolio cannot prevent information sources from disagreeing

on an asset’s expected return and generating a large σ2
μ value. Instead, by minimizing their aggregate

forecast error W TΘW , our optimal information portfolio finds the most “accurate” perceived return.

2.5 Important Information Portfolio Properties

We begin with the following corollary of Proposition 2 which offers an explicit expression for the

information portfolio between two independent information sources.

Corollary 1. For J = 2 and Θ being the diagonal matrix⎡
⎣ σ2

1 0

0 σ2
2

⎤
⎦ ,
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the information portfolio W equals ⎡
⎣ w1

w2

⎤
⎦ =

1

σ2
2 + σ2

1

⎡
⎣ σ2

2

σ2
1

⎤
⎦ . (22)

Therefore, the investor’s perceived return equals

σ2
2 μ1 + σ2

1 μ2

σ2
1 + σ2

2

, (23)

while

σ2
1σ

2
2

σ2
1 + σ2

2

, (24)

is the aggregate forecast error of the perceived return in equation (23).

According to equation (23), the return forecast issued by a more accurate information source has

a larger portfolio weight and greater influence on the investor’s perceived return. Intuitively, accuracy

enhances the credibility of an information source. The utility maximization approach in Cheng, Liu

and Qian (2005) produces a pair of weights similar to equation (22) for signals issued by sell-side versus

buy-side analysts.

The next corollary of Proposition 2 extends Corollary 1 by examining correlated return forecasts.

Corollary 2. For J = 2, let Θ equal ⎡
⎣ σ2

1 σ12

σ12 σ2
2

⎤
⎦ .

Under this structure, the portfolio weights are⎡
⎣ w1

w2

⎤
⎦ =

1

σ2
2 + σ2

1 − 2σ12

⎡
⎣ σ2

2 − σ12

σ2
1 − σ12

⎤
⎦ . (25)

The perceived return for the asset equals

σ2
2 μ1 + σ2

1 μ2 − σ12 (μ1 + μ2)

σ2
1 + σ2

2 − 2σ12

, (26)

while

σ2
1σ

2
2 − (σ12)

2

σ2
1 + σ2

2 − 2σ12
, (27)

is the aggregate forecast error of the perceived return in equation (26).
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A negative covariance, σ12 < 0, between two information sources represents “offsetting” forecast

errors. Appendix C proves that a negative covariance reduces the aggregate forecast error in equation

(27). We utilize this property in Section 4 to demonstrate that our optimal information portfolio

weights generate perceived returns which exhibit the appearance of several behavioral biases.

3 Information Source Accuracy and Momentum

In this section, we begin by investigating the relationship between the number of relevant forecast

errors in equation (1) and the estimated accuracy of a single information source. We then study

two information sources whose time-varying information portfolio weights instill momentum into the

perceived return, especially when the asset’s expected return uncertainty is high and few relevant

forecast errors are available to estimate the accuracy of each information source.

Intuitively, a small n undermines the investor’s ability to estimate the true accuracy of each infor-

mation source. More formally, the next two subsections demonstrate that the estimates σ2
j,t generated

by equation (2) are likely to increase, along with the aggregate forecast error W TΘW in equation (18)

as a consequence, when the number of relevant forecast errors is limited. As additional forecast er-

rors become available, the optimal information portfolio weights are updated and generate momentum

along with subsequent reversals in the perceived return.

The uncertainty surrounding an individual asset’s expected return increases when information

sources examine distinct state variables, have unique forecasting techniques for their state variable, and

interpret its return implications differently. Moreover, a public information source does not necessarily

disclose these components of their return forecast. Instead, at each point in time, the investor observes

a collection of return forecasts and relies on the estimated accuracy of each information source to define

the Θ matrix. However, the tendency for W TΘW to increase due to larger σ2
j,t estimates after corporate

events which reduce n does not require the investor to understand the origin of every return forecast.
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3.1 Return Implications of a State Variable

Assume the jth information source utilizes a linear model for converting a known state variable Vt into

its associated return forecast

μj,t = α̂ + β̂Vt . (28)

The hats signify the unknown coefficients of the transformation, while the state variable Vt in equation

(28) is not random. As mentioned above, other information sources may employ a transformation

different than equation (28) or interpret another state variable when issuing their return forecast.

According to equation (29) below, the jth information source calibrates the α and β coefficients in

equation (28) using realized returns and state variables

yt−i = α + βVt−i + ξt−i , (29)

over the previous i = 1, . . . , n periods where ξt−i is an i.i.d. error term distributed N (
0, σ2

ξ

)
. After

obtaining the estimates α̂ and β̂ from the regression model in equation (29), the information source

invokes equation (28) to convert Vt into μj,t. This μj,t return forecast simply equals the predicted value

ỹt from the linear regression in equation (29) at t − 1.

At time t, an additional forecast error εj
t = yt −μj,t is appended to the time series of forecast errors

in equation (1). In particular, the realization of
(
εj
t

)2
at t augments equation (2) when estimating the

jth information source’s accuracy. To illustrate the importance of n, the expectation of the squared

forecast error εj
t at t − 1 is evaluated as15

E
[
εj
t

]2
= V ar [yt − μj,t]

= V ar [ξt] +
{
V ar [α̂] + (Vt)

2 V ar
[
β̂
]

+ 2Vt Cov
[
α − α̂, β − β̂

]}
(30)

= Transformation Uncertainty + Estimation Error in Transformation .

15The μj,t return forecast is unbiased since E [yt − μj,t] = E
[
α − α̂ + Vt

[
β − β̂

]
+ ξt

]
is zero provided E [α̂] and

E
[
β̂
]

equal α and β respectively. These equalities follow from the linear regression in equation (29) providing unbiased

coefficient estimates. Thus, equations (28) and (29) imply the jth information source issues unbiased return forecasts.

This simplification is without loss of generality since equation (2) evaluates the mean-squared error of information

sources and therefore does not require them to issue unbiased return forecasts.
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For large n, the α̂ and β̂ estimates converge to α and β respectively, implying equation (30) reduces

to V ar [ξt]. Therefore, equation (30) converges to σ2
ξ which equals the unknown true accuracy σ2

j,∗ of

the jth information source. Recall that the investor cannot compute the decomposition in equation

(30) if the transformation in equation (28) is not disclosed by the information source.

However, when n is small, estimation error in α̂ and β̂ is severe. Lewellen and Shanken (2002)

examine the asset pricing implications of parameter uncertainty and demonstrate that return pre-

dictability cannot necessarily be exploited by investors. In our framework, a small n can undermine

the credibility of a knowledgeable information source or an important state variable. For example,

Jagannathan and Wang (2005) find that consumption explains cross-sectional returns but is dominated

by the SMB and HML factors of Fama-French (1993) in empirical applications due to the limitations

of consumption data.

Equation (30) also illustrates the importance of predictability in the return implications of a state

variable. If the conversion of Vt into μj,t is deterministic, implying the ξt−i error terms in equation

(29) are identically zero, then the α and β coefficients are known.16 Conversely, when the relationship

between a stock’s expected return and a state variable is unreliable, the information source’s estimated

accuracy in equation (2) is likely to be poor. Nonetheless, the investor can overestimate an information

source’s true accuracy since equation (30) is the expectation of next period’s squared forecast error.

The likelihood that an unskilled information source, by chance, has a low mean-squared forecast error

is higher when n is small. For example, the relationship between yt−i and Vt−i could eventually be

discredited once additional return and state variable realizations are available, but nonetheless improve

an information’s source’s estimated accuracy at an earlier point in time. Thus, the return implications

of a state variable revealed “ex-post” (after obtaining additional forecast errors) to be spurious can

influence the investor’s “ex-ante” optimal information portfolio. Overall, the investor is more likely to

underestimate or overestimate the true accuracy of information sources when fewer relevant forecast

errors are available.

Finally, even the idealized environment in equation (30) has two important complications. First,

the α and β parameters may be time-varying, which complicates their estimation even as n increases.

Second, as discussed in the next subsection, Vt could represent a forecast for the state variable.

16Transforming price targets into return forecasts involves a deterministic (perfectly predictable) function, although

not the linear relationship in equation (28).
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3.2 State Variable Dynamics

Suppose the jth return forecast is derived from an information source’s forecast for a state variable,

denoted Ṽt, which is a linear function of its previous realization

Ṽt = â + b̂Vt−1 . (31)

The dynamics of Vt are estimated by the information source at t− 1 as

Vt−i = a + bVt−i−1 + ζt−i , (32)

using data over the previous i = 1, . . . , n periods where ζt−i is another i.i.d. error term whose distri-

bution is N (
0, σ2

ζ

)
. Equation (32) is utilized to estimate the a and b coefficients, while the ζt−i error

terms signify the random evolution of the state variable. The Ṽt notation contains a tilde to emphasize

that the information source is forecasting this state variable, in contrast to equation (28) where Vt is

known.

When equation (28) with known α and β parameters is combined with equation (31), the following

return forecast is generated by the jth information source

μj,t = α + βṼt

= α + β
[
â + b̂Vt−1

]
. (33)

For clarification, the conversion of the state variable into its return forecast continues to be specified

by equation (28). However, for simplicity, the α and β coefficients are assumed to be known since our

attention is currently focused on the contribution of state variable uncertainty to the jth information

source’s estimated accuracy. An economy in which the α, β, a and b coefficients all require calibration

would produce a complicated estimation error in equation (35) below involving cross-products. In

addition, j superscripts implicitly index the α, β, a and b coefficients as well as the ξ and ζ error terms

but they are omitted for notational simplicity.

Inserting the true dynamics of the state variable in equation (32) into equation (29) implies

yt−i = α + β [a + bVt−i−1 + ζt−i] + ξt−i . (34)

When combined, equations (33) and (34) imply the following expectation at time t−1 for next period’s
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squared forecast error17

E
[
εj
t

]2
= V ar [yt − μj,t]

= V ar [ξt] + β2V ar [ζt]

+
{
β2V ar [â] + β2 (Vt−1)

2 V ar
[
b̂
]

+ 2β2Vt−1Cov
[
a − â, b− b̂

]}
(35)

= Transformation Uncertainty + State Variable Uncertainty

+ Estimation Error in State Variable Dynamics .

To clarify, V ar [ζt] corresponds to state variable uncertainty, while V ar [ξt] represents randomness in

the return implications of the state variable. The estimation error in the second line of equation (35)

tends toward zero as n → ∞, implying equation (2) converges to σ2
ξ + β2σ2

ζ which equals the jth

information source’s true accuracy σ2
j,∗.

Equation (35) implies that after controlling for V ar [ξt], information sources who condition their

return forecasts on predictable state variables are likely to have superior estimated accuracies in com-

parison to those conditioning on unpredictable state variables. Indeed, if Vt evolves deterministically,

then V ar [ζt] equals zero while the a and b coefficients are known, implying equation (35) reduces to

V ar [ξt].

In general, state variable forecasts and their return implications are not required to arise from linear

relationships as in our previous illustrations. Nonetheless, the importance of n as well as predictability

in state variable dynamics and their return implications extends beyond these linear specifications when

estimating an information source’s accuracy. Specifically, the estimation errors arising from a small

n would likely increase the σ2
j,t estimates from equation (2) and consequently the aggregate forecast

error W TΘW in equation (18). In addition, state variables whose dynamics and return implications

exhibit predictability improve the estimated accuracy of their corresponding information source. This

improvement occurs even if the predictability is eventually found to be spurious. More importantly,

17Equations (31), (33) and (34) imply μj,t is an unbiased return forecast. Specifically, E
[
εj
t

]
equals zero since the

linear regression in equation (32) ensures E [â] = a and E
[
b̂
]

= b under the assumptions imposed on ζt−i and ξt−i.

However, this property is not a requirement of information portfolio theory since equation (2) minimizes mean-squared

error and does not require unbiased return forecasts.
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as additional forecast errors become available, fluctuations in the σ2
j,t estimates cause the optimal

information portfolio weights to be updated. The ability of time-varying optimal information portfolio

weights to induce momentum and reversals is analyzed in the next subsection.

3.3 Momentum in Perceived Return

To examine momentum (and reversals) in the investor’s perceived return, we consider an optimistic

and pessimistic information sources for a firm that has recently initiated a large investment. The

profitability (earnings / cashflow) of this investment represents the relevant state variable in our

subsequent analysis. More importantly, differences of opinion between the information sources are not

assumed to result from psychological biases.

At the initial timepoint t1, the high return forecast from the optimistic information source is denoted

μH,1 while its low return counterpart is denoted μL,1. For simplicity but without loss of generality,

assume these return forecasts are independent with σ2
H,1 equaling σ2

L,1 at t1. According to equation

(23) in Corollary 1, the investor’s perceived return over the (t1, t2] horizon is the average of the two

forecasts.

During the (t1, t2] interval, information regarding the success of the investment is revealed, with

the firm’s realized return denoted r1,2 over this horizon. This realized return is identical to y2 in

equation (1) but notated more descriptively as r1,2. In particular, there are two scenarios at t2, the

first indicating success and the second failure. The ex-ante probability attached to these scenarios is

irrelevant when the firm’s realized return sequence is studied at t3 or a later timepoint. Furthermore,

over the (t2, t3] interval, assume μH,2 continues to exceed μL,2 with the disparity between these forecasts

depending on the uncertainty prevailing at time t2 surrounding the firm’s expected return. To illustrate

return extrapolation in our framework, consider the following two scenarios defined by r1,2.

Investment appears to be successful over (t1, t2] interval:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Realized return r1,2 is high

σ2
H,2 < σ2

L,2, estimated accuracy of high return information source improves since r1,2 is high

Perceived return over (t2, t3] horizon is closer to μH,2

Perceived return appears to extrapolate from high realized return
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Investment appears to be failing over (t1, t2] interval:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Realized return r1,2 is low

σ2
L,2 < σ2

H,2, estimated accuracy of low return information source improves since r1,2 is low

Perceived return over (t2, t3] horizon is closer to μL,2

Perceived return appears to extrapolate from low realized return

The disparity between σ2
H,2 and σ2

L,2 at t2 is similar to the expected return uncertainty in equation

(20). If n is small, either μH,2 or μL,2 exerts a strong influence on the investor’s perceived return

as the optimal information portfolio is updated to reflect changes in the estimated accuracy of each

information source once r1,2 is revealed at t2. In contrast, a large number of relevant forecast errors

enables the investor to better estimate the true accuracy of both information sources, implying their

information portfolio weights would be relatively stable.

More formally, let t1 denote the initiation of a large investment which is assumed to generate

expected return uncertainty. This uncertainty persists until t2, when the winner and loser portfolios

are constructed. Thus, formation and holding periods of the momentum strategy correspond to [t1, t2)

and [t2, t3) respectively.18 Information portfolio theory cautions that momentum profits can arise

from idiosyncratic events and firm characteristics which reduce the number of relevant forecast errors,

thereby undermining the estimation of each information source’s accuracy, as illustrated in equations

(30) and (35). In the aftermath of these events, the optimal information portfolio weights fluctuate as

additional forecast errors become available. Empirically, events capable of reducing n are studied by

Jackson and Johnson (2006).19

In summary, equations (30) and (35) imply a tendency towards larger σ2
j,t estimates in equation (2)

after significant corporate events. These larger estimates increase an asset’s aggregate forecast error

W TΘW which equations (15) and (16) translate into higher risk from the investor’s perspective. In

particular, the asset’s ex-ante return variance equals W TΘW + ν, with the aggregate forecast error

18Several intermediate return forecasts and their associated forecast errors are possible within the [t1, t2) horizon.

Thus, n is not necessarily equal to one at t2.
19Jackson and Johnson (2006) document a post-event drift in analyst forecasts following seasoned equity offerings,

stock re-purchases, equity-financed mergers and dividend initiations as well as omissions. This persistence suggests their

impact on a firm’s earnings dynamics are not immediately understood.
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augmenting the asset’s true return variance. Consequently, momentum is strongest when the investor

confronts higher forecast risk. For emphasis, the optimal information portfolio has no control over the

firm’s expected return uncertainty in equation (20). Instead, information portfolio theory’s explanation

for momentum assumes σ2
μ is non-zero. Zhang (2005) finds that momentum profits are strongest for

firms experiencing high levels of expected return uncertainty. Whether these momentum profits arise

from our optimal information portfolio weights or investor psychology is addressed empirically in

Section 5.

One may argue that the empirical evidence concerning long term reversals motivates a mean-

reverting prior distribution when issuing return forecasts. However, if the optimistic (pessimistic)

information source at t1 decreases (increases) its return forecast at t2, then expected return uncer-

tainty is reduced. Indeed, if μH,1 and μL,1 converge to a common return forecast at t2, then the

uncertainty created by the investment is resolved during the (t1, t2] horizon and σ2
μ is zero. Hence,

return extrapolation attributable to the optimal information portfolio continues as long as there is

uncertainty regarding the firm’s expected return. Our explanation only requires persistence in the

relative optimism of the information sources. Specifically, we assume the same information source

issues relatively high (low) forecasts until the expected return uncertainty dissipates.

Intuitively, returns exhibit momentum due to events whose return implications are not immedi-

ately understood and agreed upon by all information sources, although the return forecasts issued by

information sources are allowed to be updated at intermediate timepoints.20 Overall, the estimated

accuracy of an information source who issues high (low) return forecasts improves following high (low)

realized returns. This improvement increases their optimal information portfolio weight. Therefore,

information sources are assigned larger information portfolio weights when their past, hence current,

return forecasts are similar to realized returns. As a consequence, the investor’s perceived return

appears to extrapolate from past returns.21

Reversals in the perceived return can also be attributed to the optimal information portfolio. The

20The horizon between the issuance of forecasts is important. Longer intervals allow more uncertainty to be resolved

before the investor’s perceived return is adjusted.
21Thus, multiple return sequences exist ex-ante with the investment’s success determining a realized return sequence

and the corresponding series of optimal information portfolio weights. Bondarenko and Bossaerts (2000) provide an

excellent description of the return bias induced by conditioning on an option’s eventual in-the-money or out-of-the-

money status.
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existing literature usually obtains momentum and reversals from the misinterpretation of a single state

variable. In Barberis, Shleifer and Vishny (1998), a firm’s true earnings evolve as a random walk while

the investor believes this state variable is either in a trending or mean-reverting regime. Instead of

two regimes, our framework considers multiple state variables, hence multiple sources of information

whose time-varying optimal portfolio weights induce reversals in the investor’s perceived return. As

an example, prior returns could temporarily constitute the most accurate source of information for an

IPO when its earnings are difficult to forecast. However, the influence of prior returns would diminish

once the IPO’s earnings dynamics are better understood.22

More formally, consider the earlier environment where one information source is relatively more

optimistic than its counterpart. The optimal information portfolio weights assigned to μH,3 and μL,3

depend on the estimated accuracy of the optimistic and pessimistic information sources at t3, hence

the realized returns over the (t1, t2] and (t2, t3] horizons. Even if the asset’s true expected return η is

constant, reversals in the perceived return occur when realized returns alter the relative ranking of the

information sources by their estimated accuracy. In particular, the optimistic (pessimistic) information

source can be more accurate at t2 than its pessimistic (optimistic) counterpart but less accurate at t3 if

r1,2 is high (low) while r2,3 is low (high). This situation corresponds to the intuition behind the above

IPO example involving past returns and earnings. The potential for reversals to result from realized

returns that benefit one information source at the expense of another increases with the asset’s true

return variance. Specifically, for a given n, a higher value of ν implies more variable realized returns,

and consequently more dramatic fluctuations in the information portfolio weights.

3.4 Conditional Expectations and Forecast Heterogeneity

The law of iterated expectations is usually invoked to conclude that the “error” separating an ex-

pected conditional return and its realization has zero mean. However, information portfolio theory

allows different information sources to utilize distinct statistical methodologies when forecasting state

variables or ascertaining their return implications. Disparate return forecasts can also originate from

information sources analyzing different state variables. Consequently, the law of iterated expectations

22Therefore, another implication of information portfolio theory is that conflicts of interest which compromise the

accuracy of affiliated analyst forecasts have a greater impact on an IPO’s perceived return before non-affiliated analysts

can establish their credibility.
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does not ensure homogenous return forecasts across the J information sources. Instead, disagreement

over future state variables and their impact on the asset’s return justifies the existence of multiple in-

formation sources. From a practical perspective, we assume the asset’s valuation is sufficiently complex

to prevent information sources from obtaining identical estimates for its expected return.

Our framework’s structure allows an asset’s return forecasts to be determined by multifactor asset

pricing models when factors such as the market return are interpreted as state variables. An individual

asset’s true expected return is unknown for several reasons in these formulations; randomness in the

dynamics of the factors, estimation error in the factor loadings for individual assets, and uncertainty

regarding the number of required factors as well as their composition. Appendix B discusses these

issues in more detail. Alternative return forecasts could be generated by price targets and intrinsic

value measures which are studied in Brav and Lehavy (2003) and Lee, Myers and Swaminathan (1999)

respectively.

However, the standard econometric approach when testing market efficiency estimates a single

expected return, which fails to account for uncertainty surrounding the interpretation of available

information. Instead, realized factor returns replace ex-ante forecasts, while their corresponding beta

coefficients are also assumed to be known. Moreover, these firm-specific beta coefficients are usually

estimated using time series data and fixed over a given horizon. In contrast, our information portfolio

weights are time-varying and apply to a cross-section of return forecasts.

One concern regarding information portfolio theory may be the appearance of systematic expected

return biases that appear to indicate the presence of psychological biases. In the next section, we

demonstrate that our optimal information portfolio weights induce return characteristics that mimic

psychological biases in the behavioral finance literature.

4 Properties of the Perceived Return

This section connects our optimal information portfolio with several characteristics of the perceived

return previously attributed to investor psychology. In particular, we demonstrate that the appearance

of overconfidence, biased self-attribution, representativeness, conservatism and limited attention are

induced by our optimal information portfolio. However, none of the information sources nor the

investor are assumed to be influenced by psychological biases.
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Return characteristics induced by the optimal information portfolio that mimic psychological biases

coincide with expected return uncertainty. Indeed, if all information sources issue identical return

forecasts for an asset, then the information portfolio is irrelevant since any combination of these

forecasts yields the same perceived return. Furthermore, the appearance of overconfidence, biased

self-attribution, representativeness, conservatism and limited attention is more pronounced when n is

small due to larger fluctuations in the information portfolio weights and greater difficulty in estimating

the true accuracy of each information source.

4.1 Appearance of Overconfidence and Biased Self-Attribution

To analyze the appearance of overconfidence in the perceived return, we examine two information

sources. This first information source is private and the second public, with their return forecasts and

estimated accuracies denoted by pr and pb subscripts respectively. The investor’s perceived return

appears to exhibit overconfidence whenever the information portfolio weight wpr for a private infor-

mation source exceeds the information portfolio weight wpb of a public information source. Later in

this subsection, we demonstrate that the appearance of overconfidence can occur even when the true

accuracy of the private and public information sources are identical.

Interpretation 1. Appearance of Overconfidence

Corollary 1 implies the following information portfolio weights for private and public information⎡
⎣ wpb

wpr

⎤
⎦ =

1

σ2
pr + σ2

pb

⎡
⎣ σ2

pr

σ2
pb

⎤
⎦ . (36)

Consequently, private information is overweighted with wpr exceeding wpb whenever σ2
pr < σ2

pb. Fur-

thermore, the perceived return equals

1

σ2
pr + σ2

pb

[
σ2

pr μpb + σ2
pb μpr

]
, (37)

which emphasizes μpr more than μpb.

According to equation (37), whenever a private information source is more accurate than its pub-

lic counterpart, the investor’s perceived return mimics overconfidence. Recall that multiple private

information sources may exist because forecasts for state variables such as earnings require further
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interpretation by the investor to become return forecasts. In contrast, price targets yield explicit

return forecasts which constitute public information sources. Overall, let the return forecast μpr in

equation (37) be associated with the investor’s most accurate source of private information. Provided

this private information source has been more accurate than a public information source over the last

n periods, the investor appears to be overconfident. We formalize this property after introducing a

perceived return characteristic which mimics biased self-attribution.

In the context of information portfolio theory, the investor exhibits the appearance of biased self-

attribution when the estimated accuracy for one of their private information sources is superior to a

public information source, while another private information source is less accurate.23 Consider two

private information sources along with the original public information source. The private information

source which is more accurate than the public information source is denoted with a c subscript, while

the less accurate private information source has a d subscript.

Interpretation 2. Appearance of Overconfidence with Biased Self-Attribution

Consider the variance-covariance matrix ⎡
⎢⎢⎢⎣

σ2
c 0 0

0 σ2
d 0

0 0 σ2
pb

⎤
⎥⎥⎥⎦ ,

with the property that σ2
d > σ2

pb > σ2
c . The corresponding information portfolio equals

[wc, wd, wpb] =
1

D

[
σ2

d σ2
pb, σ2

c σ2
pb, σ2

c σ2
d

]
, (38)

where D is defined as D = σ2
d σ2

c + σ2
d σ2

pb + σ2
c σ2

pb. Therefore, the perceived return W T μ equals

[σ2
c μd + σ2

d μc] σ
2
pb + σ2

c σ2
d μpb

D
, (39)

which is influenced more by μc than μd.

The σ2
d > σ2

c property ensures the information portfolio weight wc for μc exceeds the information

portfolio weight wd assigned to the μd return forecast. Thus, the investor’s perceived return gravitates

23Intuitively, to connect estimated accuracy with terminology in the psychology literature, confirming private informa-

tion sources are more accurate than a public information source according to equation (2), while disconfirming private

information sources have been less accurate than all public information sources over the last n periods.
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towards their most accurate private information sources and away from those which are less accurate.

This tendency causes the investor’s perceived return to exhibit the appearance of overconfidence and

biased self-attribution as a result of the optimal information portfolio weights.

Interestingly, the investor’s perceived return may exhibit the appearance of overconfidence even

if their private information sources are inaccurate on average since less accurate private information

sources receive smaller information portfolio weights. For example, if the investor successfully predicts

the return implications of industry characteristics, but cannot reliably interpret a firm’s earnings, then

the importance of industry data is accentuated by the information portfolio at the expense of earnings.

By implication, the investor pursues trading strategies derived from private sources of information

which have provided them with individual success, regardless of the technique’s generality.

Consider two private information sources whose estimated accuracies are denoted σ2
pr,1 and σ2

pr,2

respectively. Let pj represent the probability that the true accuracy of the jth private information

source is less than its public counterpart which summarizes their relative skill. These probabilities

equal one-half when their return forecasts originate from a common distribution, which implies the

true accuracy of each information source is identical.24 The following four scenarios summarize the

appearance of overconfidence and biased self-attribution after n periods.

24Having the three return forecasts emanate from the true return distribution is for ease of illustration but without

loss of generality. If the true accuracy of each information source is distinct, then the optimal information portfolio

simply converges to a different set of weights as n increases although the economic intuition is identical.
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Scenario Estimated Accuracies Probability Investor Appears to Exhibit

A σ2
pr,1 , σ2

pr,2 < σ2
pb (1 − p1) (1 − p2) Overconfidence from both private sources

B σ2
pr,1 < σ2

pb < σ2
pr,2 (1 − p1) p2 Overconfidence from 1st private source

and biased self-attribution

C σ2
pr,2 < σ2

pb < σ2
pr,1 p1 (1 − p2) Overconfidence from 2nd private source

and biased self-attribution

D σ2
pb < σ2

pr,1 , σ2
pr,2 p1 p2 No Overconfidence

Observe that the perceived return exhibits the appearance of overconfidence in scenarios A, B

and C , with a cumulative probability of 1 − p1 p2. Therefore, when p1 and p2 both equal one-half,

the investor’s perceived return appears to exhibit overconfidence in 75% of the scenarios. Further-

more, in scenarios B and C , an accurate (inaccurate) private information source is assigned a larger

(smaller) portfolio weight than the public information source. Therefore, the probability that biased

self-attribution appears to influence the investor’s perceived return equals 50%. Nonetheless, the

appearance of overconfidence and biased self-attribution occurs despite the two private and public in-

formation sources possessing equal skill at forecasting returns. The appearance of overconfidence and

biased self-attribution is further justified when a perceived return characteristic which mimics limited

attention is examined later in this section. For emphasis, the appearance of these biases occurs despite

the three information sources having identical true accuracies.

Finally, our results continue to apply when there are more public than private information sources.25

When two public information sources and one private information source are considered, the following

25The relationship between the number of private information sources and their accuracy is ambiguous. More private

information sources could increase the likelihood of at least one private information source being more accurate than

the public information source. Conversely, additional private information sources may diminish the resources allocated

to generating each return forecast and thereby decrease their accuracy.
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four scenarios are relevant after n periods.

Scenario Estimated Accuracies Probability Investor Appears to Exhibit

A σ2
pb,1 , σ2

pb,2 < σ2
pr p1 p2 No overconfidence

B σ2
pb,1 < σ2

pr < σ2
pb,2 p1 (1 − p2) Limited overconfidence from 2nd public source

and biased self-attribution

C σ2
pb,2 < σ2

pr < σ2
pb,1 p2 (1 − p1) Limited overconfidence from 1st public source

and biased self-attribution

D σ2
pr < σ2

pb,1 , σ2
pb,2 (1 − p1) (1 − p2) Overconfidence from both public sources

The concept of limited overconfidence in scenarios B and C reflects the private information source’s

larger portfolio weight relative to one of the two public information sources. Indeed, the investor’s

private information sources may perform poorly on average. Only in scenario A when the private

information source is less accurate than both public information sources is there no evidence of over-

confidence.

4.2 Appearance of Representativeness and Conservatism

Recall from the previous section that an information source’s estimated accuracy improves when

predictability in a state variable’s dynamics as well as its return implications reduces its mean-squared

forecast error. These properties imply that trends can increase an information source’s portfolio

weight since trends imply predictability.26 Even predictability in state variable dynamics and their

relationship with realized returns that is subsequently found to be spurious when n is larger can

influence the optimal information portfolio at earlier timepoints. This property distinguishes between

26As an example, a strong trend in a binomial sequence occurs when its realizations consist predominately of either

up or down movements, implying the estimated binomial probability over the last n observations is near zero or one.
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ex-ante estimates of an information source’s accuracy, computed when a limited number of relevant

forecast errors were available, and ex-post estimates which are only known later in the sample period.

Consider two information sources, labeled consistent and inconsistent, with the former arising

from predictability in the dynamics of a state variable or its return implications. The consistent and

inconsistent information sources are denoted by c and d subscripts respectively, with the property

σ2
I > σ2

C induced by predictability underlying the consistent source of information.

Interpretation 3. Appearance of Representativeness

Let μ =

⎡
⎣ μC

μI

⎤
⎦ and Θ =

⎡
⎣ σ2

C 0

0 σ2
I

⎤
⎦. From Corollary 1, the information portfolio equals

⎡
⎣ wC

wI

⎤
⎦ =

1

σ2
I + σ2

C

⎡
⎣ σ2

I

σ2
C

⎤
⎦ , (40)

which implies the perceived return

1

σ2
C + σ2

I

[
σ2

C μI + σ2
I μC

]
, (41)

is influenced more by μC than μI .

Hence, consistent information sources have more influence on the investor’s perceived return than

their inconsistent counterparts. However, trends can produce consistency without an information

source possessing superior knowledge regarding the true dynamics of a state variable or its relation-

ship with future returns. Indeed, when n is small, the consistency of an information source could be

temporary. For example, prior returns or industry trends may generate consistent sources of informa-

tion for an IPO until its earnings dynamics can be reliably estimated.

More formally, assume the return forecasts from two information sources both emanate from the

true return distribution. Therefore, the true accuracy of these two information sources is identical,

implying any trend that causes either of the two information sources to have a higher estimated

accuracy is spurious. Nonetheless, for a finite n, equation (2) implies one of the information sources

is more accurate as described by the following two scenarios.27

27The return forecasts originate from a (normal) continuous distribution. Consequently, the probability that σ2
1 equals

σ2
2 is zero.
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Scenario Consistent Inconsistent Probability Investor Appears to Exhibit

A σ2
1 < σ2

2
1
2 Representativeness; 1st source consistent, 2nd inconsistent

B σ2
2 < σ2

1
1
2

Representativeness; 2nd source consistent, 1st inconsistent

Observe that the appearance representativeness occurs in both scenarios, while its apparent mag-

nitude is proportional to the disparity |σ2
1 − σ2

2|. With both accuracies estimated using equation (2),

this distance decreases as n increases since the return forecasts from both information sources arise

from the same distribution.

Furthermore, one cannot analyze the return implications of a single state variable in isolation

unless the estimated accuracy of its corresponding information source is far superior to other sources

of information. This caveat limits a researcher’s ability to detect conservatism by examining a single

information source.

Interpretation 4. Appearance of Conservatism

According to Corollary 1, the investor’s perceived return

σ2
C μI + σ2

I μC

σ2
C + σ2

I

, (42)

is an aggregate estimate for the asset’s expected return. Therefore, conservatism cannot be established

by evaluating a single source of information.

Moreover, suppose the return implications of two state variables, such as earnings and sales, are

negatively correlated after a large investment or period of price discounting. Equation (42) would be

replaced by

σ2
C μI + σ2

I μC − σC,I (μC + μI)

σ2
C + σ2

I − 2σC,I
(43)

according to equation (26). As demonstrated in the next subsection, negatively correlated return fore-

casts receive larger information portfolio weights and have more influence on the investor’s perceived
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return relative to the estimated accuracy of their information sources. Consequently, examining neg-

atively correlated information sources in isolation, rather than ascertaining their aggregate influence,

can create the impression that the investor’s perceived return exhibits conservatism.

4.3 Appearance of Limited Attention

The σ1,2 covariance term in Corollary 2 incorporates the appearance of limited attention into the

perceived return. Barber, Odean and Zhu (2003) present empirical evidence of this bias for individual

investors. In the context of information portfolio theory, the investor assigns lower portfolio weights

to information sources whose return forecasts are positively correlated with a more accurate source of

information. Intuitively, this behavior parallels the removal of independent variables in linear regression

models due to multicollinearity.

For example, if two analysts are simultaneously optimistic or pessimistic, then the investor may

limit their attention to a single representative information source.28 In contrast, if their return fore-

casts are negatively correlated and offer alternative perspectives on the asset’s expected return, then

the investor benefits from analyzing both information sources. More formally, consider the portfolio

weights in Corollary 2

w1 =
σ2

2 − σ12

σ2
2 + σ2

1 − 2σ12

(44)

w2 =
σ2

1 − σ12

σ2
2 + σ2

1 − 2σ12
.

If the two forecasts are independent, then σ12 equals zero and both portfolio weights are positive.

However, when σ12 equals σ2
1, the Cauchy-Schwartz inequality implies σ2

1 ≤ σ2
2 with the first information

28Herding by information sources induces positive correlation between a subset of return forecasts. This positive

correlation further reduces the optimal portfolio weights assigned to less accurate information sources and mitigates the

impact of herding on the investor’s perceived return.

33



source being more accurate than the second, while the portfolio weights in equation (44) become29

w1 =
σ2

2 − σ2
1

σ2
2 − σ2

1

= 1

(45)

w2 =
σ2

1 − σ2
1

σ2
2 − σ2

1

= 0 .

Consequently, a large positive covariance between the two information sources eliminates the second

return forecast from the perceived return as illustrated in Figure 1. In contrast, negatively correlated

forecasts have a greater influence over the investor’s perceived return relative to their estimated ac-

curacy. Therefore, when attempting to detect conservatism, it is essential to evaluate the aggregate

impact of contradictory information instead of focusing on the return implications of a single state

variable.

Limited attention also magnifies the appearance of overconfidence since private information sources

receive larger portfolio weights than their estimated accuracies alone justify if the previous return fore-

casts they issued have been negatively correlated with public information sources. In particular, con-

tradictory private sources of information can be overweighted relative to more accurate but positively

correlated public information sources.

In summary, the portfolio weights assigned to information sources are dependent on the estimated

covariances between their prior forecast errors in equation (3). For example, the investor may rely on

broadly defined sector information rather than firm-specific characteristics if the latter are positively

correlated within an industry.

4.4 Rational versus Behavioral Interpretations

Although the perceived return is derived from the optimal information portfolio, this estimate of the

asset’s expected return is not referred to as being rational since the return forecasts are not prevented

from incorporating psychology. Indeed, the most accurate information sources could be those which

incorporate investor psychology into their return forecasts. As a consequence, information portfolio

theory does not preclude behavioral biases from influencing the perceived return.

29The Cauchy-Schwartz inequality provides an upper bound on the covariance, (σ12)
2 ≤ σ2

1 σ2
2 . Therefore, when

σ12 = σ2
1 , this inequality implies σ2

1 ≤ σ2
2 .
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For example, suppose all J return forecasts are identical and equal to μ◦, with this common expecta-

tion further assumed to be the result of at least one psychological bias. The investor’s perceived return

equals μ◦ regardless of the information portfolio and reflects investor psychology. Conversely, the use

of psychology could increase the expected return uncertainty in equation (20) due to disagreements

over the relative importance of specific behavioral biases. As a result, the relevance of information

portfolio theory is enhanced by differences of opinion regarding investor psychology. The exact decom-

position of the perceived return into the effects of psychology versus the optimal information portfolio

is ultimately an empirical question.

By estimating an investor’s expected return, information portfolio theory enhances rather than

contradicts utility maximization. Indeed, the investor’s perceived return and its aggregate mean-

squared forecast error are critical inputs in further asset pricing applications. Proposition 3 below,

whose proof is in Appendix D, provides a utility maximizing application of information portfolio theory.

Proposition 3. Assume the investor has a negative exponential utility function, U(M) = 1 − e−γM ,

with initial wealth M . Under the return distribution in equation (15), the optimal fraction of wealth f

invested in the risky asset equals

f =
1T Θ−1 (μ − rf1)

γ M [1 + ν1T Θ−11]
, (46)

where rf represents the riskfree interest rate.

As an explicit illustration, consider two identical return forecasts issued by information sources with

identical accuracies (μ1 = μ2 = μ◦, σ2
1 = σ2

2 = σ2
◦) with σ12 describing their off-diagonal covariance

element as in Corollary 2. Under these specifications, the solution for f in equation (46) reduces to

f =
2 (μ◦ − rf )

γ M

(
1

2ν + σ2◦ + σ12

)
. (47)

Observe that when information sources forecast higher returns or are more accurate, the investor

increases their exposure to the risky asset. When the return forecasts are negatively correlated, the

investor also purchases more of the risky asset. According to equation (47), accurate return forecasts

offset the investor’s risk aversion.

As a special case of equation (47), the fraction of wealth allocated to the risky asset equals
η−rf

γ M ν

when the asset’s true expected return is known since σ2
◦ and σ12 are zero while μ◦ = η.
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4.5 Contrast with Bayesian Methods

When an asset’s expected return is unstable, Brav and Heaton (2002) demonstrate that representa-

tiveness and conservatism result from Bayesian priors which underweight past or recent observations

respectively. In their model, these biases arise from uncertainty regarding a random change point

which initiates a different economic regime. Therefore, they highlight the difficulty posed by different

possible priors when attempting to disentangle rational from behavioral explanations of return pat-

terns. Furthermore, overconfidence may be inserted directly into the prior distribution of a private

return forecast by assuming the investor underestimates its variability. Alternatively, the attribution

bias in Gervais and Odean (2001) utilizes improper Bayesian updating to create overconfidence.

In contrast, the perceived return characteristics induced by the time-varying optimal information

portfolio weights arise from aggregating across multiple return forecasts and provide testable impli-

cations of information portfolio theory which are independent of any prior distribution. Although

Bayesian updating is applicable to multiple forecasts, a prior distribution(s) remains an integral part

of the posterior and therefore the investor’s expected return.

5 Empirical Implementation

Information portfolio theory does not assume that investor beliefs are influenced by psychological bi-

ases. Instead, uncertainty surrounding an asset’s expected return enables our time-varying optimal

information portfolio weights to induce these return characteristics. In this section, testable implica-

tions of information portfolio theory are discussed and verified empirically.

5.1 Testable Implications

There are several testable implications of information portfolio theory. First, the return characteristics

induced by information portfolio theory are more pronounced when an asset’s expected return is

uncertain. Therefore, in the aftermath of events which undermine the relevance of previous return

forecasts, the appearance of return characteristics that mimic overconfidence, biased self-attribution,

representativeness, conservatism and limited attention in the perceived return is more prevalent, along

with return momentum. Corporate restructurings, significant investments as well as technological
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innovations all reduce the relevance of previous observations and increase the uncertainty surrounding

a firm’s expected return.

Second, predictability in the dynamics of a state variable or its relationship with an asset’s return

influences the investor’s perceived return provided this predictability improves an information source’s

estimated accuracy. The possibility that statistically insignificant predictability in state variable dy-

namics or spurious return implications influence the optimal information portfolio is most likely in

periods of high expected return uncertainty when there are only a limited number of relevant forecast

errors available to estimate the accuracy of each information source.

Third, negatively correlated return forecasts reduce the investor’s aggregate forecast error. Con-

sequently, contradictory sources of information have greater influence over the investor’s perceived

return. This property increases the magnitude of return characteristics which mimic overconfidence

and conservatism.

Two testable hypotheses involving private return forecasts are also available. First, investors over-

weight their accurate private information sources (successes) at the expense of their less accurate pri-

vate information sources (failures). Consequently, the trading strategies implemented by an investor

are determined by the success of their private return forecasts. Second, less experienced investors have

a greater propensity to exhibit overconfidence and biased self-attribution since they have fewer forecast

errors to estimate their true accuracy. This implication arises from n in equation (1) is specific to an

information source rather than being common across all information sources.

To differentiate between the implications of psychological theories versus information portfolio

theory, the estimated accuracy of each information source is crucial. In particular, for a given level

of state variable uncertainty, information portfolio theory posits that momentum is highest when

conditioning on an informative state variable (highly correlated with returns). In contrast, psychology

predicts greater momentum when state variables are uninformative.

However, psychological biases and information portfolio theory are not necessarily incompatible.

The extent to which they both influence the perceived return is ultimately an empirical question. For

example, if accurate information sources incorporate investor psychology into their return forecasts,

then psychology undeniably impacts the investor’s perceived return.
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5.2 Hypotheses and Data

In our empirical implementation, there are implicitly two information sources; the first issues return

forecasts after interpreting earnings while the second considers a state variable representing everything

except earnings. Testing information portfolio theory requires us to examine the transformation of

earnings into return forecasts as well as the underlying variability in earnings. We examine earn-

ings momentum strategies based on analyst forecast revisions and forecast dispersion to verify the

predictions of information portfolio theory.

The relationship between returns and earnings forecasts generates our first hypothesis. Intuitively,

V ar [ξt] in equation (35) is being referenced. The first hypothesis is derived from the information

portfolio weights assigned to return forecasts that arise from earnings. Information portfolio theory

predicts that investors focus their attention on a firm’s earnings when this state variable has experi-

enced a stronger relationship with its realized returns.

Hypothesis 1. Earnings momentum is stronger for stocks when the return implications of their earn-

ings are more certain.

Our second hypothesis concerns earnings uncertainty and refers intuitively to V ar [ζt] in equation

(35). Higher earnings uncertainty translates into greater expected return uncertainty and momentum.

Hypothesis 2. Earnings momentum is stronger for stocks with higher earnings uncertainty.

The first hypothesis is critical to verifying information portfolio theory, while the second hypoth-

esis also has a behavioral interpretation (Zhang (2005)). Behavioral theory (e.g. Hirshleifer (2001))

posits that psychological biases are strongest in environments with high uncertainty as well as poor

information. Consequently, behavioral theory and our framework are both consistent with our second

hypothesis. However, for a given level of earnings uncertainty, behavioral theory predicts stronger

earnings momentum when earnings are less informative (low sensitivity of returns to earnings), while

information portfolio predicts the opposite. Therefore, in contrast to psychology, the optimal informa-

tion portfolio predicts investors attempt to find the “best” available sources of information, even during

periods of high expected return uncertainty. Hence, the first hypothesis is crucial to distinguishing

between our framework and psychological explanations for momentum.

Our empirical tests consider all domestic primary stocks listed on the NYSE, AMEX and NASDAQ

with analyst coverage. The monthly stock return and market capitalization data are obtained from
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CRSP while analyst forecasts are from the I/B/E/S Summary History dataset. The intersection of

the CRSP and I/B/E/S datasets over the January, 1976 to December, 2004 sample period is utilized.

The start date is determined by the beginning of the I/B/E/S Summary History dataset. Forecast

revisions are scaled by stock prices retrieved from I/B/E/S to account for adjustments such as stock

dividends and stock splits. Finally, we obtain book-to-market ratios (B/M) from Compustat.

We construct an uncertainty measure to proxy for the return dispersion in equation (20) as well

as a sensitivity measure to gauge the relative informativeness of earnings versus everything else when

forecasting returns.

5.3 Sensitivity of Returns to Forecast Revisions

Each month, we estimate stock price sensitivities to earnings information by computing the correlation

coefficient between stock returns and forecast revisions over the previous twelve months.30 These

correlations proxy for the return implications of analyst forecasts. In particlar, stocks with higher

correlations are more influenced by earnings since our sensitivity measure parallels the transformation

from earnings state variables into return forecasts.

I/B/E/S contains summary statistics on analyst forecasts for the third Thursday of each month

(referred to as the I/B/E/S compilation date hereafter). We define the forecast revision for firm i in

month t as

revi,t =
FY 1i,t − FY 1i,t−1

Pi,t
, (48)

where FY 1i,t and FY 1i,t−1 are the mean analyst forecast for fiscal year 1 in month t and t − 1

respectively, while Pi,t is the stock price provided by I/B/E/S on the compilation date in month t.31

30We also estimate the correlation coefficient using observations from the previous 6 and 24 months. Our results are

robust to these alternative estimates of the correlation coefficient.
31Additional adjustments on revi,t are performed in the month when a firm announces its fiscal year earnings since

analyst forecasts switch to the subsequent fiscal year after the announcement. Thus, the FY 1 estimates in two con-

secutive months could be forecasts for two different fiscal years. For example, suppose a firm announces its fiscal year

earnings in month t. If the announcement date is before the I/B/E/S compilation date in that month, revi,t is defined

as its mean FY 1 estimate in month t minus its mean FY 2 estimate in month t − 1. Conversely, if the announcement

occurs after the I/B/E/S compilation date in that month, then revi,t remains defined as the difference in the mean FY 1

estimates between month t and t − 1. However, revi,t+1 is defined as the mean FY 1 estimate in month t + 1 minus the

mean FY 2 estimate in month t.
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For each revi,t, we compute the contemporaneous stock return reti,t defined as the return of stock i

between two I/B/E/S compilation dates in month t− 1 and month t. Once again, the stock prices on

the I/B/E/S compilation dates are extracted from I/B/E/S.

Using the monthly forecast revisions and stock returns, we then find the return-forecast sensitivity

of stock i in month t by computing the correlation coefficient between revi and reti over the past

12 months. Based on this sensitivity measure, the stocks are sorted into three groups every month

consisting of the bottom 30%, middle 40% and top 30% respectively. For ease of illustration, these

three groups are labeled low sensitivity (S1), medium sensitivity (S2) and high sensitivity (S3) stocks.

5.4 Earnings Uncertainty

Our theory also asserts that momentum is more pronounced when state variables are more uncertain.

The uncertainty of earnings information is measured using the standard deviation of analyst forecasts

scaled by stock price32

stdevi,t =
σi,t

Pi,t
. (49)

Along with the sensitivity classifications, we divide the stocks into three uncertainly groups each month

according to equation (49) which are comprised of the bottom 30%, middle 40% and top 30%. These

three groups are referred to as low uncertainty (U1), medium uncertainty (U2) and high uncertainty

(U3) stocks.

Table 1 provides an overview of the sensitivity and uncertainty portfolios. Furthermore, we in-

vestigate whether there are significant differences among the portfolios in terms of value/growth and

large/small characteristics as well as analyst coverage. The Spearman rank correlation coefficients

among the sensitivity measure, the uncertainty measure, B/M, size and the number of analysts are

computed each month, with their time series average reported in Panel A. Each month we also com-

pute the average rankings of B/M, size and number of analysts for the stocks in the sensitivity and

uncertainty portfolios. The ranking is normalized to [0, 1]. Thus, a ranking of 0.5 is the median and

mean observation. Their time series averages are recorded in Panel B.

32As a robustness test, the mean analyst forecast is also used to normalize σi,t instead of the stock price. The results

under this alternative normalization are nearly identical to those using equation (49). Consequently, for brevity, they

are unreported but available upon request.

40



The statistics indicate low correlation between the sensitivity measure and the uncertainty measure

(0.062), B/M ratio (0.013) and size (0.016). The uncertainty measures correlation with size is also very

low (-0.018). On the other hand, the uncertainty measure has a positive correlation with B/M (0.265).

In other words, higher dispersion stocks tend to be high B/M or value stocks which is consistent with

the findings in Doukas, Kim and Pantzalis (2004). The correlation between the uncertainty measure

and B/M is confirmed in Panel B as the average ranking of B/M for the stocks in the low uncertainty

portfolio (U1) is 0.40, while the average ranking for the medium (U2) and high (U3) uncertainty

portfolios are 0.51 and 0.59 respectively. The pattern is also consistent in the double-sorted portfolios

(e.g. S1U1 is the portfolio of the stocks belonging to both S1 and U1). Besides this relationship,

the sensitivity and uncertainty portfolios are unrelated to B/M, size and analyst coverage factors.

The average rankings of the three variables (B/M, size and number of analysts) for the stocks in each

sensitivity and uncertainty portfolio are all close to 0.5 (with the exception of B/M and the uncertainty

portfolios). Therefore, the portfolios have similar B/M, size and analyst coverage characteristics, and

are well represented by an average stock.

5.5 Earnings Momentum Strategies

When the first two hypotheses are combined, the result is the following prediction for the profitability

of earnings momentum strategies.

Hypothesis 3. Earnings momentum is strongest for stocks with high (previous) uncertainty and sen-

sitivity measures.

Earnings momentum is implemented as in Jegadeesh and Titman (1993), but with forecast revisions

over the past 6 months instead of stock returns. The forecast revision for firm i in month t is defined

as

REV 6i,t =

5∑
j=0

revi,t−j , (50)

where revi,t is defined in equation (48). We rank the stocks according to equation (50) and assign

them to one of five quintile portfolios each month. The bottom quintile portfolio contains stocks

with the most unfavorable earnings forecast revision, while the top quintile contains those with the

most favorable revision. Overlapping portfolios are then constructed to compute equally-weighted
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returns each month. For instance, the portfolio having the most favorable revision (E5) consists of six

overlapping portfolios from the previous six ranking months. The return for this portfolio is the simple

average return of the six portfolios formed over the past six months. If a stock’s return is missing

during the holding period, it is replaced with the corresponding value-weighted market return. The

earnings momentum portfolio is the zero-investment portfolio that buys the most favorable revision

portfolio and sells the least favorable revision portfolio, E5-E1, each month.

Our earnings momentum strategy differs slightly from the standard price momentum strategy in

another respect. After ranking stocks according to their past returns, Jegadeesh and Titman (1993)

skip one month before buying stocks to avoid bid-ask spread and short-term stock price reversal.

This one month gap is not inserted into our strategies for two reasons. First, we rank stocks based

on their earnings which, unlike past returns, is not subject to the bid-ask spread problem. Second,

almost all earnings consensus estimates are available between the 10th and the 20th day of the month.

Consequently, about half a month has already been omitted before we start holding positions at the

beginning of next month.

5.6 Earnings Momentum Conditioned on Sensitivity and Uncertainty

Chan, Jegadeesh and Lakonishok (1996) document strong earnings momentum profits and suggest

that these profits are caused by the slow response of market participants to earnings information. If

earnings momentum is caused by market under-reaction to earnings information, our theory would

predict that earnings momentum is stronger for stocks whose earnings information is more credible,

and those with more uncertain earnings. Thus, we hypothesize that earnings momentum strategies

are more profitable for stocks in the high sensitivity and high uncertainty portfolios.

Table 2 reports earnings momentum profits and illustrates the importance of return sensitivity to

earnings and earnings uncertainty. When the earnings momentum strategy is implemented using the

full sample, the strategy generates an average return of 0.69% per month with a t-statistic of 4.38.

Next, we implement the strategy separately for the three sensitivity groups (S1, S2 and S3). The

momentum profit remains significant in each of the three groups. More interestingly, the profit increases

monotonically from the low sensitivity group (S1) to the high sensitivity group (S3), with the profit

of the latter being about 50% higher than the former (0.79% vs. 0.52%). To clarify, the grouping of

S1, S2 and S3 is determined before the stocks are assigned to the earnings momentum portfolios (E1
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to E5), and thus before the buying or selling of stocks.

The momentum profit pattern is identical in the three uncertainty groups, increasing monotonically

from U1 to U3, the profit of U3 being approximately 70% higher than U1 (0.74% vs. 0.44%). When the

earnings momentum strategy is applied to double-sorted portfolios on sensitivity and uncertainty, the

monotonic increasing pattern of the momentum profits continues. Within each sensitivity group, the

profit increases monotonically from U1 to U3 (e.g. within the medium sensitivity group, the profit is

0.49%, 0.64% and 0.79% for S2U1, S2U2 and S2U3 respectively). In addition, within each uncertainty

group, the profit increases monotonically from S1 to S3 (e.g. within the medium uncertainty group,

the profit is 0.45%, 0.64% and 0.73% for S1U2, S2U2 and S3U2 respectively).

There is existing evidence that momentum profits are affected by factors such as the B/M ratio,

documented in Daniel and Titman (1999), along with size and analyst coverage, as reported in Hong,

Lim and Stein (2000). Our descriptive statistics in Table 1 indicate that our sensitivity and uncertainty

results are not manifestations of these factors.

In particular, our uncertainty measure is positively correlated with B/M, implying low uncertainty

stocks tend to be growth stocks. Daniel and Titman (1999) find stronger momentum among growth

stocks, and attribute this finding to investor overconfidence. If uncertainty is irrelevant, the positive

correlation between uncertainty and B/M would indicate higher momentum profit amongst low rather

than high uncertainty stocks. Therefore, our ability to find increasing momentum profits from U1 to

U3 attests to the importance of conditioning on earnings uncertainty.

The sensitivity and uncertainty measures are also weakly positively correlated with analyst cov-

erage, although this feature is not found in Panel B of Table 1. Hong, Lim and Stein (2000) report

higher momentum profits for stocks with less analyst coverage, consistent with the slow diffusion of

information. Their findings also predict less momentum profits for the high sensitivity and high uncer-

tainty stocks, while we find increasing momentum profits from S1 to S3 and U1 to U3. Consequently,

the sensitivity and uncertainty measures both contain important conditional information that is not

captured by the existing literature.

Overall, we can reasonably conclude that our earnings momentum results for the sensitivity and

uncertainty measures are not attributable to book-to-market, size and analyst coverage effects docu-

mented in the existing literature.
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6 Conclusions

We estimate an individual asset’s true but unknown expected return using an optimal information

portfolio which minimizes the aggregate forecast error associated with a combination of multiple return

forecasts. Therefore, unlike existing estimates for an asset’s expected return, information portfolio

theory does not assume the return implications of events such as changes in a firm’s capital structure

or investment strategy are immediately understood and agreed upon by market participants. Instead,

motivated by the uncertainty surrounding an asset’s expected return, multiple return forecasts are

aggregated into an estimate for the asset’s expected return.

Each return forecast is issued by an information source after interpreting a state variable. Examples

of state variables include ex-ante factor returns or a firm’s future earnings. However, the true accuracy

of each information source is unknown and requires estimation. Therefore, prior forecast errors for an

information source are utilized to estimate its accuracy. The optimal information portfolio then assigns

larger information portfolio weights to the return forecasts of more accurate information sources.

The expected return implied by our optimal information portfolio exhibits the appearance of over-

confidence, biased self-attribution, representativeness and conservatism as well as limited attention.

However, these characteristics arise from the time-varying optimal information portfolio weights rather

than psychology. Their appearance, along with momentum, are strongest during periods of high ex-

pected return uncertainty when only a limited number of relevant forecast errors are available for

estimating the accuracy of information sources.

Testable implications of information portfolio theory distinct from psychology are also provided.

In contrast to Bayesian frameworks, these implications are independent of any prior distribution.

By examining the profits of earnings momentum strategies, we document the importance of return

sensitivity to earnings as well as earnings uncertainty. The two pillars of information theory are verified

since momentum profits increase monotonically from low to high sensitivity stocks, and from low to high

uncertainty stocks. More importantly, the sensitivity results continue after controlling for the effects

of information uncertainty. Thus, investors condition their beliefs in accordance with information

portfolio theory since more accurate information sources have a greater influence on expected returns.

The importance of our sensitivity and uncertainty measures is not attributable to book-to-market, size

and analyst coverage.
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Several testable implications of information portfolio theory have been left for future research and

are the subject of on-going research. Furthermore, applications of information portfolio theory could

study return volatility and trade volume arising from fluctuations in the information portfolio weights.

Extending our framework to incorporate multiple assets would also enable its cross-sectional return

implications to be examined.
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Appendices

A Proof of Proposition 1

Denote the Lagrangian of equation (5) as

L(W, λ) =
1

2
W TΘW + λ(W T 1 − 1) , (51)

which generates two equations

∂L(W, λ)

∂W
= ΘW + λ1 = 0 (52)

∂L(W, λ)

∂λ
= W T1 − 1 = 0 (53)

involving two unknowns; W and the Lagrangian multiplier λ. Equation (52) is equivalent to

W = −λΘ−11 . (54)
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Multiplying the transpose of equation (54) by the 1 vector yields

W T1 = −λ1T Θ−11 (55)

which implies

1 = −λ1TΘ−11 , (56)

due to the W T1 = 1 constraint. Therefore, the λ parameter is solved as

−λ =
1

1TΘ−11
. (57)

Substituting equation (57) into equation (54) produces the final result

W =

(
1

1TΘ−11

)
Θ−11 , (58)

which satisfies the constraint

W T1 =

(
1

1TΘ−11

)
1T Θ−11 = 1 . (59)

B Multifactor Models and the Information Portfolio

A three factor version of equation (9) describes the asset’s true expected return as

η = β0 + β1 f1 + β2 f2 + β3 f3 , (60)

from which a vector μ of three return forecasts may be formed to represent the return implications of

each individual factor ⎡
⎢⎢⎢⎣

μ1

μ2

μ3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

α0,1 + α1,1 f1

α0,2 + α1,2 f2

α0,3 + α1,3 f3

⎤
⎥⎥⎥⎦ . (61)

The elements of μ in equation (61) arise from single factor versions of the linear regression in equation

(9)

y = [α0,j + α1,j fj] + εj for j = 1, 2, 3 (62)

= μj + εj , (63)
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where εj are mean zero error terms whose variances and covariances define the Θ matrix. The α0,j

intercepts ensure equation (62) provides three unbiased return estimates for η. The three intercept

terms are33

α0,j = β0 +
3∑

k=1

βk fk + [βj − α1,j] fj for k �= j . (64)

With the return forecasts in equation (62) conforming to equation (7), equation (12) implies W Tμ offers

an unbiased estimate of the asset’s true expected return η in equation (60). Therefore, regardless

of N , multifactor models for an asset’s expected return are incorporated into information portfolio

theory when the individual factor returns represent distinct state variables. The return forecasts μj

associated with each factor in equation (63) replace the single expected return estimate arising from

the multifactor model in equation (9).

Observe that the α0,j and α1,j coefficients are calibrated using a time series regression, along with

the β0 and βj coefficients for j = 1, . . . , N . However, the information portfolio weights differ from the

α and β coefficients since the W vector sums to one and is derived from the variances and covariances

of the εj errors in equation (63) which are computed using equations (2) and (3) respectively.

In practice, the number of return forecasts J would exceed the number of factors N since their

ex-ante returns are random and an individual asset’s beta coefficients also require estimation. These

sources of uncertainty illustrate the generality of information portfolio theory which is not restricted

to a single return forecast for each asset. For example, if the Fama-French (1993) model estimates

expected returns, then information sources can disagree on the return prospects for small versus large

market capitalization stocks, value versus growth stocks as well as the overall market. Thus, the

expected return uncertainty σ2
μ in equation (20) is larger than the dispersion across the three elements

of equation (61) which assumes the random factor returns next period are known along with the

asset’s respective factor loadings. This property applies to any specification for η and allows the state

variables to represent industry and macroeconomic trends as well as firm-specific earnings forecasts.

33When the factors are orthogonal, estimates for the βj coefficients in equation (9) equal the α1,j regression estimates

in equation (62), which reduces equation (64) to α0,j = β0 +
∑3

k=1 βk fk for k �= j by eliminating the [βj − α1,j] fj term.
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C Covariances and the Perceived Return

The partial derivative of the investor’s perceived return in equation (26) with respect to σ12 equals

∂Perceived Return

∂σ12
=

− (μ1 + μ2) [σ2
1 + σ2

2 − 2σ12] + 2 [σ2
2 μ1 + σ2

1 μ2 − σ12 (μ1 + μ2)]

(σ2
1 + σ2

2 − 2σ12)
2

=
(μ2 − μ1) (σ2

1 − σ2
2)

(σ2
1 + σ2

2 − 2σ12)
2 . (65)

The sign of this derivative may be either positive or negative. According to the numerator of equa-

tion (65), when either the return forecasts or their estimated accuracies are identical, the investor’s

perceived return is invariant to σ12.

The partial derivative of the perceived return’s aggregate mean-squared forecast error in equation

(27) with respect to σ12 equals

∂Aggregate Forecast Error of Perceived Return

∂σ12
=

−2σ12 [σ2
1 + σ2

2 − 2σ12] + 2 [σ2
1σ

2
2 − (σ12)

2]

(σ2
1 + σ2

2 − 2σ12)
2

=
2σ12 [σ12 − (σ2

1 + σ2
2)] + 2σ2

1σ
2
2

(σ2
1 + σ2

2 − 2σ12)
2 . (66)

When σ12 is negative, equation (66) is large and positive which implies the aggregate forecast error

surrounding an asset’s perceived return is reduced as σ12 becomes more negative.

D Proof of Proposition 3

Recall from equation (15) that the asset’s ex-ante return is distributed N (
W Tμ, W TΘW + ν

)
under

the distributional assumption in equation (16). To prove Proposition 3, the following utility maxi-

mization problem is solved

max
f

E
{
U
[
M

(
(1 − f) (1 + rf ) + f

(
1 + W Tμ

))]}
= max

f
−E

[
exp

{−γ M
(
1 + rf + f

(
W Tμ − rf

))}]
= max

f
− exp

{
−γ M f W Tμ + γ M f rf +

γ2 M2 f2

2

[
ν + W T ΘW

]}
, (67)

where the last equality results from the moment generating function of a normal distribution. This

maximization involves setting the partial derivative of equation (67) with respect to f

(−γ M W Tμ + γ M rf + γ2 M2 f
[
ν + W TΘW

])(−e

{
−γ M f WT μ+γ M f rf +γ2 M2 f2

2 [ν+WT ΘW ]
})

(68)
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to zero. This requires the first term in the above product to be zero

−γ M W T μ + γ M rf + γ2 M2 f
[
ν + W T ΘW

]
= 0 . (69)

Therefore, the optimal investment in the risky asset equals

f =
W Tμ − rf

γ M [ν + W TΘW ]
, (70)

which becomes

f =
1

γ M

(
1T Θ−1μ
1T Θ−11

− rf

)
ν + 1

1T Θ−11

=
1T Θ−1 (μ − rf1)

γ M [1 + ν1T Θ−11]
, (71)

after substituting in the results of Proposition 2.

Observe that the optimal portfolio weights from Proposition 1 transform equation (70) into equation

(71). When the asset’s true expected return is known, equation (70) implies f =
η−rf

γ M ν
since W Tμ = η

and W TΘW = 0.
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Figure 1: Impact of correlation between the return forecasts of two information sources on their

corresponding information portfolio weights in equation (44). The above plot utilizes the following

parameter values; μ1 = 0.07, μ2 = 0.10, σ1 = 0.40 and σ2 = 0.60. Therefore, the first information

source is more accurate than the second.



Sensitivity Uncertainty B/M Size # of Analysts
Sensitivity 1 0.062 0.013 0.016 0.111
Uncertainty 1 0.265 -0.018 0.129

B/M 1 -0.275 -0.091
Size 1 0.833

# of Analyst 1

B/M Size # of Analysts
S1 0.49 0.51 0.50
S2 0.50 0.50 0.50
S3 0.51 0.50 0.51

U1 0.40 0.50 0.48
U2 0.51 0.52 0.52
U3 0.59 0.48 0.50

S1U1 0.39 0.51 0.49
S1U2 0.51 0.52 0.51
S1U3 0.58 0.49 0.50
S2U1 0.40 0.50 0.48
S2U2 0.51 0.51 0.51
S2U3 0.59 0.48 0.49
S3U1 0.40 0.49 0.47
S3U2 0.50 0.51 0.52
S3U3 0.60 0.48 0.51

Panel A: Spearman Rank Correlation Coefficients

Table 1: Descriptive Statistics

Panel B: Characteristics of Sensitivity and Uncertainty Portfolios

This table describes our sensitivity and uncertainty measures as well as the characteristics of our dataset pertaining 
to B/M, size and number of analysts. The sensitivity measure is estimated monthly for each stock by computing the 
correlation coefficient between returns and price-scaled analyst forecast revisions over the previous 12 months. The 
uncertainty measure represents the price-scaled standard deviation of analyst forecasts for every stock each month. 
The sensitivity measure, uncertainty measure and number of analysts are derived from the I/B/E/S Summary 
History dataset, while B/M is the book-to-market ratio using the most recent quarterly data from Compustat. Size 
denotes the stock’s market capitalization as reported in CRSP. The Spearman rank correlation coefficients among 
the five variables are computed each month from January 1976 to December 2004. Panel A reports the time series
average of the Spearman correlation coefficients. Panel B reports growth/value, big/small and analyst coverage 
characteristics for the sensitivity and uncertainty portfolios. The sensitivity (uncertainty) portfolios denoted S1, S2 
and S3 (U1, U2 and U3) represent the bottom 30%, middle 40% and top 30% of stocks ranked according to their 
sensitivity (uncertainty) measures. Double-sorted portfolios are also formed (e.g., S1U1 consists of stocks that
belong to both S1 and U1). Each month, stocks are also ranked by B/M, size and number of analysts. This ranking 
is then normalized to the [0,1] interval. The average ranking for B/M, size and number of analysts in each 
sensitivity and uncertainty portfolio is computed monthly. The numbers in Panel B are the time series average for
these monthly rankings in each sensitivity and uncertainty portfolio. 



E1 E2 E3 E4 E5 E5-E1 t-stat
1.09 1.22 1.25 1.48 1.79 0.69 4.38

E1 E2 E3 E4 E5 E5-E1 t-stat
1.24 1.28 1.23 1.38 1.76 0.52 3.36
1.12 1.24 1.25 1.46 1.81 0.69 3.76
1.11 1.26 1.34 1.54 1.90 0.79 4.20

E1 E2 E3 E4 E5 E5-E1 t-stat
1.21 1.14 1.17 1.40 1.65 0.44 2.33
0.96 1.10 1.16 1.32 1.59 0.64 4.34
0.81 1.05 1.25 1.29 1.55 0.74 5.04

E1 E2 E3 E4 E5 E5-E1 t-stat
1.61 1.38 1.25 1.37 1.72 0.11 0.40
1.18 1.22 1.23 1.27 1.62 0.45 2.50
0.95 1.30 1.28 1.46 1.66 0.71 4.42
1.43 1.31 1.25 1.42 1.93 0.49 2.24
1.08 1.25 1.28 1.45 1.72 0.64 3.66
0.87 1.20 1.35 1.46 1.66 0.79 4.53
1.41 1.35 1.27 1.62 1.92 0.52 2.28
1.15 1.25 1.44 1.50 1.88 0.73 4.53
0.82 1.11 1.40 1.44 1.68 0.86 3.94

All

Panel C: Strategy conditional on uncertainty of earnings information

Table 2: Earnings Momentum Strategies

Panel A: Strategy using full sample

Panel B: Strategy conditional on sensitivity of stock price to earnings information

Panel D: Strategy conditional on both sensitivity and uncertainty

S1
S2
S3

U1
U2
U3

S1U1
S1U2
S1U3
S2U1

S3U3

S2U2
S2U3
S3U1
S3U2

This table describes the profitability of earnings momentum strategies applied to stocks with varying levels of earnings
uncertainty and return sensitivity to earnings. At the end of each month from July 1977 to December 2004, stocks 
from the intersection of the CRSP and I/B/E/S datasets are ranked on the basis of changes in consensus analyst 
earnings forecasts, measured by cumulative price-deflated revisions in the past six months. Stocks are assigned to five 
quintile portfolios, and equally weighted returns are computed for each portfolio. The bottom 20% is assigned to the 
E1 portfolio and the top 20% denotes the E5 portfolio. The trading strategy 6-0-6 in Jegadeesh and Titman (1993) is
then implemented. Each month, the portfolio containing the most favorable (unfavorable) past revisions is an 
overlapping portfolio consisting of the E5 (E1) portfolios during the previous six months. Returns for the favorable 
(unfavorable) overlapping portfolios are the average returns over the six E5 (E1) portfolios. If a stock's return is 
missing during the holding period, it is replaced with the corresponding value-weighted market return. The earnings 
momentum portfolio (E5-E1) is the zero-cost portfolio that buys the most favorable revision portfolio and sells the 
least favorable revision portfolio (E5-E1) every month. Panel A reports the results for the strategy using the full 
sample. Panel B reports the results for stocks sorted on their sensitivity to analyst forecast revisions (S1, S2 and S3). 
Stocks are assigned to these groups before the earnings momentum portfolios are formed. Panel C reports the results 
when stocks are grouped according to their price-scaled standard deviation of analyst forecasts (U1, U2 and U3). 
These uncertainty groups are also constructed prior to the formation of the earnings momentum portfolios. Panel D 
reports our results after double-sorting by the sensitivity and uncertainty measures (e.g. S1U1 represents the group of 
stocks belonging to S1 and U1).  




