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Abstract  
In this paper we propose a new measure for the marginal contribution of each view to the ex-ante 
tracking error volatility (TEV).  
The issue of the TEV sensitivity to the views is relevant for several purposes: 1) provide the asset 
managers with a method for revising the portfolio consistently with a given TEV constraint; 2) make 
the specialists responsible for the generation process of the views; 3) set a mechanism to connect the 
incentive fees not only to the excess return but also to the marginal contribution of each view to the 
TEV. 
We provide also an empirical investigation in the Black-Litterman framework in order to modify the 
views to achieve a TEV goal.  
 
 
JEL Classifications: G11, G12. 
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1. Introduction 

 

In the context of active portfolio management the Black-Litterman model (1992, 1999, 

hereinafter BL-model) has been recognized as valuable tool to implement short-term forecasts 

on the expected returns. With the BL-model an asset manager can define the active portfolio 

using a formal and objective framework. These active positions yield an ex-ante return and 

risk. The former is the ex-ante tracking error (TE) while the latter is known as ex-ante 

tracking error volatility (TEV).  

Since the introduction of the BL-model, few efforts have been done in order to 

investigate the effects of the BL-views on the TEV. Recently some researchers have begun to 

explore the implications of the views on the model output. Fusai and Meucci (2003) focused 

on a probability index inversely related to the Mahalanobis distance between BL combined 

returns and equilibrium returns and calculate the sensitivity of the probability to the views. 

Should the probability index be too low with respect to a selected threshold, Fusai and Meucci 

suggest to numerically modify the views starting with the ‘boldest’ one. Scherer (2000) shows 

a meaningful decomposition of risk as a prerequisite for a modern risk-budgeting technique. 

Particularly he proposes an enhanced version of the active risk using the trade matrix, i.e. a 

matrix with the active trades on the assets.  

In this study we obtain a new measure of the marginal risk contribution to the TEV. 

Differently from the cited works, our measure directly relates the views to the active risk 

without encompassing the relationship between the probability distribution of the 

Mahalanobis distance and each single view. In addition we use the classical ex-ante TEV as 

measure of active risk which is familiar among practitioners. We also extend the Scherer’s 

intuition to the formal BL framework, giving solid and elegant base to the final result. 

The issue of the TEV sensitivity to the views is relevant for several purposes: 

1. provide the asset managers with a method for revising the portfolio 

consistently with a given TEV constraint;  

2. make the specialists responsible for the generation process of the views;  

3. set a mechanism to connect the incentive fees not only to the excess return but 

also to the marginal contribution of each view to the TEV. 

The rest of the paper proceeds as follows. Section 2 contains a brief description of the 

BL model. In Section 3 we describe the analytical derivation of the risk contribution measure 

we propose. An empirical investigation is detailed in Section 4 highlighting the practical 

contribution of our measure.  Section 5 concludes the paper.  
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2. The Black-Litterman Model  

 

The BL model shares the basic idea of Bayesian statistics which is the assessment of 

information from various sources and their combination in a single estimate.  

The BL model derives the set of expected returns as inputs for the portfolio optimisation 

by combining (equilibrium) returns implied in the market and specialized views regarding the 

performance of the assets involved. The BL model allows to consider both absolute and 

relative views.  

Equilibrium returns are extracted through reverse optimization, from observed market 

capitalizations weights, with a covariance matrix and a given risk aversion coefficient. Market 

portfolio is usually the neutral starting point in the BL framework. However other types of 

strategic allocation can be easily treated as reference portfolio.  

Market views are probability statements about markets performance that are expression 

of the investment teams’ research. 

The equation for the expected return vector the optimizer will use, according to BL 

model, reflects the posterior mean of the posterior distribution jointly generated by the two 

distinct sources of information. In mathematical notation, the vector of the BL combined 

returns is given by: 

 

( )[ ] ( )[ ]QPPPR TT
BL

11111 −−−−− Ω+ΠΣ⋅Ω+Σ= ττ       (1) 

 

where:  

 RBL :  vector of blended expected returns (n × 1); 

τ : scalar for weighting the variance-covariance matrix; 

Σ : variance-covariance matrix of historical returns (n × n); 

P : matrix for the n assets involved in the k views (k × n); 

Ω : diagonal covariance matrix of error terms for the stated views (k × k). This matrix is 

usually derived from the level of confidence in the views declared by the specialists; 

Π : vector of implied equilibrium returns (n × 1); 

Q : vector with the qj (for j = 1, …., k) views as entries (k × 1). 

 

Equation (1) allows interpreting the posterior mean, i.e. BL combined returns, as a 

weighted average of equilibrium returns and subjective forecasts with weights that reflects the 
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respective precision throughout the inverse of the respective variance given by ( ) 1−Στ  and 

( ) 11 −− PPTΩ . The BL combined returns become then the new inputs for the investor objective 

function:  

 

( ) ⎟
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⎜
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BL
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where BLw denotes the n × 1 vector of portfolio weights and λ is the investor’s risk aversion.  

Provided that in Equation (2) neither short-selling nor budget constraints are imposed, 

the solution for the BL weights *
BL

w  to the maximization problem is straightforward.  

 

⎟
⎠
⎞

⎜
⎝
⎛ ⋅Σ= −

BLBL Rw 1* 1
λ

           (3) 

 

Portfolio allocations resulting from (3) could diverge from the market weights. The 

stated views and the level of confidence in these views will determine the extent of these 

deviations. We call them active weights and store them in the wACT vector (n × 1) defined as 

follows: 

 

MKTBLACT www −= *           (4) 

 

where wMKT denotes the market capitalization weights already used in the reverse 

optimization.  

It is well known that active positions generate active risk. The measure of this risk, 

known as ex-ante tracking error volatility (TEV), is calculated using the familiar quadratic 

form in (5): 

 

( )2
1

ACT
T
ACT wwTEV ⋅Σ⋅=          (5) 
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3. TEV sensitivity to views 

 

Once ex-ante TEV has been defined in terms of active weights, we can calculate the (k 

× 1) vector of the marginal contributions of each single view to the TEV.  

It is worth noting that we need to calculate the derivative of the composite of two 

functions. The first is TEV = f(wACT;1, wACT;2, …., wACT;n) whereas the second is wACT;i = h(q1, 

q2, ….., qk). If these functions are all differentiable the chain rule can be applied in order to 

determine the partial derivative of TEV to each single weight (wACT;i ; for i = 1….,n) and the 

partial derivative of each active weight to each view (qj for j = 1,… k) as follows: 

 

( )

( )kj
q

w
w
TEV

j
q

w
w
TEV

q
TEV

n

i j

iACT

iACT

n

i j

iACT

iACT

=
∂

∂
⋅

∂
∂

=
∂

∂
⋅

∂
∂

=
∂

∂

∑

∑

=

=

1

1
1

;

;

;

;

.......................
.....................         (6) 

 

In Equation (6) 
q

TEV
∂

∂  is decomposed in two marginal contributions which admit a 

financial interpretation:  
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The first element in Equation (7) can be thought as marginal contribution of each active 

weight to the TEV while the second can be interpreted as marginal contribution of each view 

to the single active weight. 

After some algebraic manipulation the first element is defined by: 
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Equation (8) represents the n × 1 gradient of the TEV with the entries given by the 

partial derivatives with respect to the active weights. More specifically TEV can be 
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decomposed with Euler equation into the summation of all marginal contributions to TEV 

multiplied by active weights.  
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The second element of Equation (7) requires the calculation of the contribution of each 

view to each BL return. This marginal contribution, in the case of optimisation without 

constraints (see Equation (3)), can be derived as follows: 
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Equation (10) identifies the k gradients of each single active weight (or BL-return) with 

respect to each view1. Therefore we obtain an n × k matrix with these partial derivatives.  

Rearranging equations (8) and (10), the marginal contributions of each view to the TEV 

is given below: 
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The result is a vector k × 1 whose elements indicate the specific view with both the 

highest and the lowest impact on the ex-ante TEV. 

We could adjust the highest contributing view if our aim is to reduce the ex-ante TEV. 

Likewise, an intervention on the lowest contributing view allows to achieve a specific ex-ante 

TEV if the TEV implied in the BL model is below a definite threshold. The last case is typical 

of an asset manager with a risk budget to exploit.  

It is worth emphasizing that to adjust the qj views a numerical goal-attainment 

procedure is required. A slight shift in qj, coherently with the signs of the partial derivatives in 

                                                 
1 Notice that the numerator in Equation (10) corresponds to the definition of “active weights” in the case of 
optimisation without constraints both for BL returns (RBL) and equilibrium returns (Π).  
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Equation (11), produces a change in the ex-ante TEV, in accordance with the asset manager 

expectations. 

In the real world we deal with k views, thus we need to expand the numerical goal-

attainment procedure to the k-space by analyzing all possible combinations of qj (j=1,…,k). 

Several solutions (qj
*) might be achievable, i.e. we could find many combinations of qj

* which 

allow us to obtain ex-ante TEV-constraint. Suppose we find R solutions to the ex-ante TEV-

constraint problem. In order to choose the best one a selection criterion must be set.  

We propose the use of Minkowski metric. This statistics is based on the summation of 

the distances between the initial qj and qj
*, considered in absolute value. In mathematical 

notation we could find a matrix R × k  whose R rows are given by the r vectors of optimal 

[qrj
*] (with j = 1,…,k and r = 1,.., R) . The best vector of k views [q1

**, ….; qk
**] is obviously 

the specific r vector minimizing the Minkowski metric.  
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4. Empirical investigation  

 

We illustrate how Equation (11) works with real data. Our investment universe is built 

up on eighteen asset classes constituting the DJ STOXX 600. Each asset class represents a 

Supersector as defined by the Industry Classification Benchmark (ICB). Appendix A shows 

labels and descriptive statistics of the historical returns.  

The sample period is from 1/1997 to 1/2007 of monthly euro-denominated returns 

whereby our risk-free rate is assumed to be constant and equal to 3% per year. Appendix A 

details the descriptive statistics of our asset classes.   

Based on this data set we calculate the implied returns of our asset classes. This step 

requires the definition of an appropriate coefficient of risk aversion (λ) and the vector of the 

market neutral weights.  
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Following Best and Graurer (1985), the former is defined as the ratio of the excess 

market return over the market portfolio variance (λ=1.6118). The latter includes the market 

capitalisation of each sector in the DJ STOXX 600 at December 31, 2006. 

In order to coherently build our active portfolio we introduce three views expressed, in 

the format of Black-Litterman, as follows:  

1) View 1: Utilities (UTIL) will have an absolute return of 7% per year with a 

Confidence Level 80% of experiencing a final return in the range [6%; 8%]; 

2) View 2: Chemical (CHEM) and Industrial Goods (INDS) will outperform Oil 

& Gas (OIL) of 1% per year with a Confidence Level equals to 90% to register a final relative 

return in the interval [0%; 2%]; 

3) View 3: Banks (BANK) and Financial Services (FISV) will outperform Media 

(MED) and Technology (TECH) of 2.5% per year with a Confidence Level 70% of recording 

a final relative return in the range [1.5%; 3.5%]; 

Therefore we have both absolute and relative views. For the latter we follow the 

weighting scheme proposed by He and Litterman (1999) where the relative weightings of the 

assets entering Matrix P are proportional to their market capitalisation2.  

Researchers are still in search for an optimal definition of τ. We decide to give 

relevance to the sample length assuming for τ the inverse of the number of the historical 

observations, i.e. 120. With this choice we use an objective criterion for recognize the large 

sample effect.  

Equilibrium returns and BL returns are reported in Appendix B Figure 1.B. 

It is worth emphasizing that only three views have an important effect on the entire set 

of asset returns, due to the covariance matrix. However among our views q2 and q3 deserve 

more attention.  

According to our view 2, INDS and CHEM should overperform OIL of 1% which is 

much less than the equilibrium relative overperformance, equal to 2.54%. Notwithstanding 

the role of OIL as underperforming asset its BL return increases for the above reason.  

In view 3 both the lowest confidence level and the opposite sign of the view with 

respect to the equilibrium explain the weak difference between the equilibrium relative 

performance3 (-1.44% per year) and the BL relative return of the grouped assets (-0.19%). 

                                                 
2 An alternative weighting scheme is the equally-weighting scheme suggested by Satchell and Scowcroft (2000). 
We selected the He and Litterman’s to give importance to the relative market capitalisation of the outperforming 
and underperforming assets in each view.   
3. The equilibrium relative performance is the difference between the performance of the overperfoming asset 
portfolio and the performance of the underperfoming asset portfolio. In our case this difference is determined as 
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Solving the maximization problem, the optimal BL portfolio weights are computed with 

Equation (3). Deviations from the equilibrium weights are shown in figure 2.B in Appendix 

B.  

As expected OIL, UTIL and BANK gain importance in the optimised portfolio. The 

deviations for OIL and UTIL can be attributed to quite low correlations, while the positive 

deviation for BANK can be justified by its large market capitalisation.  

Through Equation (5) we get the ex-ante TEV of 4.71%, per-annum. 

In order to analyze the ex-ante TEV sensitivity we report the results of the components 

in Equations (7) and (10).  

 
Table 1: marginal contributions  

∂TEV/∂wACT;i ∂wACT/∂q1 ∂wACT/∂q2 ∂wACT/∂q3

OIL 0.0247 OIL 6.3980 -83.7992 -7.1934
CHEM 0.0095 CHEM -1.6456 21.5532 1.8501
AUTO 0.0097 AUTO 0.0000 0.0000 0.0000
BANK 0.0174 BANK 1.3883 6.1359 33.3300
BRES 0.0032 BRES 0.0000 0.0000 0.0000
CONS 0.0078 CONS 0.0000 0.0000 0.0000

FISV 0.0147 FISV 0.2392 1.0574 5.7439
FBEV 0.0191 FBEV 0.0000 0.0000 0.0000
INDS -0.0036 INDS -4.7524 62.2460 5.3432
INSU 0.0125 INSU 0.0000 0.0000 0.0000
MED -0.0259 MED -0.7584 -3.3521 -18.2084

HEAL 0.0186 HEAL 0.0000 0.0000 0.0000
RTL 0.0086 RTL 0.0000 0.0000 0.0000

TECH -0.0352 TECH -0.8691 -3.8413 -20.8654
TELE -0.0224 TELE 0.0000 0.0000 0.0000
UTIL 0.0208 UTIL 68.8961 -6.3980 1.6275

HOUS 0.0064 HOUS 0.0000 0.0000 0.0000
TRAV 0.0085 TRAV 0.0000 0.0000 0.0000  

 

With the first column it is straightforward to verify through Equation (9) that the 

summation of all marginal contributions to TEV (∂TEV/∂wACT;i) multiplied by active weights 

yields ex-ante TEV.  

By looking at the matrix ∂wACT/∂qj (j=1…k) Table 1 not surprisingly highlights that the 

highest sensitivity of active weight for each asset comes from the view directly involving that 

asset. Interestingly a specific view affects not only the directly involved assets but also those 

addressed by other views. Seemingly each asset is affected by all views, provided that the 

asset is recalled at least in one view.  

The product of the partial derivatives in Table 1 leads to the following TEV-sensitivities 

to each view: ∂TEV/∂q1 = 1.6695, ∂TEV/∂q2 = -1.8741, ∂TEV/∂q3 = 1.7243.    

                                                                                                                                                         
follows: [wBANK /(wBANK + wFISV) × BANK + wFISV /(wBANK + wFISV) × FISV)]– [wMED /(wMED + wTECH) × MED 
+ wTECH /(wMED + wTECH) × TECH]. 
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To prove the usefulness of Equation (11) we suppose to manage the portfolio under a 

TEV-constraint of 4.00 % per annum. Thus, we need to identify which view is mostly 

contributing to the TEV in order to fix the specific view accordingly.  

For the sake of simplicity we modify only q3 which has the strongest contribution to 

increase the ex-ante TEV. Therefore a slight reduction in view 3 is expected to decrease the 

overall ex-ante TEV. To exactly attain our goal, a numerical procedure is implemented to 

repeat the last step until we get the desired TEV-threshold. We also see that each slight 

reduction of q3 impacts the active weights of the assets involved in view 1, view 2 and view 3, 

in accordance with both the sign and the magnitude into the partial derivative vector 

∂wACT/∂q3 (see Table 1). 

In figure 1 we see the effect on the ex-ante TEV of progressively decreasing  q3.  

 
Figure 1: TEV sensitivity to changes in q3 

 
 

We display by the dashed line the different values for q3 starting from the initial view 

(2.5%) to 0.5 %. Our goal of 4% per annum ex-ante TEV is achieved on the bolded line with 

q3 = 0.82%. 

The usefulness of our sensitivity measure is also well shown by the active weights 

before and after the application of the numerical procedure. They are reported in figure 2. 
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Figure 2: active weights before and after the one dimensional view-adjustment 
 

 
 

Easily can be seen that after the view-adjustment our active bets lead to a less extreme 

portfolio. Particularly the assets involved in view 3 reduce the absolute value of their active 

weights. Also the active weights of the assets not involved in view 3 are changed due to the 

covariance transmission effect.  

Next we extend the study on the marginal contributions of each view to the multi-

dimensional case. Particularly we study the effect of all possible triples. For each qj we 

generate h possible views with one extreme given by the initial view. The span must be 

chosen appropriately, such that the number of points are sufficient but not excessive.  

Since our aim is reducing ex-ante TEV the possible triples are generated in accordance 

with the sign of ∂TEV/∂qj. View 1 positively contributes to the ex-ante TEV (∂TEV/∂qj >0).  

Consequently we examine the vector of possible q1 ranging from 7% to 4.5% with a span of 

0.005%. View 2 has a negative contribution to the ex-ante TEV (∂TEV/∂qj < 0). Therefore a 

vector of possible q2 ranging from 1% to 3% with a span of 0.005% is tested. Finally for view 

3, the marginal contribution of an increase in q3 on ex-ante TEV is positive (∂TEV/∂q3 > 0). 

Consequently we calculate all possible ex-ante TEVs for a vector of q3 with elements ranging 

from 2.5 % to -0.5% with a span of 0.005%4.  

We examine all possible triples q1, q2, q3 in accordance with the sign of the partial 

derivatives in Equation (11). Therefore we derive the matrix R × k of R triples. 
                                                 
4 We choose these extremes because, under normality assumption for each view, the probability of returns lower 
(for views 1 and 3) and higher (for view 2) than these extreme returns is below 0.001, then can be considered 
negligible.  
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The triple qj
** (for j = 1,…,3) minimizing Minkowski metric with p = 1 is [q1

** = 

6.38%, q2
** = 1.77%, q3

** = 2.37%]. However care should be taken in the choice of the span. 

We suggest a second-step optimization in order to find the span that minimizes Minkowski 

distance among all possible qj
**. 

Notice that the choice of this optimal span could require a huge computational burden.  

Figure 3 highlights the changes provoked by the numerical goal-attainment procedure to 

active weights.  

 
Figure 3: active weights before and after both one and three dimensional view-adjustments 

 
 

It is worth noting that views 1 and 2 are significantly touched by this numerical 

procedure while view 3 is only slightly reduced. These effects can be attributed to the 

confidence levels and to the consequent assessment of the extremes in the numerical process.  

 

 

5. Conclusions 

 

We have proposed a new measure to determine ex-ante TEV sensitivity to views 

expressed on the performance of assets. Our measure has been derived analytically by 

exploiting the chain rule as the product of marginal contribution of each active weight to the 

TEV with the marginal contribution of each view to the single active weight.  

We have proven the usefulness of our measure with reference to an active portfolio. It 

results from a comparison between an initial portfolio based on 18 sectors of the DJ Stoxx 
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implied equilibrium returns and a portfolio based on Black-Litterman returns for an investor 

with a given risk aversion.  

In particular we have shown that calculating the marginal contributions of views to ex-

ante TEV by our measure can significantly enhance the interpretation and understanding of 

sources of active risk inherent in the active portfolio. Besides our measure can suggest the 

portfolio manager an objective way to refine the view in order to comply with a TEV 

constraint.  

In our empirical investigation, at a first stage only the view with the highest marginal 

contribution to ex-ante TEV is set repeatedly to different values through a numerical 

procedure until the TEV bound is satisfied. This goal-attainment process illustrates the basic 

approach to exploit our TEV sensitivity measure. Furthermore we provide an extension to a 

more realistic case when k views are adjusted simultaneously to respect TEV constraint. We 

believe that Minkowski distance is a proper criterion to select the best mix of qj values among 

many plausible solutions under TEV constraint. An argument for adopting a multidimensional 

approach is the control of the consistency of views provided by different investment teams.  

The topic of TEV sensitivity to views with no short-selling and budget constraints in the 

optimisation is left for future investigations.  
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Appendix A: Descriptive Statistics 
 

Sectors

Oil & Gas Chemicals Automobiles 
& Parts Banks Basic 

Resources
Construction 
& Materials

Financial 
Services

Food & 
Beverages

Industrial 
Goods & 
Services

Insurance Media Healthcare Retail Technology Telecommu-
nication Utilities

Persolnal & 
Household 

Goods

Travel & 
Leisure

Labels OIL CHEM AUTO BANK BRES CONS FISV FBEV INDS INSU MED HEAL RTL TECH TELE UTIL HOUS TRAV
Mean 0.0773    0.0695     0.0551          0.1126   0.1239       0.1133          0.1084   0.0774      0.0545    0.0562     0.0033   0.0716       0.0399  0.0448        0.0625       0.1000    0.0855      0.0523    

Std dev 0.1927    0.2133     0.2640          0.2294   0.2673       0.1969          0.2274   0.1567      0.2290    0.2814     0.2769   0.1657       0.1622  0.4025        0.2677       0.1461    0.1851      0.2237    
Market Cap. 0.0826    0.0255     0.0260          0.2023   0.0395       0.0320          0.0349   0.0527      0.0738    0.0660     0.0258   0.0699       0.0370  0.0296        0.0603       0.0798    0.0457      0.0168    

Correlations
OIL 1.0000 0.5729 0.4783 0.4883 0.6354 0.5454 0.5267 0.4347 0.5262 0.3900 0.2978 0.3782 0.4667 0.3580 0.1430 0.4040 0.5501 0.5235

CHEM 0.5729 1.0000 0.7953 0.7927 0.7826 0.8735 0.7783 0.6851 0.8199 0.7851 0.5642 0.4869 0.7132 0.6220 0.4306 0.5727 0.8056 0.8056
AUTO 0.4783 0.7953 1.0000 0.7765 0.6904 0.7856 0.7584 0.5716 0.7787 0.7286 0.5438 0.4142 0.6643 0.6179 0.4973 0.5365 0.8049 0.7408
BANK 0.4883 0.7927 0.7765 1.0000 0.6618 0.7935 0.9251 0.6253 0.8064 0.8535 0.5238 0.5497 0.6844 0.6900 0.5471 0.5990 0.8252 0.8133
BRES 0.6354 0.7826 0.6904 0.6618 1.0000 0.7755 0.6929 0.4274 0.7377 0.5958 0.4887 0.2978 0.6102 0.5801 0.3515 0.3422 0.7045 0.6881
CONS 0.5454 0.8735 0.7856 0.7935 0.7755 1.0000 0.7932 0.5882 0.8818 0.7394 0.6254 0.3771 0.7187 0.6407 0.4970 0.6152 0.8016 0.8399

FISV 0.5267 0.7783 0.7584 0.9251 0.6929 0.7932 1.0000 0.6161 0.8066 0.8529 0.5647 0.5416 0.6986 0.7075 0.5388 0.5978 0.8499 0.8266
FBEV 0.4347 0.6851 0.5716 0.6253 0.4274 0.5882 0.6161 1.0000 0.5148 0.5623 0.2310 0.5688 0.5778 0.3323 0.1791 0.5585 0.6651 0.6383
INDS 0.5262 0.8199 0.7787 0.8064 0.7377 0.8818 0.8066 0.5148 1.0000 0.7657 0.7885 0.3962 0.7414 0.8281 0.6487 0.6291 0.8586 0.8254
INSU 0.3900 0.7851 0.7286 0.8535 0.5958 0.7394 0.8529 0.5623 0.7657 1.0000 0.5798 0.5859 0.6961 0.6999 0.5392 0.6298 0.7866 0.7665
MED 0.2978 0.5642 0.5438 0.5238 0.4887 0.6254 0.5647 0.2310 0.7885 0.5798 1.0000 0.2269 0.5811 0.8126 0.7425 0.5504 0.6367 0.6034

HEAL 0.3782 0.4869 0.4142 0.5497 0.2978 0.3771 0.5416 0.5688 0.3962 0.5859 0.2269 1.0000 0.4469 0.3587 0.2938 0.5308 0.4980 0.4233
RTL 0.4667 0.7132 0.6643 0.6844 0.6102 0.7187 0.6986 0.5778 0.7414 0.6961 0.5811 0.4469 1.0000 0.6036 0.4985 0.6592 0.7488 0.7006

TECH 0.3580 0.6220 0.6179 0.6900 0.5801 0.6407 0.7075 0.3323 0.8281 0.6999 0.8126 0.3587 0.6036 1.0000 0.8034 0.5044 0.7243 0.6672
TELE 0.1430 0.4306 0.4973 0.5471 0.3515 0.4970 0.5388 0.1791 0.6487 0.5392 0.7425 0.2938 0.4985 0.8034 1.0000 0.4551 0.5150 0.5141
UTIL 0.4040 0.5727 0.5365 0.5990 0.3422 0.6152 0.5978 0.5585 0.6291 0.6298 0.5504 0.5308 0.6592 0.5044 0.4551 1.0000 0.6070 0.5728

HOUS 0.5501 0.8056 0.8049 0.8252 0.7045 0.8016 0.8499 0.6651 0.8586 0.7866 0.6367 0.4980 0.7488 0.7243 0.5150 0.6070 1.0000 0.8187
TRAV 0.5235 0.8056 0.7408 0.8133 0.6881 0.8399 0.8266 0.6383 0.8254 0.7665 0.6034 0.4233 0.7006 0.6672 0.5141 0.5728 0.8187 1.0000  
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Appendix B 
Figure 1.B Equilibrium and Black-Litterman returns 

 
 

Figure 2.B Equilibrium and Black-Litterman portfolio weights 

 
 
 
 
 

 


