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1 Introduction

The impressive growth of the hedge fund industry has naturally led to an increased scrutiny
of the fund managers and of their investment strategies. Given the often exorbitant man-
agement and performance fees charged by hedge fund managers, it is not surprising that
investors are starting to question what they are actually getting for their money. Shrewd in-
vestors and institutional fund of funds are becoming increasingly careful about paying alpha
fees for beta returns. The challenge that investors and researchers are therefore confronted
with is how to reliably separate the funds that are generating alpha returns from the ones
that are simply repackaging beta.

The approach that has generally been favored by academics and practitioners in
order to extract information about hedge fund returns is the factor model approach. The
underlying idea is to try and separate the returns that are due to systematic exposure to
risk factors (beta returns) from those that are due to managerial skill (alpha returns). Once
the relevant risk factors have been identified, one can evaluate whether the funds exhibit
abnormal returns based the intercept of a linear regression of the fund returns against the
factor returns. A further advantage of this methodology is that if the linear model is well-
specified, one can attempt to replicate the returns of the hedge fund by investing in the
appropriate portfolio of factors. A recent paper by Hasanhodzic and Lo (2007) provides
some evidence that linear replication can be successful for certain strategies whilst offering
certain advantages to hedge fund investing. These include more transparency, increased
liquidity and fewer capacity constraints. However the authors warn that the heterogeneous
risk profile of hedge funds and the non-linear risk exposures greatly reduce the ability of these
models to consistently replicate hedge fund returns. Over the last few months, several banks
including Goldman Sachs, JP Morgan and Merril Lynch have launched linear replication
funds.

Certain generic hedge fund characteristics help explain some of the difficulty in iden-
tifying a well specified linear model. The use of financial derivatives, the use of dynamic
leverage, the use of dynamic trading strategies and the asymmetric performance fee struc-
tures are some of the most obvious sources of non-linearities in hedge fund returns. Several
recent papers, such as Mitchell and Pulvino (2001), Fung and Hsieh (2001), Agarwal and
Naik (2004), and Chen and Liang (2006) have dealt with the inclusion of risk premia that
attempt to account for these non-linearities. The inclusion of the above option-based factors
significantly improves the explanatory power of factor models, however, most of these factors
are not tradable and therefore cannot be used to construct a replicating portfolio.

In order to circumvent the issue of identifying tradable risk factors, an interesting
alternative approach was proposed by Amin and Kat (2003) and more recently extended by
Kat and Palaro (2005). Based on earlier work by Dybvig (1988), the authors evaluate hedge
fund performance not by identifying the return generating betas, but rather by attempting
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to replicate the distribution of the hedge fund returns. The underlying idea is based on
the hypothesis that much of the trading activity undertaken by hedge funds is not creating
value, just altering the timing of the returns available from traditional assets. In effect, many
hedge funds are simply distorting readily available asset distributions. So the real challenge
is whether or not we can find a more efficient method to distort these distributions than by
investing in hedge funds. Armed with their new efficiency measure, Kat and Palaro (2005)
show that hedge fund returns are by no means exceptional and that for the majority of funds
an alternative dynamic strategy would have provided investors with superior returns. This
methodology not only provides a model free benchmark for evaluating hedge funds, it can
also be used to create synthetic funds with predetermined distributional properties.

The efficiency measure as presented by Kat and Palaro (2005) is however subject
to several shortcomings and inconsistencies. The most significant of these relates to the
way that the daily trading strategies are derived from the distribution of monthly returns.
The properties of the estimated monthly distributions and copula functions proposed by the
authors are not infinitely divisible and therefore the true properties of the daily returns are
not known. As a result, the replicating strategy will not be precise. A further weakness
pertains to the fact that although the hedge fund returns and traded assets are clearly non-
normal, the efficiency measure is calculated within the confines of the Black-Scholes-Merton
world, hence ignoring the higher moments of the distributions.

In this paper, we will implement a multi-variate extension of Dybvig (1988) Payoff
Distribution Model that can be used to replicate not only the marginal distribution of most
hedge fund returns but also their dependence with other asset classes. In addition to propos-
ing ways to overcome the hedging and compatibility inconsistencies in previous papers, we
extend the results of Schweizer (1995) and adapt American options pricing techniques to
evaluate the model and also derive an optimal dynamic trading (hedging) strategy. The
proposed methodology can be used as a benchmark for evaluating fund performance, as well
as to replicate hedge funds or generate synthetic funds.

The rest of the paper will be structured as follows. Section 2 will explain the intuition
behind our multi-variate extension of Dybvig’s Payoff Distribution model. Section 3 presents
the technical details relating to the modeling and estimation of the distributions. Section
4 presents the payoff function. Section 5 presents the replication issues and presents the
optimal dynamic trading strategy. Section 6 presents some numerical results. Section 7
concludes.

2 The Multivariate Payoff Distribution Model

In Kat and Palaro (2005), the authors show that given two risky assets S(1) and S(2), it is
possible to “reproduce” the statistical properties of the joint return distribution of asset S(1)
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and a third asset S(3). Let’s assume asset S(1) is the investor portfolio, asset S(2) is a tradable
security and asset S(3) is a hedge fund, this result implies that we can generate the distribu-
tion of the hedge fund and its dependence with the investor portfolio, by only investing in
the tradable security S(2) and the investor portfolio S(1). Note that we do not replicate the
month by month returns of the hedge fund, but instead we replicate its distributional prop-
erties (i.e. expectation, volatility, skewness and kurtosis) as well as dependence measures
with respect to the returns of the investor portfolio (i.e. Pearson, Spearman correlations...).

Essentially, there exist a payoff function that will allow us to transform the joint
distribution of assets S(1) and S(2) into the bivariate distributions of S(1) and S(3). This
payoff function is easily shown to be calculable using the marginal distribution functions F1,
F2 and F3 of S

(1)
T , S

(2)
T , S

(3)
T , and the copulas C1,2 and C1,3 associated respectively with the

joints returns
(
R

(1)
0,T , R

(2)
0,T

)
and

(
R

(1)
0,T , R

(3)
0,T

)
. The exact expression for the payoff function

is given in section 4.

The challenge that we are confronted with is how to best evaluate this function, and
this is by no means a trivial problem. The problem can however be broken down into three
separate components. The first part relates to the proper modeling of the distributions and
copula functions. The second part consists in calculating the payoff function. The third part
consists in selecting an approach that will allow us to generate a dynamic trading strategy
that provides us with the best possible approximation of the payoff function.

3 Modeling the returns

In order to provide a robust solution in this framework, we propose the following steps. First,
we will model the joint daily distribution of S(1) and S(2) using bivariate Gaussian mixtures.
Since we will be trading these assets on a daily basis, it is imperative that the distribution of
the monthly returns for both the investor portfolio and the reserve asset are consistent with
the distribution of the daily returns. We need to be sure that by dynamically trading the
assets based on the joint daily distributions we will be able to generate the desired monthly
properties. We will therefore estimate the parameters of the bivariate Gaussian mixtures of
Rt, (investor portfolio and reserve asset) using the historical daily returns of S(1) and S(2).
We can then solve for the law of the monthly returns that is compatible with the law of daily
returns. Furthermore, the daily dependence which is modeled with the bivariate mixtures
will allow us to obtain the desired monthly dependence. This would not have been possible
if we used univariate laws to model the marginal distributions and a copula to model the
dependence structure. Although copula provide us with much flexibility in terms of modeling
the dependence, there is however no proof to this day that the statistical properties of copula
functions are divisible. Finally, we need to estimate the monthly distribution of the hedge
fund returns as well as the dependence between the hedge fund and the investor portfolio.
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There are no particular restrictions regarding the choice of the distribution of S(3) and the
copula C1,3. We have developed statistical tests that allow us to select the most appropriate
marginal distribution and copula function. We now consider each of these steps in detail.

3.1 Mixtures of Gaussian distributions

The choice of Gaussian mixtures to model the bivariate distribution of investor portfolio
and the reserve asset is due to both the flexibility of the mixtures in capturing high levels
of skewness as well as the fact that the bivariate distribution is infinitely divisible. In this
section, we will first provide a brief description of bivariate Gaussian mixtures and discuss
their statistical properties. Finally we will present a goodness-of-fit test that we developed
in order to estimate the mixtures and select the optimal number of regimes.

3.1.1 Definition of mixtures of Gaussian bivariate vectors

A bivariate random vector X is a Gaussian mixture with m regimes and parameters (πk)
m
k=1,

(µk)
m
k=1 and (Ak)

m
k=1, if its density is given by

f(x) =
m∑
k=1

πkφ2(x;µk, Ak)

where φ2(x;µ,A) = e−
1
2 (x−µ)>A−1(x−µ)

2πσ1σ2(1−ρ2)1/2
is the density of a bivariate Gaussian vector with mean

vector µ = (µ1, µ2)
> and covariance matrix A =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
. Its distribution function

is

F (x1, x2) =
m∑
k=1

πkΦ2

(
x1 − µk1
σk1

,
x2 − µk2
σk2

; ρk

)
,

where Φ2(·, ·; ρ) is the bivariate standard Gaussian distribution function with correlation ρ.

3.1.2 Some properties of mixtures of bivariate Gaussian variables

One property that is quite important in our setting is the fact that a sum of independent
Gaussian mixtures is still a Gaussian mixture. In fact, if X1, . . . , Xn are independent and
identically Gaussian mixtures with parameter θ, then X = X1 + · · ·+Xn is also a Gaussian
mixture. To describe the associated parameters, let

A = {α = (α1, . . . , αm);αj ≥ 0 and α1 + . . .+ αm = n}.
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Then card(A) =
(
n+m−1
m−1

)
so there are

(
n+m−1
m−1

)
regimes. The parameters of the mixture are

(πα)α∈A, (µα)α∈A, (Aα)α∈A, where for each α ∈ A, πα is the multinomial probability

πα = π(α1,··· ,αm) =
n!

α1! · · ·αm!

m∏
k=1

παkk ,

and the mean vectors µα and covariances Aα are respectively given by

µα =
n∑
k=1

αkµk, Aα =
n∑
k=1

αkAk.

Remark 3.1 If n is moderately large, then mn is huge and it is computationally impossible
to calculate the new parameters. In fact, most probabilities could be very small so in fact, the
sum could be a mixture of fewer terms. Therefore, one has to estimate again the joint law

of
(
R

(1)
0,T , R

(2)
0,T

)
by a Gaussian mixture, using the monthly returns this time. As a result, the

marginal distributions F1 and F2 are (univariate) Gaussian mixtures and C1,2 is the copula
deduced from the bivariate Gaussian mixture.

Finally, consider the conditional distribution of a bivariate Gaussian mixture X =
(X(1), X(2)). Set βk = ρk

σk2
σk1

and αk = µk2−βkµk1, k = 1, . . . ,m. Then it is easy to check that

the conditional distribution of X(2) given X(1) = x1 is a Gaussian mixture with parameters
{π̃k(x1)}mk=1 , {µ̃k(x1)}mk=1, {σ̃2

k}mk=1, where

π̃k(x1) =
πkφ(x1;µk1, σ

2
k1)∑m

j=1 πjφ(x1;µj1, σ2
j1)

(1)

and
µ̃k(x1) = αk + βkx1, σ̃2

k = σ2
k(1− ρ2

k). (2)

3.1.3 Estimation and goodness-of-fit

In order to choose the optimal number of regimes, we need to first estimate the parameters
of the model, and then provide a goodness-of-fit test to evaluate whether a greater number
of regimes is required. The estimation method is based on the EM algorithm of (Dempster
et al., 1977). It is presented in Appendix A.1 for the bivariate case.

A new goodness-of-fit test, described in Appendix A.4, can be performed to assess
the suitability as well as to select the number of mixture regimes m. The proposed test,
based on the work in Genest et al. (2007), uses the Rosenblatt’s transform.

For the selection of the number m of regimes, the following two steps procedure is
suggested:
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(a) Find the first m0 for which the P -value of the tests described in A.4 is larger than 5%.

(b) Estimate parameters for m0 + 1 regimes and apply the likelihood ratio test to check if
the null hypothesis H0 : m = m0 vs H1 : m = m0 + 1. If H0 is rejected at the 5% level,
repeat steps (a) and (b) starting at m = m0 + 1. However, if the parameters under H1

yield a degenerate density (e.g., |ρk| = 1), stop and set m = m0.

3.2 Choice/estimation of the marginal distribution F3

There are no restrictions on the choice of F3, which is the distribution of the hedge fund
that we seek to replicate (or the desired distribution in the case of a synthetic fund). Unlike
the reserve asset and investor portfolio that require divisible laws, we are only interested in
monthly return distribution and hence can introduce any distribution. In the case of the
replication of an existing hedge fund, goodness-of-fit is important and therefore we test using
a Durbin type test, as described in Appendix A.3.

3.3 Choice/estimation of the copula C1,3

Again, there are no restrictions on the choice of copula function C1,3, between the monthly
returns of the hedge fund and the investor portfolio. Suppose that we have historical monthly
returns (Y1, Z1), . . . , (Yn, Zn) belong to a copula family Cθ. To estimate θ, one often uses
the so-called IFM method. However, we do not recommend it as the parameters of the
copula function rely on the estimated marginal distributions. Any mis-specification of the
marginal distributions will bias the choice of copula. For reasons of robustness, it is therefore
preferable to use normalized ranks, i.e. if Ri1 represents the rank of Yi among Y1, . . . , Yn and
if Ri2 represents the rank of Zi among Z1, . . . , Zn, with Rij = 1 for the smallest observations,
then set

Ui =
Ri1

n+ 1
, Vi =

Ri2

n+ 1
, i = 1, . . . , n.

To estimate θ one could try to maximize the pseudo-log-likelihood∑
i=1

log cθ(Ui, Vi),

as suggested in Genest et al. (1995). For example, if the copula is the Gaussian copula
with correlation ρ, the pseudo-likelihood estimator for ρ yields the famous van der Waerden
coefficient defined to be the correlation between the pairs {Φ−1(Ui),Φ

−1(Vi); i = 1, . . . , n}.
For other families that can be indexed by Kentall’s tau, e.g., Clayton, Frank and Gumbel
families, one could estimate the parameter by inversion of the sample Kendall’s tau. See,
e.g., Genest et al. (2006).

7



Finally, to test for goodness-of-fit, one can use Cramér-von Mises type statistics for
the empirical copula or for the Rosenblatt’s transform. The latter could be the best choice
given that ∂

∂u
C1,3(u, v) needed to be calculated for the evaluation of the payoff function.

These tests are described in Genest et al. (2007) and in view of their results, we recommend

to use the test statistic S
(B)
n .

4 The payoff function

Having estimated the necessary distributions and copula function, one must now calculate
the payoff’s return function g. As deduced by Kat and Palaro (2005), its formula is given by

g(x, y) = Q
{
x, P

(
R

(2)
0,T ≤ y|R(1)

0,T = x
)}

,

where Q(x, α) is the order α quantile of the conditional law of R
(3)
0,T given R

(1)
0,T = x, i.e., for

any α ∈ (0, 1), q(x, α) satisfies

P
{
R

(3)
0,T ≤ Q(x, α)|R(1)

0,T = x
}

= α.

Using properties of copulas, e.g. Nelsen (1999), the conditional distributions can be expressed
in terms of the margins and the associated copulas.

P
(
R

(2)
0,T ≤ y|R(1)

0,T = x
)

=
∂

∂u
C1,2(u, v)

∣∣∣∣
u=F1(x),v=F2(y)

.

Note that
∂

∂u
C1,2(u, v) = P

{
F2(R

(2)
0,T ) ≤ v|F1(R

(1)
0,T ) = u

}
. In addition, if Q(u, α) is the order

α quantile of the distribution function
∂

∂u
C1,3(u, v), then one obtains

Q(x, α) = F−1
2 ◦ Q(F1(x), α).

In our methodology, since the monthly returns
(
R

(1)
0,T , R

(2)
0,T

)
are modeled by a Gaus-

sian mixtures with parameters (πk)
m
k=1, (µk)

m
k=1 and (Ak)

m
k=1, the conditional distributions

can be expressed as follows

P (R
(2)
0,T ≤ y|R(1)

0,T = x) =
m∑
k=1

π̃k(x)φ{y; µ̃k(x), σ̃2}

where π̃k(x), µ̃k(x) and σ̃2 are given by formulas (1) and (2).
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5 Dynamic replication

Having solved for g, we need to find an optimal dynamic trading strategy that will
replicate the payoff function. We do so by selecting the portfolio (V0, ϕ) such as to minimize
the expected square hedging error

E
[
β2
T {VT (V0, ϕ)− CT}2

]
,

where βT is the discount factor.

In order to achieve this, we develop extensions of the results of Schweizer (1995). Note
that there is no “risk-neutral” evaluation involved in our approach and that all calculations
are carried out under the objective probability measure.

5.1 Optimal hedging

Suppose that (Ω, P,F) is a probability space with filtration F = {F0, . . . ,FT}, under which
the stochastic processes are defined. For the moment, assume that the price process St is

d-dimensional, i.e. St =
(
S

(1)
t , . . . , S

(d)
t

)
. In the next section, one will come back with the

case d = 2.

Before defining what is meant by a dynamic replicating strategy, let βt denote the
discount factor, i.e. βt is the value at period 0 to be invested in the non risky asset so that
it has a value of 1$ at period t. By definition, β0 = 1. It is assumed that the process β is
predictable, i.e. βt is Ft−1-measurable for all t = 1, . . . , T .

A dynamic replicating strategy can be described by a (deterministic) initial value V0

and a sequence of random weight vectors ϕ = (ϕt)
T
t=0, where for any j = 1, . . . , d, ϕ

(j)
t denotes

the number of parts of assets S(j) invested during period (t− 1, t]. Because ϕt may depend
only on the values values S0, . . . , St−1, the stochastic process ϕt is assumed to be predictable.
Initially, ϕ0 = ϕ1, and the portfolio initial value is V0. It follows that the amount initially
invested in the non risky asset is

V0 −
d∑
j=1

ϕ
(j)
1 S

(j)
0 = V0 − ϕ>1 S0.

Since the hedging strategy must be self-financing, it follows that for all t = 1, . . . , T ,

βtVt(V0, ϕ)− βt−1Vt−1(V0, ϕ) = ϕ>t (βtSt − βt−1St−1). (3)
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Using the self-financing condition (3), it follows that

βTVT = βTVT (V0, ϕ) = V0 +
T∑
t=1

ϕ>t (βtSt − βt−1St−1). (4)

The replication strategy problem for a given payoff C is thus equivalent to finding the strategy
(V0, ϕ) so that the hedging error

GT (V0, ϕ) = βTVT (V0, ϕ)− βTC (5)

is as small as possible. In this paper, we choose the expected square hedging error as a
measure of quality of replication. It is therefore natural to suppose that the prices S

(j)
t have

finite second moments. We further assume that the hedging strategy ϕ satisfies a similar
property, namely that for any t = 1, . . . , T , ϕ>t (βtSt−βt−1St−1) have finite second moments.
Note that these two technical conditions were also made by Schweizer (1995).

For simplicity, set

∆t = St − E(St|Ft−1), t = 1, . . . , T.

Under the above moment conditions, the conditional covariance matrix Σt of ∆t exists
and is given by

Σt = E
{

∆t∆
>
t |Ft−1

}
, 1 ≤ t ≤ T.

In Schweizer (1995), the author treats the case d = 1 and assumes a restrictive
boundedness condition. Here, in contrast, we treat the general d-dimensional case and we
only suppose that Σt is invertible for all t = 1, . . . , T . This was implicitly part of the
boundedness condition of Schweizer (1995).

If Σt is not invertible for some t, there would exists a ϕt ∈ Ft−1 such that ϕ>t St =
ϕ>t E(St|Ft−1), that is, ϕ>t St is predictable. Our assumption can be interpreted as saying
that the genuine dimension of the assets is d. One may now state the main result whose
proof is given in Appendix D.1.

Theorem 1 Suppose that Σt is invertible for all t = 1, . . . , T . Then the risk E{G2(V0, ϕ)}
is minimized by choosing recursively ϕT , . . . , ϕ1 satisfying

ϕt = (Σt)
−1E ({St − E(St|Ft−1)}Ct| Ft−1) , t = T, . . . , 1, (6)

where CT , . . . , C0 are defined recursively by setting CT = C and

βt−1Ct−1 = βtE(Ct|Ft−1)− ϕt>E(βtSt − βt−1St−1|Ft−1), (7)

for t = T, . . . , 1.
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Moreover the optimal value of V0 is C0, and

E(G2) =
T∑
t=1

E
(
β2
tG

2
t

)
,

where Gt = ϕt
> {St − E(St|Ft−1)} − {Ct − E(Ct|Ft−1)}, 1 ≤ t ≤ T .

Having found the optimal hedging strategy, according to the mean square error cri-
terion, one might ask what the link is between the price given by C0, as in Theorem 1, and
the price suggested by the martingale measure method. The answer is given by the following
result proven in Appendix D.2.

Corollary 1 For any t = 1 . . . , T , set

Ut = 1−∆>t (Σt)
−1E (St − βt−1St−1/βt|Ft−1) . (8)

Further set M0 = 1 and Mt = UtMt−1, 1 ≤ k ≤ n. Then (Mt,Ft)Tt=0 is a (not
necessarily positive) martingale and

βt−1Ct−1 = E(βtCtUt|Ft−1).

In particular βCtMt is a martingale and C0 = E(βTCTMT |F0). Moreover E(βtStUt|Ft−1) =
βt−1St−1, so βtStMt is a martingale.1

5.1.1 The Markovian case

If the price process S is Markovian, i.e., the law of St given Ft−1 is νt(St−1, dx), and if the
terminal payoff CT = C only depends on the terminal prices, that is C = fT (ST ), then the

1 When the market is complete, there is a unique martingale measure Q and every claim is attainable, so
the risk associated with the optimal strategy is zero. Therefore Mt, as defined in Corollary 1 is positive, and
as a by-product of our method, we have an explicit representation of the density of Q with respect to P .
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Markov property, together with Theorem 1, yield that Ct = ft(St) and ϕt = ψt(St−1), where

L1t(s) = E(St|St−1 = s) =

∫
xνt(s, dx),

L2t(s) = E(StS
>
t |St−1 = s) =

∫
xx>νt(s, dx),

At(s) = L2t(s)− L1t(s)L1t(s)
>,

ψt(s) = At(s)
−1E [{St − L1t(s)}ft(St)|St−1 = s]

= At(s)
−1

∫
(x− L1t(s))ft(x)νt(s, dx),

Ut(s, x) = 1− (L1t(s)− βt−1s/βt)
>At(s)

−1(x− L1t(s)),

ft−1(s) =
βt
βt−1

E{Ut(s, St)ft(St)|St−1 = s}

=
βt
βt−1

∫
Ut(s, x)ft(x)νt(s, dx).

Note that E(St|Ft−1) = L1t(St−1) and Σt = At(St−1). Explicit calculations can be done
when the returns are assumed to be a finite Markov chain. In most models, one can write
St = ωt(St−1, ξt) where ξt is independent of Ft−1 and has law Pt. When µt has an infinite
support, there are ways to approximate ψt and ft.

The importance of Theorem 1 to the replication problem of hedge funds is obvious,
particularly under the Markovian setting. All that is needed is a way to calculate or approx-
imate the value of f0 and of the deterministic functions ψt(s), ft(s), t = 1, . . .. In particular
V0 = f0 and ϕt = ψt(s) gives the optimal hedging strategy when St−1 = s.

5.1.2 The dynamic trading strategy

In the Markovian case, one can use the methodology developed by Del Moral et al. (2006) to
calculate both the ϕt’s and the Ct’s. The algorithm for implementing the dynamic trading
strategy, based on Monte Carlo simulations and linear interpolation, is described in more
details in Appendix B.

5.2 A comparison between optimal hedging and hedging under
Black-Scholes setting

To compare the two methods, simply take T = 1 and r = 0 and d = 1. In this case, the
solution for optimal hedging yields ϕ? = Cov{∆S1, C(S1)}/Var(∆S1), where ∆S1 = S1−S0,
and V ?

0 = E{C(S1)} − ϕ?E(∆S1).
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For the Black-Scholes setting, we have

V BS
0 = E

{
C
(
S0e

σZ−σ2/2
)}

and ϕBS = E
{
eσZ−σ

2/2C ′
(
S0e

σZ−σ2/2
)}

,

with σ2 = Var {log(S1/S0)}, where Z ∼ N(0, 1), provided C is differentiable. See, e.g.,
Broadie and Glasserman (1996). In general, ϕ? 6= ϕBS and V ?

0 6= V BS
0 , so

E
[
{V1(V

?
0 , ϕ

?)− C(S1)}2
]
< E

[{
V1(V

BS
0 , ϕBS)− C(S1)

}2
]
.

For an analysis of the (discrete) hedging error in a Black-Scholes setting, see, e.g.,
Wilmott (2006). To illustrate the difference in an hedge funds context, we performed a
numerical experiment in which we tried (10 000 times) to reproduce a synthetic fund with
centered Gaussian distribution with volatility 12%, independent of the portfolio. The dis-
tribution of the daily returns of the (portfolio, reserve) pair are modeled by a a mixture of
4 regimes for the daily returns distribution with parameters given in Table 1. With this
choice of parameters, it turns out that the associated monthly returns are best modeled by
a bivariate Gaussian with parameters are given in Table 2.

Table 1: Parameters for the Gaussian mixture with 4 regimes used for modeling daily returns

πk µk1 µk2 σ1k σ2k ρk

0.0956 0.0016 0.0008 0.0039 0.0016 0.9754
0.4673 0.0000 0.0002 0.0069 0.0032 0.7981
0.0763 -0.0003 -0.0005 0.0115 0.0054 0.6964
0.3607 0.0006 0.0005 0.0037 0.0027 0.4613

Table 2: Estimation of the parameters of the Gaussian model compatible with the daily
returns

µ1 µ2 σ1 σ2 ρ

0.007892797 0.0068086 0.029334999 0.034641016 0.700295314

As said previously, we simulated 10 000 values of g
(
R

(1)
0,T , R

(2)
0,T

)
, log(V ?

T /100) (under

optimal hedging) and log(V BS
T /100) (under delta hedging). Some sample characteristics of
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these three variables are given in Table 3, together with the corresponding true values, while
for each dynamic trading method, the estimated mean hedging error and square root mean
square error are given in Table 4.

By construction, optimal hedging always produces an hedging error with zero mean.
However, this is not the case in general for delta hedging. Note how far the delta hedging
method is off the goal of a zero mean of the replicating portfolio, while the optimal hedging
error is much smaller.

As our proposed method is optimal for minimizing the square hedging error, it is not
surprising that it dominates delta hedging. However, since the theoretical setting is very
close to the Black-Scholes setting, all monthly returns being Gaussian, it is worth noting
that the square root Mean Square Error of the optimal hedging is 150% less than the one of
the delta hedging.

Finally, the distribution of the respective hedging errors is illustrated in Figure 1.
From that graph, it appears that the values of the replication portfolio with the methodology
proposed in Kat and Palaro (2005) are almost always smaller than the target values.

Table 3: Replication results based on 10 000 trajectories for g
(
R

(1)
0,T , R

(2)
0,T

)
= log(CT/100)

and log(VT/100) under optimal hedging and delta hedging.

Parameter True value g Optimal hedging Delta hedging

Mean 0 3.957E-07 3.574E-07 -0.000422735
Std. dev. 0.034641016 0.034957842 0.034961135 0.034985553
Skewness 0 -0.058910418 -0.064053039 -0.063978046
Kurtosis 0 0.029916203 0.032479236 0.032374552
ρ 0.3 0.30283895 0.30279462 0.30288552

Table 4: Replication results based on 10 000 trajectories for the payoff g̃ and log(VT/100)
under optimal hedging and delta hedging.

Parameter Optimal hedging Delta hedging |OH/BS|

Mean hedging error 0.000004009 -0.042061101 10491.66889
Square root MSE 0.017861376 0.045665732 2.556674977
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Figure 1: Kernel density estimation of hedging errors for optimal hedging and delta hedging.

6 Replication of hedge funds

In this section we will provide some empirical evidence regarding the ability of the model
to replicate hedge fund returns. For the sake of parsimony, we will present results for
the (in-sample) replication of the EDHEC indices and HFR indices. We will look at the
models ability to replicate the statistical properties of the monthly returns of the different
indices over the ten year period from 01/30/1997 to 12/29/2006 (120 months), as well as
for 2 subperiods ranging respectively from 01/30/1997 to 12/29/2001 (59 months) and from
12/30/2001 - 12/29/2006 (61 months).

6.1 Portfolio and Reserve assets

The first step is top select the assets that will make up the investor portfolio, S(1), and the
reserve asset, S(2). Because these two portfolios are dynamically traded on a daily basis, we
seek very liquid instruments with low transaction costs. We therefore restrict the components
of these two assets to be either Futures contracts or Exchange Traded Funds (ETF).

All futures data comes from CRB Trader database. The cash rate is the BBA Libor 1
month rate. Log-returns on futures are calculated from the reinvestment of a rolling strategy
in the front contract. The front contract is the nearest to maturity, on the March/June/-
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September/December schedule and is rolled on the first business day of the maturity month
at previous close prices. Each future contract is fully collateralized, so that, the total return
is the sum the rolling strategy’s return and the cash rate. The ETF data is obtained from
Bloomberg.

The investor portfolio, which is meant to be a proxy for a typical institutional portfo-
lio, will be an equal-weighted portfolio of S&P500 futures contracts and 30 year US Treasury
Bond futures contracts. In order to illustrate the sensitivity of the methodology to the choice
of reserve asset, we will perform the study using two very different reserve assets. The first
asset (Reserve 1) is made up of 50% PowerShares Dynamic Small Cap Value Portfolio, 25%
iShares Lehman 20 Year Treasury Bond Fund and 25% Citigroup Treasury 10 Year Bond
Fund. The second asset (Reserve 2) is an equally weighted portfolio Two Year Treasury
Notes, Ten Year Treasury Notes, S&P500, and Goldman Sachs Commodity Index future
contracts.

Table 5 presents some of the statistical properties of our investor portfolio and the
two reserve assets for the entire ten year period and the two sub-periods. We report the
mean, standard deviation, skewness, robust skewness2, kurtosis, robust kurtosis3

As explained in Section 3.1, we have chosen to model the daily returns of the pairs
(portfolio, reserve) by bivariate Gaussian mixtures with m regimes, denoted by BGM(m).

In Table 6, the distributions of the daily and monthly returns for the (portfolio,
reserve) pairs are given, over the three time periods. These results were obtained by using
the estimation and goodness-of-it procedures described in Section 3.1.3.

It may seems odd at first that the model for the joint monthly returns is a (bivariate)
Gaussian mixture with fewer regimes than for the daily returns. However, as explained in
Remark 3.1, it is quite normal. In fact, in view of the central limit theorem, the number of
regimes would possibly be 1 if we were to consider returns over a two months period.

6.2 Hedge fund indices

For the sake of comparison, we chose to replicate the 13 EDHEC indices and the 22 HFRI
indices. According to the procedures described in Sections 3.2 and 3.3, the marginal distri-
bution F3 and the copula C1,3 were estimated for each hedge fund index.

For the marginal distributions, we considered (univariate) Gaussian mixtures with m
regimes, denoted GM(m) and Johnson distribution. For the copula families, we selected the
Gaussian, Student, Clayton, Frank and Gumbel. In each case, we estimated Kendall’s tau,
which measures the dependence between the hedge fund returns and the portfolio returns.

2Defined by {E(X)−Q(1/2)}
/
E{|X −Q(1/2)|}, where Qα is the α-quantile.

3Defined by 0.09 + {Q(.975)−Q(.025)}
/
{Q(.75)−Q(.25)}.
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Table 5: Summary statistics for the portfolio and the reserve assets over the three time
periods.

Asset Statistics Period 1 (97–06) Period 2 (97–01) Period 3 (02–06)
Mean 0.0035 0.0047 0.0024
S.Dev 0.0244 0.0289 0.0192

Portfolio Skew -0.2150 -0.2697 -0.2482
R. Sk -0.0813 -0.2665 -0.1097
Kurt 3.2109 2.6942 3.6637

R. Kurt 3.2467 2.7483 3.6386
Mean 0.0094 0.0095 0.0093
S.Dev 0.0225 0.0260 0.0187
Skew 0.3006 0.5346 -0.3480

Reserve 1 R. Sk 0.0362 0.0552 0.0159
Kurt 5.0025 5.0399 3.2161

R. Kurt 3.2419 4.0561 2.9244
Corr. with Port. 0.6749 0.7054 0.6206

Mean 0.0031 0.0016 0.0047
S.Dev 0.0195 0.0219 0.0168
Skew 0.0338 0.3193 -0.3886

Reserve 2 R. Sk -0.0891 -0.0161 -0.2345
Kurt 3.4509 3.3083 3.7213

R. Kurt 3.3207 3.3894 3.4959
Corr. with Port. 0.6040 0.7231 0.3989

Table 6: Distribution of the daily and monthly returns for the two pairs (portfolio, reserve),
over the three time periods.

Returns Period 1 (97–06) Period 2 (97–01) Period 3 (02–06)
Reserve 1 Reserve 2 Reserve 1 Reserve 2 Reserve 1 Reserve 2

Daily BGM(5) BGM(5) BGM(5) BGM(5) BGM(3) BGM(4)
Monthly BGM(2) BGM(2) BGM(4) BGM(2) BGM(2) BGM(3)

Except for the Student copula, which is dependent on two parameters, the other families
only depend on one parameter.

The best fitting models are displayed in Tables 8–10.
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6.3 Performance of the replication

There are two important issues that need to be addressed when analyzing the models ability
to replicate hedge fund returns. The first issue concerns the models ability to effectively
replicate hedge fund indices. The second issue pertains to the choice of the reserve asset and
it’s impact on the models performance.

To study the effectiveness of the replication strategies, there are two main factors to
consider: the initial investment V0 that is required to replicate each index as well as the
actual quality of the replication. In order to obtain the payoff distribution of the hedge fund
indices, we follow the approach used by Kat and Palaro (2005)- we calculate the monthly
returns assuming an investment of 100 at the beginning of each month. Therefore, if the
value V0 of the replicating strategy is below 100, this would lead us to conclude that the
replicating strategy offers a cheaper alternative to the hedge fund index, and therefore is
the better investment choice. This analysis can however be misleading if we do not also
examine the precision of the replication strategy. Before dismissing the hedge fund indices
as poor-performers, we need to properly evaluate whether the properties of the replication
strategies and hedge fund indices are truly the same. A proper examination of both the cost
and the precision of the replication strategy is fundamental before any strong conclusion can
be drawn about the model’s ability to replicate hedge fund indices.

Then arises the question of the reserve asset. Does the reserve asset impact the
performance of the model, and if so does it affect only V0 or also the ability of the model to
replicate the statistical properties of the hedge fund indices? In other words, does the choice
of reserve asset impact the performance measure and/or for the quality of the replication?

Tables 11–13 present the values of V0 for the HFRI and EDHEC hedge fund indices.
It is quite clear that even without correcting for the well documented biases in hedge fund
indices, the replicating strategies still out-perform a large number of the hedge fund indices
over the entire period as well as over the two sub-periods. In order to show that the replica-
tion strategies are effectively reproducing the statistical properties of the hedge fund indices,
Figures 2–6 present the target mean, volatility, Kendall’s tau, skewness and kurtosis of the
indices as well as those for the replication strategies. It is quite clear that independently
of the period that is considered, the volatility and Kendall’s tau are reproduced with great
precision. It is important to note that the only moment that is sensitive to the choice of
reserve asset is the return of the replication strategy - the other moments as well as the
dependence coefficient appear to be insensitive to the choice of reserve asset. Our results
clearly indicate that the reserve asset plays a role in the measure of performance, V0, but it
has almost no effect on the quality of the replication.
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Table 7: Regression of EDHEC and HFRI indices returns with the replication returns (for
reserve assets 1–2) for the following target parameters: volatility, skewness, robust skewness,
kurtosis, robust kurtosis, Kendall’s tau and Pearson’s rho.

Period: (1997–2006) Reserve 1 Reserve 2
Target Intercept Slope R2(%) Intercept Slope R2(%)

Volatility 0.000624738 0.997485421 99.38 0.000132117 1.034882095 99.38
Skewness -1.21833672 1.135438624 63.48 -0.660897414 1.017065756 78.82

Robust Skew 0.005285212 0.591422785 38.74 0.049971694 0.845539485 68.79
Kurtosis 1.427089662 1.320048662 26.05 1.738641971 1.116543294 79.34

Robust Kurt 2.057766094 0.48321167 36.19 1.800169291 0.491547026 34.31
Kendall’s Tau 0.040820382 1.009779392 98.80 0.034979443 1.024409652 99.36
Pearson’s Rho 0.031939885 1.046644073 95.80 0.030103056 1.064383569 96.32

Period: (1997–2001) Reserve 1 Reserve 2
Target Intercept Slope R2(%) Intercept Slope R2(%)

Volatility 0.000246245 0.999597258 98.15 0.000303651 1.026011825 98.27
Skewness -0.58025733 0.917232282 32.10 -0.86585092 1.542889847 65.17

Robust Skew 0.044192227 0.916761936 56.14 -0.00965482 0.729453739 54.08
Kurtosis 5.581125649 0.675401646 15.27 2.081736175 1.733323643 20.62

Robust Kurt -0.85346256 1.451214328 67.35 -0.58104505 1.267471264 63.20
Kendall’s Tau 0.0254162 1.019450292 98.52 0.020171502 1.016297547 99.18
Pearson’s Rho 0.056163582 1.022429795 91.53 0.021180004 1.06516375 94.76

Period: (2002–2006) Reserve 1 Reserve 2
Target Intercept Slope R2(%) Intercept Slope R2(%)

Volatility -0.00015482 0.987878677 99.84 0.000145601 0.984626992 99.59
Skewness -0.07264573 1.035201227 83.03 0.045240922 1.104989802 80.44

Robust Skew 0.004977508 0.816341527 53.79 0.068954198 1.033664472 61.45
Kurtosis 1.26397635 0.768109088 35.44 0.536774019 0.93664374 67.14

Robust Kurt 1.471815049 0.540835024 45.90 1.421018259 0.566191474 26.63
Kendall’s Tau -0.00043248 1.069855948 98.96 0.019777659 1.034958883 98.97
Pearson’s Rho 0.059853575 1.027479829 91.93 0.119157269 1.054127939 91.77

In order to further examine the model’s ability to replicate the statistical properties
of the hedge fund indices, Table 7 presents the results obtained by regressing the statistical
properties of the replication portfolios against the estimated parameters of both EDHEC and
HFRI indices for the three samples periods. If the replications were perfect, the slope would
then be 1 and the intercept would be 0. As one can see, the fit is very impressive for both
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reserve assets. The volatility and dependence measures (Kendal’s tau and Spearman’s Rho)
are perfectly replicated, and the regression coefficients for the higher moments, although
not perfect, support the model’s ability to replicate the statistical properties of hedge fund
returns.

The final stage of the analysis consists of breaking down the costs and other potential
sources of error associated with the dynamic replicating strategy. We quantify three potential
costs/errors associated with our methodology. The first is the transaction costs related to
the dynamic trading; the second is the rounding error that results from not being able to
trade fractions of futures contracts; the third, and most significant, is the profit/loss that is
due to the hedging error of the discrete hedging strategy.

The transaction costs are assumed to be 1 basis point for the sale/purchase of all
futures contracts. Obviously, the amount of trading required to replicate the different indices
can vary substantially. In table 14 we present the average monthly transaction costs (in terms
of basis points) incurred for each replicating portfolio over the whole sample period. Note
that the average monthly transaction costs for the replication strategies is approximately 5
basis points.

The rounding error that results from the inability to buy or sell fractions of futures
contracts depends very much on the size of the replication portfolio and this error tends to
zero as the portfolio increases in size. For a replicating strategy with $100 Million invested,
the average monthly rounding error is approximately 1 basis point.

Finally, we calculate replicating errors, that is the average difference between the
value of the replicating strategy and the value of the hedge fund index. The results are
presented in Tables 15–17. Note that the average monthly hedging error on all replications
as defined in Equation 5 is around 3 basis points.

7 Conclusion

In this paper, we implement a multi-variate extension of Dybvig (1988) Payoff Distribution
Model that can be used to replicate not only the marginal distribution of hedge fund returns
but also their dependence with other asset classes. In addition to proposing ways to overcome
the hedging and compatibility inconsistencies in Kat and Palaro (2005) we extend the results
of Schweizer (1995) and adapt American options pricing techniques to evaluate the model and
also derive an optimal dynamic trading (hedging) strategy. In section 5.2 we demonstrate the
superiority of the hedging algorithm that is used to generate the dynamic replicating strategy.
We successfully replicate the statistical properties of the HFRI and EDHEC indices over the
period from 1997-2006, as well as for two 60 month sub-periods. Even without correcting for
the well-documented biases in hedge fund index returns, the indices can be readily replicated
using this methodology. The volatility and the dependence coefficients are replicated with
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great precision; the skewness and kurtosis are also captured by the model, however with
slightly less accuracy.

Contrary to the conclusions put forth by recent studies at EDHEC and Northwater
(2007), the choice of reserve asset does not impact the model’s ability to replicate the sta-
tistical properties of the indices. The choice of reserve asset only impacts the initial cost
of investing in the replicating portfolio (and hence only impacts the return of the replicat-
ing strategy). This is not to say that the return generated by the model is not important,
however it is not a measure of the model’s success. One must dissociate the technical issues
of the replicating methodology (i.e how to best model the returns and solve for the optimal
trading strategy) from the choice of the reserve asset. Our contribution is to provide a robust
framework for the replication methodology, and address the technical shortcomings of the
much publicized research of Kat and Palaro.

As is the case with any investment strategy, the returns depend on the choice of
assets. The results in this paper indicate, however, that it is not necessary to select the best
performing assets over the sample period in order to replicate and outperform the hedge fund
indices. In fact, we show that by using run-of-the-mill exposures in our reserve asset we can
nonetheless outperform the majority of hedge fund indices. We purposely selected two reserve
assets that have exposures to different yet common market premia over the sample period,
and we find that both reserve assets outperform a large percentage of the indices. (reserve
1 being the better of the two). We also find that the EDHEC indices, which are subject to
less significant biases, are more easy to replicate that the HFRI indices. It is important to
remember that we are comparing an investable trading strategy to non-investable indices- the
actual return we would anticipate from investing in a hedge fund index would be considerably
lower than the ”non-investable” index returns used in this study. Our results reinforce the
notion that on aggregate, hedge funds are on aggregate simply repackaging beta returns.
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A Estimation and goodness-of-fit

In this section, we describe the estimation procedure and the goodness-of-fit tests.

A.1 EM algorithm for bivariate Gaussian mixtures

Let y1, . . . , yn be a random sample from a bivariate Gaussian mixture with parameters π =
(πk)

m
k=1, µ = (µk)

m
k=1 and A = (Ak)

m
k=1. Start with an initial estimator θ(0). Given an

estimator θ(`) =
(
π(`), µ(`), A(`)

)
of the parameters θ = (π, µ,A), set

πk
(
yi, θ

(`)
)

=
π

(`)
k φ2

(
yi;µ

(`)
k , A

(`)
k

)
∑m

j=1 π
(`)
j φ2

(
yi;µ

(`)
j , A

(`)
j

) , i = 1, . . . , n,

and define the new estimator θ(`+1) =
(
π(`+1), µ(`+1), A(`+1)

)
viz.

π
(`+1)
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1

n

n∑
i=1

πk
(
yi, θ

(`)
)
,

µ
(`+1)
k =

1

n
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yiπk
(
yi, θ

(`)
)/

π
(`+1)
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and

A
(`+1)
k =

1

n

n∑
i=1

(
yi − µ(`+1)

k

)(
yi − µ(`+1)

k

)>
πk
(
yi, θ

(`)
)/

π
(`+1)
k ,

for k = 1, . . . ,m. As ` increases, the numbers {πk
(
yi, θ

(`)
)

; k = 1, . . . , i = 1, . . . , n} stabilize
and the estimators converge.

A.2 Tests of goodness-of-fit

Testing goodness-of-fit is an essential step for modelling data. There are many tests available
but to our knowledge, the best ones are based on empirical processes (Genest and Rémillard,
2005, Genest et al., 2007). Here, we only consider two tests based on the so-called Rosen-
blatt‘s transform. The first one is due to Durbin (1973) but the calculation of P -values is
recent (Stute et al., 1993). For the second test designed for testing goodness-of-fit for bi-
variate data, the validity of the algorithm for calculating P -values follows from Genest and
Rémillard (2005).
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A.3 Tests of goodness-of-fit for a univariate parametric distribu-
tion

Let X1, . . . , Xn be a sample of size n from a (continuous) distribution F on R. Suppose that
the hypotheses to be tested are

H0 : F ∈ F = {Fθ; θ ∈ Θ} vs H1 : F 6∈ F

For example, the parametric family F could be the family of univariate Gaussian mixtures
with m regimes.

The proposed test statistic is based on Durbin (1973). Let θn = Tn(X1, . . . , Xn) be a
regular estimator of θ, in the sense of Genest and Rémillard (2005) and set

Dn(u) =
1

n

n∑
i=1

I(Ui ≤ u), u ∈ [0, 1],

where Ui = Fθn(Xi), i = 1, . . . , n. To test H0 against H1, one may use the Cramér-von Mises
type statistic

Sn = n

∫ 1

0

{Dn(u)− u}2du

=
1

n

n∑
i=1

n∑
j=1

{
U2
i + U2

j − 2 max(Ui, Uj)

2
+

1

3

}
.

Since the Ui’s are “almost uniformly distributed on [0, 1]” under the null hypothesis, large
values of Sn should lead to rejection of the null hypothesis. However, in general the limiting
distribution of Sn depend on the unknown parameter θ. To calculate the P -value of Sn, one
can use a parametric bootstrap approach as described below.

a) Calculate θn and Sn.

b) For some large integerN (say 1000), repeat the following steps for every k ∈ {1, . . . , N}:

(i) Generate a random sample X1,k, . . . , Xn,k from distribution Fθn .

(ii) Calculate

θn,k = Tn (X1,k, . . . , Xn,k) ,

Ui,k = Fθn,k(Xi,k), i = 1, . . . , n,

Sn,k =
1

n

n∑
i=1

n∑
j=1

{
U2
i,k + U2

j,k − 2 max(Ui,k, Uj,k)

2
+

1

3

}
.
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An approximate P -value for the test based on the Cramér–von Mises statistic Sn is then
given by

1

N

N∑
k=1

I(Sn,k > Sn).

A.4 Tests of goodness-of-fit for a bivariate parametric distribution

Let (X1, Y1) . . . , (Xn, Yn) be a sample of size n from a (continuous) distribution F on R2.
Suppose that the hypotheses to be tested are

H0 : F ∈ F = {Fθ; θ ∈ Θ} vs H1 : F 6∈ F

For example, the parametric family F could be the family of bivariate Gaussian mixtures
with m regimes. Denote by Gθ the distribution function of Xi and let Hθ be the conditional
distribution function of Yi given Xi, i.e., Hθ(x, y) = P (Yi ≤ y|Xi = x).

The proposed test statistic is based on Durbin (1973) and the Rosenblatt’s transform
(Rosenblatt, 1952).

Suppose that θn = Tn(X1, Y1, . . . , Xn, Yn) is a regular estimator of θ, in the sense of
Genest and Rémillard (2005) and set

Dn(u, v) =
1

n

n∑
i=1

I(Ui ≤ u, Vi ≤ v), u, v ∈ [0, 1],

where Ui = Gθn(Xi), Vi = Hθn(Xi, Yi), i = 1, . . . , n. To test H0 against H1, one may use the
Cramér-von Mises type statistic

Sn = n

∫ 1

0

∫ 1

0

{Dn(u, v)− uv}2dudv

=
1

n

n∑
i=1

n∑
j=1

[
1

9
− 1

4
(1− U2

i )(1− V 2
i )− 1

4
(1− U2

j )(1− V 2
j )

+{1−max(Ui, Uj)}{1−max(Vi, Vj)}
]
.

Since the pairs (Ui, Vi)’s are “almost uniformly distributed on [0, 1]2” under the null hypothe-
sis, large values of Sn should lead to rejection of the null hypothesis. However, in general the
limiting distribution of Sn depend on the unknown parameter θ. To calculate the P -value
of Sn, one can use a parametric bootstrap approach as described below.

a) Calculate θn and Sn.
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b) For some large integerN (say 1000), repeat the following steps for every k ∈ {1, . . . , N}:

(i) Generate a random sample (X1,k, Y1,k), . . . , (Xn,k, Yn,k) from distribution Fθn .

(ii) Calculate

θ∗n,k = Tn (X1,k, Y1,k, . . . , Xn,k, Yn,k) ,

Ui,k = Gθn,k(Xi,k), Vi,k = Hθn,k(Xi,k, Yi,k), i = 1, . . . , n

Sn,k =
1

n

n∑
i=1

n∑
j=1

[
1

9
− 1

4
(1− U2

i,k)(1− V 2
i,k)−

1

4
(1− U2

j,k)(1− V 2
j,k)

+{1−max(Ui,k, Uj,k)}{1−max(Vi,k, Vj,k)}
]
.

An approximate P -value for the test based on the Cramér–von Mises statistic Sn is then
given by

1

N

N∑
k=1

I(Sn,k > Sn).

B Implementation of the dynamic trading strategy

Before describing the algorithm, it is important to define what is meant by a partition. Here
we assume that St = ωt(St−1, ξt), ξt ∼ µt being independent of Ft−1, t = 1, . . . , T .

Definition B.1 A partition P of a compact convex set K, is any finite set P = {S1, . . . , Sm}
of simplexes with disjoint non empty interiors, so that K =

⋃m
j=1 Sj. The set of vertices of

the partition P is denoted by V(P).

Note that K is then the convex hull generated by V(P).

The algorithm is based on Monte Carlo simulations, combined with a sequence of
approximations on compact sets K0, . . . , KT−1, determined by partitions P0, . . . ,PT−1. The
idea behind the algorithm is quite simple: Given approximations f̃t, of ft, one first get
L̂1t, L̂2t, Ât, ∆̂t, Ût and f̂t−1, by estimating these functions at every vertices x ∈ V(Pt−1),
using Monte Carlo simulations, and then, one uses a linear interpolation to extend them at
any point x ∈ Kt−1. More precisely, one may proceed through the following steps.

B.1 Algorithm

• Set f̃T = fT ;
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• For each t = T, . . . , 1

– Generate ξ1,t, . . . , ξNt,t according to µt;

– For every s ∈ V(Pt−1), calculate

L̂1t(s) =
1

Nt

Nt∑
i=1

ωt(s, ξi,t)

L̂2t(s) =
1

Nt

Nt∑
i=1

ωt(s, ξi,t)ωt(s, ξi,t)
>

Ât(s) = L̂2t(s)− L̂1t(s)L̂1t(s)
>

ψ̂t(s) = Ât(s)
−1 1

Nt

Nt∑
i=1

{ωt(s, ξi,t)− L̂1t(s)}f̃t{ωt(s, ξi,t)}

Ût(s, x) = 1− {L̂1t(s)− βt−1s/βt}>Ât(s)−1{x− L̂1t(s)}

f̂t−1(s) =
βt
βt−1

1

Nt

Nt∑
i=1

Ût{s, ωt(s, ξi,t)}f̃t{ωt(s, ξi,t)}.

– Interpolate linearly ∆̂t and f̂t−1 over Kt−1 and extend it to all of X.

A detailed description of the linear interpolation implementation techniques is given
below, but first, the following result adapted from Del Moral et al. (2006), confirms that the
algorithm produces good approximations.

Theorem 2 Suppose that fT is continuous and that for all 1 ≤ t ≤ T , ωt(·, ξ) are continuous
for a fixed ξ. Let K0 be a given compact convex subset of X. Let ε > 0 be given. Then one can
find compact convex sets K1, . . . , Kn−1 ⊂ X, partitions P0, . . .Pn−1 generating respectively
K0, . . . , Kn−1, and integers N10, . . . , Nn0, so that for the simple interpolation method,

max
1≤k≤n

‖ψt − ψ̃t‖Kt−1 < ε,

and
max

0≤k≤n−1
‖ft − f̃t‖Kt < ε,

whenever N1 ≥ N10, . . . , Nn ≥ Nn0.

B.2 Linear interpolations

Definition B.2 Given a function h and a partition P of K, a linear interpolation of h over
P is the (unique) function g̃ defined in the following way:
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If S ∈ P is a simplex with vertices x1, . . . , xd+1, then set

h̃(x) =
d+1∑
i=1

λih(xi),

where the barycenters {λ1, . . . , λd+1} are the unique solution of

x =
d+1∑
i=1

λixi,

d+1∑
i=1

λi = 1, λi ∈ [0, 1], i = 1, . . . d+ 1.

If x 6∈ K, let xK be the (unique) closest point to x that belongs to K, and set h̃(x) = h̃(xK).
Uniqueness follows from the convexity of K and the strict convexity of the Euclidean norm.

Remark B.1 Note that since each xi is extreme in S, the unique solution of

xi =
d+1∑
j=1

λjxj,
d+1∑
j=1

λj = 1, λj ∈ [0, 1], j = 1, . . . d+ 1,

is λi = 1 and λj = 0 for all j 6= i, yielding g̃(xi) = g(xi) for all 1 ≤ i ≤ m. Moreover, g̃ is
affine on each simplex, justifying the term “linear interpolation”.

Finally, g̃ is continuous and bounded on X and

sup
x∈K
|g(x)− g̃(x)| ≤ ω(g,K,mesh(P)),

where
mesh(P) = max

S∈P
sup
x,z∈S
‖x− z‖

and ω(g,K, δ) is the modulus of continuity of g over K, i.e.

ω(g,K, δ) = sup
x,z∈K, ‖x−z‖≤δ

|g(x)− g(z)|.

Example B.1 Suppose d = 1. Then the linear interpolation g̃ of a monotone (respectively
convex) function g on K = [a, b] is monotone (respectively convex). To see that, set ai =
a+ i(b−a)/m, i = 0, . . . ,m and let P be the partition given by P = {[ai−1, ai]; i = 1, . . . ,m}.
Set ∆i = g(ai)−g(ai−1)

ai−ai−1
, 1 ≤ i ≤ m. Then the linear interpolation of g over K is given by

h̃(x) =


h(a), x ≤ a,
h(ai) + (x− ai)∆i+1, x ∈ [ai, ai+1], i = 0, . . . ,m− 1,
h(b) x ≥ b.

If h is monotone, the slopes ∆i all have the same sign, so h̃ has the same monotonicity. If
h is convex, the slopes ∆i are non decreasing, so h̃ is also convex.
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Example B.2 Suppose d = 2. First define interpolation on [0, 1]2. Suppose that h is known
at points (0, 0), (0, 1), (1, 0) and (1, 1). If one wants to linearly interpolate h, as in Definition
B.2, a convenient choice for the partition P of [0, 1]2 is P = {S1, S2} where

S1 = {(x1, x2) ∈ [0, 1]2;x1 ≤ x2} S1 = {(x1, x2) ∈ [0, 1]2;x1 ≥ x2}.

Any x ∈ S1 can be uniquely written as

x = λ1(0, 1) + λ2(1, 1) + λ3(0, 0),

with λ2 = x1, λ1 = x2 − x1, and λ3 = 1− x2, so one can define

h̃(x) = λ1h(0, 1) + λ2h(1, 1) + λ3h(0, 0)

= h(0, 0) + x1{h(1, 1)− h(0, 1)}+ x2{h(0, 1)− h(0, 0)}.

Similarly, for any x ∈ S2, one obtains

h̃(x) = λ1h(0, 1) + λ2h(1, 1) + λ3h(0, 0)

= h(0, 0) + x1{h(1, 0)− h(0, 0)}+ x2{h(1, 1)− h(1, 0)}.

Suppose now that K = [a1, b1]× [a2, b2] is partition into smaller rectangles. On each
of these sub-rectangles R = [y1, y2] × [z1, z2], just use the linear interpolation on [0, 1]2 by
transforming x ∈ R into x′ = (x′1, x

′
2) ∈ [0, 1]2 through the mapping x′1 = x1−y1

y2−y1 , x
′
2 = x2−z1

z2−z1 .

Outside K, h̃ is defined as follows:

h̃(x) =



h̃(x1, a2) if x ∈ [a1, b1]× (−∞, a2)

h̃(x1, b2) if x ∈ [a1, b1]× (b2,∞)

h̃(a1, x2) if x ∈ (−∞, a1)× [a2, b2]

h̃(b1, x2) if x ∈ (b1,∞)× [a2, b2]

h̃(a1, a2) if x ∈ (−∞, a1)× (−∞, a2)

h̃(b1, a2) if x ∈ (b1,∞)× (−∞, a2)

h̃(a1, b2) if x ∈ (−∞, a1)× (b2,∞)

h̃(b1, b2) if x ∈ (b1,∞)× (b2,∞)

.

C Auxiliary results

Throughout this appendix, L2 = L2(Ω,F , P ) is the set of all random variables on (Ω,F)
which are square integrable.
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Proposition 1 Suppose that X is non negative random variable on (Ω,F , P ) such that
E(X) < ∞. Suppose G is a sub σ-algebra of F and let Z = E(X|G) ≥ 0, P almost surely.
Then for any non negative G-measurable random variable ξ, the following equality holds

E(ξX) = E(ξZ).

Proof In the case of bounded random variable ξ, the result follows from the very
definition of the conditional expectation. In particular it is true for ξn = min(n, ξ) ≥ 0, for
any n ≥ 1. Since ξn ↑ ξ, it follows from Beppo-Levy theorem that

E(ξX) = lim
n→∞

E(ξnX) = lim
n→∞

E(ξnZ) = E(ξZ).

Proposition 2 Suppose that ξ ∈ Rd and η ∈ R are L2 random variables in (Ω,F) and
suppose that A = E(ξξ>|G) is invertible, where G is a sub σ-algebra of F . Then ϕ ∈ Rd

minimizes E{(ϕ>ξ− η)2} over all ϕ ∈ G such that ϕ>ξ ∈ L2 if and only if ϕ = A−1b, where
b = E(ξη|G). In particular ϕ>ξ is square integrable.

Proof Set ϕ = A−1b. To prove that ϕ>ξ ∈ L2, note that it follows from Proposition
1 that

E
{

(ϕ>ξ)2
}

=
d∑
i=1

E(ϕ2
i ξ

2
i )

=
d∑
i=1

E{ϕ2
iE(ξ2

i |G)}

=
d∑
i=1

E(ϕ2
iAii)

= E(b>A−1b).

Since A is symmetric and positive definite, there exist a d × d matrix M ∈ G such
that M−1 = M> and a d× d diagonal matrix ∆ ∈ G such that A = M∆M>. Set ξ̃ = M>ξ
and b̃ = M>b. Then ∆ = E(ξ̃ξ̃>|G), b̃ = E(ξ̃η|G), E(ξ̃2

i |G) = ∆ii > 0 by hypothesis, and

b>A−1b = b̃>∆−1b̃

=
d∑
i=1

E2(ξ̃iη|G)

E(ξ̃2
i |G)

≤ dE(η2|G) a.s. ,
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from Cauchy-Schwarz inequality. Hence

E{(ϕ>ξ)2} ≤ pE(η2) <∞.

Next, let ψ be any random vector in G such that ψ>ξ ∈ L2. Then

E{(ψ>ξ − η)2} = E
[
E{(ψ>ξ − η)2|G}

]
,

and it is easy to check that

E{(ψ>ξ − η)2|G} = ψ>Aψ − 2ψ>b+ c

= (ψ − ϕ)>A(ψ − ϕ) + ϕ>Aϕ− 2ϕ>b+ c

= (ψ − ϕ)>A(ψ − ϕ) + E{(ϕ>ξ − η)2|G}.

Hence the result.

D Proof of the main results

In this section, we will prove the two main results, using the propositions proved in Appendix
C.

D.1 Proof of Theorem 1

Recall that the process ϕ = (ϕt)
T
t=0 is predictable. For any 1 ≤ t ≤ T , set ∆t = St −

E(St|Ft−1) and
Gt = ϕt

>∆t − {Ct − E(Ct|Ft−1)} , (9)

where CT = C and

βt−1Ct−1 = E(βtCt|Ft−1)− ϕt>E(βtSt − βt−1St−1|Ft−1). (10)

It follows from equations (9)-(10) that

βtGt = βt−1Ct−1 − βtCt + ϕt
>(βtSt − βt−1St−1), 1 ≤ t ≤ T. (11)

Note that the Gt ∈ Ft and E(Gt|Ft−1) = 0, for all 1 ≤ t ≤ T . Moreover, using
(4)–(5) and (11), one gets

T∑
t=1

βtGt = C0 − βTC +
T∑
t=1

ϕ>t (βtSt − βt−1St−1) = G+ C0 − V0
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and E(G) = E(G|F0) = C0 − V0, since E(Gt|Ft−1) = 0 for all t = 1, . . . , T . It also follows
from well known properties of conditional expectations that

E(G2) = E(G2|F0) = (C0 − V0)
2 +

T∑
t=1

E
(
β2
tG

2
t |F0

)
(12)

= (C0 − V0)
2 +

T∑
t=1

E
{
β2
t E

(
G2
t |Ft−1

)∣∣F0

}
.

Because Gt depends only on ϕt, . . . , ϕT through Ct, to minimize E(G2), it suffices to
find ϕT minimizing E (G2

T |F0), then to find ϕT−1 minimizing E
(
G2
T−1|F0

)
and so on. Doing

so, we will find the minimum since each term is non negative. Having found the optimal ϕ,
one obtains that the optimal choice for V0 is C0.

First, note that GT = ξ>T ϕT − ηT , where ξT = ∆T = ST − E(ST |FT−1) and ηT =
C − E(C|FT−1) = CT − E(CT |FT−1).

Using Proposition 2, one can conclude that

ϕT = (ΣT )−1E (ξTηT |FT−1) = (ΣT )−1E (ξTCT |FT−1)

minimizes E(G2
T |F0). Having found the optimal ϕT , one can define CT−1 as in (10).

Suppose now that ϕT , . . . , ϕt have been defined and define Gt−1 and Ct−1 according
to (9) and (10). Then one can use again Proposition (2) to conclude ϕt−1 given by (6)
minimizes E(G2

t−1|F0).

Therefore the risk E(G2|F0) is minimized by choosing the ϕt’s according to (6).
Finally, using (12), the optimal value of V0 is C0. This completes the proof.

D.2 Proof of Corollary 1

The proof of the representation Ct−1 = E(CtUt|Ft−1) follows directly from Theorem 1. In
fact, using equations (6) and (7), one obtains

βt−1Ct−1 = E(βtCt|Ft−1)− ϕ>t E(βtSt − βt−1St−1|Ft−1)

= E(βtCt|Ft−1)

−E
{
Ct∆

>
t (Σt)

−1E(βtSt − βt−1St−1|Ft−1)
∣∣Ft−1

}
= E(CtUt|Ft−1),

where Ut is defined by (8). One can easily see that E(Ut|Ft−1) = 1, so (Mt)
T
t=0 is a martingale.

It only remains to prove that βtStMt is a martingale. All is needed is to prove
that E(βtStUt|Ft−1) = βt−1St−1. To this end, let t ∈ {1, . . . , T} be given and set ξt =
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E (βtSt − βt−1St−1|Ft−1). Note that

βtStUt = βtSt − {∆t + E(St|Ft−1)}∆>t (Σt)
−1 ξt.

Next, since E(∆t|Ft−1) = 0, one has

E(βtStUt|Ft−1) = E(βtSt|Ft−1)− E(∆t∆
>
t |Ft−1) (Σt)

−1 ξt

−E(St|Ft−1)E(∆>t |Ft−1) (Σt)
−1 ξt

= E(βtSt|Ft−1)− Σt (Σt)
−1 ξt − 0

= E(βtSt|Ft−1)− ξt = βt−1St−1.

Hence the result.
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Table 8: Marginal distribution, copula and Kendall’s tau for entire period (1997–2006).

Fund Marginal Copula Kendall’s tau
EDHEC-Convertible Arbitrage GM(3) Frank 0.0927
EDHEC-CTA Global GM(2) Gumbel 0.0552
EDHEC-Distressed Securities GM(2) Clayton 0.2311
EDHEC-Emerging Markets Johnson Frank 0.3394
EDHEC-Equity Market Neutral GM(2) Frank 0.2302
EDHEC-Event Driven GM(3) Frank 0.3724
EDHEC-Fixed Income Arbitrage GM(3) Frank 0.0997
EDHEC-Global Macro GM(3) Frank 0.3316
EDHEC-Long/Short Equity GM(2) Student 0.4529
EDHEC-Merger Arbitrage GM(2) Frank 0.2956
EDHEC-Relative Value GM(3) Gaussian 0.3324
EDHEC-Short Selling GM(2) Frank -0.4636
EDHEC-Funds of Funds GM(4) Gaussian 0.3536
HFRI Convertible Arbitrage Index GM(3) Frank 0.1048
HFRI Distressed Securities Index GM(3) Clayton 0.2160
HFRI Emerging Markets (Total) Johnson Student 0.3269
HFRI Equity Hedge Index GM(2) Clayton 0.4530
HFRI Equity Market Neutral Index GM(3) Frank 0.1345
HFRI Equity Non-Hedge Index GM(3) Student 0.4770
HFRI Event-Driven Index GM(3) Clayton 0.3700
HFRI Fixed Income (Total) GM(3) Frank 0.3168
HFRI Fixed Income: Arbitrage Index GM(3) Ind. 0
HFRI Fixed Income: High Yield Index GM(2) Student 0.2036
HFRI FOF: Conservative Index Johnson Frank 0.3021
HFRI FOF: Diversified Index GM(3) Frank 0.2945
HFRI FOF: Market Defensive Index GM(2) Frank 0.1020
HFRI FOF: Strategic Index GM(3) Frank 0.3555
HFRI FOF Composite Index GM(3) Frank 0.3327
HFRI FOF Composite Index (Off.) GM(3) Frank 0.3180
HFRI Fund Weighted Composite Index GM(3) Clayton 0.4403
HFRI Macro Index GM(2) Clayton 0.2364
HFRI Merger Arbitrage Index GM(3) Frank 0.2568
HFRI Regulation D Index GM(3) Gaussian 0.2210
HFRI Relative Value Arbitrage Index GM(3) Gaussian 0.2567
HFRI Short Selling Index GM(3) Frank -0.4520
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Table 9: Marginal distribution, copula and Kendall’s tau for first sub-period (1997–2001).

Fund Marginal Copula Kendall’s tau
EDHEC-Convertible Arbitrage GM(3) Gumbel 0.0777
EDHEC-CTA Global GM(2) Ind. 0
EDHEC-Distressed Securities GM(3) Clayton 0.2309
EDHEC-Emerging Markets GM(3) Frank 0.3241
EDHEC-Equity Market Neutral GM(2) Gaussian 0.3691
EDHEC-Event Driven Johnson Clayton 0.3793
EDHEC-Fixed Income Arbitrage GM(3) Frank 0.1268
EDHEC-Global Macro GM(3) Frank 0.4198
EDHEC-Long/Short Equity GM(2) Frank 0.4868
EDHEC-Merger Arbitrage GM(4) Gumbel 0.2951
EDHEC-Relative Value GM(3) Clayton 0.3454
EDHEC-Short Selling GM(2) Frank -0.4695
EDHEC-Funds of Funds GM(2) Frank 0.3934
HFRI Convertible Arbitrage Index GM(3) Frank 0.1011
HFRI Distressed Securities Index GM(3) Gaussian 0.1939
HFRI Emerging Markets (Total) GM(3) Frank 0.3148
HFRI Equity Hedge Index GM(2) Frank 0.4880
HFRI Equity Market Neutral Index GM(2) Frank 0.1607
HFRI Equity Non-Hedge Index Johnson Frank 0.4962
HFRI Event-Driven Index GM(3) Frank 0.3461
HFRI Fixed Income (Total) GM(3) Frank 0.3078
HFRI Fixed Income: Arbitrage Index GM(3) Ind. 0
HFRI Fixed Income: High Yield Index GM(3) Frank 0.2367
HFRI FOF: Conservative Index GM(3) Frank 0.3310
HFRI FOF: Diversified Index Johnson Frank 0.2915
HFRI FOF: Market Defensive Index GM(3) Frank 0.1257
HFRI FOF: Strategic Index GM(3) Frank 0.3600
HFRI FOF Composite Index GM(2) Frank 0.3427
HFRI FOF Composite Index (Off.) GM(2) Frank 0.3276
HFRI Fund Weighted Composite Index GM(3) Frank 0.4567
HFRI Macro Index GM(2) Clayton 0.2975
HFRI Merger Arbitrage Index Johnson Gumbel 0.2285
HFRI Regulation D Index GM(3) Gaussian 0.2736
HFRI Relative Value Arbitrage Index GM(3) Frank 0.2705
HFRI Short Selling Index GM(2) Frank -0.4402

36



Table 10: Marginal distribution, copula and Kendall’s tau for second sub-period (2002–2006).

Fund Marginal Copula Kendall’s tau
EDHEC-Convertible Arbitrage GM(3) Gaussian 0.0885
EDHEC-CTA Global GM(2) Frank 0.0743
EDHEC-Distressed Securities GM(2) Gaussian 0.2224
EDHEC-Emerging Markets GM(3) Frank 0.2710
EDHEC-Equity Market Neutral Johnson Frank 0.0896
EDHEC-Event Driven Johnson Gaussian 0.3052
EDHEC-Fixed Income Arbitrage GM(3) Ind. 0
EDHEC-Global Macro GM(2) Gaussian 0.1987
EDHEC-Long/Short Equity GM(2) Clayton 0.3377
EDHEC-Merger Arbitrage GM(3) Clayton 0.3126
EDHEC-Relative Value GM(2) Clayton 0.2973
EDHEC-Short Selling GM(2) Frank -0.4266
EDHEC-Funds of Funds Johnson Clayton 0.2470
HFRI Convertible Arbitrage Index GM(3) Gumbel 0.0743
HFRI Distressed Securities Index GM(2) Clayton 0.2109
HFRI Emerging Markets (Total) GM(3) Frank 0.2797
HFRI Equity Hedge Index GM(3) Frank 0.2993
HFRI Equity Market Neutral Index GM(2) Frank 0.0874
HFRI Equity Non-Hedge Index GM(2) Frank 0.3687
HFRI Event-Driven Index GM(3) Gaussian 0.3377
HFRI Fixed Income (Total) GM(3) Gaussian 0.2303
HFRI Fixed Income: Arbitrage Index GM(3) Ind. 0
HFRI Fixed Income: High Yield Index GM(2) Gumbel 0.1311
HFRI FOF: Conservative Index GM(2) Frank 0.2164
HFRI FOF: Diversified Index GM(2) Clayton 0.2437
HFRI FOF: Market Defensive Index GM(2) Frank 0.0831
HFRI FOF: Strategic Index GM(3) Clayton 0.2885
HFRI FOF Composite Index GM(2) Clayton 0.2383
HFRI FOF Composite Index (Off.) GM(2) Clayton 0.2164
HFRI Fund Weighted Composite Index GM(2) Frank 0.3243
HFRI Macro Index GM(2) Gumbel 0.0787
HFRI Merger Arbitrage Index GM(2) Clayton 0.2984
HFRI Regulation D Index Johnson Clayton 0.1552
HFRI Relative Value Arbitrage Index GM(2) Clayton 0.2328
HFRI Short Selling Index GM(2) Frank -0.4319
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Table 11: Initial investment V0 in the replication of EDHEC and HFRI indices for both
reserve assets over the entire period (1997–2006).

Fund V0

Reserve 1 Reserve 2
EDHEC-Convertible Arbitrage 99.88746927 100.3546058
EDHEC-CTA Global 99.22395238 100.2822217
EDHEC-Distressed Securities 100.0433158 100.5343205
EDHEC-Emerging Markets 99.20994993 100.5118262
EDHEC-Equity Market Neutral 100.0923959 100.3305248
EDHEC-Event Driven 99.99904541 100.5027729
EDHEC-Fixed Income Arbitrage 99.68524183 100.0620038
EDHEC-Global Macro 99.83012861 100.4453958
EDHEC-Long/Short Equity 99.91948345 100.5253251
EDHEC-Merger Arbitrage 99.94738788 100.3347095
EDHEC-Relative Value 100.044295 100.3582369
EDHEC-Short Selling 97.91881695 99.96879961
EDHEC-Funds of Funds 99.88679097 100.4167799
Percentage of V0 under 100$ 76.92% 7.69%
HFRI Convertible Arbitrage Index 99.9104685 100.321649
HFRI Distressed Securities Index 99.9100765 100.446987
HFRI Emerging Markets (Total) 99.1617091 100.497154
HFRI Equity Hedge Index 99.760536 100.537810
HFRI Equity Market Neutral Index 99.8160615 100.178244
HFRI Equity Non-Hedge Index 99.2694693 100.529065
HFRI Event-Driven Index 99.8678282 100.443743
HFRI Fixed Income (Total) 99.8533463 100.180401
HFRI Fixed Income: Arbitrage Index 99.4744962 99.9612590
HFRI Fixed Income: High Yield Index 99.4606113 100.118320
HFRI FOF: Conservative Index 99.8019766 100.171418
HFRI FOF: Diversified Index 99.5428340 100.224120
HFRI FOF: Market Defensive Index 99.6295097 100.290348
HFRI FOF: Strategic Index 99.3496291 100.310468
HFRI FOF Composite Index 99.6186407 100.240115
HFRI FOF Composite Index (Off.) 99.4353982 100.150926
HFRI Fund Weighted Composite Index 99.7328707 100.309632
HFRI Macro Index 99.6917718 100.369990
HFRI Merger Arbitrage Index 99.8584340 100.285088
HFRI Regulation D Index 99.9386375 100.681884
HFRI Relative Value Arbitrage Index 100.055301 100.346992
HFRI Short Selling Index 97.5229297 99.8979799
Percentage of V0 under 100$ 95.45% 9.09%
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Table 12: Initial investment V0 in the replication of EDHEC and HFRI indices for both
reserve assets for first sub-period (1997–2001).

Fund V0

Reserve 1 Reserve 2
EDHEC-Convertible Arbitrage 100.2944853 100.8987467
EDHEC-CTA Global 99.46788172 100.9472588
EDHEC-Distressed Securities 99.90059626 100.720508
EDHEC-Emerging Markets 98.69192451 100.9835661
EDHEC-Equity Market Neutral 100.3954179 100.7210641
EDHEC-Event Driven 100.0609365 100.868357
EDHEC-Fixed Income Arbitrage 99.59077798 100.2017969
EDHEC-Global Macro 99.97142407 100.979203
EDHEC-Long/Short Equity 100.1375749 101.127196
EDHEC-Merger Arbitrage 100.2331299 100.7861365
EDHEC-Relative Value 100.2203665 100.6965085
EDHEC-Short Selling 99.03421453 102.1095181
EDHEC-Funds of Funds 99.96160577 100.9516279
Percentage of V0 under 100$ 53.84% 0.00%
HFRI Convertible Arbitrage Index 100.2829484 100.8055676
HFRI Distressed Securities Index 99.72936197 100.6646377
HFRI Emerging Markets (Total) 98.09524276 100.9525596
HFRI Equity Hedge Index 100.056951 101.5042088
HFRI Equity Market Neutral Index 100.038409 100.6734399
HFRI Equity Non-Hedge Index 99.05531596 101.2392224
HFRI Event-Driven Index 99.97242706 100.980233
HFRI Fixed Income (Total) 99.75412401 100.3504572
HFRI Fixed Income: Arbitrage Index 99.3254573 100.0324407
HFRI Fixed Income: High Yield Index 99.31890751 100.1544936
HFRI FOF: Conservative Index 99.86644524 100.4768867
HFRI FOF: Diversified Index 99.52279888 100.9361689
HFRI FOF: Market Defensive Index 99.80508973 100.7630553
HFRI FOF: Strategic Index 99.28992499 100.9862717
HFRI FOF Composite Index 99.60846434 100.7634087
HFRI FOF Composite Index (Off.) 99.36188049 100.7094413
HFRI Fund Weighted Composite Index 99.75155852 100.9238131
HFRI Macro Index 99.76812518 100.8842713
HFRI Merger Arbitrage Index 100.1469401 100.7111258
HFRI Regulation D Index 100.5815208 101.5412257
HFRI Relative Value Arbitrage Index 100.1412334 100.6153432
HFRI Short Selling Index 98.51962283 100.8070637
Percentage of V0 under 100$ 72.72% 0.00%
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Table 13: Initial investment V0 in the replication of EDHEC and HFRI indices for both
reserve assets for second sub-period (2002–2006).

Fund V0

Reserve 1 Reserve 2
EDHEC-Convertible Arbitrage 99.54307232 99.91754606
EDHEC-CTA Global 99.00591261 99.85286557
EDHEC-Distressed Securities 100.2752537 100.645535
EDHEC-Emerging Markets 100.0757102 100.4515871
EDHEC-Equity Market Neutral 99.85680498 99.99383759
EDHEC-Event Driven 99.87363087 100.3162115
EDHEC-Fixed Income Arbitrage 99.88868645 100.0907229
EDHEC-Global Macro 99.84474995 100.2384539
EDHEC-Long/Short Equity 99.60337666 100.1087833
EDHEC-Merger Arbitrage 99.70200103 99.99705359
EDHEC-Relative Value 99.81967336 100.109444
EDHEC-Short Selling 98.05685558 99.04396197
EDHEC-Funds of Funds 99.74332198 100.0559835
Percentage of V0 under 100$ 84.62% 38.46%
HFRI Convertible Arbitrage Index 99.60821174 99.93483497
HFRI Distressed Securities Index 100.2391759 100.6380069
HFRI Emerging Markets (Total) 100.0572944 100.8595669
HFRI Equity Hedge Index 99.58364075 100.014334
HFRI Equity Market Neutral Index 99.66759956 99.85722405
HFRI Equity Non-Hedge Index 99.37314042 100.2792862
HFRI Event-Driven Index 99.80612072 100.3402519
HFRI Fixed Income (Total) 99.95688427 100.1391919
HFRI Fixed Income: Arbitrage Index 100.0072767 100.1695353
HFRI Fixed Income: High Yield Index 100.0771647 100.3417642
HFRI FOF: Conservative Index 99.82149692 100.0377755
HFRI FOF: Diversified Index 99.7547993 100.0216789
HFRI FOF: Market Defensive Index 99.56207483 99.97381601
HFRI FOF: Strategic Index 99.62610152 99.96801828
HFRI FOF Composite Index 99.73892366 100.0563079
HFRI FOF Composite Index (Off.) 99.68519975 100.0475484
HFRI Fund Weighted Composite Index 99.78329249 100.2000232
HFRI Macro Index 99.73199639 100.3030235
HFRI Merger Arbitrage Index 99.66510204 100.0050475
HFRI Regulation D Index 99.47794411 100.3049513
HFRI Relative Value Arbitrage Index 99.94588108 100.1510614
HFRI Short Selling Index 98.37750341 99.15058551
Percentage of V0 under 100$ 81.81% 22.73%
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Figure 2: Mean return of replication for both reserve assets vs mean return for EDHEC
(top) and HFRI (bottom) indices (2002–2006)
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Figure 3: Volatility of the replication with each reserve asset vs target volatility for EDHEC
(top) and HFRI (bottom) indices (2002–2006)

42



Figure 4: Kendall’s tau of the replication with each reserve asset vs target Kendall’s tau for
EDHEC (top) and HFRI (bottom) indices (2002–2006)
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Figure 5: Skewness of the replication with each reserve asset vs target skewness for EDHEC
(top) and HFRI (bottom) indices (2002–2006)
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Figure 6: Kurtosis of the replication with each reserve asset vs target kurtosis for EDHEC
(top) and HFRI (bottom) indices (2002–2006)
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Table 14: Transaction costs (basis points) of the EDHEC and HFRI indices for each of two
reserve assets over the entire period (1997–2006).

Fund Transaction costs
Reserve 1 Reserve 2

EDHEC-Convertible Arbitrage -3.5760 -2.6937
EDHEC-CTA Global -5.1209 -3.6392
EDHEC-Distressed Securities -3.1461 -2.9916
EDHEC-Emerging Markets -10.436 -8.5692
EDHEC-Equity Market Neutral -1.1785 -1.2782
EDHEC-Event Driven -4.9894 -3.7833
EDHEC-Fixed Income Arbitrage -5.6955 -3.5177
EDHEC-Global Macro -3.1539 -3.5487
EDHEC-Long/Short Equity -3.5405 -3.5815
EDHEC-Merger Arbitrage -3.5994 -2.7794
EDHEC-Relative Value -2.1994 -1.8390
EDHEC-Short Selling -14.472 -12.690
EDHEC-Funds of Funds -2.5685 -2.7680
Average of the transaction costs over the indices -4.8982 -4.1292
HFRI Convertible Arbitrage Index -2.9748 -2.3503
HFRI Distressed Securities Index -3.7409 -3.1175
HFRI Emerging Markets (Total) -10.409 -11.231
HFRI Equity Hedge Index -5.2928 -5.5529
HFRI Equity Market Neutral Index -1.9814 -1.8804
HFRI Equity Non-Hedge Index -7.6039 -7.7172
HFRI Event-Driven Index -3.7228 -3.3989
HFRI Fixed Income (Total) -2.8376 -2.2500
HFRI Fixed Income: Arbitrage Index -6.1764 -4.3318
HFRI Fixed Income: High Yield Index -6.4438 -3.6841
HFRI FOF: Conservative Index -2.4110 -2.1042
HFRI FOF: Diversified Index -4.7314 -4.0279
HFRI FOF: Market Defensive Index -3.6750 -2.8050
HFRI FOF: Strategic Index -6.2475 -6.1420
HFRI FOF Composite Index -3.7260 -3.9430
HFRI FOF Composite Index (Off.) -4.6198 -4.6972
HFRI Fund Weighted Composite Index -4.2733 -4.2082
HFRI Macro Index -3.3393 -3.5459
HFRI Merger Arbitrage Index -3.9681 -2.8237
HFRI Regulation D Index -3.5011 -3.7099
HFRI Relative Value Arbitrage Index -2.4469 -1.7284
HFRI Short Selling Index -19.302 -17.595
Average of the transaction costs over the indices -5.1557 -4.6747
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Table 15: Hedging errors (basis per points) of the EDHEC and HFRI indices for each of two
reserve assets over the entire period (1997–2006).

Fund Hedging error
Reserve 1 Reserve 2

EDHEC-Convertible Arbitrage -5.022966343 2.689724779
EDHEC-CTA Global -8.058744042 5.645421806
EDHEC-Distressed Securities 4.124754378 19.47155871
EDHEC-Emerging Markets -11.21163859 13.259774
EDHEC-Equity Market Neutral -1.471590683 1.56198415
EDHEC-Event Driven -3.020763751 6.22406221
EDHEC-Fixed Income Arbitrage -5.177575949 3.189905767
EDHEC-Global Macro -4.053867497 4.395207
EDHEC-Long/Short Equity 4.47809413 3.734220311
EDHEC-Merger Arbitrage -3.442046302 2.242736202
EDHEC-Relative Value -1.10554998 2.836227619
EDHEC-Short Selling -24.29013217 18.8506452
EDHEC-Funds of Funds 2.033494462 8.749446216
Average of the hedging errors over the indices -4.324502488 7.142377997
HFRI Convertible Arbitrage Index -4.675913708 2.609102503
HFRI Distressed Securities Index 3.722398591 16.58984332
HFRI Emerging Markets (Total) 7.097564556 12.66959323
HFRI Equity Hedge Index -1.643622346 11.19037495
HFRI Equity Market Neutral Index -2.258515275 2.472596466
HFRI Equity Non-Hedge Index 7.453328183 4.603254198
HFRI Event-Driven Index 2.862294451 12.29110626
HFRI Fixed Income (Total) -2.603139406 2.402853856
HFRI Fixed Income: Arbitrage Index -4.087640896 4.977681096
HFRI Fixed Income: High Yield Index 2.638073684 2.387582196
HFRI FOF: Conservative Index -2.598299696 2.863947585
HFRI FOF: Diversified Index -5.7248332 -2.263005293
HFRI FOF: Market Defensive Index -7.19063663 3.850690389
HFRI FOF: Strategic Index -8.584197214 7.510126485
HFRI FOF Composite Index -4.800243375 3.856993799
HFRI FOF Composite Index (Off.) -7.540482923 5.850515308
HFRI Fund Weighted Composite Index 2.244013529 15.42135204
HFRI Macro Index -2.491140954 7.274298256
HFRI Merger Arbitrage Index -3.635490602 2.457954561
HFRI Regulation D Index -4.354249204 3.999422953
HFRI Relative Value Arbitrage Index -1.757126584 4.245628798
HFRI Short Selling Index -30.41350326 21.98728382
Average of the hedging errors over the indices -3.106425558 6.989782153
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Table 16: Hedging errors (basis per points) of the EDHEC and HFRI indices for each of two
reserve assets over the first sub-period (1997–2001).

Fund Hedging error
Reserve 1 Reserve 2

EDHEC-Convertible Arbitrage -5.854414114 7.331726159
EDHEC-CTA Global -3.261304874 15.48344278
EDHEC-Distressed Securities -10.63141111 18.21688996
EDHEC-Emerging Markets -41.58467617 10.40839934
EDHEC-Equity Market Neutral 0.216747837 4.117171088
EDHEC-Event Driven 5.530304616 15.02572238
EDHEC-Fixed Income Arbitrage -10.48685482 12.72732957
EDHEC-Global Macro -1.950399253 10.81371999
EDHEC-Long/Short Equity -5.472302407 8.63029379
EDHEC-Merger Arbitrage -7.268360093 9.778517204
EDHEC-Relative Value 12.74567524 8.974747668
EDHEC-Short Selling 9.60796941 55.3754198
EDHEC-Funds of Funds -12.45957574 9.552013774
Average of the hedging errors over the indices -5.4514308 14.34118411
HFRI Convertible Arbitrage Index -4.443351952 3.162705469
HFRI Distressed Securities Index -9.790346341 17.16305189
HFRI Emerging Markets (Total) -35.23487925 15.15013559
HFRI Equity Hedge Index -15.50411415 10.73944888
HFRI Equity Market Neutral Index -3.470329903 4.313327157
HFRI Equity Non-Hedge Index -23.74524481 12.04989301
HFRI Event-Driven Index -14.22269812 2.919363113
HFRI Fixed Income (Total) -8.573296126 5.631050796
HFRI Fixed Income: Arbitrage Index -4.419486285 7.911636813
HFRI Fixed Income: High Yield Index -11.13974405 8.52434995
HFRI FOF: Conservative Index -0.431323396 5.769353502
HFRI FOF: Diversified Index -35.19300862 10.4684057
HFRI FOF: Market Defensive Index -10.3549352 11.11226975
HFRI FOF: Strategic Index -12.24470309 11.52847099
HFRI FOF Composite Index -7.634859635 9.191341753
HFRI FOF Composite Index (Off.) -9.434687073 11.45793373
HFRI Fund Weighted Composite Index -24.92998374 8.097748863
HFRI Macro Index 3.853207823 15.60074834
HFRI Merger Arbitrage Index -3.887143693 5.073019858
HFRI Regulation D Index -2.431374814 13.42772207
HFRI Relative Value Arbitrage Index -12.36688683 -0.033279555
HFRI Short Selling Index -11.04287744 4.216592611
Average of the hedging errors over the indices -11.66554849 8.794331377
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Table 17: Hedging errors (basis per points) of the EDHEC and HFRI indices for each of two
reserve assets over the second sub-period (2002–2006).

Fund Hedging error
Reserve 1 Reserve 2

EDHEC-Convertible Arbitrage -0.216644211 14.71418971
EDHEC-CTA Global -6.582901453 36.52509979
EDHEC-Distressed Securities -1.016305328 13.72616412
EDHEC-Emerging Markets -10.13043018 31.53349596
EDHEC-Equity Market Neutral -1.061827125 5.534718588
EDHEC-Event Driven 6.84618159 12.12860342
EDHEC-Fixed Income Arbitrage -0.469146864 9.667485841
EDHEC-Global Macro -0.423280278 15.97182143
EDHEC-Long/Short Equity -4.781157282 11.93987295
EDHEC-Merger Arbitrage 2.432702745 11.46724918
EDHEC-Relative Value 1.392743596 6.816342792
EDHEC-Short Selling 8.422391583 44.59416583
EDHEC-Funds of Funds -0.055444422 12.87295253
Average of the hedging errors over the indices -0.434085972 17.49939709
HFRI Convertible Arbitrage Index 0.262326757 12.38729712
HFRI Distressed Securities Index 0.409148738 14.75409472
HFRI Emerging Markets (Total) -9.733473043 18.61313588
HFRI Equity Hedge Index -7.44974449 20.13641716
HFRI Equity Market Neutral Index -0.864838511 7.778622358
HFRI Equity Non-Hedge Index -12.1917044 22.30909531
HFRI Event-Driven Index 2.282364634 16.12105281
HFRI Fixed Income (Total) 0.028468682 4.514146651
HFRI Fixed Income: Arbitrage Index -0.000830608 8.164211829
HFRI Fixed Income: High Yield Index 0.197970856 10.94636336
HFRI FOF: Conservative Index -3.168935239 6.353466396
HFRI FOF: Diversified Index -0.756117028 12.47152293
HFRI FOF: Market Defensive Index -4.356542614 12.3839458
HFRI FOF: Strategic Index -5.764923859 19.62428265
HFRI FOF Composite Index -0.639004576 8.640850198
HFRI FOF Composite Index (Off.) -0.945047981 9.668544712
HFRI Fund Weighted Composite Index -4.808300645 13.62398725
HFRI Macro Index 1.031221433 30.93949304
HFRI Merger Arbitrage Index 2.456653636 12.85418557
HFRI Regulation D Index 0.291293742 28.74394205
HFRI Relative Value Arbitrage Index 0.400473588 7.062009818
HFRI Short Selling Index 7.951857962 38.58089671
Average of the hedging errors over the indices -1.607621953 15.30325292
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