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Predictability and ‘Good Deals’ in Currency 
Markets 

 
 

This paper studies predictability of currency returns over the period 1971-2006. We 
examine whether predictability is significant both from an economic and a statistical 
point of view. To assess economic significance, we construct upper bounds on the 
explanatory power of predictive regressions. The upper bounds are motivated by no-
good deal restrictions. To assess the statistical significance of violations of these 
bounds, we bootstrap the coefficient of determination R2 in predictive regressions and 
we generate its posterior distribution using a Gibbs sampling technique. The evidence 
on economic and statistical significance is mixed across periods but it is somewhat 
weaker in the final part of the sample period. Moreover, strategies that attempt to 
exploit excess-predictability are very sensitive to transaction costs, rendering large 
scale risk-adjusted profits very unlikely. 

 

 

1. Introduction 

 

In a literature that spans more than thirty years, various studies have reported that 

filter rules, moving average crossover rules, and other technical trading rules often 

result in statistically significant trading profits in currency markets. Beginning with 

Dooley and Shafer (1976, 1984) and continuing with Sweeney (1986), Levich and 

Thomas (1993), Neely, Weller and Dittmar (1997), Chang and Osler (1999), Gencay 

(1999), LeBaron (1999), Olson (2004), and Schulmeister (2006), among others, this 

evidence casts doubts on the simple efficient market hypothesis, even though it is not 

incompatible with efficient markets under time varying risk premia and predictability 

induced by time-varying expected returns. More recently, however, and contrary to 

the bulk of these earlier findings, Pukthuanthong, Levich and Thomas (2007) find 

evidence of diminishing profitability of currency trading rules over time. In a 

comprehensive re-evaluation of the evidence hitherto provided by the extant 
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literature, Neely, Weller and Joshua (2007), also find evidence of declining 

profitability of technical trading rules. 

 

In this paper, we directly assess whether currency returns are predictable to an extent 

that implies violation of the efficient market hypothesis (henceforth, EMH) and 

whether the evidence against the EMH has changed over time. Our analysis entails 

assessing whether economically significant predictability in currency returns is 

significant from a statistical point of view. To assess economic significance, we 

construct a theoretical time-varying upper bound on the explanatory power of 

predictive regressions. This bound, following Ross (2005), is ultimately a function of 

the squared maximal Sharpe ratio available in the economy and makes precise the 

intuitive connection between predictability, risk and reward for risk. Any violation of 

this bound would imply that, by exploiting predictability, it is possible to generate 

unduly high Sharpe ratios and thus, in the terminology introduced by Cochrane and 

Saà Requeio (2000), Cerný and Hodges (2001) and Cochrane (2001), the availability 

of ‘good deals’. To assess the statistical significance of violations of the 

predictability bound, we bootstrap the coefficient of determination in a simple 

predictive auto-regression and we generate its posterior distribution using a Gibbs 

sampling technique. Our approach, therefore, amounts to testing whether, given 

sensible restrictions on the volatility of either the single (if international financial 

markets are imperfectly integrated) or the many kernels (if international financial 

markets are imperfectly integrated) that price the assets, currency return 

predictability can be exploited to reliably generate ‘good deals’. 

 



4 
 

In a stock market setting, related empirical literature includes the work of Campbell 

and Thompson (2005) and, with an emphasis on the role of conditioning information, 

of Stremme, Basu, and Abhyankar (2005). Earlier work that captured the empirical 

link between predictability and risk (and thus reward for risk) is Pesaran and 

Timmermann’s (1995) study of stock predictability at times of high and low market 

volatility. While these authors empirically exploit the link between the economy 

maximal Sharpe ratio and the amount of admissible predictability, they do not 

directly test for violations of the EMH. This is instead the approach we take here and 

it represents the main contribution of the paper. As pointed out by Taylor (2005), 

currency strategies tend to be by far more profitable than strategies that attempt to 

exploit the predictability of other asset classes. It is therefore rather surprising that 

this approach has not been previously attempted in a study of the efficiency of the 

currency market. Empirically, we find evidence of prolonged violations of the EMH, 

especially in the initial part of the sample period. We find that these violations are 

often statistically significant. We also find, however, that realistic levels of 

transaction costs, especially those arising as a result of ‘price pressure’, can account 

for much of these violations. Moreover, we find that predictability is less significant 

from a Bayesian perspective. The reduced significance in a Bayesian setting is due to 

the extra uncertainty associated to the prior distribution of the parameters, most 

notably the volatility of the currency returns.  

 

In the next section, we outline the theoretical relation between predictability and time 

varying expected returns, on one hand, and trading rule profitability, on the other 

hand. We also introduce Ross’ (2005) upper bound on the pricing kernel volatility 
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and we discuss its implications for the maximum amount of explanatory power of 

predictive regressions of currency returns compatible with foreign exchange market 

efficiency. In Section 3, we describe our dataset. In Section 4, we describe the simple 

rolling auto-regressions and autoregressive moving average models (ARMA) that we 

employ to capture predictability over time and how we construct empirical upper 

bounds, based on Ross’ (2005) theoretical bound, on their coefficient of 

determination. We also present a bootstrap experiment to test for the significance of 

violations of the predictability bound. In Section 5, we present back-of-the-envelope 

calculations of the impact of transaction costs on predictability. In Section 6, we 

construct the posterior distribution of the auto-regression coefficient of determination 

to evaluate the impact of Bayesian uncertainty. In the final Section, we summarize 

our main findings and offer conclusions.  

 

2. Predictability, Time-Varying Expected Returns and Pricing Kernel Volatility 

 

Trading rule profitability implies that returns are to some extent predictable. This 

predictability in turn can stem either from time varying expected returns, thus 

representing an equilibrium reward for risk, or from information contained in past 

prices unexploited by market participants. The former possibility is consistent with 

the notion that the currency market is efficient, whereas the latter is not. Clearly, 

being fully able to discriminate between these two possibilities requires an 

equilibrium asset pricing model. More formally, consider the following model of 

excess returns: 
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 111 +++ += tttr εµ         (1) 

Where 

 )()|( 11 tttt IIrE µµ == ++        (2) 

 

Here, tI  is the information set used for pricing at time t and 1+tε  is a conditionally 

zero-mean innovation. Then, following Ross (2005), we can write: 
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Variation in expected excess returns, in turn, can either come from variation in 

equilibrium risk premia, consistently with the EMH, or from variation in abnormal 

expected returns that have not been exploited by the posited rational investor and 

thus are at odds with the EMH. To discriminate between these two possibilities, one 

must specify what constitutes the model of the rational expected excess returns, and 

thus the rational component of 2
µσ . An equivalent way of representing this fact is to 

recognize that )()]([ 2
1

2
11

2
+++ ≤−= ttt EEE µµµσ µ  and that, as noted by Ross (2005), 

we can write: 
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The first inequality in (5) is based on an elementary result from descriptive statistics, 

while the second inequality follows from the fact that, under no-arbitrage and in a 

friction-less economy, the pricing kernel satisfies ),()1( 111 +++ += ttft mrCovRµ . 

Using (5) in (4), we see that predictability is bounded from above by the amount of 

volatility of the kernel that prices the assets: 
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The pricing kernel, in an EMH setting, is the investors’ inter-temporal marginal rate 

of substitution whereas, if the market is inefficient, a more volatile pricing kernel will 

be required to price the assets. Finally, by a familiar Hansen and Jagannathan (1991) 

result, the maximal Sharpe ratio (SR), and thus the maximum amount of profitability 

from any trading strategy consistent with a given pricing kernel is bounded from 

above by the volatility of the pricing kernel: 
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Thus, from (6) and (7), it is clear that the volatility of the pricing kernel places an 

upper bound on both predictability and the maximal SR of the economy. This 

consideration suggests one way to mitigate the stark alternative between conducting a 
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joint test of market efficiency and of a particular asset pricing model and not being 

able to discriminate between time-variation in equilibrium return and abnormal 

profitability. A possible solution is to impose just enough restrictions on preferences 

and make just enough assumptions about how investors form expectations to be able 

to restrict the volatility of the pricing kernel. This then yields restrictions on the 

maximal Sharpe ratio of the economy and on predictability. This way it is possible to 

draw some implications for return predictability without having to fully specify an 

equilibrium asset pricing model. 

 

Ross (2005) shows that, if we are willing to accept that there is a sufficiently 

homogeneous and wealthy group of investors with preferences defined over wealth 

and constant relative risk aversion, then assets are priced by a representative investor 

with relative risk aversion constant in market wealth. If we further assume that 

investors’ risk aversion is bounded from above and that investors estimate return 

volatility correctly, then it is possible to place an upper bound on the volatility of the 

pricing kernel 1+tm  that prices the assets:  

 

)()()( 1,
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Here, 1, +tVm  is the inter-temporal marginal rate of substitution between present and 

future wealth of a representative investor with relative risk aversion VRRA , the latter 

is the relative risk aversion upper bound, and )( 1,
2

+tmrσ  is the volatility of the market 



9 
 

excess return 1, +tmr . Based on (6), the pricing kernel volatility bound in (8) implies an 

upper bound on the explanatory power of any predictive regression of asset returns: 

 

)()1( 1,
22

++≤ tVf mRR σ        (9) 

 

Ross (2005) suggests imposing an upper bound of 5 on the relative risk aversion of 

the marginal investor, i.e. 5≤VRRA . Among the motivations advanced by Ross 

(2005) to do so, the one that most easily applies to a world with possibly non-

normally distributed returns and non-quadratic utility is the simple observation that a 

relative risk aversion higher than 5 implies that the marginal investor would be 

willing to pay more than 10 percent per annum to avoid a 20 percent volatility of his 

wealth (i.e., about the unconditional volatility of the S&P from 1926) which, by 

introspection, seems large. We will also experiment with a lower bound, i.e. 

5.2=≤ VRRARRA , as this is the relative risk aversion of the marginal investor in the 

stock market, if we assume that this investor’s preferences are described by a power 

utility function and we estimate the mean and volatility of the stock market using the 

historical average and standard deviation of the returns on the S&P since 1926. This 

bound implies that the marginal investor would be willing to pay up to 5 percent per 

annum, arguably still a relatively large amount, to avoid a 20 percent volatility of his 

wealth. 
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3. Data 

 

Our data comprise daily returns on the exchange rate against the US Dollar of the 

major industrial country currencies (except those that were replaced by the Euro) for 

the period 1971-2006 taken by Bloomberg at the close of business in London at 6:00 

p.m. GMT. These currencies are the Australian and Canadian Dollar (AUD and 

CAD, respectively), the Japanese Jen (JPY), the British Pound (GPB), the Swiss 

Franc (CHF) and the Euro (denoted as ECU/EUR because we combine data on the 

ECU before the introduction of the Euro in 1999 and on the latter after its launch). As 

a proxy the risk free rate on assets denominated in the currencies included in our 

dataset, we use daily middle rate data on Australian Dollar and German Mark inter-

bank ‘call money’ deposits, on Canadian Dollar and Swiss Franc Euro-market short-

term deposits (provided by the Financial Times/ICAP), on inter-bank overnight 

deposits in GBP and the middle rate implied by Japan’s Gensaki T-Bill overnight 

contracts (a sort of repo contract used by arbitrageurs in Japan to finance forward 

positions). The rate on German Mark deposits is used as a proxy for the rate at which 

it is possible to invest funds denominated in ECU, while the overnight Euribor is 

used as a proxy for the rate at which it is possible to invest Euro denominated funds. 

As a proxy for the US risk-free rate, we use daily data on 1 month T-Bills (yields 

implied by the mid-price at the close of the secondary market). The interest rate data 

is taken from Datastream. We also use daily data, provided by Bloomberg, on the 

front month futures contract on the exchange rate of each of the above currencies 

against the US Dollar traded on the Chicago Mercantile Exchange (CME), but the 

results are not reported because they are qualitatively similar to the results for the 
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underlying currencies. As a proxy for the return on the market portfolio we use daily 

data on the S&P500 index last traded price provided Datastream. 

 

4. Economic and Statistical Significance of Predictability 

 

To assess the extent to which the returns on the currencies in our sample are 

predictable, we estimate simple rolling auto-regressions and auto-regressive moving 

averages of the currency returns. As shown by Taylor (1994), among others, ARIMA 

models of exchange rates, and thus ARMA models of the currency returns, can 

capture substantial predictability. Our estimated models are thus specifications of the 

general ARMA(p, q) model of currency returns, where p denotes the autoregressive 

lag order and q denotes the order of the moving average term: 

 
yt = const. + b1yt-1 + ..... + bpyt-p + c1ut-1 + ..... + cqut-q + ut   (10) 

 

We apply versions of (10) to both currency returns and to returns adjusted by the 

interest differential, i.e. the differential between the rate of the funding cost, in US 

Dollar, and the return from reinvesting the funds in each one of the currencies 

considered in this study, after the funds have been converted from US Dollars into 

these currencies. We find that adjusting returns for the interest differential has 

virtually no impact on estimated predictability. This is because the volatility of the 

interest differential is negligible relative to currency returns volatility. Thus, to avoid 

duplications of indistinguishable predictability estimates, we only tabulate those 

based on return data.  
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In Figure 1, we plot the sequence of coefficients of determination R2 of rolling 5-lag 

auto-regression, i.e. (10) with p = 5 and q = 0, of the returns on the currencies in our 

sample. The rolling auto-regressions are estimated over non-overlapping 1-year 

periods. Visual inspection of Figure 1 suggests a burst of predictability at the 

beginning of the sample period in the early 1970s. Subsequently, however, no 

systematic pattern is immediately distinguishable.  

 

To assess the economic significance of predictability, we construct empirical 

counterparts of the upper bound on the coefficient of determination, i.e. the 

predictability bound, and we compare the coefficient of determination of various 

specifications of (10) with the constructed bound. We first estimate a simple 

ARMA(1,0), i.e. an AR(1) model of the daily returns on the currencies in our sample 

over a rolling 1-year window. The predictability bound is constructed using, in (8) 

and (9), yearly averages of GARCH(1,1) market volatility1 estimates and an upper 

bound on relative risk aversion equal to 5, i.e. RRAV = 5. In Figure 2, we plot the 

sequence of coefficients of determination R2 of the rolling 1-lag auto-regression 

against the predictability bound. The R2 of the estimated auto-regressive model often 

exceeds the bound, thus suggesting the presence of predictability in excess of the 

threshold that can be explained in terms of variation in risk premia. As shown in 

Table 1, the bound on daily predictability, i.e. on the R2 of predictive regressions 

estimated using daily data, is about 0.25 percent on average over the sample period. 

The R2 of the estimated auto-regressive AR(1) model is often much larger. Its 

average over the sample period ranges between 0.7 and 1 percent and takes values as 

                                                           
1 This assumption is not very strong as volatilities are relatively easier to estimate than means. 
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high as 7.5 percent for all currencies except the Japanese Yen. The extent by which 

the estimated R2 exceeds the bound is, obviously, even more pronounced in rolling 

auto-regressions (not reported) with higher order autoregressive and moving average 

terms.  

 

To assess the importance of sampling error in the estimation of the coefficient of 

determination, we bootstrap 2-tailed confidence intervals for the coefficient of 

determination of ARMA(p, q) models of each currency return. To select the number 

of auto-regressive and moving-average terms in the ARMA(p, q) model, following a 

Box and Jenkin’s (1976) type procedure, we search for a parsimonious specification 

for which the null of serial correlation in the residuals can be rejected for at least 20 

lags (or about one month of trading). We test for residual serial correlation using a 

Ljung-Box (1978) Q-statistic. The results of this test are reported in Table 2. The 

auto-regressive model with five lags, ARMA(5,0) or AR(5), is reasonably successful 

in capturing the serial correlation of currency returns for all periods except the first 

one, i.e. 1971-1983 (data for the Australian Dollar were not available with sufficient 

continuity to conduct the test over this period). In tests not tabulated, we find that the 

null of serial correlation, over the period 1971-1983, can be rejected for lags up to the 

9th order for the Japanese Yen and the British Pound and up to the 10th order for the 

Swiss Franc. As shown in Table 2, an ARMA(5,1) model of the Canadian Dollar 

returns manages to produce serially uncorrelated residuals up to the 20th order lag 

(actually, up to any order lag, as shown by tests not tabulated) but, again, its 

performance is poorer in the case of the Japanese Yen, the British Pound and the 

Swiss Franc. This is also the case with the ARMA(1,2) specification suggested by 
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Taylor (1994). In fact, its performance does not materially improve relative to the 

performance of the more parsimonious ARMA(5,1), i.e., the null of serial correlation 

can still be rejected only for lags up to the 9th order for the Japanese Yen and the 

British Pound and up to the 10th order for the Swiss Franc. We thus opt for parsimony 

and model all the series as an ARMA(5,0) model, except the returns on the Canadian 

Dollar over the period 1971-1983, for which we use an ARMA(5,1). 

 

To conduct our bootstrapping experiment, we re-sample with replacement 1,000 

times the residuals of the estimated auto-regressive model. By this process, we 

generate 1,000 separate bootstrapped currency return series, for which we then 

estimate the auto-regressive model and record the coefficient of determination. This 

generates a bootstrapped distribution based on 1,000 coefficients of determination 

estimates. In Table 3, we report the predictability upper bound and the bootstrapped 

confidence intervals for the coefficient of determination of the chosen model for each 

currency, estimated over the whole sample period and over three sub-periods of 

roughly equal length, 1971-1983, 1984-1995, 1996-2006. Under the 2.5 upper bound 

on relative risk aversion, i.e. under RRAV = 2.5, we can reject the null that the 

estimated predictability does not violate the bound at conventional significance levels 

for almost all currencies in the sample. Under a less conservative upper bound on 

relative risk aversion, i.e. RRAV = 5, we can reject this null only in 5 out of 17 cases. 

While the statistical evidence that the estimated predictability violates market 

efficiency is considerably weaker under the less conservative risk aversion bound, it 

should be kept in mind that the predictability bound itself might be ‘loose’, i.e. too 

little conservative. If the returns on the strategies that exploit predictability are less 
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than perfectly correlated with the pricing kernel, i.e. if these strategies are a 

diversification opportunity, they would command a lower Sharpe ratio than the 

maximal Sharpe ratio of the economy and thus the upper bound would be less than 

the maximal ratio for the economy. 

 

In the case of the GBP, the critical values of the estimated confidence intervals 

decrease over time in a clear fashion. In all other cases, the lack of a clear declining 

pattern in the critical values of the estimated confidence intervals contrasts with 

emerging evidence (in Pukthuanthong, Levich and Thomas (2006) and Neely, Weller 

and Joshua (2007)) that currency markets have over time become less susceptible to 

technical trading profits. This contrast can be resolved by noting that confidence 

intervals depend not only on the mean but also on the variability of a random 

variable. Therefore, while there might be a downward trend in the coefficient of 

determination and thus in predictability, these might have become more variable 

across samples and thus there might be more sampling error that makes them more 

difficult to be estimated with precision.  

 

5. Transaction Costs and Predictability 

 

The evidence reported in Table 3 suggests that the predictability bound has been 

violated, often to a statistical extent, for prolonged period of time. Part of the 

estimated predictability, however, might be un-exploitable due to transaction costs. 

To formally model the impact of transaction costs on predictability, it is useful to 

consider the strategies that would have to be implemented in order to optimally 
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exploit it. To this end, we use an elementary statistical result that relates the variance 

of a random variable to its second moment and the square of its mean, and re-write 

the coefficient of determination is (4) as follows: 
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Here, µ  is the 1×T  vector that stacks the conditional means of the currency return 

at each point in time t, t = 1, ....T, µ  is the unconditional mean return and D  denotes 

a TT ×  diagonal matrix with elements along the main diagonal that contain the 

conditional standard deviation of the currency return at each point in time t. In using 

this notation, we are essentially interpreting a strategy aimed at exploiting 

predictability as a portfolio made up of as many positions as data points in the sample 

period, each with its own conditional Sharpe ratio. Recognising that, in daily and 

higher frequency data, the second term on the far right-hand side of (11) is negligible 

as it is the square of a typically small percentage number, we can approximate the 

coefficient of determination as follows, 

 

( ) µµ 12 −′′≅ DDR         (12) 

 

Interestingly, if one neglects the possible temporal interdependencies across 

conditional volatilities, i.e. if one neglects GARCH effects, (12) can be interpreted as 

the squared maximal Sharpe ratio available by forming ‘portfolios’, i.e. strategies, of 
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one-period positions in the currency under consideration. The weights with which 

each one-period position enters such strategy are then 

 

 ( ) µ1−′= DDW         (13) 

 

In the context of our ARMA(p,q), the mean vector equals the conditional mean of 

(10), i.e. ttt uy −=µ , while DD ′  collapses to the currency return sample variance 

times a TT ×  identity matrix, i.e. TTt Iy ×)(2σ . In Figure 3, to illustrate, we report the 

time-varying weights, calculated using (13) and normalized to add up to unity over 

the time horizon of the strategy that exploits the predictability of the Canadian 

Dollar, based on an ARMA(5,1) specification over the period 1996-2006. The 

corresponding plots for the other currencies are not reported to save space. In all 

cases, there is substantial variation in the weights of the daily positions, as a result of 

the conditional time-variation on the mean of the return process, given the chosen 

ARMA(p,q) specification. We use these weights to calculate the returns of the 

strategies aimed at exploiting predictability. Much of the extant literature considers 

transaction costs of about 0.05 percent, or 5 basis points, realistic for a typical round 

trip trade between professional counterparts, see Levich and Thomas (1993) and 

Neely, Weller and Dittmar (1997). This corresponds to about 2-3 basis points on each 

one way, i.e. buy or sell, transaction. In calculating the return to these strategies, 

therefore, we allow for transaction costs of up to 5 basis points. In Table 4, we report 

the Sharpe ratios of these strategies. For all the currencies under consideration,  

except the Swiss Franc, transaction costs of 2 basis point are enough to lower the 

Sharpe ratio below the level that would correspond to violation of the tightest 
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predictability bounds. With transaction costs of 3 basis points, the Sharpe ratios for 

the strategies based on the Australian Dollar, the Canadian Dollar, the Japanese Yen 

and the ECU/Euro become negative. With transaction costs of five basis points, all 

Sharpe ratios are negative. Nonetheless, the evidence that, for some currencies such 

as the Swiss Franc and to a lesser degree the ECU/EUR and the British Pound, the 

Sharpe ratio is relatively high even after accounting for transaction costs of two basis 

points would seem to point out that there are predictability-based strategies that 

professional currency traders might find attractive. There is, however, substantial 

evidence that costs depend on the size of the transaction and, more specifically, on 

‘price pressure’. For example, Evans and Lyons (2002) estimate that a buy order of 1 

million US dollars increases the execution exchange rate against the Deutsche Mark 

and the Japanese Yen by as much as 0.54 percent, or 54 basis points. Similar figures 

are provided by Berger, Chernenko, Howorka and Write (2006), at least for trades 

executed over a daily horizon. In light of these considerations, the speed at which 

Sharpe ratios decrease as a function of transaction costs implies that it is in fact rather 

unlikely that any opportunity to earn sizable abnormal risk-adjusted returns exists. 

 

As shown in Appendix A using a logic similar to Roll (1984), the bid-ask bounce 

induces an amount of predictability that depends on the relative magnitude of the bid-

ask spread and exchange rate variability. In particular, (A5) quantifies the 

approximate impact of the bid-ask bounce on the auto-regression coefficient of 

determination. We use this result to assess the level of transaction costs required to 

explain the observed excess-predictability over the 1972-2006 period. As shown in 

Table 5, bid-ask transaction costs in the region of 20 to 30 basis points are sufficient 
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to reduce exploitable predictability below the level corresponding to the tightest 

predictability bound, i.e. the bound corresponding to 5.2=RRA . As implied by the 

evidence provided by the literature on price pressure, i.e. Evans and Lyons  (2002) 

and Berger, Chernenko, Howorka and Write (2006), these levels of transaction costs 

are to be expected for large transactions.  

 

6. Bayesian Uncertainty and Predictability 

 

To further assess the importance of sampling error in the estimation of the coefficient 

of determination, we generate the posterior distribution of the currency returns 

variance and of the coefficient of determination using a Gibbs sampling 

methodology, as in Gelfand and Smith (1990). Gibbs sampling is applicable when 

the joint distribution of two or more variables is not known explicitly, but the 

conditional distribution of each variable is known. We assume that the conditional 

distribution of the predictive regression residuals is normal, which implies a 

multivariate normal conditional distribution of the regression coefficient estimates. 

More formally, consider the AR(5) model, i.e. (10) with p = 5 and q = 0. For 

notational convenience, we write this model in matrix form, as uXY += β , where 

}{ tyY = , }..... , ,1{ 51 −−= tt yyX , [ ]′= 51....... ,. , bbconstβ  and u = {ut}. Letting T denote 

the sample period length, denoting by IT a TT ×  identity matrix and assuming that  

),0(~| 1IhNxu −   with prior ),(~ 1−HN pββ   and  )(~ 22 vhv χσ , where v denotes 

the degrees of freedom of a Chi-squared distributed random variable, the posterior 

density function is proportional to  
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Then, conditional on h, Y and X, � is normal with precision (or variance) 

OLSp XXhHH ββ ′+=* , where OLSβ  is the OLS estimate and, conditional on �, Y and 

X, the precision is chi-squared with v degrees of freedom, i.e. 

( ) ( )[ ] )(~ 22 vhXYXYv χββσ −−+ ′ . Drawing in turn from these two conditional 

densities, the Gibbs sampling algorithm generates an instance from each density 

conditional on the current values of the other variables. It can be shown, see for 

example Gelman, Carlin, Stern, and Rubin (1995), that the sequence of samples 

comprises a Markov chain, and the stationary distribution of this Markov chain is just 

the required joint distribution of the precision and the regression coefficients. 

 

In our implementation of the Gibb’s algorithm, our initial precision and coefficients 

come from OLS estimates2. In Table 6, we compare the predictability bound under 

relative risk aversion bounds equal to 2.5 and 5 with the 5th and 95th percentiles of the 

posterior distribution of the coefficient of determination of the autoregressive model 

with 5 lags, over the whole sample period and over 3 sub-periods of roughly equal 

length. Only for the Canadian dollar, in the period 1971-1983, we can reject the null 

that the bound is not violated when relative risk aversion of the marginal investor is 

as large as 5. For the GBP, however, we can reject this null under the lower 2.5 upper 

bound on risk aversion for all sample periods but the last. 

 

                                                           
2 RATS code to generate the posterior distribution of the model parameters and of its coefficient of 
determination is available on the corresponding author’s website, www.valeriopoti.com. 
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7. Conclusions and Future Work 

 

In this paper, we assess the statistical and, more importantly, economic significance 

of predictability in currency returns over the period 1971-2006. We find that, even 

under a relatively loose upper bound on relative risk aversion, predictability often 

violates a theoretically motivated upper bound. Taken at face value, this evidence 

implies violation of the EMH under a broad class of asset pricing models and for 

conservative to realistic values of the marginal investor’s relative risk aversion. A 

closer scrutiny reveals, however, that the performance of strategies that attempt to 

optimally exploit predictability is very sensitive to the level of transaction costs, to 

the point that much of the observed predictability is un-exploitable given realistic 

assumptions about transaction costs.  

 

Crucially, our analysis implies that, while it is relatively easy to find strategies that 

appear profitable, much or all the abnormal risk-adjusted profitability is soaked up by 

transaction costs, at least for large size transactions. Our findings allow to rationalize 

both the frequent occurrence of studies that find abnormally profitable strategies, 

before transaction costs, and the persistence of this apparent excess-profitability. We 

also find that there is substantial sampling error, especially of a Bayesian type, in the 

estimation of the coefficient of determination of predictive regressions, and that this 

sampling error might have increased in recent years. This makes it difficult to reach 

firm conclusions about whether predictability has genuinely decreased over time.  
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A possible avenue of future research is a more formal investigation of whether the 

estimated R2 series contains a time trend and one or more structural breaks. 

Considering cross-rates and a wider sample of countries might also allow the 

estimation of possible time trends and structural breaks, perhaps adopting a panel 

approach (a random coefficient model, along the lines of Swamy (1970), would 

appear particularly promising to accommodate the difficulty of modelling of possible 

sources of cross-sectional variation in the predictability pf currency returns). Another 

obvious extension is to consider emerging economies currencies. These extensions 

would make it possible to better address the important question of whether there is 

predictability in excess of a level that can be judged consistent with the EMH, even 

after transaction costs, and whether, if this is the case, this becomes milder over time 

as a result of learning by economic agents.  
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Appendix A 

 

We assume that transaction costs are fully reflected in the bid-ask spread bounce St   

and that traded prices are the sum of gross prices *
tP  and the bid or ask spread from 

gross prices, which takes a positive or a negative sign depending on whether the 

transaction is the result of a purchase or a sale order, i.e.  

 

ttt SPP += * .  

 

We can then write the covariance between two successive price changes as 

),(),( 1
*

1
*

1 +++ ∆+∆∆+∆=∆∆ tttttt SPSPCovPPCov . This can be written out as  

 

),(),(2),(),( 11
**

1
*

1 ++++ ∆∆+∆∆+∆∆=∆∆ tttttttt SSCovSPCovPPCovPPCov (A1) 

 

Following Roll (1984), assume that the bid-ask bounce St can take, with equal 

probability, values s or -s. This implies that 
2

bid - ask tt=±= sS t   and that the gross 

price *
tP  coincides, by construction, with the mid price. Also assume that, in 

successive draws, the probability of each outcome is the same regardless of the 

outcome in previous draws. The number of occurrences of s or –s in T trials is then 

distributed as a binomial random variable with mean T
2
1

 and variance 

TT
4
1

2
1

1
2
1 =�

�

�
�
�

� − . The variable tS , thus, takes values s or –s with equal probability 

in repeated draws and it is identically and independently distributed over time with 
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zero mean and variance equal to 
4

2s
. The covariance in (A1) between two successive 

price changes, then, simplifies to the following 

 

4
),(),(),(),(

2
*

1
*

1
*

1
*

1

s
PPCovSSCovPPCovPPCov tttttttt −∆∆=−∆∆=∆∆ ++++ (A2) 

 

The above result is analogous to the relation between the size of the bid-ask spread 

and price auto-covariance derived by Roll (1984), except for the ),( *
1

*
+∆∆ tt PPCov  

term that allows for serial correlation in the mid-price and thus for serial correlation 

that does not depend on the bid-ask bounce. Using (A2), we can decompose the 

coefficient of determination in auto-regressions as follows,  

 

2
1

)()(

),(

)(16)(

),(

)(4)(
),(

)(
),(

2*
1

*

2

42*
1

*

22*
1

*2

12

tt

tt

tt

tt

tt

tt

t

tt

PVar
s

PVar

PPCov

PVar
s

PVar

PPCov
     

PVar
s

PVar

PPCov

PVar

PPCov
R

∆∆
∆∆

−
∆

+�
�

	


�

�

∆
∆∆

=

�
�

	


�

�

∆
−

∆
∆∆

=�
�

	


�

�

∆
∆∆

=

++

++

 

 

Denoting by *2R  the coefficient of determination in predictive regressions of the 

mid-price and recognizing that 
2*

1
*

*2

)(
),(
�
�

	


�

�
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t
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Thus, solving for *2R  

 

)(2
1

)(16
2

2

4
2

*2

t

t

PVar
s

PVar
s

R

R

∆
−

∆
−

≅                  (A4) 

 

The bid-ask bounce is typically a small fraction of currency volatility and thus 2s  

should be negligible relative to )(2 tPVar ∆  and therefore 1
)(2

1
2

≅
∆

−
tPVar

s
. 

Letting 
2

4
2

)(16 t
spread PVar

s
R

∆
≡ , we can thus re-write (A4) as follows 

 

22*2
spreadRRR −≅                       (A5) 

 

While *2R  can be interpreted as the portion of predictability that can be exploited by 

trading at the mid price, 2
spreadR  can be interpreted as the approximate impact on 

predictability of the bid-ask bounce and thus the portion of predictability of the 

traded price (“the last price”) that would be costly to exploit. Thus, (A5) provide a 

way of adjusting predictability estimates based on time series of returns calculated 

using the “last price” to take transaction costs into account.  
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Figure 1 
Predictability of Currency Returns 
(Non-Overlapping Annual Periods) 
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 Notes. These figures plot the series of coefficients of determination of auto-
regressions of each currency return on its own 5 lags and a constant, i.e. AR(5), 
estimated over sequential non-overlapping 1-year periods.  
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Figure 2 
Economic Significance of Currency Return Predictability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes. These figures plot the sequences of the percentage coefficients of determinations (shown by the dotted line) of rolling auto-regressions for each major 
currency in our sample against their conditional upper bound (shown by the solid line). The latter is computed under a relative risk aversion upper bound of 5. 
The autoregressive model includes 1 lag. The estimation window of each auto-regression is one year and the sample period is 1971-2006. The values of all 
the series have been cut off at 7.5 to improve visual clarity. 
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Table 1 
Descriptive Statistics for Estimated R2 in Rolling Regressions 

 
 AUD CAD JPY GBP CHF ECU ECU/ 

EUR 
R Sq. 
Bound 

Average 0.97 0.64 0.68 0.85 0.75 0.75 0.78 0.24 
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 
Max 7.50 5.65 7.50 7.50 7.50 7.50 7.50 2.50 

 
 
 
 
 
 
 
 

Table 2 
ARMA(p,q) Model Selection 

Ljung Box Tests 
 

 1971-2006 1971-1983 1984-1995 1996-2006 1971-1983 1971-1983 
ARMA(5,0) 

Q(20-5) 
ARMA(5,1) 

Q(20-6) 
ARMA(1,2)

Q(20-3) 
AUD   22.16 

(0.103) 
21.28 

(0.130)) 
  

CAD *23.14 *23.07 16.00 16.3 13.11 19.14 
 (0.081) (0.082) (0.380) (0.351) (0.517) (0.321) 
JPY **30.40 **41.46 *22.52 14.69 **32.27 **32.16 
 (0.010) (0.000) (0.094) (0.472) (0.003) (0.014) 
GBP 20.60 **39.65 14.33 13.31 **37.17 **57.23 
 (0.149) (0.000) (0.500) (0.575) (0.000) (0.000) 
CHF 14.17 

(0.512)) 
**29.65 
(0.002) 

9.10 
(0.871) 

10.91 
(0.758) 

**27.16 
(0.018) 

**29.26 
(0.032) 

ECU/EUR 15.66 
(0.404) 

18.26 
(0.249) 

14.83 
(0.463) 

7.39 
(0.945) 

18.22 
(0.196) 

21.83 
(0.191) 

 

 

Notes. This table reports Ljung-Box test statistics and associated significance levels for the entire 
sample period 1971-2006 and three sub-samples of about equal length, 1971-1983, 1984-1995, 1996-
2006. For added visual clarity, we use one and two asterisks to draw attention to test statistics 
significant at the 10 and 5 percent level, respectively. 

Notes. This table reports descriptive statistics, average, minimum and maximum, for the 
estimated coefficient of determination of an AR(1) model estimated over a rolling 1-year 
window of daily data. The sample period is 1972-2006 and the reported figures are in 
percentage. The last column reports the same statistics for the predictability upper bound 
computed under a relative risk aversion upper bound set to 5. 
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Table 3 
Statistical Significance of Predictability 

Bootstrapped Percentage 2-Tailed Confidence Intervals 
 

 1971-2006 1971-1983 1984-1995 1996-2006 

BoundRRA=2.5  0.06 0.05 0.06 0.07 
BoundRRA=5 0.24 0.20 0.22 0.26 

AR(5) 
AUD 
  5.0% 
  2.5% 

     
*0.14  0.79 

    *0.10  0.94 

   
*0.12  0.53 

    *0.09  0.64 
CAD 
  5.0% 
  2.5% 

   
*0.08  0.29 

    *0.06  0.34 

   
**0.49  1.28 

    **0.41  1.42 

   
*0.10  0.50 

    *0.08  0.60 

   
**0.44  1.24 

    **0.37  1.42 
JPY 
  5.0% 
  2.5% 

   
0.05  0.22 

    0.03  0.25 

   
*0.12  0.57 

    *0.09  0.66 

   
*0.09  0.46 

    *0.06  0.55 

   
*0.10  0.50 

    *0.07  0.56 
GBP 
  5.0% 
  2.5% 

   
**0.56  1.57 

    **0.43  1.73 

   
**0.47  1.48 

    **0.38  1.65 

   
*0.17  0.70 

    *0.12  0.80 

   
*0.07  0.40 

    0.05  0.48 
CHF 
  5.0% 
  2.5% 

   
0.02  0.12 

    0.01  0.15 

   
*0.08  0.40 

    *0.06  0.48 

   
*0.09  0.46 

    *0.07  0.57 

   
**0.28  0.97 

    *0.22  1.07 
ECU/EUR 
  5.0% 
  2.5% 

     
*0.14  0.60 

    *0.10  0.70 

   
*0.19  0.77 

    *0.14  0.86 
ARMA(5,1) 

CAD 
  5.0% 
  2.5% 

    
**0.75  1.75 

    **0.62  1.92 

  

 
Notes. The first two rows of this table report percentage unconditional upper bounds on 
the explanatory power of predictive regressions of each major currency in our sample 
under a relative risk aversion upper bound equal to 2.5 and 5, respectively. The other 
rows report, for each currency, 90 and 95 two-tailed confidence intervals for the 
coefficient of determination (in percentage) of 5-lag auto-regressions AR(5) for all 
currency and ARMA(5,1) for CAD. The sample period is 1971-2006 and three sub-
samples of about equal length, 1971-1983, 1984-1995, 1996-2006. In the table, one and 
two asterisks denote when the upper bound is violated at the significance level 
corresponding to the value reported in the left-most column under a RRA bound of 2.5 
and 5, respectively. 
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Figure 3 
Canadian Dollar Predictability  
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Table 4 
Percentage Sharpe Ratios of Predictability-Based Strategies 

t.c. (bps) 0 1 2 3 5 
AUD 57.3 37.2 17.4 -2.3 -41.7 
CAD 128.5 81.45 34.5 -12.4 -106.3 
JPY 49.1 19.03 -11.0 -41.1 -101.2 
GBP 48.4 34.2 20.0 5.7 -22.7 
CHF 104.3 75.9 47.7 19.6 -36.7 
ECU/EUR 82.1 52.4 22.7 -7.1 -66.6 

 

 

 

 

Table 5 
Predictability and Transaction Costs 

 AUD CAD JPY GBP CHF ECU/EUR 
bound 0.06 0.06 0.06 0.06 0.06 0.06 
R2 0.09 0.37 0.07 0.05 0.22 0.14 
Excess R2 0.03 0.31 0.01 -0.01 0.16 0.08 
16�2(�P) 0.12 0.03 2081.63 0.02 0.29 0.18 
Implied s  0.23   0.20   22.81    0.54  0.36 
Implied s/P  0.19 0.16 0.13  0.29 0.41 

 

 

Notes. This Table reports percentage annualized Sharpe ratios of strategies 
that optimally exploit estimated predictability, as a function of various levels 
of transaction costs (in basis points in the tow row). The sample period is 
1996-2006. The annualized maximal SR bound under a RRA upper bound 
equal to 2.5 and 5 is 44 and 85 percent, respectively. 

Notes. This Table reports the percentage bid-ask spread, denoted by s, in dollar terms and as a 
fraction of the average value of the exchange rate under consideration, denoted by s/P,  that is 
required to justify the excess of estimated predictability over the bound corresponding to RRA = 
2.5. The excess R2 denotes the excess of the coefficient of determination in predictive 
regressions over the predictability bound. The sample period for the calculations is 1972-2006. 

Notes. This Figure plots the time-varying weights of the strategy that optimally 
exploits the Canadian Dollar return predictability, based on estimates from an 
ARMA(5,1) model. The weights are rescaled in such a way that they add up to 1 
over the 1996-2006 sample period. 
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Table 6 
Statistical Significance of Predictability 

Gibbs Sampling 
 

 1971-2006 1971-1983 1984-1995 1996-2006 

BoundRRA=2.5  0.06 0.05 0.06 0.07 
BoundRRA=5 0.24 0.20 0.22 0.26 
AUD 
R2 

5th percent. 

 
0.11 

-0.02 

 
0.14 

-0.30 

 
0.31 

-0.02 

 
0.13 

-0.23 
CAD 
R2 

5th percent. 

 
0.13 
0.00 

 
0.74 

**0.28 

 
0.16 

-0.01 

 
0.18 

-0.02 
JPY 
R2 

5th percent. 

 
0.07 

-0.04 

 
0.19 

-0.12 

 
0.13 

-0.03 

 
0.06 

-0.12 
GPB 
R2 

5th percent. 

 
0.21 

*0.06 

 
0.65 

*0.11 

 
0.34 

*0.11 

 
0.12 

-0.07 
CHF 
R2 

5th percent. 

 
0.01 

-0.10 

 
0.08 

-0.26 

 
0.07 

-0.10 

 
0.03 

-0.13 
ECU/EUR 
R2 

5th percent. 

 
0.17 

-0.01 

 
0.92 

-0.17 

 
0.29 

-0.00 

 
0.20 
0.00 

 

 

 

 

 

  

 

 

 

Notes. The first two rows of this table report percentage unconditional upper 
bounds on the explanatory power of predictive regressions of each major 
currency in our sample under a relative risk aversion upper bound equal to 
2.5 and 5, respectively. The other rows report for each currency the 
percentage coefficient of determination of 5-lag auto-regressions and the 5th 

percentile of its posterior distribution. The posterior probability is estimated 
using the Gibbs sampling methodology. One and two asterisks denote cases 
in which we can reject at the 95 percent level the null that the upper bound 
is not violated under relative risk aversion bounds of 2.5 and 5, respectively. 
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