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Abstract 

The objective of this article is to develop a precise and rigorous measurement of a bank’s 

operational VaR. We compare our model to the standard model frequently used in practice. This 

standard model is constructed based on lognormal and Poisson distributions which do not take 

into account any data which fall below the truncature threshold and undervalue banks’ exposure 

to risk. Our risk measurement also brings into account external operational losses that have been 

scaled to the studied bank. This, in effect, allows us to account for certain possible extreme losses 

which have not yet occurred. The GB2 proves to be a good candidate for consideration when 

determining the severity distribution of operational losses. As the GB2 has already been applied 

recently in several financial domains, this article argues in favor of the relevance of its 

application in modeling operational risk. For the tails of the distributions, we have chosen the 

Pareto distribution. We have also shown that the Poisson model, unlike the negative-binomial 

model, is retained in none of the cases for frequencies. Finally, we show that the operational VaR 

is largely underestimated when the calculations are based solely on internal data. 
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1. Introduction 

Over the recent years, there is an increasing interest from financial institutions to identify losses 

associated with operational risk. This is due to regulatory considerations according to Basel II accord and 

also due to the occurrence of huge operational losses recently. We can mention two examples of enormous 

operational losses sustained by the financial sector: $2.4 billion lawsuit CIBC sustained by the 

shareholders of Enron and a $690 million loss caused by a rogue trading activities at Allied Irish Banks. 

Add to these the case of Barings, the UK’s oldest bank; it went bankrupt following a rogue trading 

activities too occasioning a loss of $1.3 billion. These examples show the scope of this risk. They also 

serve as an imperative warning signal to financial institutions, which must define, measure, and manage 

this risk. Besides the huge losses it can cause, operational risk also threatens all the activities and 

operations of an institution. Operational risk is the risk of loss resulting from inadequate or failed internal 

processes, people and systems or from external events. Legal risk is also included, but the definition does 

not take into account strategic and reputational risk.  Regulatory authorities have identified three different 

methods of calculating this capital. The most advanced of these three methods shows greater sensitivity in 

its detection of risk. In this article, we use the advanced approach in dealing with our research problem. 

A rather recent concept, Value at Risk (VaR) is being more and more frequently used in finance. 

Though this measurement is not always considered coherent (Artzner and al., 1999), there is more and 

more talk about market VaR, credit VaR, and, recently, operational VaR. As a measurement, VaR is 

indeed easy to calculate and to implement in practice. In this article, we look at operational VaR for a 

bank and go through all the steps needed to calculate it. 

Operational risk has several distinctive characteristics that differentiate it from market and credit 

risk. Its structure of infrequent and potentially very high losses makes the task of modeling it difficult and 

sometimes complex. Some studies have advanced rather strong but somewhat unrealistic hypotheses 

which will certainly simplify the methodology, but also enormously weaken its ability to calculate either 

operational capital or the VaR exactly. 
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The objective of this article is to develop a precise and rigorous measurement of a bank’s 

operational VaR. We compare our model to the standard model frequently used in practice. This standard 

model is constructed based on lognormal and Poisson distributions which do not take into account any 

data that fall below the truncature threshold. We show our model’s superiority in providing more realistic 

results, unlike the standard model which greatly undervalues a bank’s exposure to risk. 

This article puts the accent on achieving the right fit between the parametric distributions and the 

empirical sample of operational losses and aims to show how important it is to make the right choice of 

distributions for the frequency and severity of losses. These elements are in effect missing in the standard 

model. Our risk measurement also brings into account external operational losses which have been scaled 

to the studied bank. This, in effect, allows us to account for certain possible extreme losses that have not 

yet occurred. We look to see what impact integrating this data on extreme losses may have on the 

calculation of the VaR. 

The article is structured as follows. The next section takes a brief glance at the recent literature on 

modeling operational risk and presents the motivation and objectives of our research. A description of the 

data used in our analysis is then presented in Section 3. Section 4 develops the model for the severity of 

losses, while the model for frequency is analyzed in Section 5. Section 6 compares our results to those of 

the standard method. Finally, the last section sums up the main findings and suggests extensions and 

avenues of research. 

2. Review of Literature, Motivation and Objectives 

Several methods of calculating operational risk capital have been proposed by regulatory 

authorities. The advanced measurement method is the one which gives the best picture of a financial 

institution’s level of exposure to operational risk. Many studies have emerged which develop quantitative 

methodologies and tools applicable to the advanced measurement approach (Cruz, 2002; Alexamder, 

2003; King, 2001). The Loss Distribution Approach (LDA) method is the most popular advanced 

measurement approach. This approach draws heavily on the actuarial model used to model losses in the 
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field of insurance (Cummins and Freifelder, 1978). Klugman, Panjer, and Willmot (1998) have carefully 

developed the different steps of this method. However, modeling operational losses diverges somewhat 

from these actuarial loss models. 

First of all, operational losses are, in most cases, collected at certain thresholds ($1,000, $10,000, 

$15,000, etc.) Several studies have left out these losses and therefore have not taken the threshold 

truncature into account (Dutta and Perry, 2006; Böcker and Klûppelberg, 2005; Fontnouvelle, Rosengren, 

and Jordan, 2004). This approach, as defined by Chernobai et al (2006), consists in fitting the non-

conditional severity-and-frequency distributions to loss data above the truncature threshold. It supposes 

that only the tails of the aggregated distributions will be taken into account when calculating the VaR. 

There are studies which consider only the modeling of the tail of the aggregated distribution. Using 

the extreme value theory (EVT), they treat only extreme losses (Embrechts et al, 1997; Ebnother, Vanini, 

McNeil, and Antolinez-Fehr, 2001). The structure of the operational data, however does not necessarily 

satisfy the standard hypotheses for modeling with the EVT. This is principally due to the limited number 

and frequency of extreme losses (Embrechts et al, 2003; Moscadelli, 2004). 

Losses below the collection threshold can have a significant impact on the level of capital, 

especially when the threshold is high and the frequency of these losses are quite high (Frachot, 

Moudoulaud, and Roncalli, 2003). It is worth noting that modeling truncated data makes the estimation 

methodology more complex, especially for distributions with several parameters. The works of Baud et al 

(2002), Frachot et al (2003), de Fontnouvelle et al (2003), Chapelle et al (2004), and Chernobai et al 

(2005a, 2005c) have shown how important it is to take the truncature threshold into consideration when 

modeling operational losses. There also exist goodness of fit tests developed for left-truncated samples by 

Chernobai, Rachev, and Fabozzi (2005b). In our study, we are going to consider the collection threshold 

and then model the operational losses in consequence. We shall also consider the estimation of tails by 

dividing the distribution into body and tail, in a manner similar to that used by Chapelle, Crama, Hübner, 

and Peters (2004). 
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The choice of severity distributions is also very important. Indeed, poor specification of this 

distribution can result in an under- or over-estimation of capital, as the study by Chernobai et al (2005c) 

has shown. The distribution most often used to estimate amounts of losses is the lognormal, because it is 

easy to implement and has a relatively thick tail. The works of Frachot et al (2003), Chernobai et al 

(2005a), and Bee (2006) have relied solely on this distribution to model the amounts of operational losses. 

We shall test four distributions: the exponential, the lognormal, the Weibull and the four-parameter 

GB2 on the body of the distribution, and the Pareto distribution on the tail. Dutta and Perry (2006) have 

also tested several distributions, including the GB2 and the four-parameter g- and-h distribution. They 

have shown that the g-and-h distribution is the best model for severity. On the other hand, they have 

affirmed that the parameters estimated by the GB2 are not reasonable, while stressing the complexity of 

estimating these parameters and the difficulty of generating random numbers with this distribution. In this 

study, we shall present parameters estimated with the GB2 and show that the GB2 is the best among all of 

the distributions we have tested. 

As to the occurrence of losses, little research has been done to improve the degree of fitting the 

frequency distributions to the data. Most of the studies (Dutta and Perry, 2006; Chapelle et al, 2004; 

Chernobai et al, 2005a, de Fontnouvelle et al, 2003, Frachot et al, 2003) suppose that the frequencies are 

modeled using the Poisson distribution. Böcker and Klüppelberg (2003) have developed an approximation 

of the VaR whose formula takes into account only the expected number of losses. However, the Poisson 

distribution is characterized by equidispersion, that is, equality between the mean and the variance, which 

is rarely the case in operational risk. In the present study, we shall test the Poisson and negative-binomial 

models for a better fit with the frequencies. The test will be done with a parametric-bootstrap test that 

we shall set up. 

2χ

We shall also correct the parameters of the frequency distributions to take into account the fact that 

we know only the number of losses that exceed the threshold. To our knowledge, only the study of 

 5



Frachot, Moudoulaud, and Roncalli (2003) has suitably determined the Poisson distribution. No similar 

work has been done for the negative-binomial distribution 

Chernobai, Menn, Rachev, Truck, and Moscadelli (2006) have presented the different approaches 

used to treat truncated data. The approach most often used in practice consists of ignoring the missing 

observations and treating the truncated sample as if it were complete. The second approach consists in 

estimating the non-conditional severity distribution, while correcting only the parameters of the frequency 

distribution to take into account the number of losses below the threshold. The third approach consists of 

taking the truncature into account only in the severity distribution. The bias linked to this approach is 

weaker, but the method still has shortcomings, since the parameters of the frequency distribution have not 

been corrected. Finally, the last approach consists of estimating the conditional severity distribution and 

correcting the parameters of the frequency distribution. This method is statistically more adequate 

compared to other approaches, for it effectively reduces the bias associated with the calculation of capital. 

We shall thus follow this approach. 

Remember that, since they do not reflect the real scope of losses, internal loss data are not sufficient 

for modeling the VaR at a 99.9% confidence level. Regulatory authorities have required that external data 

be used to complete the internal data when the latter are not exhaustive. We thus combine internal and 

external data before calculating the unexpected loss. Few studies have developed the LDA method by 

taking into account both the internal and external data (Chapelle, Crama, Hübner, and Peters, 2004). 

3. The Data 

 3.1 Description of the Data 

We shall apply the different methods of fitting and estimating parameters on a Canadian Bank’s 

internal loss while twinning them with external data. We model the losses according to their type of risk. 

The different types of risk defined by the regulatory authorities are damage to physical assets (DPA); 

external fraud (EF); clients, products and business practices (CPBP); internal fraud (IF); execution, 
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delivery and process management (EDPM); employment, practices, and workplace safety (EPWS) and 

business disruptions and systems failures (BDSF). 

To ensure that each of the study’s cells will contain a sufficient number of observations, we make 

no division based on the business unit, contrary to the recommendation made by the regulatory authorities. 

Besides, modeling losses by type of risk has the advantage of producing homogeneous loss processes. One 

exception is made for the BDSF type of risk, for which the quantity of loss data is low even at the bank 

level. This type of risk will thus be excluded from the study. 

The loss data cover a 3-year period running from 1 November 2001 to 31 October 2004. The 

collection threshold is set at the same level s for all the risk types with the exception of EF and IF, for 

which we have at our disposal all the losses having occurred at the bank. In the next section, we shall look 

for the distribution with the best fit for the amounts of losses incurred by the six types of risk. Given the 

differences in number and characteristics between the 6 samples (one sample per type of risk), different 

methods will be implemented. 

We should mention that we have excluded all the internal losses of more than $1 million US from 

our sample. These losses will be added to the external base (Fitch’s OpVaR) containing extreme losses of 

over $1 million US. So we have two independent samples. The first is made up of losses of less than $1 

million, whereas the second contains external losses scaled to the Canadian bank in question. This makes 

it easier to combine these two samples when calculating the operational VaR using Monte Carlo 

simulation. 

 3.2 Descriptive Statistics on the Amounts of Losses 

The number of data by type of risk is extremely variable. Table 1a shows that, for the whole bank 

over the 3-year period, we dispose of only 53 events in the DPA risk category which exceed s, whereas 

there are 22,178 events involving EF (13,149 of which are below s), mainly linked to card fraud (credit or 

debit cards). 

As for the mean of losses per event, we note that the highest means are linked to the following types 

of risk: CPBP and EPWS. Indeed, these losses are generally the result of legal actions taken by either 
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clients or employees. The mean of losses in EF is on the order of $2,049, if all the data are taken into 

account. We thus note that EF is a high-frequency and low-severity risk when compared to the type EPWS 

where the number of losses is only 97 but the mean loss is $34,220. This observation confirms the fact 

that the amounts of losses by type of risk exhibit different characteristics which justify the distribution by 

type of risk. 

We must admit that the loss data are far from symmetrical in their distribution. A simple 

comparison between the mean and the median indicates that, in all cases, the median is much lower than 

the mean, representing a clear indication of asymmetrical distributions. This observation is confirmed by 

the calculation of the asymmetrical coefficient which is positive in all cases, thus favoring thicker tails. 

And the very high smoothing coefficients show the existence of leptokurtic distributions with thick tails. 

We cite the example of the EF type of risk where the smoothing coefficient is on the order of 2,722 and 

the asymmetry coefficient is evaluated at 46. We in effect note that 98% of the losses are below $10,000. 

 3.3 Descriptive Statistics on Loss Frequencies 

A detailed analysis of the number of daily losses shows us that the frequencies of these losses over 

the days of the week are not identically distributed. We noted that the frequencies are lower over the 

weekends. It is possible that there are fewer losses on days when banking institutions are closed. However, 

it is hard to admit that there should be fewer loss events related to certain types of risk (such as EF…) on 

weekends than on other days. This result may be due to a bias in the accounting date of the loss. 

Therefore, one way of getting around this problem is to consider the number of losses by week. This will 

however mean losing some observations, since we limit our sample to 106 frequencies. 

Table 1b presents the descriptive statistics for weekly loss frequencies. We note that the means are 

lower than the variances, which favors over-dispersion distributions for modeling the frequencies. It is 

also worth mentioning that we have checked for any end-of-month or end-of-year concentrations which 

might distort the whole modeling of the frequencies. It is hard to detect any possible end-of-year 

concentration since we have only a 3-year history. On the other hand, we have noticed a slight 
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concentration at the end of months for losses of the type, EDPM. The distribution of losses for the other 

types of risk is uniform over the days and weeks of the month. 

The LDA model thus consists in estimating the severity and frequency distributions and 

determining a certain centile of the distribution of the S (aggregated distribution). The aggregated loss by 

period is obtained either with a Fourier transformation, as proposed by Klugman et al (2004), or with a 

Monte Carlo simulation, or by analytical approximation. In what follows, we shall estimate each of the 

severity and frequency distributions and determine the operational VaR by risk type. 

4. Estimation of the Severity Distribution 

The first step in applying the LDA method to calculate capital consists in finding the parametric 

distributions which offer the best fit for the historical data on loss amounts. The unbiased estimation of the 

parameters of these distributions will have an enormous influence on the results of operational capital. In 

this section, we shall explore several methods for estimating the distribution, so that we can achieve a 

better fit for all the historical data. 

The method will, in fact, vary depending on the nature of the data and their characteristics. We 

begin by estimating the distribution based on all the loss data. However, if the goodness of fit tests we set 

up rejects these distributions, we must then adopt another method. In this case, it is indeed possible to 

divide the distribution (especially if the size of the sample permits it) and, consequently, to fit a 

distribution to each part of the empirical distribution. 

Besides considering the behavior of losses and the number of data when choosing the fitting method 

for severity distributions, the collection threshold for data is also of great importance. In the context of 

operational risk, most financial institutions have chosen a level at which operational losses will be 

collected. The fact of using truncated data changes the usual method of estimating parameters. This 

threshold must thus be taken into account when estimating the parameters. 

In the literature, several estimation methods are proposed for estimating parameters. We can cite the 

maximum likelihood method and the method of moments, among others. However, the latter method 
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proves harder to use with truncated data, since finding the moments of a truncated distribution is more 

complicated than estimating the parameters of a distribution whose data are not truncated. It is, however, 

always possible to estimate the parameters of the distribution of the losses exceeding the collection 

threshold (Dutta and Perry, 2006). This approach certainly brings us back to the usual estimation of 

distribution parameters, but it leaves out losses lower than the collection threshold, seeing that the 

distribution does not take them into account. Thus, we can only generate surplus losses with the 

distribution chosen. This method poses a problem of underestimation or overestimation of capital, 

especially if the threshold is high enough and the volume of small losses is appreciable. If this method is 

used, this bias must be corrected. 

Our first step is to identify the distributions which will be tested. We then describe the different 

estimation methods according to the nature of the data. Finally, we present the results of the estimation for 

each type of risk and the four distributions tested. 

 4.1 Distributions Tested 

We start by choosing among the various parametric distributions the one which gives the best fit for 

the loss data. Theoretically, all the continuous distributions with a positive domain of definition are 

candidates for severity-distribution modeling. Instead of limiting ourselves to a single distribution as do 

most practitioners in the industry, it is better to start by testing different distributions—simple 

distributions (with a single parameter) like the exponential; common distributions like the lognormal or 

the Weibull (with two parameters); and more complex but flexible distributions like the GB2 (with four 

parameters). We describe the characteristics of each of them and we present their density and cumulative 

function in the summary table 2 

First of all, we test the exponential distribution which offers the advantage of being simple (with 

just one parameter). Next, the lognormal distribution is tested. This two-parameter distribution is 

commonly used in practice. And this distribution is, by hypothesis, taken as one which fits loss amounts in 

several studies (Chernobai, Menn, Truck, and Rachev, 2005b; Frachot, Moudoulaud, and Roncalli, 2003). 

Both this distribution and the exponential distribution are characterized by moderately thick tails. The 
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two-parameter Weibull distribution is also tested. Unlike the two preceding distributions, this one has a 

thin tail. These three distributions thus offer tails of different thickness. 

Finally, we also test a family of four-parameter distributions. Though certainly less often used than 

the others in practice, these distributions do offer a great deal of flexibility. In effect, their four parameters 

allow them to take numerous forms and to display tails of different thickness.  

In specific cases, we also propose the Pareto distribution for estimating the tails. The Pareto can be 

presented by introducing a -scale parameter. Suppose that Z follows an β α -parameter Pareto distribution, 

the random variable  follows a Pareto distribution with a shape parameter  and a scale parameter 

. The f density function and the F cumulative function are respectively the following:  

ZX β= α

β

( ) β≥
αβ

=βα +α

α

or   x    1 f
x

,,xf ;      ( ) β≥⎟
⎠
⎞

⎜
⎝
⎛ β−=βα

α

or   x   1 f
x

,,xF . 

 4.2 Modeling all the Data 

Modeling the amounts of losses will differ according to the data and their characteristics. A first 

step is to model all the loss data. This involves the types of risk IF and EF for which all the operational 

loss data are collected. The results of the estimation will be presented only for the risk of IF. The results of 

the estimation of the parameters related to losses from EF will not be presented, since the goodness of fit 

tests reject all the distributions tested. We shall thus propose another method for modeling these losses in 

Section 4.3. Since this model is well known in the literature, it will not be presented here. Given that 

certain losses related to certain types of risk are truncated whereas others are not, it is important to 

distinguish between the two estimation models. We develop now the estimation method to be used for 

truncated data. 

 To account for the losses not collected, we estimate the conditional parameters only when the 

losses observed exceed the collection threshold. 
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Let s be the collection threshold; y, the amounts of losses observed, with y ≥ s; n, the number of 

losses collected and D, a continuous severity distribution whose parameters are represented by the θ 

vector. 

The density and the cumulative functions of the conditional distribution D arising from the fact that 

only y is seen to exceed the threshold s are written as follows: 

( ) ( )
( ) syfor    

,sF1
,yfsy|,yf ≥
θ−

θ
=≥θ ;     ( ) ( ) ( )

( ) syfor     
,sF1

,sF,yFsy|,yF ≥
θ−

θ−θ
=≥θ  

We have selected to estimate the parameters by the maximum likelihood method. The optimal 

solution  solves: MLEθ

( ) ( )( ) ( )( )                         1 
1

θ−−θ=θ ∑
=

,sFnLog,yfLog,yL
n

i
ii              (2) 

Among the losses in our base, we have those related to the following types of risk: DPA; EPWS; 

EDPM; and CPBP. The goodness of fit tests that we set up has rejected the fitting of all the distributions 

proposed for the last two types previously cited. We shall not present these results. Instead, we shall 

model them using another method that we develop in the next section. 

4.3 Division of the Distribution 

In some cases the parametric distributions tested do not fit all the data. This is generally the case 

when there are very numerous losses or when their empirical distribution has two peaks. In this case, we 

propose to divide the empirical distribution into parts and to fit the parametric distributions for each part. 

Several articles in the literature treat the subject of fitting tails of distribution, mainly from the perspective 

of the theory of extreme values. However, fitting only the tail of the distribution means neglecting the 

body of the distribution, whereas the latter should play its part in calculating capital and could have a 

significant impact. 

There is no one way to divide a distribution, the important thing being able to find a good fit. The 

division should go hand in hand with the objective of the fit. In other words, if we make the fitting in 

order to estimate capital at a 99.9% level, the tails of the distributions will thus come into play. The 
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quality of the fitting is essential to avoiding an under- or over-estimation of the capital. Thus, in our case, 

it is important to make an accurate estimation of the tail or the right wing of the distribution of losses. 

Once the distribution of the tails has been estimated, the body of the distribution should be 

estimated. If we fail to obtain a good fit with the distributions tested, we shall divide the body of the 

distribution into two or more parts. In what follows, we shall present an estimation method for the left, 

centre, and tail of the distribution. 

Modeling with a single parametric distribution did not give conclusive results for the following 

types of losses: CPBP, EDPM, and EF. Consequently, we opted for dividing the distribution. It should be 

pointed out that to apply this method it is important to have a sufficiently high number of observations. 

We must, in effect, have enough data in each part to allow the estimation of the parameters of the 

distribution. This condition is quite well satisfied for the types of risk to be modeled in this section. 

 4.3.1 Estimation of the tail of the distribution 

In what follows, we plan to model the tails of the empirical distributions. We first choose several sq 

loss thresholds corresponding to different high centiles. We next estimate the parameter of the Pareto 

distribution for each of the loss samples higher than the different sq thresholds. Finally, we select the 

threshold for which the Pareto gives the best fit (the distribution for which the p-value of the goodness of 

fit test is the highest). This method is similar to the one developed by Peters et al (2004). 

We have chosen high centiles in order to get a good fitting for the tail. However, it is important to 

keep enough observations to carry out the estimation. We have decided that at least 50 observations must 

be kept just for estimating the shape parameter α  of the Pareto for each of the risk types. 

Let sq be the loss threshold corresponding to the quantity q; this threshold corresponds to the scale 

parameter of the generalized Pareto. In effect, we shall each time suppose the scale parameter to be equal 

to the sq threshold and we estimate only the α  parameter. Let z be the  amounts of losses exceeding the 

sq threshold and nq the number of observations z in the sample defined by ( ). qqi n...2,1i,s =≥i z|z

The density function of the Pareto is thus: 
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( ) 1
q

q z
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s,,zf +α

αα
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For the maximum likelihood, the optimal α  parameter for the different sq thresholds is : 

 

∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=α

qn

1i q

i

q
MLE

s
x

Log

n
 (3) 

We have thus estimated the  parameter corresponding to each sq threshold for each of the three 

types of risk previously cited. The goodness of fit tests allows us to choose the threshold providing the 

best fit for the tail. 

α

 4.3.2 Estimation of the body of the distribution 

Once the tail of the distribution has been modeled, it is then a matter of estimating the distribution 

which fits the body of the empirical distribution best. Knowing that this latter distribution is represented 

by all or part of the losses that fall below the centile threshold selected in the preceding section, we shall 

start with different exponential, lognormal, Weibull and GB2 distributions for the whole sample of losses. 

Let sq be the threshold of loss tail selected corresponding to the q centile;  the amounts of losses 

falling below the sq threshold;  the number of  observations, being the number of 

; and D the distribution to be tested. 

'z

'n 'z

qqii n...2,1i,s'z|'z =<

The density and the cumulative functions of the distribution D of the losses falling below the tail 

threshold selected are the following: 

( ) ( )
( )θ

θ
=<θ

,sF
,'zfs'z|,'zf

q
q ;  ( ) ( )

( )θ
θ

=<θ
,sF
,'zFs'z|,'zF

q
q  

For the maximum likelihood, it is a matter of finding the θ  parameters which maximize the 

following function: 

  (4) 
( ) ( )( ) ( )( )

         
1

θ−θ=θ ∑
=

,sFLog'n,'zfLog,'zL q

'n

i
ii
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However, as we have already seen, when the loss data are truncated, this must be taken into account 

in estimating the body of the distribution.  

Let s be the collection threshold; sq the tail threshold selected corresponding to the q centile;  the 

amounts of losses lower than the sq tail threshold and higher than the collection threshold s;  the 

number of  observations such that 

''z

''n

''z qqii n...2 ,1i ,s''zs|''z =<<  and D, the distribution to be tested. 

The density function of the D distribution of the losses between the s threshold and the sq tail 

threshold selected is written: 

( ) ( )
( ) ( )θ−θ

θ
=<≤θ

,sF,sF
,''zfs''zs|,''zf

q
q . 

For the maximum likelihood,  parameters maximize the following function: θ

 

  (5) 
( ) ( )[ ] ( ) ( )[ ]

      

  
1

θ−θ−θ=θ ∑
=

,sF,sFLog''n,''zfLog,''zL q

''n

i
ii

This formula can be used when the data fall between the two thresholds or boundaries. For the risk 

type CPBP, we have modeled the losses found between the collection threshold and the tail threshold 

selected. The results of the estimation will be presented in Section 4.4. 

As to the types of risk EF and EDPM, modeling the body of the distribution with the parametric 

distributions proposed proved to be non-conclusive, since the goodness of fit tests failed to select any of 

them. In this case, we propose a different division of the distribution. We cite the example of the risk type 

EF where none of the distributions tested fit the data. A painstaking analysis of the losses from EF does in 

fact show that the empirical distribution of the data has two peaks, the second of which stands at the level 

of $5,000. We thus divide the distribution at the level of this point. We estimate the left wing of the 

distribution using the maximum likelihood method shown in equation (4). Seeing that the losses are 

contained between the two thresholds, the centre of the empirical distribution is estimated using another 

parametric distribution based on function (5). 
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As to the risk type EDPM, estimation of the left wing and the centre of the empirical distribution is 

done with the likelihood function (5), since the data are truncated at the collection threshold. 

We set up the Kolmogorov-Smirnov (KS), Anderson Darling (AD), and Cramér-von-Mises (CvM) 

tests along with the parametric bootstrap procedure. Appendix A2.1 presents the algorithm for the KS 

parametric bootstrap procedure. It should be noted that, when applying the test, we must take the 

characteristics of the sample into account. In other terms, if the data are truncated or contained between 

two thresholds, a sample respecting the same condition must be generated in the parametric-bootstrap 

procedure before calculating the statistic. 

 4.4 Results from Estimation of the Parameters 

Table A1 presents the results obtained from estimating the distributions for the risk types IF, DPA, 

and EPWS. Unlike the other types of risk with truncated losses, losses connected with the IF risk are 

integral. The results of this type of risk synthesized in Table A1a show that the lognormal and GB2 

distributions fit the loss data well, whereas the fitting of the exponential and Weibull distributions are 

rejected. However, the lognormal distribution has a higher p-value than that of the GB2. We thus retain 

the lognormal distribution as the severity distribution which best describes the behavior of incidents of IF 

in the bank studied. 

Tables A1b and A1c present the results for the risk types: DPA, and EPWS. Remember that these 

losses are truncated at the s level. Only the lognormal and GB2 distributions offer a good fit for the 

truncated-losses data. The KS, AD, and CvM tests for the Weibull distribution could not be carried out for 

the two types of risk. Accounting for the truncature when modeling losses does, in fact, greatly complicate 

the estimation of distributions and standard tests could not be applied. For the types of risk DPA, and 

EPWS, we note that the results of the goodness of fit tests are similar for the lognormal and GB2 

distributions. In what follows, we opt for the lognormal, as it is simpler than the GB2. 

As for the other types of risk, we divide the empirical distribution, since none of the distributions 

can be retained with the first method. Moreover, since the number of observations is rather high for the 
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three samples, the division is possible, as is described in the preceding section. For the type of risk CPBP, 

we first estimate the tail of the distribution by testing the Pareto distribution on several samples of the tail 

corresponding to high centiles. The results in Table A2a allow us to retain the threshold of $62,000. In 

other words, losses above this threshold follow a 1.18 Pareto parameter. The losses below this threshold 

have been modeled by the four distributions cited in Section 4.1. The results of the goodness of fit tests 

(Table A2b) reject all the distributions except the GB2. We thus retain this distribution for modeling 

losses situated below the $62,000 threshold. 

We also begin by modeling the tail in the case of the risk type EDPM. Several thresholds 

corresponding to different centiles are chosen. Based on the three tests, the best fit of the Pareto is 

obtained for the $26,000 threshold corresponding to the 96% centile (Table A3). The parameter of the 

Pareto is estimated at 1.11. We next estimate the body of the distribution with the distributions proposed. 

None of the distributions fit the empirical data below the tail threshold. We have consequently divided the 

body of the distribution into two parts forming the left wing and the center of the distribution. The results 

in Table A3b, obtained from estimating the left wing (data contained between s and s’) of the distribution, 

show that only the GB2 offers a good fit for the historical data according to the p-value of the KS test. It 

should be mentioned that the estimation of the lognormal and Weibull distributions do not give coherent 

parameters. This fails to establish the KS, AD, and CvM tests. As for the centre of the distribution, we 

model the losses with the same distributions. The results from the goodness of fit test show that the 

lognormal and GB2 distributions offer a good fit. The comparison of the p-values of the two distributions 

favors the GB2 model (Table A3c). 

The same method is applied to the EF risk type. To estimate the tail, we test several thresholds 

corresponding to numerous centiles (between 0.85 and 0.997), since the tail of the sample allows us to do 

so (22, 179). We retain the threshold of $38,000 and the parameter of the Pareto is estimated at 1.33. We 

next divide the body of the empirical distribution, since attempts to find a fit for all the data below the tail 

threshold fail to produce conclusive results. We thus estimate the left wing of the distribution composed of 

losses below s’’. The results presented in Table A4b allow us to retain only the GB2. All tests in effect 
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reject the fit for the other distributions. Finally the centre of the empirical distribution is also modeled with 

a GB2 distribution. 

We should point out that, in each case, the exponential and Weibull distributions fail to offer a good 

fit for the data. In most cases, the GB2 distribution turns out to be the best candidate for modeling the 

amounts of operational losses. This confirms our initial hypothesis stipulating that, given its great 

flexibility, the GB2 would offer a good fit for the data. But we also note that estimating this distribution, 

especially for truncated data, is rather difficult. 

5. Estimation of the Frequency Distribution 

 5.1 Distributions Tested 

We propose the Poisson and negative binomial distributions for estimating the number of 

operational losses. Several studies have already used the Poisson to model operational losses, whereas few 

have used the negative binomial for this purpose. 

Let Y be a discrete positive random variable: 
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 5.2 Estimation of the Parameters 

For each of the six types of risk, we estimate the parameters of each of the two distributions using 

maximum likelihood. As we have already pointed out, we model both daily and weekly frequencies in 

order to correct any possible collection bias. 

Remember that, for certain types of risk (DPA, EPWS, CPBP and EDPM), the losses are collected 

only at a specific threshold. We have taken this truncature threshold into account in estimating the severity 

distribution. The same modeling has to be done for the frequencies. Note that these are not truncated 

frequency distributions. We in fact have at our disposal the number of losses above the collection 
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threshold. The parameters estimated must be corrected to account for the number of losses below the 

truncature threshold. 

 5.3 Correction of the Parameters 

For the Poisson distribution, Frachot et al (2003) have already proposed correcting the  parameter 

in order to account for the number of uncollected operational losses. We extend the case where the 

λ

λ  

parameter is random. 

Let be the number of losses collected; , the number of real losses; X, the amount of the losses; s, 

the collection threshold; F, the cumulative function of the severity distribution, with 

obsy realy

( ) [ ]F s Pr X s= ≤ . 

Suppose that the frequency distribution of all the losses is random parameter Poisson . In what 

follows, we shall determine the distribution of the frequencies observed. The probability of observing i 

operational losses amounting to more than s is (Dahen, 2007): 
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correct these parameters to account for the unobserved frequencies of the losses below the collection 
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where the parameter δ  is defined such that 
β+

=δ
1

1 . 

 At this stage, it is important to test the degree of fitting of the distributions estimated for the 

different periods chosen (daily and weekly) and for each of the types of risk. As we are dealing with 

discrete data, we cannot apply the same tests used earlier to test the severity distributions. We thus set up 

in Appendix A2.2 a  test with parametric bootstrap, constructed in the same way as the Kolmogorov-

Smirnov test. 

2χ

 5.5 Results of the parameters estimation  

Table A5 presents the results of the estimation of the Poisson and negative-binomial distributions 

for each of the six types of risk. It is worth noting that in all the cases, the Poisson distribution is rejected 

by the  test. This confirms our expectations since the data present an over-dispersion that must be 

modeled by another distribution. This fact calls into question all the studies on the calculation of 

operational capital which use the Poisson model to estimate loss frequencies. The negative-binomial 

distribution offers a good fit for the daily or weekly loss numbers. 

2χ

Concerning the frequency period, we note that for the types of risk EF, IF, and EDPM (Tables A5a, 

A5b, A5f) the modeling works better when weekly frequencies are chosen. This fits in with our initial 

analysis showing a potential bias in accounting for certain losses. For the other types of risk, we retain the 

daily frequencies, as based on the values of the p-values of the  test (Tables A5c, A5d, A5e). 2χ

On the other hand the likelihood ratio test is higher than ( )1%,52χ  in all the cases. This result 

shows that we reject the null hypothesis stipulating that the over-dispersion coefficient is null. This fact 

confirms the previous results confirming rejection of the Poisson model. We thus retain the negative 

binomial model as the one with the best fit for the frequency data. We have also corrected the parameters 

to account for the loss numbers falling below the threshold for all the risk types except EF and IF. It 

should be mentioned that, based on the expertise and judgment of the directors of the bank studied, we fix 

F(s) exogenously. 
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6. Calculation of Operational VaR by Type of Risk 

 6.1 Aggregation of the Distributions with the Internal Data 

Remember that our objective is to estimate the annual value at risk at a 99.9% confidence level, as 

recommended by the regulatory authorities. We start by first determining the distribution which models 

the severity of operational risks by event for each of the risk types. The second step consists in 

determining the distribution which best fits the frequency data. At this stage of the analysis, it is suitable 

to aggregate the two distributions to obtain the aggregated distribution of the annual losses. Several 

aggregation methods, which we have already described, are available in the literature. We choose the 

Monte Carlo simulation method to derive the non-parametric distribution of the annual losses. This 

method is not the quickest but it has the advantage of being very precise. We apply the method already 

described by Cruz (2002) in the context of operational risk.  

 6.2 Comparison of our Model with the Standard Model 

We define the standard model as being the simple method frequently found in the literature and 

obtained based on the lognormal and the Poisson distributions. Moreover, no consideration is given to 

missing losses. We have chosen this model because it is frequently used in practice and has been the 

subject of several research studies. We shall thus test this model’s robustness compared to that of the 

model we have developed. We expect to find that poor specification of the distributions and their failure to 

fit all the data will bias the calculation of the capital required. 

We have also chosen only three types of risk to do this analysis: IF, EPWS and EF. These types of 

risk will allow us to compare our model to the standard model. In table A6, we present the results of the 

non-conditional estimation of the lognormal distribution. We also present the results obtained from 

modeling the number of weekly losses with the Poisson distribution. 

Table 3 compares the variation percentages for the mean of annual losses and the VaR (confidence 

levels at 90; 95; 99 and 99.9%) obtained with the standard model to those obtained with the model 

 21



developed in this study. We note that the results are very different in most of the cases. The standard 

model underestimates enormously the annual mean of losses and the VaR. 

For the type of risk IF, the data are not truncated and the severity distribution is the same in both 

models. Thus, the difference in the results of the two models measures the impact of the poorly specified 

frequency distribution for this type of risk. The mean of annual losses are almost equal, whereas a 

difference of as much as 2% is noted between the VaR of the two models. 

For the risk type EPWS, the data are truncated and the severity distribution is the same in both 

models. Thus, the difference in the results obtained by the two models measures the impact of the poorly 

specified frequency distribution and the failure to consider the truncature threshold for this type of risk. 

Thus, the underestimation of the mean of annual losses (-5%) and of the VaR (-27%) shows the 

importance of choosing the proper frequency distribution and of considering the data below the threshold. 

As to the type of risk EF, the severity and frequency distributions are not the same in the two 

models. The results will thus measure the impact of the poor choice of distributions on the mean of annual 

losses and on the VaR. In effect, the 99.9% VaR calculated with the standard model is underestimated (by 

82%) compared with the one calculated using our model. This confirms our expectations. It is important to 

choose distributions that fit the loss data well, in order to determine the level of capital reflecting a bank’s 

true exposure to operational risk. 

We also note that the underestimation is larger when the VaR confidence level is high. Indeed, for 

the type of risk EF, there is only a minimal difference in the means for annual losses between the two 

models, whereas this difference is on the order of 6% between the 90% VaRs and goes as high as 82% 

between the 99.9% VaRs. This thus shows that the standard model underestimates the thickness of the tail 

of the aggregated distribution. 

So this analysis shows that the poorly specified severity and frequency distributions result in serious 

biases in the calculation of capital. The VaR calculated with the standard model does not reflect at all the 

bank’s real exposure. Moreover, failure to consider the uncollected losses leads to an inaccurate and 
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biased estimation of capital. Our method is thus a good alternative to the standard model, since it allows 

an accurate description of the tails of the severity distributions without ignoring the body. 

 6.3 Combination of Internal and External Data 

The current context of operational risk imposes the use of external data for calculating the value at 

risk. Indeed, the losses collected do not reflect the bank’s real exposure, since certain less frequent, but 

potentially heavy losses are not necessarily captured in the internal data base. They can, nonetheless, have 

a serious influence on operational risk capital. This is mainly explained by the fact that the history of 

losses is short and the collection is not yet exhaustive. All these factors argue in favor of combining 

internal and external losses. External losses will be scaled by applying the same method used in Dahen 

and Dionne (2007). 

Concerning the severity distribution describing the behavior of external losses scaled to the 

Canadian bank studied, we shall take the split GB2 model estimated in the Dahen study (2007). On the 

other hand, the Dahen and Dionne study (2007) shows how it is possible to determine parameters of the 

frequency distribution which make it possible to scale and fit the data. We shall thus retain the negative-

binomial model with a regression component. 

From the theorem of Larsen and Marx (2001), we find that, if frequency losses of more than $1 M 

are independent and identically distributed according to a negative-binomial model, then the parameters of 

the annual negative-binomial distribution are ⎟
⎠
⎞

⎜
⎝
⎛ p,
11
ri  with ( )p,ri  the negative-binomial parameters 

determined based on the Dahen and Dionne study (2007) for modeling the number of losses on an 11-year 

horizon. 

Knowing the severity and frequency distribution, we shall aggregate them in the same way that we 

did for the internal data. We set up an algorithm in Appendix 3 which makes it possible to aggregate the 

internal and external data with a view to determining the empirical distribution of the annual losses and to 

calculating their 99.9th percentile.  
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 6.4 Determination of the VaR 

Table 4 presents the results of the mean of annual losses and the VaR calculated at the 95%, 99%, 

and 99.9% confidence level. These results take into account the internal losses collected within the bank 

as well as the external losses scaled to the financial institution under study. Out of respect for the 

confidentiality of the information from the bank studied, the results are presented as a percentage of the 

total assets of that bank in 2004. We present the results by type of risk and we show that the type of risk 

CPBP presents the greatest operational value at risk. This confirms the result found by Dutta and Perry 

(2006) in their study based on data from 7 banks. The types of risk EF and EDPM come respectively in 

second and third position in terms of their VaR scope. The type of risk which presents the least risk is 

DPA. It is worth noting that this classification of types of risk is not respected when we observe the values 

of the mean of annual losses. 

 

 6.5 Impact of the Combination of Internal and External Data on the Results 

To highlight the impact of integrating external data in the calculation of the VaR, we consider three 

types of risk: DPA; EPWS and IF. We have chosen these types of risk because the internal base shows no 

extreme losses of over one million dollars for them. Thus, a comparison between the VaRs calculated with 

only internal data and those calculated based on the combination of internal and external data will show us 

the importance of external data for filling in the tails of the distributions. 

We calculate the mean of annual losses as well as the VaR of different centiles based on a first 

sample composed only of internal loss data, whereas the second sample incorporates external loss data for 

the three types of risk cited above. The results are presented in Table 5; they correspond to the difference 

of VaR (internal data) and the VaR (internal plus external data). The results show that the VaR is greatly 

underestimated when based solely on internal data. The underestimation reaches 99% for the type of risk 

IF (VaR at 99.9%). In effect, the losses linked to this type of risk can be too high, like the losses sustained 

by the Allied Irish Bank and Barings as the result of unauthorized transactions. Remember that no extreme 
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events have occurred in the history of these three types of risk. Including the possibility of events of more 

than one million dollars will make it possible to give a better description of the tails of the aggregated 

distributions and thus to reflect the level of unexpected losses. 

7. Conclusion 

The objective of this article is to construct a robust method for measuring operational capital. We 

have thus presented a method which consists in carefully choosing the right severity distribution, by 

making sure to take uncollected losses into account. The results have shown that in most cases the GB2 

distribution provides a good fit for all the data or for the body of the empirical distributions. The GB2 thus 

proves to be a good candidate for consideration when determining the severity distribution of operational 

losses. As the GB2 has already been applied recently in several financial domains, this article argues in 

favor of the relevance of its application in modeling operational risk. As to the tails of the distributions, 

we have chosen the Pareto distribution.We have also tested the Poisson and negative-binomial 

distributions for modeling the frequencies of losses. We have shown that, unlike the negative-binomial 

model, the Poisson model is retained in none of the cases. In order to take into account the number of 

losses falling below the collection threshold, a correction was made in the parameters estimated. 

In order to show the robustness of our model, we have compared it to the standard model 

constructed on the most commonly used distributions (lognormal and Poisson), but without considering 

the truncature threshold. The results have shown that the standard model greatly underestimates the 

operational value at risk. 

We have also set up an algorithm in order to combine the internal and external losses scaled to the 

Canadian bank studied. The results of the VaR reflect the reality more adequately, since the internal data 

do not include losses of a very large scope. Moreover, an analysis of the impact of the integration of 

external data on the VaR has revealed that it is largely underestimated when the calculations are based 

solely on internal data. This proves the importance of combining internal and external data in calculating a 

bank’s unexpected losses. 
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So this mode, as developed and applied to real data from a Canadian bank, can be implemented in 

any financial institution. However, note that there needs to be a sufficient number of data for a parametric 

modeling of distributions. We have fixed this number in an arbitrary fashion, since it is not the subject of 

this contribution. A statistical study making it possible to determine the minimal number required for 

modeling distributions would thus justify our choice. 

Remember that we have calculated the unexpected loss for only six types of risk. For the seventh 

type of risk Business Disruption and System Failures, the number of observations is limited, which 

prevents us from estimating the loss with the LDA method. We thus think that other methods based on 

qualitative factors can be applied, methods like scenario analysis (Scandizzo, 2006). It would be 

interesting to see how this method could be implemented in practice. It would also be interesting to 

calculate the aggregated capital of the whole bank. Taking into consideration the dependence between 

types of risk makes it possible to find the exact value of the aggregated capital. The copula theory can be 

used for this and can thus be an interesting avenue of research (Frachot, Roncalli, and Salomon, 2004; 

Chavez-Demoulin, Embrechts, and Nešlehová, 2006; Embrechts, 2008). 

Besides, the case study done in this article can be used as a business case. If we dispose of the 

operational-risk capital allotted to all types of risk including the risk type Business Disruption and System 

Failures, it will be possible to use the copula theory to calculate the aggregated capital at the level of the 

bank. We can consequently compare the capital found with the advanced method to the capital calculated 

with the standardized or basic method. It is expected that the capital estimated with the advanced method 

will be lower than that found with other methods, when the true dependence between the types of risk is 

carefully evaluated. 
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Table 1: Descriptive Statistics 

 
We present descriptive statistics for the amounts and frequencies of operational losses of a Canadian bank 
over the period running from 1/11/2001 to 31/10/2004 
 
Table 1a: This table presents the descriptive statistics for loss amounts by event and type of risk over a 3-
year period. 

   DPA* CPBP* EPWS* EF* IF* EDPM* 

Mean $20,797 $25,582 $34,220 $2,049 $13,882 $7,479 
Median $7,728 $3,169 $12,520 $677 $2,975 $2,000 
Standard deviation $30,110 $76,304 $54,868 $13,272 $71,602 $33,012 
Kurtosis coefficient 9.25 47.66 12.54 2,722.29 78.57 341.00 
Asymmetric coefficient 2.80 6.25 3.22 46.12 8.80 15.94 
Maximum $157,138 $819,717 $334,034 $1,003,045 $645,700 $863,876 
Number of observations 53 509 97 22,178 81 1,547 

* DPA: Damage to Physical Assets / CPBP: Clients, Products and Business Practices / EPWS: Employment, 
Practices, and Workplace Safety / EF: External Fraud/ IF: Internal Fraud / EDPM: Execution, Delivery and 
Process Management 
 

 

Table 1b: This table presents daily and weekly frequencies by risk type, over 3-year period. 
Daily loss frequencies by type of risk, over a 3-year period 

 DPA* CPBP* EPWS* EF* IF* EDPM* 

Mean 0.0484 0.4644 0.0885 20.2354 0.0739 1.4115 
Median 0 0 0 18 0 1 
Mode 0 0 0 0 0 0 
Variance 0.0643 1.0617 0.1209 369.7491 0.1069 9.3693 
Minimum 0 0 0 0 0 0 
Maximum 3 14 4 226 4 66 

Weekly loss frequencies by type of risk, over a 3-year period. 
Mean 0.3376 3.2420 0.6178 141.2611 0.5159 9.8535 
Median 0 2 0 148 0 8 
Mode 0 2 0 125 0 4 
Variance 0.4302 10.3513 0.8530 2689.7070 0.7513 87.8566 
Minimum 0 0 0 50 0 0 
Maximum 3 17 4 447 4 80 

* DPA: Damage to Physical Assets / CPBP: Clients, Products and Business Practices / EPWS: Employment, 
Practices, and Workplace Safety / EF: External Fraud/ IF: Internal Fraud / EDPM: Execution, Delivery and 
Process Management 
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Table 2: Distributions Studied 
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Table 3: Comparison between Our Model and the Standard Model 
 
We compare the mean of annual losses (excluding external losses) as well as the annual VaR, at the 90; 
95; 99 and 99,9% level of confidence, as calculated based on the standard model and the one we have set 
up in this article for the types of risk Internal Fraud, Employment, Practices, and Workplace Safety, and 
External Fraud We present the variation in percentage of the results obtained with the standard model 
compared to the results from our model. 

 Variation of the standard model compared to our model (%) 
Types 
of risk 

Variation of 
losses /year 

Variation of 
annual VaRs at 

90% 

Variation of 
annual VaRs 

at 95% 

Variation of 
annual VaRs at 

99% 

Variation of 
annual VaRs 

at 99.9% 
IF* -0.06 -2.06 -2.18 -1.68 -1.34 
EPWS
* 

-4.67 -9.40 -11.89 -17.07 -27.32 

EF* 0.95 -5.62 -13.50 -40.28 -81.59 
* IF: Internal Fraud / EPWS: Employment, Products, and Environmental Safety / EF: External Fraud  
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Table 4: Operational VaR by Type of Risk 
 
We present the results of the estimation of the mean of annual losses and annual values at risk at the 90%, 
95%, 99% and 99,9% confidence level by type of risk. These results are derived from the combination of 
scaled internal and external data. The results are presented as a percentage of the total 2004 assets of the 
bank studied. 

Types of 
risk 

Mean of 
annual loss 

(%) 

Annual VaR 
at 90% 

(%) 

Annual VaR 
at 95% 

(%) 

Annual VaR at 
99% 
(%) 

Annual VaR 
at 99.9% 

(%) 
DPA* 0.0005 0.0007 0.0009 0.0015 0.0331 
CPBP* 0.0079 0.0064 0.0076 0.1123 0.3887 
EPWS* 0.0016 0.0021 0.0024 0.0038 0.0774 
EF* 0.0178 0.0182 0.0191 0.0727 0.2159 
IF* 0.0005 0.0004 0.0005 0.0023 0.0760 
EDPM* 0.0064 0.0058 0.0066 0.0753 0.2614 

*DPA: Damage to Physical Assets / CPBP: Clients, products and Business Practices / EPWS: 
Employment, Practices, and Workplace Safety / EF: External Fraud / IF: Internal Fraud / EDPM: 
Execution, Delivery and Process Management  
 

 
 
Table 5: Impact of the Integration of External Data on the VaR 
 
We present the results of the comparison between the mean of annual losses and the annual values at risk 
at the 90%, 95%, 99%, and 99.9% confidence level calculated based on internal data to those calculated 
based on internal and external loss data. 

 Variation of the model with internal data compared to the model with 
internal and external data (%) 

Types 
of risk 

Mean of 
annual losses 

(%) 

Annual VaR 
at 90% 

(%) 

Annual VaR 
at 95% 

(%) 

Annual VaR 
at 99% 

(%) 

Annual VaR 
at 99.9% 

(%) 
DPA* -11.83% 1.46% 3.11% 15.24% -88.73% 
EPWS* -18.42% 0.67% 3.68% -1.08% -91.26% 
IF* -57.30% -5.31% -8.98% -72.29% -98.63% 

*DPA: Damage to Physical Assets / EPWS: Employment, Practices, and Workplace Safety / IF: Internal 
Fraud. 
 



Appendixes 
Appendix 1: Tables of parameters’ estimation 
 
Table A1: Estimation of Severity Distributions for the Types of Risk: IF, DPA, EPWS. 

 
Table A1a: Results from estimation of the 4 parametric distributions tested for the type of risk IF. We 
present the parameters estimated, the log-likelihood values and the p-values from the KS, AD and the 
CvM tests with parametric bootstrap. We have 84 non-truncated observations. 

 Exponential Lognormal Weibull GB2 
Parameters 13,881.70 

 
 
 

8.03 
1.36 

6,308.72 
0.59 

 

1.06 
1,001.21 

2.35 
1 

Log likelihood -853.60 -790.48 -808. 33 -788.48 
p-value KS 0 0.37 0 0.25 
p-value AD 0 0.44 0 0.27 
p-value CvM 0 0.54 0 0.30 

 
 
Table A1b: Results from estimation of the parametric distributions for the risk type DPA. We present the 
parameters estimated, the log-likelihood values and the p-values from the KS, AD and the CvM tests with 
parametric bootstrap.  We have 53 observations higher than s. 

 Exponential Lognormal Weibull GB2 
Parameters 19,797.22 

 
 
 

8.75 
1.59 

8,316.94 
0.52 

0.04 
113.55 
446.36 
373.93 

Log likelihood -577.34 -569.18 -568.21 -569.20 
p-value KS 0 0.46 NaN 0.46 
p-value AD 0 0.22 NaN 0.25 
p-value CvM 0 0.29 NaN 0.31 

 
 
Table A1c: Results from estimation of the parametric distribution for the risk type EPWS. We present the 
parameters estimated, the log-likelihood values and the p-values from the KS, AD and the CvM tests with 
parametric bootstrap. We have 97 observations higher than s. 

 Exponential Lognormal Weibull GB2 
Parameters 33,220.14 

 
 
 

9.40 
1.48 

17,214.52 
0.57 

0.05 
7.56 

418.31 
285.33 

Log likelihood -1,106.86 -1,089.61 -1,089.61 -1,089.64 
p-value KS 0 0.69 NaN 0.69 
p-value AD 0 0.51 NaN 0.37 
p-value CvM 0 0.45 NaN 0.48 

 

A-1 



Table A2: Estimation of the Severity Distributions for the Risk Type CPBP 
 
Table A2a: Estimation of the tail of the distribution for the type of risk CPBP. We take different centiles 
of the empirical distribution (first column) for which the corresponding threshold as well as the size of 
sample are indicated in the second and third columns, respectively. Then we estimate the parameter of the 
Pareto distribution for each of the samples according to formula 3. The last column of the table gives the 
p-value of the KS, AD and CvM parametric-bootstrap tests. The line in bold and italics represents the 
corresponding centile, threshold, and number of observations as well as the Pareto parameter. We have 
chosen this sample because it gives us the highest p-value for the goodness of fit test. 

Centiles Threshold Size of sample Pareto  

   Coefficient p-value KS p-value AD p-value CvM 

0.65 $6,100 179 0.6191 0 0 0 

0.70 $8,900 153 0.6760 0 0 0 

0.75 $11,500 128 0.6700 0 0 0 

0.80 $16,800 102 0.6902 0 0 0 

0.85 $36,900 77 1.010 0.11 0.05 0.04 

0.90 $62,000 51 1.1810 0.37 0.14 0.14 

 
 
Table A2b: Results of the estimation of the body of the distribution for the type of risk CPBP. This deals 
with losses contained between s and $62,000. The sample includes 461 observations. The parameters for 
each of the distributions are estimated using the maximum likelihood method according to formula 5. 

 Exponential Lognormal Weibull GB2 
Parameters 6,615.32 

 
 
 

-70.05 
11.42 

11698.11 
1.3 x 10-6 

4.52 
62.65 

1 
0.13 

Likelihood log -4,486.63 -4,297.83 -4,400.51 -4,297.50 
p-value KS 0 0 NaN 0.05 
p-value AD 0 0 NaN 0.24 
p-value CvM 0 0 NaN 0.01 
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Table A3: Estimation of the Severity Distributions for the Type of Risk EDPM 
 
Table A3a: Estimation of the tail of the distribution for the type of risk EDPM. We take different centiles 
of the empirical distribution (first column) for which the corresponding thresholds as well as the size of 
sample are indicated in the second and third columns, respectively. Then, for each of the samples, we 
estimate the parameter of the Pareto distribution according to formula 3. The last column of the table gives 
the p-value of the KS, AD and CvM parametric-bootstrap tests. The line in bold and italics represents the 
corresponding centile, threshold, and number of observations as well as the Pareto parameter. We have 
chosen this sample because it gives us the highest p-value for the goodness of fit test. 

Centiles Thresholds Size of sample Pareto 

   Coefficient p-value KS p-value AD p-value CvM 

0.75 $4,295 387 0.9916 0.37 0 0.19 

0.80 $5,536 309 1.0243 0.37 0.6 0.46 

0.85 $7,480 233 1.0537 0.55 0.4 0.48 

0.90 $10,600 155 1.0168 0.06 0.14 0.09 

0.95 $22,700 78 1.1901 0.48 0.09 0.14 

0.96 $26,000 62 1.1065 0.74 0.21 0.49 

 
 
Table A3b: Results of the estimation of the left wing of the distribution for the type of risk EDPM. This 
deals with losses contained between s and s’. The sample includes 800 observations. The parameters for 
each of the distributions are estimated using the maximum likelihood method according to formula 5. 

 Exponential Lognormal Weibull GB2 
Parameters 801.62 -46.11 

7.67 
17505.54 

3.47 x 10-7 

 

15.50 
301.38 
4.53 
0.06 

Likelihood log -5,469.42 -5,459.73 -5,473.60 -5,459.70 

p-value KS 0 NaN NaN 0.08 
p-value AD 0 NaN NaN 0.24 
p-value CvM 0 NaN NaN 0.01 
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Table A3c: Results of the estimation of the body of the distribution for the type of risk EDPM. This deals 
with losses contained between s’ and $26,000. The sample includes 685 observations. The parameters for 
each of the distributions are estimated using the maximum likelihood method according to formula 5. 

 Exponential Lognormal Weibull GB2 
Parameters 4,226.01 1.26 

3.058 
17,258.5 

4.25 x 10-6 
1 

9.18 
87.50 
0.95 

Likelihoood log -6,388.39 -6,342.14 -6,450.22 -6,341.99 
p-value KS 0 0.27 NaN 0.38 
p-value AD 0  NaN 0.38 
p-value CvM 0  NaN 0.49 
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Tableau A4: Estimation of Severity Distributions for the Type of Risk EF 
 
Table A4a: Estimation of the tail of the distribution for the type of risk EF. We take different centiles of 
the empirical distribution (first column) for which the corresponding thresholds as well as the size of 
sample are indicated in the second and third columns, respectively. Then, for each of the samples, we 
estimate the parameter of the Pareto distribution according to formula 3. The last column of the table gives 
the p-value of the KS, AD and CvM parametric-bootstrap tests. The line in bold and italics represents the 
corresponding centile, threshold, and number of observations as well as the Pareto parameter. We have 
chosen this sample because it gives us the highest p-value for the goodness of fit test. 
Centiles Thresholds Size of sample Pareto 

   Coefficient p-value KS p-value AD p-value CvM

0.85 $2,873 3326 1.4705 0.001 0 0 

0.90 $3 ,81 2218 1.5436 0 0 0 
0.95 $5,840 1109 1.4310 0.002 0.10 0 
0.96 $6,805 888 1.4249 0 0.03 0 
0.97 $8,275 665 1.4081 0 0 0 
0.98 $10,325 444 1.2711 0.001 0 0 
0.99 $18,300 222 1.3805 0 0 0 

0.991 $19,890 196 1.2815 0 0 0.01 
0.992 $19,890 178 1.2349 0.003 0 0.04 
0.993 $20,360 156 1.1114 0.14 0.14 0.14 
0.994 $23,900 134 1.1450 0.159 0.27 0.17 
0.995 $28,350 111 1.1550 0.107 0.13 0.10 
0.996 $38,000 89 1.3298 0.57 0 0.34 
0.997 $46,500 67 1.3017 0.567 0.07 0.23 

 
 
Table A4b: Results of the estimation of the left wing of the distribution for the type of risk EF. This deals 
with losses under $5,000. The sample includes 20,725 observations. The parameters for each of the 
distributions are estimated using the maximum likelihood method according to formula 5. 

 Exponential Lognormal Weibull GB2 
Parameters 1,082.66 

 
 
 

6.84 
1.88 

1,078.48 
0.82 

0.68 
13,723.58 

1.45 
8.80 

Likelihood log -164,374.54 -164,076.19 -163,874.14 -163,610.43 
p-value KS 0 0 NaN 0.56 
p-value AD 0 0 NaN 0.18 
p-value CvM 0 0 NaN 0.61 
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Table A4c: Results of the estimation of the body of the distribution for the type of risk EF. This deals 
with losses contained between $5,000 and $38,000. The sample includes 1,364 observations. The 
parameters for each of the distributions are estimated using the maximum likelihood method according to 
formula 4. 

 Exponential Lognormal Weibull GB2 
Parameters 4,634.40 

 
 
 

-20.16 
4.22 

171,906.58 
2.98 x 10-9 

6.73 
606.68 
24.69 
0.25 

Likelihood log -12,868.92 -12,804.80 -13,306.21 -12,804.74 
p-value KS 0 NaN NaN 0.18 
p-value AD 0 NaN NaN 0.03 
p-value CvM 0 NaN NaN 0.11 
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Table A5: Estimation of the Frequency Distributions by Type of Risk 
 
We present the parameters estimated by maximum likelihood for each of the types of risk as well as the 
value of the likelihood-log function and the p-value of the  test. For the last four types of risk, we 
present the value of the corrected parameters in order to take into account the truncature of the data. 

2χ

 
Table A5a: Estimation of the frequency distribution for the type of risk IF. 

 Daily frequencies Weekly frequencies 
 Poisson Negative 

binomial 
Poisson Negative 

binomial 
Parameters 0.0739 

 
0.1810 
0.7100 

0.5159 1.0034 
0.6604 

Likelihood log -304.7151 -287.7930 -158.2382 -152.6294 
Likelihood ration 33.8441 11.2376 
p-value (test ) 2χ 0 0.177 0.013 0.846 

 
 
Table A5b: Estimation of the frequency distribution for the type of risk EF. 

 Daily frequencies Weekly frequencies 
 Poisson Negative 

binomial 
Poisson Negative 

binomial 
Parameters 20.2350 

 
0.7760 
0.0369 

141.2611 
 

8.7775 
0.0585 

Likelihood log -11,808.4500 -4,401.9390 -1,893.8787 -827.9793 
Likelihood ratio 14,813.0220 2,131.7987 
p-value (test ) 2χ 0 0 0 0.269 

 
 
Table A5c: Estimation of the frequency distribution for the type of risk DPA. 

 Daily frequencies Weekly frequencies 
 Poisson Negative 

binomial 
Poisson Negative 

binomial 
Parameters 0.0484 0.1280 

0.7260 
0.3376 1.1366 

0.7710 
Corrected 
parameters 

0.0569 0.1280 
0.6925 

0.3972 1.1366 
0.7411 

Likelihood log -220.1877 -208.9131 -120.7829 -118.6158 
Likelihood ratio 22.5492 4.3341 
p-value (test ) 2χ 0.001 0.589 0.06 0.493 
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Table A5d: Estimation of the frequency distribution for the type of risk EPWS. 
 Daily frequencies Weekly frequencies 
 Poisson Negative 

binomial 
Poisson Negative 

binomial 
Parameters 0.0885 0.2304 

0.7225 
0.6170 

 
1.6894 
0.7322 

Corrected 
parameters 

0.0983 0.2304 
0.7009 

0.6856 1.6894 
0.7110 

Likelihood log -346.1778 -330.4865 -171.9059 -168.1748 
Likelihood ratio 31.3825 7.4622 
p-value (test ) 2χ 0 0.459 0.026 0.416 

 
 
Table A5e: Estimation of the frequency distribution for the type of risk CPBP. 

 Daily frequencies Weekly frequencies 
 Poisson Negative 

binomial 
Poisson Negative 

binomial 
Parameters 0.4644 

 
0.4282 
0.4797 

3.2420 1.5917 
0.3293 

Corrected 
parameters 

0.5464 0.4282 
0.4394 

3.8141 1.5917 
0.2944 

Likelihood log -1114.0496 -984.0448 -426.8773 -360.0661 
Likelihood log 260.0097 133.6224 
p-value (test ) 2χ 0 0.935 0 0.166 

 
 
Table A5f: Estimation of the frequency distribution for the type of risk EDPM. 

 Daily frequencies Weekly frequencies 
 Poisson Negative 

binomial  
Poisson Negative 

binomial 
Parameters 1.4115 

 
0.6131 
0.3028 

9.8535 
 

2.0069 
0.1692 

Corrected 
parameters 

2.3525 0.6131 
0.2067 

16.4225 2.0069 
0.1089 

Likelihood log -2363.4134 -1773.0805 -791.8502 -510.3689 
Likelihood log 1180.6659 562.9626 
p-value (test ) 2χ 0 0.002 0 0.382 
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Table A6: Standard Model  
 
We present the standard model for which the severity and frequency models are hypothesized to be 
lognormal and Poisson, respectively Losses below the collection threshold are not considered. The results 
are presented for the types of risk DPA, EPWS, and IF. 
 
Table A6: We present the parameters estimated by maximum likelihood for the lognormal and Poisson 
distributions, for the types of risk DPA, EPWS, and IF. 

Types of risk Lognormal Poisson 
IF* 8.03 

1.36 
0.52 

EPWS* 9.55 
1.35 

0.62 
 

EF* 6.41 
1.60 

141.26 

* IF : Internal Fraud / EPWS: Employment, Practices, and Workplace Safety / EF: External Fraud  

A-9 



Appendix 2 : Goodness of fit tests with parametric bootstrap procedure 
 
A2.1:  KS Test with parametric bootstrap procedure 

Unlike the classic test, this method consists in using a Monte Carlo simulation to calculate a p-

value at the critical values. The p-value allows us to decide whether or not to reject the null 

hypothesis stipulating the proper fit for the data distribution. The critical values will thus be 

calculated based on the samples generated. Calculating the p-value is thus a matter of carrying 

out the steps of the following algorithm: 

1- Calculate the statistic KS0, such that: ( ) ( )δ−= ˆ;sup xFxFnKS X
x

, with the 

distribution function whose parameters have already been estimated as . δ̂

2- Use the parameters estimated for the distribution to be tested to generate a sample 

of losses equal in size to those in the initial sample. 

3- Based on the sample generated, estimate the parameters θ~  of the same 

distribution, using the maximum likelihood method. 

4- Calculate statistic KSi  using the distribution sample whose newly calculated 

parameters are θ~ . 

5- Compare statistics KS0  and KSi. If KS0 < KSi , then a counter j increases by 1. 

6- Repeat steps 2, 3, 4 and 5, a great number of times N (ex. N=10, 000) 

7- Calculate the p-value as being  
N
j

pv =  

8- Reject the null hypothesis, if the p-value (pv) is less than the confidence level 

(5%). 
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A2.2: Khi-two Test with parametric bootstrap procedure 

This test requires that the data be grouped in classes. The test’s statistic is calculated as follows 

(Klugman, Panjer, and Willmot, 1998): 

( )
∑
=

−
=

k

1i

2

j

jj

E
En

Q  

with: 

nj:  Number of observations in the group j, with j=1, …k 

Ej: Number of observations expected in each group, given that the model is correct and the 

parameters have their estimated values. It is calculated: ( )θ∈= ˆ  ;group jXPrnE th
j  for 

j=1…k 

where n is the tail of the sample. 

This statistic is compared to a tabulated critical value. In effect, if Q exceeds  (where d=k-r-1 is 

the number of degrees of freedom and α  is the significance threshold) then the null hypothesis is rejected. 

However, for the test’s weaker results, we propose the bootstrap-parametric method to calculate the p-

value of the test. 

2
,d α

χ

This method, unlike the classic test, consists in calculating a p-value and the critical values by 

Monte Carlo simulation. The value of the p-value allows us to decide whether or not we reject the null 

hypothesis stipulating the right fit for the distribution to the data. Thus, the critical values will be 

calculated based on the samples generated. It is a matter of applying the following algorithm to calculate 

the p-value. 

1. Construct groups (refer to Klugman et al, 1998). 

2. Calculate the number of losses nj in each group. 

3. Calculate ( )θ̂E j  for each group, where  are the estimated parameters of the distribution to 

be tested (Poisson or negative binomial). 

θ̂
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4. Calculate the Q0 statistic as defined above. 

5. Use the estimated parameters of the distribution to be tested to generate the loss frequencies 

of the same sample as our initial sample. 

6. Based on the sample generated, estimate the  parameters of the same distribution with the 

maximum likelihood method. 

θ
~

7. Calculate nj, ( )θ~E j , and the statistic Qi. 

8. Compare the statistics Q0 and Qi. If Q0  < Qi, then a counter h increases by 1. 

9. Repeat steps 5 to 8 a great number of times N (ex. N = 10,000). 

10. Calculate the p-value as being 
N
hpv = . 

11. Reject the null hypothesis, if the p-value (pv) is less than the level of confidence (5%).
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Appendix 3 : Algorithm for the aggregation of internal and external loss data 

 
Since we want to calculate the VaR by type of risk, we thus repeat this algorithm for each of them. 

1. Generate a number n of daily or weekly losses according to the frequency distribution of 

internal data. 

2. Generate n amounts of losses Xi (i = 1… n) according to the severity distribution estimated 

for internal data, on a daily or weekly basis. We constrain the losses generated to be below 

the equivalent of $1 M US. 

3. Repeat steps 1 and 2 for N = 365 (daily losses) or N = 52 (weekly losses). Sum up all the Xi 

amounts generated to obtain S1, the portion of the annual loss from amounts of less than $1 M 

US. 

4. Generate a number n* of annual losses according to the Poisson distribution for modeling 

external data. 

5. Generate n* amounts of losses X*
i (i = 1… n*) according to the severity distribution of 

external data. We constrain the losses generated to be more than the equivalent of $1 M US. 

The sum of the amounts generated gives S2, the portion of the annual losses from losses of 

more than $1 M US. 

6. The total annual loss S is equal to S1 + S2. 

7. Repeat steps 1 to 6 a great number of times (1,000,000 for example) to obtain the distribution 

of annual losses. 

8.  The VaR is calculated by taking the 99.9% percentile of the empirical distribution of annual 

losses. 
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