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Abstract

This paper takes a new look at the relation between volume and realized volatility.

In contrast to prior studies, we decompose realized volatility into two major compo-

nents: a continuously varying component and a discontinuous jump component. Our

results confirm that the number of trades is the dominant factor shaping the volume-

volatility relation, whatever the volatility component considered. However, we also

show that the decomposition of realized volatility bears on the volume-volatility re-

lation. Trade variables are positively related to the continuous component only. The

well-documented positive volume-volatility relation does not hold for jumps.
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1 Introduction

Volume and volatility convey extremely important implications for market participants.

Not surprisingly, the relation between the two has been extensively studied in the past. In

the early empirical literature, which is mostly based on monthly and weekly stock returns,

volatility and trading volume are measured respectively by absolute returns and number

of shares traded per equally time-spaced intervals. A positive contemporaneous relation

between the two is generally documented, although it does not always appear to be sizeable.

Evidence can be found in Karpoff (1987), Jain and Joh (1988), Schwert (1989), Lamoureux

and Lastrapes (1990), and Gallant, Rossi, and Tauchen (1992).

In more recent theoretical studies, volume is decomposed into trade frequency (i.e. the

number of trades) and trade size (i.e. the average number of shares per trade). A rough

taxonomy of the theoretical models on the volume-volatility relation consists of three classes

of models: competitive, strategic, and mixture of distributions models.

Competitive microstructure models are extensions of the Glosten and Milgrom (1985)

sequential trading model in which market makers and uninformed investors experience

adverse selection when trading with informed investors. In this model, each investor is

not allowed to transact more than one unit of stock per unit of time, hence (absolute)

price changes are independent of trade size. In contrast, Easley and O’Hara (1987) al-

low traders to transact varying trade sizes and allow for uncertainty in the information

arrival process of the informed trader. When investors differ in their beliefs regarding

the importance of information and act competitively, larger-sized trades tend to be exe-

cuted by better-informed investors: larger trades exhibit a greater adverse selection effect.

Thus, competitive models suggest a positive relation between trade size and price volatil-
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ity (Easley, Kiefer, and O’Hara, 1997; Shalen, 1993; Harris and Raviv, 1993; Kim and

Verrecchia, 1991; Holthausen and Verrecchia, 1990; Grundy and McNichols, 1989).

Strategic microstructure models also incorporate asymmetric information across agents

but assume that informed investors engage in stealth trading by breaking up large trades

into many smaller transactions. Therefore, the effect of trade size on price volatility is

attenuated and its impact may be transferred to the number of trades. Besides, market

makers tend to infer the information content of a trade from order imbalance because they

cannot distinguish whether a specific order comes from an informed or uninformed trader.

Thus, strategic models predict a positive relation between volatility and number of trades

and/or order imbalance (Holden and Subrahmanyam, 1992; Foster and Viswanathan, 1990;

Admati and Pfleiferer, 1988; Kyle, 1985).

The third class of models relies on the mixture of distributions (MD) hypothesis (Harris,

1987; Tauchen and Pitts, 1983; Epps and Epps, 1976; Clark, 1973). Although MD models

have been criticized on the grounds that they are primarily statistical models (as opposed

to economical equilibrium models), recent empirical works have provided strong evidence

coherent with the predictions of MD models. For example, these models predict that

average trade sizes should have no effect on price volatility. In contrast, it is the number of

trades, rather than the total volume, that should reflect the number of daily information

arrivals. Supportive evidence is given by Andersen (1996) who tests the MD model based

on the microstructure framework of Glosten and Milgrom (1985), and by Ane and Geman

(2000) who use high frequency data on actively traded stocks.

Our own research builds on four empirical papers. First, Jones, Kaul, and Lipson (1994)

decompose trading volume into its two components and find that stock price volatility is
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driven by the number of trades per equally time-spaced intervals. The average trade size

offers no additional explanatory power beyond the information conveyed by the number of

trades. Second, Chan and Fong (2000) filter the effects of order imbalance on returns and

find that number of trades explains very little of the absolute residuals. They conclude

that it is order imbalance, rather than number of trades, that drives the volume-volatility

relation. Third, Huang and Masulis (2003) distinguish between small and large trades.

For large trades, they confirm the Jones, Kaul, and Lipson (1994) findings, that only trade

frequency affects price volatility. For small trades, the picture is roughly similar with the

exception of small trades close to the maximum-guaranteed quoted depth, for which trade

frequency and average trade size impact price volatility. Fourth, in contrast to the three

above-mentioned papers, Chan and Fong (2006) use realized volatility in place of absolute

returns as the volatility measure. Absolute returns is indeed a very noisy estimator of

the true latent volatility. Since daily absolute returns are computed using only two prices

(opening and closing), the computed volatility may be very low if the opening and closing

price are very close, even though there might be significant intraday price fluctuations.

Chan and Fong (2006) find that neither trade size nor order imbalance adds significantly

more explanatory power to realized volatility beyond number of trades. Unfortunately,

Chan and Fong (2006) use transaction prices to estimate realized volatility. However,

transaction prices are much more affected by residual noise than bid-ask midquotes since

transaction prices suffer from bid-ask bounce effects while midquotes do not (Hansen and

Lunde, 2006; Bandi and Russell, 2006).

This paper innovates in several ways. First, our sample covers a five-year period and

includes the 100 largest stocks quoted on the New York Stock Exchange as of January 1,
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1995. This is the most extensive data set used to study the relationship between volume

and volatility. Second, we use midquotes to measure prices, in agreement with the recent

literature on realized variance. Third, and most importantly, our study is the first to

decompose realized volatility into its continuous and jump components. Since the iden-

tification of actual jumps is not readily available from the time-series data of underlying

asset returns, the empirical estimation of the jump-diffusion processes has always been a

challenge in finance. Most of the econometric work relies on some combination of numerical

methods, computationally intensive simulation-based procedures, and possibly joint iden-

tification schemes from both the underlying asset and the derivative prices. This paper

takes a different and direct approach to identify the realized jumps, based on the Barndorff-

Nielsen and Shephard (2004, 2006) bi-power variation method. Bi-power variation delivers

consistent estimates of continuous volatility, even in the presence of jumps. In addition,

realized volatility (i.e. the sum of squared intradaily returns) is a consistent estimate of the

sum of both continuous volatility and jumps in the underlying price process. Therefore,

the difference between realized volatility and bi-power variation consistently estimates the

contribution of discontinuities (i.e. jumps) to the quadratic variation process.

The fact that realized volatility can be decomposed prompts the following question:

would the results of prior studies still hold if one decomposes realized volatility into its

continuous, persistent part and its discontinuous, temporary, jump component? The mo-

tivation behind the decomposition of realized volatility into its two components relies on

the following observation: the positive volatility-volume relation that is documented in

the literature focuses exclusively on the level of volatility (i.e. low versus high volatility).

The nature of volatility (i.e. continuous versus discontinuous volatility) is completely ig-
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nored, and one way to characterize the nature of volatility is precisely to introduce the

concept of jumps. This is especially important since market participants usually care as

much about the nature of volatility as about its level. For example, all traders make the

distinction between ‘good’ and ‘bad’ volatilities. ‘Good’ volatility is directional, persistent,

relatively easy to anticipate and accompanied by sufficiently high volume. ‘Bad’ volatility

is jumpy, relatively difficult to foresee and associated with low volume. As such, ‘good’

and ‘bad’ volatilities can be respectively associated with the continuous, persistent part

and the discontinuous, jump component of realized volatility.

Our findings can be summarized as follows. Based on 5 years of intraday data, we

show that the decomposition of realized volatility bears on the volume-volatility relation.

Trade variables are positively related to the continuous, persistent component only. The

positive relationship between volume and volatility does not hold for jumps, supporting the

view of market participants according to which poor trading volume leads to more erratic

price changes. This negative volume-jumps relation is revealed through the number of

trades, which remains the dominant factor behind the volume-volatility relation. Beyond

the number of trades, neither trade size nor order imbalance increases explanatory power

significantly, whatever the volatility component considered.

The remainder of the paper is organized as follows. In Section 2, we explain the

procedure used to identify the jump component of realized volatility. In Section 3, we

describe the data and provide summary statistics. In Section 4, we report and interpret

the empirical results. We conclude in Section 5.
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2 The decomposition of realized volatility

To decompose realized volatility into its continuous and jump components, we consider the

following continuous-time jump diffusion process:

dp(t) = µ(t)dt + σ(t)dW (t) + κ(t)dq(t), 0 ≤ t ≤, T (1)

where p(t) is a logarithmic asset price at time t, µ(t) is a continuous and locally bounded

variation process, σ(t) is a strictly positive stochastic volatility process with a sample

path that is right continuous and has well defined limits, W (t) is a standard Brownian

motion, and q(t) is a counting process with intensity λ(t) (P [dq(t) = 1] = λ(t)dt and

κ(t) = p(t) − p(t−) is the size of the jump in question). The quadratic variation for the

cumulative process r(t) ≡ p(t)− p(0) is the integrated volatility of the continuous sample

path component plus the sum of the q(t) squared jumps that occurred between time 0 and

time t:

[r, r]t =

∫ t

0

σ2(s)ds +
∑

0<s≤t

κ2(s). (2)

Now, let us define the daily realized volatility as the sum of the corresponding intradaily

squared returns:

RVt+1(∆) ≡
1/∆∑
j=1

r2
t+j∆,∆, (3)

where rt,∆ ≡ p(t) − p(t − ∆) is the discretely sampled ∆-period return.1 So 1/∆ is the

number of intradaily periods.

Barndorff-Nielsen and Shephard (2004) show that the realized volatility converges uni-

1We use the same notation as in Andersen, Bollerslev, and Diebold (2006) and normalize the daily time
interval to unity. We drop the ∆ subscript for daily returns: rt+1,1 ≡ rt+1.
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formly in probability to the increment of the quadratic variation process as the sampling

frequency of the returns increases (∆ → 0):2

RVt+1(∆) →
∫ t+1

t

σ2(s)ds +
∑

t<s≤t+1

κ2(s). (4)

That implies that the realized volatility is a consistent estimate for integrated volatility as

long as there are no jumps.

In order to disentangle the continuous and the jump components of realized volatility,

we need to consistently estimate integrated volatility, even in the presence of jumps in

the process. This is done using the asymptotic results of Barndorff-Nielsen and Shephard

(2004, 2006). The realized bi-power variation is defined as the sum of the product of

adjacent absolute intradaily returns standardized by a constant:

BVt+1(∆) ≡ µ−2
1

1/∆∑
j=2

|rt+j∆,∆||rt+(j−1)∆,∆|, (5)

where µ1 ≡
√

2/π ' 0.79788 is the mean of the absolute value of a standard normally

distributed random variable. It can indeed be shown that even in the presence of jumps,

BVt+1(∆) →
∫ t+1

t

σ2(s)ds. (6)

Thus, the difference between the realized volatility and the bi-power variation consistently

2See also, for example, Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold, and Labys
(2001), Barndorff-Nielsen and Shephard (2002a), Barndorff-Nielsen and Shephard (2002b), Comte and
Renault (1998).
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estimates the jump contribution to the quadratic variation process. When ∆ → 0:

RVt+1(∆)−BVt+1(∆) →
∑

t<s≤t+1

κ2(s). (7)

Moreover, because a finite sample estimate of the squared jump process might be negative

(in Equation 7), we truncate the measurement at zero, i.e.

Jt+1(∆) ≡ max[RVt+1(∆)−BVt+1(∆), 0]. (8)

One might wish to select only statistically significant jumps, i.e. to consider very small

jumps as being part of the continuous sample path rather than genuine discontinuities.

The Barndorff-Nielsen and Shephard (2004, 2006) results, extended in Barndorff-Nielsen,

Graversen, Jacod, Podolskij, and Shephard (2005), imply:

RVt+1(∆)−BVt+1(∆)√
(µ−4

1 + 2µ−2
1 − 5)∆

∫ t+1

t
σ4(s)ds

→ N(0, 1), (9)

when there is no jump and for ∆ → 0, under sufficient regularity conditions. We need

to estimate the integrated quarticity
∫ t+1

t
σ4(s)ds to compute this statistic. The realized

tri-power quarticity measure permits us to estimate it consistently, even in the presence of

jumps:

TQt+1(∆) ≡ ∆−1µ−3
4/3

1/∆∑
j=3

|rt+j∆,∆|4/3|rt+(j−1)∆,∆|4/3|rt+(j−2)∆,∆|4/3, (10)

with µ4/3 ≡ 22/3Γ(7/6)Γ(1/2)−1. Thus, we have that, for ∆ → 0:
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TQt+1(∆) →
∫ t+1

t

σ4(s)ds. (11)

The implementable statistics is therefore:

Wt+1(∆) ≡ RVt+1(∆)−BVt+1(∆)√
∆(µ−4

1 + 2µ−2
1 − 5)TQt+1(∆)

. (12)

However, following Huang and Tauchen (2005) and Andersen, Bollerslev, and Diebold

(2006), we actually compute the following statistic:

Zt+1(∆) ≡ ∆−1/2 [RVt+1(∆))−BVt+1(∆)]RVt+1(∆)−1

[(µ−4
1 + 2µ−2

1 − 5)max{1, TQt+1(∆)BVt+1(∆)−2}]1/2
. (13)

Huang and Tauchen (2005) show that the statistic defined in Equation (12) tends to

over-reject the null hypothesis of no jumps. Moreover, they show that Zt+1(∆) defined in

Equation (13) is closely approximated by a standard normal distribution and has reasonable

power against several plausible stochastic volatility jump diffusion models. Practically, we

choose a significance level α and compute:

Jt+1,α(∆) = I[Zt+1(∆) > Φα] · [RVt+1(∆)−BVt+1(∆)]. (14)

Of course, a smaller α means that we estimated fewer and larger jumps. Moreover, to

ensure that the sum of the jump and continuous components equals the realized volatility,

we impose:

Ct+1,α(∆) = I[Zt+1(∆) ≤ Φα] ·RVt+1(∆) + I[Zt+1(∆) > Φα] ·BVt+1(∆). (15)
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Finally, as suggested by Andersen, Bollerslev, and Diebold (2006), we use ‘staggered’

versions of the bi-power variation and tri-power quarticity measure to tackle microstruc-

ture noise that causes the high-frequency returns to be autocorrelated. Basically, these

‘staggered’ versions amount to skip one observation when computing the product of ad-

jacent returns. If the order of the serial correlation is higher than one, one may choose

to skip more than one return. The staggered versions of bi-power variation and tri-power

quarticity are respectively given by:

BVt+1(∆) ≡ µ−2
1 (1− 2∆)−1

1/∆∑
j=3

|rt+j∆,∆||rt+(j−2)∆,∆|, (16)

TQt+1(∆) ≡ ∆−1µ−3
4/3(1− 4∆)−1

1/∆∑
j=5

|rt+j∆,∆|4/3|rt+(j−2)∆,∆|4/3|rt+(j−4)∆,∆|4/3. (17)

3 Data

The sample period covers a five-year period starting on January 1, 1995 and ending on

September 30, 1999, which represents a total of 1199 trading days. The sample consists

of the 100 largest stocks traded on the New York Stock Exchange as of January 1, 1995.

We choose the 100 largest stocks because these stocks are actively traded, yield sufficiently

high frequency intraday returns for computing reliable daily realized volatility estimates,

and are likely to benefit from high information arrival rates.

Data for this study is retrieved from the Trades and Quotes (TAQ) database. Follow-

ing Chordia, Roll, and Subrahmanyam (2000), we only retain class A stocks and remove
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preferred stocks or shares, warrants, rights, derivatives, trusts, closed-end investment com-

panies, American depositary receipts, units, shares of beneficial interest, holdings and

realty trusts. We restrict our selection to stocks whose price is higher than $5 and lower

than $999. The remaining stocks are then selected on the basis of market capitalization.

Applying traditional filtering procedures (Chordia, Roll, and Subrahmanyam, 2001; Huang

and Stoll, 1996), we reject quotes exhibiting (a) price (at the bid or at the ask) lower than

or equal to 0; (b) size (at the bid or at the ask) lower than or equal to 0; (c) price at

the bid higher than price at the ask; (d) bid-ask spread greater than $4; (e) proportional

bid-ask spread greater than 40%. Trades are excluded if they satisfy at least one of the

following conditions: (a) trade price is lower than or equal to 0; (b) trade size is lower

than or equal to 0; (c) trade is not “regular”, i.e. it is subsequently corrected or canceled.

We additionally remove any trade or quote time-stamped outside regular trading hours,

that is, before 9:30 AM and after 4:00 PM (or 1:00 PM on the days the exchange closed

early). We also exclude the opening transaction for each day. Finally, following Chordia,

Roll, and Subrahmanyam (2001), we exclude records for which the (proportional) effective

spread was greater than four times the (proportional) quoted spread.

In agreement with the extant literature, which utilizes high-frequency return data for

the purpose of volatility estimation, we use mid-quote prices to construct returns and then

to compute realized volatility estimators, as described in Equation (3). Finally, realized

volatility is decomposed into the continuous sample path and the jump component as

described respectively in equations (14) and (15). The significance of the jump component

is assessed using a conservative 99.99 % confidence level (i.e. α = 0.9999).

Following the early literature, we decompose daily trading volume into number of trades
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and average trade size (ratio of number of shares traded to number of trades). Following

Chan and Fong (2006), we also include order imbalance. We compute daily absolute order

imbalance as the absolute value of the number of buyer-initiated trades minus number of

seller initiated trades for the day. To define the direction of a trade, we rely upon the

widely-used Lee and Ready (1991) algorithm.3 We follow the recommendation contained

in SEC Rule 11Ac1-5, assuming trades were recorded 5 seconds later than their actual

execution time.

Table 1 gives the cross-sectional means of time series statistics for the 7 variables used

in our study. Using the square root of time, the daily realized mean variance (RV ) of

0.0262% translates into an annualized realized volatility of 25.6%. This is close to the

annualized realized volatility of 27.5% reported by Chan and Fong (2006) for the Dow 30

stocks, over the 1993-2000 period. We also find very similar autocorrelation coefficients.

We nevertheless report a higher coefficient of variation (97%) than the one reported by

Chan and Fong (34%). This can be explained by the stronger heterogeneity of stocks

in our sample. Following Beine, Lahaye, Laurent, Neely, and Palm (2007), we use a

conservative significance level (i.e. α = 0.9999) to identify the number of economically

meaningful jumps (given by J9999 in Table 1). The proportion of days with significant

jumps is 26%, i.e. 313 days over 1199 on average. RV and the daily realized continuous

variance display similar characteristics. Interestingly, all variables, except jumps, have

similar autocorrelation patterns. Among the trade variables, average trade size (ATS)

3Odders-White (2000) and Ellis, Michaely, and O’Hara (2000) document that the Lee and Ready
algorithm correctly classifies more than 80% of the transactions in their respective samples and that
trades executed inside the spread are more likely to be misclassified. Lee and Radhakrishna (2000) also
show that classification errors arising from the Lee and Ready algorithm are small enough not to present
serious problems. They find that the algorithm accurately classifies 92% of the trades classifiable in the
TORQ database, with 96% accuracy on trades executed at the bid or ask price, 70% accuracy on trades
executed inside the spread but not at the quote midpoint, and 65% accuracy on trades executed at the
quote midpoint.
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displays the lowest AR and CV coefficients. Daily number of trades (NT ) exhibits the

slowest decaying autocorrelation function while absolute order imbalance |OB| displays

the highest CV.

Table 2 reports correlations between volatility and transactions. We find very similar

results to those reported by Chan and Fong (2006). More precisely, we confirm that:

trading volume is highly correlated with number of trades; number of trades co-varies quite

strongly with order imbalance; realized volatility correlates more highly with number of

trades than with average trade size or order imbalance. Interestingly, the jump component

(J9999) does not behave like the undecomposed measure of realized volatility (RV ). First,

the two measures are negatively correlated with one another. Second, volume (V ) and

number of trades (NT ) are negatively correlated with J9999, while they are positively

correlated with RV . This suggests that the decomposition of realized volatility may bear

on the volume-volatility relation. As pointed out in previous studies, the overall level of

realized volatility increases (decreases) when trading volume (V ) and, in particular, number

of trades (NT ) increase (decrease). However, the decomposition of realized volatility seems

to indicate that such a positive volume-volatility relation does not hold when the jump

component of realized volatility is considered. It would thus only hold for the continuous

part.

4 Empirical Analysis

In the following analysis, we estimate the volume-volatility relation for each of our 100

stocks. Following Chan and Fong (2006) (CF), we estimate this relation by OLS, use auto-

correlation and heteroskedasticity-robust (Newey and West) standard errors, and include a
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Monday dummy as well as 12 lags to account for some dynamics in the conditional expected

return. Since Huang and Masulis (2003) (HM) advocate the use of Hansen’s (1982) gen-

eralized method of moments (GMM) method, we also estimate the relationship by GMM,

which imposes weak distribution assumptions on the observable variables and endogenously

adjusts the estimates to account for general forms of conditional heteroskedasticity and/or

serial correlation that may be present in the error structure. We follow the CF and HM

approaches to regress realized volatility (RV ) and its continuous component (C9999) on

various trade measures, i.e. number of shares traded (V ), number of trades (NT ), average

number of shares per trade (ATS), and absolute order imbalance (|OB|). However, we do

not follow these two approaches to estimate the relationship between jumps and trading

activity. We instead run Tobit regressions since jumps have values censored at zero. The

population distribution of jumps is indeed spread over a large range of positive values, with

a pileup at the value zero. Tables 3 to 8 report the impact of the above trade measures on

realized volatility and its two components.4

Table 3 presents the results for trading volume (i.e. the number of shares traded).

When the CF approach is followed with realized volatility as the dependent variable (i.e.

Regression 1), results are qualitatively similar to those reported by Chan and Fong (2006).

The R2 is slightly higher, up from around 36% to 40%. The percentage of stocks for which

volume is statistically significant rises from 95% to 100%. The mean (φ̂) is equal to 0.11,

implying that an increase in the number of shares traded of 100,000 is accompanied by

an increase in realized volatility of around 5%. The p-value is particularly low, equal to

0.05%. Results do not fundamentally change when the HM regression (i.e. Regression (3),

4To test whether our results were induced by the upward trend in trading activity, we added a time
trend in each of the following regressions. Since results were almost identical, we do not report them to
save space. They are available upon request. We also applied Phillips-Perron unit root tests to test for
stochastic trends in the de-trended series. There was no evidence of stochastic trends.
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estimated by GMM) is used: while the R2 is lower, 99 stocks still display positive and

significant coefficients for trading volume. Results are very similar when the continuous

component of realized volatility is used as the dependent variable in Regressions (2) and

(4). For jumps, however, the picture is completely different. Regression (5), i.e. the

Tobit regression, indicates that jumps and trading volume are significantly and negatively

related for 72 stocks out of 100. Only 2 stocks displays positive and significant coefficients

for trading volume at the 5% level.

Table 4 reports the results for trade frequency (i.e. the number of trades). Like trading

volume, number of trades explains a substantial portion of daily realized volatility. In

the ‘CF regression’, i.e. Regression (1), the mean (β̂) is equal to 0.318, implying that an

increase in the number of trades of 100 is accompanied by an increase in realized volatility

of around 9%. We obtain similar results by using the ‘HM regression’, i.e. Regression

(3). Overall, the use of number of trades instead of number of shares traded as explicative

variable leads to a rise in the R2, which is more pronounced in the HM regression. Again,

number of trades affects jumps differently. Regression (5) shows that jumps and number

of trades are significantly and negatively related for 86 stocks out of 100. Only 3 stocks

displays positive and significant coefficients for trading volume at the 5% level. The average

p-value is around 3%, down from around 8% in the specification with trading volume. Trade

frequency appears to be more informative than trading volume in explaining both jumps

and the continuous component of realized volatility.

The effect of average trade size (i.e. the average number of shares per trade) is shown

in Table 5. In line with previous studies, trade size explains much less realized volatility

than trading volume or trade frequency. The explanatory power of trade size is poor: no
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single p-value is lower than 20%. Overall, the use of average trade size as a regressor

leads to a fall in the R2, which is more severe in the HM regression estimated by GMM.

In addition, the HM regression indicates that the percentage of stocks with positive and

significant coefficients for trade size is equivalent to the percentage of stocks displaying

negative and significant coefficients. For jumps, the average (γ̂) coefficient is positive but

not significant, confirming the poor explanatory power of trade size.

Table 6 shows that adding average trade size to number of trades has no significant

effect on the adjusted R2. When compared to Table 4, the adjusted R2 slightly increases

in the CF regressions, while it slightly decreases in the HM regressions. Moreover, adding

average trade size in the regression does not impact the explanatory power of number of

trades. All coefficients for number of trades remain significant. The poor explanatory

power of average trade size is also confirmed. As in Table 5, the average p-value does

not even reach the 20% level. In the HM specification for both realized volatility and

its continuous component, only a quarter of trade size coefficients are positive as well

significantly different from zero at the 5% level, confirming the results of Table 5. The

results are even worst when jumps are considered. Average trade size clearly plays no role

in explaining jumps and number of trades remains the dominant factor.

Table 7 reports the results for absolute order imbalance as sole explicative variable.

There are at least two reasons why order imbalances can provide additional power beyond

pure trading activity measures (such as trade frequency or/and trade size). First, a high

absolute order imbalance can alter returns as market makers struggle to re-adjust their

inventory. Second, order imbalances can signal excessive investor interest in a stock, and

if this interest is autocorrelated, then order imbalances could be related to future returns.
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Indeed, Chordia and Subrahmanyam (2004) state that “Intuition suggests that the impli-

cations of a reported volume of one million shares generated by 500,000 shares of seller

initiated trades and 500,000 shares of buyer-initiated trades are very different from those

generated by one million shares of seller- (or buyer-) initiated trades.” Table 7 shows that

absolute order imbalance does have a role in explaining realized volatility. However, evi-

dence is less convincing for order imbalance than for number of trades. First, the lowest

average p-value is still above 5%. Second, the number of stocks displaying positive and

significant coefficients for order imbalance is around 20% lower than the number of stocks

displaying positive and significant coefficients for number of trades (see Table 4). Third,

and most importantly, the explanatory power of order imbalance is much weaker once re-

alized volatility is decomposed. This is particularly obvious for jumps. While number of

trades was significant at the 5% level in the jump equation (see Regression (5) of Table 4),

this is not the case for order imbalance: The average (λ̂) coefficient in Regression (5) is not

significant, even at 10%. Finally, the percentage of stocks with negative and significant

coefficients for order imbalance is 41 only: it was twice higher for number of trades.

Table 8 reports the results when absolute order imbalance and number of trades are

both included as regressors. Adding absolute order imbalance to number of trades does

not help. First, while the adjusted R2’s for the CF regressions are similar to those reported

in Table 4, they decrease when order imbalance is added to number of trades in the HM

regressions. Second, no average p-value for order imbalance is lower than 25%. Third, only

one single stock exhibits a positive and significant coefficient for order imbalance when the

dependent variable is either realized volatility or its continuous component. The results

are similar for jumps: number of trades dominates order imbalance. Number of trades
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is, on average, significant at 5% while order imbalance is not. Number of trades is also

the most pervasive factor, as jumps and number of trades are significantly and negatively

related for 88 stocks out of 100.

There is strong evidence that trade frequency remains the dominant factor behind

the volume-volatility relation. The decomposition of realized volatility even strengthens

the dominant role played by number of trades. However, trade frequency affects the two

components of realized volatility very differently: the relation between trade frequency and

the continuous component of realized volatility is positive while the relation between trade

frequency and the jump component is negative.

5 Conclusion

The ability to identify realized jumps has important implications in financial management,

from portfolio and risk management to option and bond pricing and hedging (Merton,

1976; Bates, 1996; Bakshi, Cao, and Chen, 2000; Liu, Longstaff, and Pan, 2003; Duffie

and Singleton, 2000; and Piazzesi, 2003). In particular, Eraker, Johannes, and Polson

(2003) show that jump components command relatively larger risk premia than continuous

components, as their contribution to periods of market stress is greater. There is therefore

a practical interest in identifying jumps.

By decomposing realized volatility into its two components, we show that trading ac-

tivity relates to volatility in a more subtle way than previously thought. Because volatility

can be diffusive or discontinuous, stating that ‘the greater the level of volume, the greater

the volatility’ hides a more complex reality. While trading activity relates positively to dif-

fusive (or continuous) volatility, it relates negatively to jumps (or discontinuous volatility).
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In other words, the positive relationship between volume and volatility that is documented

in the literature only holds for diffusive volatility. This indicates that poor trading vol-

ume leads to more erratic volatility changes, as commonly argued in dealing rooms. This

negative volume-jumps relation is revealed through the number of trades, which remains

the dominant factor behind the volume-volatility relation. Neither trade size nor order

imbalance adds significantly more explanatory power beyond number of trades, whatever

the volatility component considered.

Further empirical work on jumps needs to be done. While Andersen, Bollerslev,

Diebold, and Vega (2007) show that jumps in exchange rates, stocks and bonds are linked

to fundamentals, we still need to understand how the link really works. This will certainly

help revive studies about the impact of news and economic events on financial markets.
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Table 1: Summary statistics.

RV J9999 C9999 V ATS NT |OB|
Mean 2.42 1.04 2.38 1.40 1595 929 121
Standard Deviation 2.56 1.16 2.48 1.00 643 578 153
Skewness 5.13 5.51 4.51 3.40 1.32 2.24 3.67
Kurtosis 56.80 54.69 43.75 27.63 49.67 13.34 31.64
Coefficient of Variation 105.79 111.97 104.20 71.90 39.58 56.32 110.43
AR(1) 0.49 0.06 0.51 0.61 0.39 0.79 0.45
AR(12) 0.23 0.04 0.25 0.31 0.19 0.53 0.21

Realized variance (RV ), continuous variance (C9999), and significant jumps
(J9999) are multiplied by 10,000. V is trading volume in millions of shares traded
per day, NT denotes daily number of trades, ATS is average trade size (numbers of
shares traded each day divided by number of trades for the day), and |OB| is abso-
lute order imbalance defined as the absolute value of the number of buyer-initiated
trades minus number of seller initiated trades for the day.
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Table 2: Correlation matrix.

RV J9999 C9999 V ATS NT |OB|
RV 1.00
J9999 -0.22 1.00
C9999 0.92 -0.53 1.00
V 0.54 -0.21 0.54 1.00
ATS 0.05 0.02 0.03 0.49 1.00
NT 0.62 -0.27 0.63 0.80 -0.04 1.00
|OB| 0.22 0.07 0.21 0.34 -0.05 0.42 1.00

RV =realized variance; J9999 = significant jumps at α =
0.9999; C9999 = continuous variance with α = 0.9999; V
= trading volume; NT = daily number of trades; ATS =
average trade size; |OB| = absolute order imbalance.
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Table 3: Number of shares traded, realized volatility and its two components.

RV C9999 J9999
(1) (3) (2) (4) (5)

φ 0.110 0.176 0.106 0.179 -0.042
σφ 0.022 0.033 0.021 0.032 0.013
% p-value 0.050 0.220 0.052 0.132 8.872
% + significant 100 99 100 100 2
% − significant 0 0 0 0 72
% Adjusted R2 40.218 22.484 41.456 23.035 0.522

RVit = αi + αimMt +
∑12

j=1 ρijRVit−j + φiVit + νit (1)

C9999it = αi + αimMt +
∑12

j=1 ρijC9999it−j + φiVit + νit (2)

RVit = αi + αimMt + φiVit + νit (3)

C9999it = αi + αimMt + φiVit + νit (4)

J9999∗it = αi + αimMt + φiVit + νit, where J9999 = max(0, J9999∗) (5)

The above regressions are run for the 100 largest stocks traded on the NYSE over the
period January 1, 1995-September 30, 1999. RVit / C9999it / J9999it is the realized
variance / the continuous component of realized variance / the jump component of real-
ized variance of stock i on day t, all multiplied by 10,000. Mt is a Monday dummy, Vit is
the number of shares traded (divided by 100,000) for stock i on day t and ρij measures
the persistence of volatility shocks at lag j. Regressions (1) and (2) are estimated by
OLS while regressions (3) and (4) are estimated by GMM. Regression (5) is estimated
by maximum likelihood. For brevity, we only report the equally-weighted cross-sectional
mean coefficient for number of shares traded, with corresponding statistics. Newey-West
standard errors and two-sided p-values across stocks are computed. We report the per-
centage of positive and negative φ̂i coefficients which are statistically different from zero
at the 5% level. The last row reports the mean adjusted R2’s.
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Table 4: Number of trades, realized volatility and its two components.

RV C9999 J9999
(1) (3) (2) (4) (5)

β 0.318 0.387 0.315 0.397 -0.137
σβ 0.051 0.055 0.049 0.054 -0.035
% p-value 0.020 0.017 0.052 0.090 3.104
% + significant 100 100 100 100 3
% − significant 0 0 0 0 86
% Adjusted R2 42.334 29.500 43.979 31.654 0.967

RVit = αi + αimMt +
∑12

j=1 ρijRVit−j + βiNTit + νit (1)

C9999it = αi + αimMt +
∑12

j=1 ρijC9999it−j + βiNTit + νit (2)

RVit = αi + αimMt + βiNTit + νit (3)

C9999it = αi + αimMt + βiNTit + νit (4)

J9999∗it = αi + αimMt + βiNTit + νit, where J9999 = max(0, J9999∗) (5)

The above regressions are run for the 100 largest stocks traded on the NYSE over the
period January 1, 1995-September 30, 1999. RVit / C9999it / J9999it is the realized
variance / the continuous component of realized variance / the jump component of re-
alized variance of stock i on day t, all multiplied by 10,000. Mt is a Monday dummy,
NTit is the number of trades (divided by 100) for stock i on day t and ρij measures the
persistence of volatility shocks at lag j. Regressions (1) and (2) are estimated by OLS
while regressions (3) and (4) are estimated by GMM. Regression (5) is estimated by max-
imum likelihood. For brevity, we only report the equally-weighted cross-sectional mean
coefficient for number of trades, with corresponding statistics. Newey-West standard
errors and two-sided p-values across stocks are computed. We also report the percentage
of positive and negative β̂i coefficients which are statistically different from zero at the
5% level. The last row indicates the mean adjusted R2’s.
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Table 5: Average trade size, realized volatility and its two components.

RV C9999 J9999
(1) (3) (2) (4) (5)

γ 0.212 0.100 0.192 0.048 0.125
σγ 0.124 0.410 0.119 0.404 0.151
% p-value 25.075 23.686 27.318 22.400 24.190
% + significant 40 26 37 25 34
% − significant 5 32 7 33 10
% Adjusted R2 32.443 2.838 33.816 3.219 0.463

RVit = αi + αimMt +
∑12

j=1 ρijRVit−j + γiATSit + νit (1)

C9999it = αi + αimMt +
∑12

j=1 ρijC9999it−j + γiATSit + νit (2)

RVit = αi + αimMt + γiATSit + νit (3)

C9999it = αi + αimMt + γiATSit + νit (4)

J9999∗it = αi + αimMt + γiATSit + νit, where J9999 = max(0, J9999∗) (5)

The above regressions are run for the 100 largest stocks traded on the NYSE over the
period January 1, 1995-September 30, 1999. RVit / C9999it / J9999it is the realized
variance / the continuous component of realized variance / the jump component of real-
ized variance of stock i on day t, all multiplied by 10,000. Mt is a Monday dummy, ATSit

is the average trade size (divided by 1,000) for stock i on day t and ρij measures the
persistence of volatility shocks at lag j. Regressions (1) and (2) are estimated by OLS
while regressions (3) and (4) are estimated by GMM. Regression (5) is estimated by max-
imum likelihood. For brevity, we only report the equally-weighted cross-sectional mean
coefficient for average trade size, with corresponding statistics. Newey-West standard
errors and two-sided p-values across stocks are computed. We also report the percentage
of positive and negative γ̂i coefficients which are statistically different from zero at the
5% level. The last row indicates the mean adjusted R2’s.
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Table 6: Average trade size, number of trades, realized volatility and its two components.

RV C9999 J9999
(1) (3) (2) (4) (5)

γ 0.268 0.407 0.238 0.362 0.096
σγ 0.131 0.377 0.125 0.369 0.155
% p-value 22.331 31.397 25.330 29.575 30.071
% + significant 45 27 38 25 24
% − significant 8 12 8 18 8
β 0.323 0.388 0.319 0.397 -0.134
σβ 0.052 0.059 0.049 0.057 0.032
% p-value 0.019 0.047 0.049 0.102 3.266
% + significant 100 100 100 100 3
% − significant 0 0 0 0 85
% Adjusted R2 42.760 28.704 44.367 30.607 1.032

RVit = αi + αimMt +
∑12

j=1 ρijRVit−j + γiATSit + βiNTit + νit (1)

C9999it = αi + αimMt +
∑12

j=1 ρijC9999it−j + γiATSit + βiNTit + νit (2)

RVit = αi + αimMt + γiATSit + βiNTit + νit (3)

C9999it = αi + αimMt + γiATSit + βiNTit + νit (4)

J9999∗it = αi + αimMt + γiATSit + βiNTit + νit, where J9999 = max(0, J9999∗) (5)

The above regressions are run for the 100 largest stocks traded on the NYSE over the
period January 1, 1995-September 30, 1999. RVit / C9999it / J9999it is the realized
variance / the continuous component of realized variance / the jump component of re-
alized variance of stock i on day t, all multiplied by 10,000. Mt is a Monday dummy,
ATSit is the average trade size (divided by 1,000), NTit is the number of trades (divided
by 100) for stock i on day t and ρij measures the persistence of volatility shocks at lag
j. Regressions (1) and (2) are estimated by OLS while regressions (3) and (4) are es-
timated by GMM. Regression (5) is estimated by maximum likelihood. For brevity, we
only report the equally-weighted cross-sectional mean coefficient for average trade size
and number of trades, with corresponding statistics. Newey-West standard errors and
two-sided p-values across stocks are computed. We also report the percentage of positive
and negative γ̂i and β̂i coefficients which are statistically different from zero at the 5%
level. The last row indicates the mean adjusted R2’s.
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Table 7: Absolute order imbalance, realized volatility and its two components.

RV C9999 J9999
(1) (3) (2) (4) (5)

λ 0.435 1.688 0.420 0.690 -0.165
σλ 0.162 0.611 0.160 0.304 0.111
% p-value 5.667 9.362 6.854 15.89 16.943
% + significant 83 79 82 63 15
% − significant 0 1 0 6 41
% Adjusted R2 34.133 2.255 35.524 2.759 0.660

RVit = αi + αimMt +
∑12

j=1 ρijRVit−j + λi|OB|it + νit (1)

C9999it = αi + αimMt +
∑12

j=1 ρijC9999it−j + λi|OB|it + νit (2)

RVit = αi + αimMt + λi|OB|it + νit (3)

C9999it = αi + αimMt + λi|OB|it + νit (4)

J9999∗it = αi + αimMt + λi|OB|it + νit, where J9999 = max(0, J9999∗) (5)

The above regressions are run for the 100 largest stocks traded on the NYSE over the
period January 1, 1995-September 30, 1999. RVit / C9999it / J9999it is the realized vari-
ance / the continuous component of realized variance / the jump component of realized
variance of stock i on day t, all multiplied by 10,000. Mt is a Monday dummy, |OB|it
is the absolute order imbalance (divided by 100) for stock i on day t and ρij measures
the persistence of volatility shocks at lag j. Regressions (1) and (2) are estimated by
OLS while regressions (3) and (4) are estimated by GMM. Regression (5) is estimated
by maximum likelihood. For brevity, we only report the equally-weighted cross-sectional
mean coefficient for absolute order imbalance, with corresponding statistics. Newey-West
standard errors and two-sided p-values across stocks are computed. We also report the
percentage of positive and negative λ̂i coefficients which are statistically different from
zero at the 5% level. The last row indicates the mean adjusted R2’s.
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Table 8: Absolute order imbalance, number of trades, realized volatility and its two com-
ponents.

RV C9999 J9999
(1) (3) (2) (4) (5)

λ -0.163 -0.753 -0.177 -0.762 0.188
σλ 0.164 1.346 0.160 1.188 0.136
% p-value 28.761 31.275 27.853 28.967 26.879
% + significant 1 1 1 1 41
% − significant 42 40 45 41 0
β 0.347 0.483 0.347 0.500 -0.164
σβ 0.052 0.150 0.049 0.135 0.036
% p-value 0.049 3.339 0.056 2.423 4.130
% + significant 100 94 100 95 0
% − significant 0 0 0 0 88
% Adjusted R2 42.898 17.318 44.603 20.897 1.233

RVit = αi + αimMt +
∑12

j=1 ρijRVit−j + λi|OB|it + βiNTit + νit (1)

C9999it = αi + αimMt +
∑12

j=1 ρijC9999it−j + λi|OB|it + βiNTit + νit (2)

RVit = αi + αimMt + λi|OB|it + βiNTit + νit (3)

C9999it = αi + αimMt + λi|OB|it + βiNTit + νit (4)

J9999∗it = αi + αimMt + λi|OB|it + βiNTit + νit, where J9999 = max(0, J9999∗) (5)

The above regressions are run for the 100 largest stocks traded on the NYSE over the
period January 1, 1995-September 30, 1999. RVit / C9999it / J9999it is the realized
variance / the continuous component of realized variance / the jump component of re-
alized variance of stock i on day t, all multiplied by 10,000. Mt is a Monday dummy,
|OB|it is the absolute order imbalance (divided by 100), NTit is the number of trades
(divided by 100) for stock i on day t and ρij measures the persistence of volatility shocks
at lag j. Regressions (1) and (2) are estimated by OLS while regressions (3) and (4) are
estimated by GMM. Regression (5) is estimated by maximum likelihood. For brevity, we
only report the equally-weighted cross-sectional mean coefficient for average trade size
and number of trades, with corresponding statistics. Newey-West standard errors and
two-sided p-values across stocks are computed. We also report the percentage of positive
and negative λ̂i and β̂i coefficients which are statistically different from zero at the 5%
level. The last row indicates the mean adjusted R2’s.
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