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ABSTRACT 

 

 

The scarcity of internal loss databases tends to hinder the use of the advanced approaches for 

operational risk measurement (AMA) in financial institutions. As there is a greater variety in credit 

risk modelling, this paper explores the applicability of a modified version of CreditRisk+ to 

operational loss data. Our adapted model, OpRisk+, works out very satisfying Values-at-Risk at 95% 

level as compared with estimates drawn from sophisticated AMA models. OpRisk+ proves to be 

especially worthy in the case of small samples, where more complex methods cannot be applied. 

OpRisk+ could therefore be used to fit the body of the distribution of operational losses up to the 

95%-percentile, while Extreme Value Theory or external databases should be used beyond this 

quantile. 

 

Key words: Operational risk, modelling, CreditRisk+. 
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1. Introduction 

Over the past decade, financial institutions have experienced several large operational loss events 

leading to big banking failures. Memorable examples include the Barings’ bankruptcy in 1995, the 

$691 million trading loss at Allfirst Financial, or the $140 million loss at the Bank of New York due 

to September 11
th
, 2001. These events, as well as developments such as the growth of e-commerce, 

changes in banks’ risks management or the use of more highly automated technology, have led 

regulators and the banking industry to recognize the importance of operational risk in shaping the risk 

profiles of financial institutions.  

 

Reflecting this recognition, the Basel Committee on Banking Supervision, in its proposal for A New 

Capital Accord, has incorporated into its proposed capital framework an explicit capital requirement 

for operational risk, defined as the risk of loss resulting from inadequate or failed internal processes, 

people and systems or from external events. This definition includes legal risk, but not strategic and 

reputational risks. As for credit risk, the Basel Committee does not believe in a “one-size-fits-all” 

approach to capital adequacy and proposes three distinct options for the calculation of the capital 

charge for operational risk: the basic indicator approach, the standardized approach and the advanced 

measurement approaches (AMA). The use of these approaches of increasing risk sensitivity is 

determined according to the risk management systems of the banks. The first two methods are a 

function of gross income, while the advanced methods are based on internal loss data, external loss 

data, scenario analysis, business environment and internal control factors.  

 

In 2001, the Basel Committee was encouraging two specific AMA methods: (i) the Loss Distribution 

Approach (LDA) and (ii) an Internal Measurement Approach (IMA) developing a linear relationship 

between unexpected loss and expected loss to extrapolate credit-risk’s internal rating based (IRB) 

approach to operational risk. However, prior to its 2003 Accord, the Basel Committee dropped formal 

mention of the IMA leaving the LDA as the only specifically recommended AMA method.  

 

Even though the Basel Accord formally dropped Internal Measurement Approaches in favour of 

Value-at-Risk approaches, it is still legitimate to be inspired by modelling approaches for credit risk in 

order to model the distribution of operational loss data. Indeed, both definitions of risks have similar 

features, such as their focus on a one-year measurement horizon or their use of an aggregated loss 

distribution skewed towards zero with a long right-tail. 

 

This paper explores the possibility of adapting one of the current proposed industry credit-risk models 

to perform much of the functionality of an actuarial LDA model. We identified CreditRisk+, the 

model developed by Credit Suisse, as an actuarial-based model whose characteristics can be adapted 

to fit the Loss Distribution Approach, which is explicitly mentioned in the Basel II Accord as eligible 
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among the Advanced Measurement Approaches (AMA) to estimate risk capital, and has 

unambiguously emerged as the standard industry practice (see Sahay et al. (2007) or Degen et al. 

(2007)) . After some adjustment, we construct a distribution of operational losses through the adapted 

“OpRisk+” model. As this model calibrates the whole distribution, not only can we retrieve the 

quantiles of the operational loss distribution, but also an estimate of its expectation, needed for the 

computation of the economic capital.  

 

Our research is aimed at answering the following question:  how would the adaptation of CreditRisk+ 

model perform compared to sophisticated models such as the approach developed by Chapelle, 

Crama, Hübner and Peters (2008) (henceforth CCHP) or Moscadelli (2004) among others or 

compared to an extended IMA approach such as Alexander (2003)?  

 

We address the question with an experiment based on generated databases using three different Pareto 

distributions. We study the behaviour of OpRisk+, together with an alternative characterization that 

specifically aims at modelling operational losses, when all these models are confronted to either fat, 

medium or thin tails for the loss distributions. Furthermore, we assess the influence of the number of 

losses recorded in the database on the quality of the estimation. The knowledge of the true distribution 

of losses is necessary to assess the quality of the different fitting methods. Had a real data set been 

used instead of controlled numerical simulations, we would not be able to benchmark the observed 

results against the true loss distribution and therefore we could not assess the performance of OpRisk+ 

for different loss generating processes and sample sizes.  

 

We also test our new adapted IRB model against Alexander’s existing “lower-bound” improvement to 

the basic IMA formula to see if our model outperforms. The lower bound is effectively a quantile 

value from a normal distribution table which allows identification of the unexpected loss if you know 

the mean and variance of the loss severity distribution and the mean of the frequency distribution. The 

multiplier is called the “lower-bound” because it will have its lowest value (approximately equal to 

3.1) when the mean of the frequency distribution corresponds to a high-frequency type of loss (e.g. 

more than 100 losses per year). 

 

Our main findings are twofold. First, we note that the precision of OpRisk+ is not satisfactory to 

estimate the very far end of the loss distribution, such as the Value-at-Risk (VaR)
1
 at the 99.9% 

confidence level. Yet, our model works out very satisfying quantile estimates, especially for thin-

tailed Pareto-distributions, up to a 95% confidence level for the computation of the VaR. The 

estimation error is relatively small and stable across distributions. Secondly, the simplicity of our 

model makes it applicable to “problematic” business lines, that is, with very few occurrences of 
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events, and with very few years of data. Procedures that rely on extreme-value theory, by contrast, are 

very data-consuming, and yield very poor results when used with small databases. 

 

These findings make the OpRisk+ approach clearly not an effective substitute, but indeed a very 

useful complement to approaches that specifically target the extreme tail of the loss distribution. In 

particular, the body of the loss distribution can be safely assessed with our method, while external 

data, as specifically mentioned in the Accord, can be used to estimate the tail. Being able to 

simultaneously rely on the body and the tail of the distribution is crucial for the operation risk capital 

estimation, because one needs the full distribution of losses in order to capture the expected loss that 

enters the regulatory capital estimate.  

 

The paper is organized as follows: Section 2 describes the adjustment needed in order to apply 

CreditRisk+  model to operational loss data and presents two alternative methods to calibrate a Value-

at-Risk on operational loss data (OpVaR). Section 3 describes our database, presents our results and 

compares them to the other approaches’ results. Section 4 concludes. 

 

2. Alternative Approaches for the Measurement of Operational Risk 

 

This section first presents three alternative ways to calibrate a Value-at-Risk on operational loss data. 

The first one represents an adaptation of the CreditRisk+ framework, while the second one proposes 

an adaptation of the Loss Distribution Approach (LDA) in the context of operational losses with the 

use of Extreme Value Theory (EVT). Finally, we introduce a lower bound for the Value-at-Risk 

derived from a model developed by Alexander (2003). 

 

2.1 OpRisk+: Application of CreditRisk+ to Operational Loss Data 

 
CreditRisk+ developed by Credit Suisse First Boston is an actuarial model derived from insurance 

losses models. It models the default risk of a bond portfolio through the Poisson distribution. Its basic 

building block is simply the probability of default of a counterparty. In this model, no assumptions are 

made about the causes of default: an obligor is either in default with a probability PA, or not in default 

with a probability 1-PA.  Although operational losses do not depend on a particular counterparty, this 

characteristic already simplifies the adaptation of our model, as we do not need to make assumptions 

on the causes of the loss.  
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CreditRisk+ determines the distribution of default losses in three steps: the determination of the 

frequency of defaults, approximated by a standard Poisson distribution, the determination of the 

severity of the losses and the determination of the distribution of default losses.  

 

The determination of the frequency of events leading to operational losses can be modelled through 

the Poisson distribution as for the probability of default in CreditRisk+: 

   (1) 

 

where μ is the average number of defaults per period, and N is a stochastic variable with mean µ, and 

standard deviation √μ. 

 

CreditRisk+ computes the parameter μ by adding the probability of default of each obligor, supplied, 

for instance, by rating agencies. However, operational losses do not depend on a particular obligor. 

Therefore, instead of being defined as a sum of probabilities of default depending on the 

characteristics of a counterpart, µ can be interpreted as the average number of loss events of one type 

occurring in a specific business line during one period.  

 

CreditRisk+ adds the assumption that the mean default rate is itself stochastic in order to take into 

account the fat right tail of the distribution of defaults. Nevertheless, CCHP (2008) show that, as far as 

operational risk is concerned, using the Poisson distribution to model the frequency of operational 

losses does not lead to a substantial measurement error. Hence, we keep on assuming that the number 

of operational loss events follows a Poisson distribution with a fixed mean µ. 

 

In order to perform its calculations, CreditRisk+ proposes to express the exposure (here, the losses) in 

a unit amount of exposure L2. The key step is then to round up each exposure size to the nearest 

whole number, in order to reduce the number of possible values and to distribute them into different 

bands. Each band is characterized by an average exposure, νj and an expected loss, εj, equal to the 

sum of the expected losses of all the obligors belonging to the band. Table 1 shows an example of this 

procedure. 

 

[TABLE 1] 

 

CreditRisk+ posits that  

      (2) 

where εj is the expected loss in band j, νj is the common exposure in band j, and μj is the expected 

number of defaults in band j.  
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As the operational losses do not depend on a particular transaction, we slightly modify the definition 

of these variables. The aim is to calculate the expected aggregate loss. We will therefore keep the 

definition of εj unchanged. However, as noted earlier, μj is not an aggregate expected number of 

defaults anymore but simply the (observed) average number of operational loss events occurring in 

one year. Consequently, in order to satisfy equation (2), νj  must be defined as the average loss amount 

per event for band j. The following table illustrates the reprocessing of the data: 

 

 

[TABLE 2] 

 

 

Each band is viewed as a portfolio of exposures by itself. Because some defaults lead to larger losses 

than others through the variation in exposure amounts, the loss given default involves a second 

element of randomness, which is mathematically described through its probability generating 

function. Thus, let G(z) be the probability generating function for losses expressed in multiples of the 

unit L of exposure:  

   

(3) 

 

As the number of defaults follows a Poisson distribution, this is equal to:  

     

(4) 

 

As far as operational losses are concerned, a band can no more be considered as a portfolio but will 

simply be seen as a category of loss size. This also simplifies the model, as we do not distinguish 

exposure and expected loss anymore. For credit losses, exposures are first sorted, and then the 

expected loss is calculated, by multiplying the exposures by their probability of default. As far as 

operational losses are concerned, the loss amounts are directly sorted by size. Consequently, the 

second element of randomness is not necessary anymore. This has no consequences on the following 

results except simplifying the model. 

 

Whereas CreditRisk+ assumed the exposures in the portfolio to be independent, OpRisk+ will assume 

the independence of the different loss amounts. Thanks to this assumption, the probability generating 

function for losses of one type for a specific business line is given by the product of the probability 

generating function for each band: 
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    (5) 

Finally, the loss distribution of the entire portfolio is given by: 

   

 (6) 

 

Note that this equation allows only computing the probability of losses and size 0, L, 2L and so on. 

This probability of loss of nL will further be denoted An.   

 

Then, under the simplified assumption of fixed default rates, Credit Suisse has developed the 

following recursive equation
3
: 

 

      (7) 

 

where

m

j j

j

eeGA
1

)0(0 .  

 

The calculation depends only on 2 sets of parameters: ν j and εj, derived from μj , ,the number of events 

of each range, j, observed. With operational data, A0 is derived directly from eA0  . 

 

To illustrate this recurrence, suppose your database contains 20 losses, 3 (resp. 2) of which having a 

size of 1L (resp. 2L): 

920
0 10.06.2eA  

96.18.1092.06.10  x  3
1

011

1:

1 AAA
j

jj

j
 

 

 

Therefore, the probability of having a loss of size resp. 0, 1L and 2L is resp. 2.06.10
-9

, 6.18.10
-9
 and 

1.13.10
-8

, and so on. 

 

From there, you can re-construct the distribution of the loss of size nL. 

 

The procedure can be summarized as follows: 

1. Choose a unit amount of loss L
4
.  

2. Divide the losses of the available database by L and round up these numbers. 
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3. Allocate the losses of different sizes to their band and compute the expected loss per 

band, equal to the observed number of losses per band multiplied by the average loss amount 

per band, equal to j. 

4. Compute the probability of zero losses equal to A0 = e
-µ

, where µ is the total number of 

losses observed per period. 

5. For each band j = 1 to n, compute the probability of losses of size n by using equation 

(7). 

6. Cumulate the probabilities in order to find the OpVaR99.9. 

7. Repeat the procedure for each year of data. 

 

 

2.2 The Loss Distribution Approach adapted to Operational Risk 

Among the Advanced Measurement Approaches (AMA) developed over the recent years to model 

operational risk, the most common one is the Loss Distribution Approach (LDA), which is derived 

from actuarial techniques (see Frachot, Georges and Roncalli, 2001 for an introduction). 

 

By means of convolution, this technique derives the aggregated loss distribution (ALD) through the 

combination of the frequency distribution of loss events and the severity distribution of a loss given 

event
5
. The operational Value-at-Risk is then simply the 99.9

th
 percentile of the ALD. As an analytical 

solution is very difficult to compute with this type of convolution, Monte Carlo simulations are 

usually used to do the job. Using the CCHP procedure with a Poisson distribution with a parameter µ 

equal to the number of observed losses during the whole period to model the frequency
6
, we have: 

 

1. Generate a large number M of Poisson(µ) random variables (say, 10000). These M values 

represent the number of events for each of the M simulated periods. 

2. For each period, generate the required number of severity random variables (that is, if the 

simulated number of events for period m is x, then simulate x severity losses) and add 

them to get the aggregated loss for the period. 

3. The obtained vector represents M simulated periods. If M = 10000, when sorted, the 

smallest value thus represents the 0.0001 quantile, the second the 0.0002 quantile, etc., 

which makes the OpVaRs very easy to calculate.  

 

Examples of empirical studies using this technique for operational risk include Moscadelli (2004) on 

loss data collected from the Quantitative Impact Study (QIS) of the Basel Committee, de Fontnouvelle 

and Rosengren (2004) on loss data from the 2002 Risk Loss Data Collection Exercise initiated by the 

Risk Management Group of the Basel Committee or CCHP with loss data coming from a large 

European bank.  
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The latter underline that, in front of an actual database of internal operational losses, mixing two 

distributions fit more adequately the empirical severity distribution than a single distribution. 

Therefore, they divide the sample into two parts: a first one with losses below a selected threshold, 

considered as the “normal” losses, and a second one, including the “large” losses. To model the 

“normal” losses, CCHP compare several classic continuous distributions such as gamma, lognormal or 

Pareto.   

 

To take extreme and very rare losses into account (i.e. the “large” losses), the authors apply the 

Extreme Value Theory (EVT) on their results
7
. The advantage of EVT is that it provides a tool to 

estimate rare and not-yet-recorded events for a given database
8
. The use of EVT works out very 

similar OpVaRs, except for the very high percentile, that is the 99.99
th

. As the Basel Accord requires a 

confidence level of 99.90, the authors obtain that their Monte Carlo simulation allows them to 

compute a sufficiently complete sample, including most of the extreme cases. 

 

2.3 Comparison with a lower bound 

The basic formula of the Internal Measurement Approach (IMA) included in the Advanced 

Measurement Approaches of Basel II is: 

ELUL       (8) 

where UL = unexpected loss, determining the operational risk requirement
9
, and  is a multiplier.  

 

Gamma factors are not easy to evaluate as no indication of their possible range has been given by the 

Basel Committee. Therefore, Alexander (2003) suggests that instead of writing the unexpected loss as 

a multiple (γ) of expected loss, one writes unexpected loss as a multiple (Φ) of the loss standard 

deviation. Using the definition of the expected loss, she gets the expression for Φ: 

ELaR 9.99V
      (9) 

The advantages of this parameter are that it can be easily calibrated and that it has a lower bound. 

 

The basic IMA formula is based on the binomial loss frequency distribution, with no variability in loss 

severity. For very high-frequency risks, Alexander notes that the normal distribution could be used as 

an approximation of the binomial loss distribution, providing for Φ a lower bound equal to 3.1 (as can 

be found from standard normal tables when the number of losses goes to infinity). She also suggests 

that the Poisson distribution should be preferred to the binomial as the number of transactions is 

generally difficult to quantify. 
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Alexander (2003) also shows that Φ, as a function of the parameter   of the Poisson distribution, 

must be in a fairly narrow range: from about 3.2 for medium-to high frequency risks (20 to 100 loss 

events per year) to about 3.9 for low frequency risks (one loss event every one or two years) and only 

above 4 for very rare events that may happen only once every five years or so.  Table 3 illustrates the 

wide range for the gammas by opposition to the narrow range of the phi’s values. 

 

[TABLE 3] 

 

Then, assuming the loss severity to be random, i.e. with mean µL and standard deviation σL, and 

independent of the loss frequency, Alexander writes the Φ parameter as: 

 

     (10) 

Where λ is the average number of losses. 

 

For σL > 0, this formula produces slightly lower Φ than with no severity uncertainty, but it is still 

bounded below by the value 3.1.  

 

For a comparison purpose, we will use the following value for the lower bound of the needed 

OpVaR99.9, derived from equation (10) in which we replaced Φ by 3.1 (asymptotic value for the ratio 

of the difference between the 99
th
 quantile and the parameter of the Poisson distribution to its standard 

deviation) : 

          

        (11) 

 

Our model should therefore produce operational economic capital at least equal or higher than this 

lower bound. 

 

3. An Experiment on Simulated Losses 

3.1 Data 

OpRisk+ makes the traditional statistical tests impossible, as it uses no parametrical form but a purely 

numerical procedure. Therefore, in order to perform tests of the calibrating performance of OpRisk+ 

on any distribution of loss severity, we simulate databases to obtain an exhaustive picture of the 

capabilities of the approach, that is, on the basis of three different kinds of distributions: a heavy-tail, a 

medium-tail and a thin-tail Pareto distribution. Indeed, Moscadelli (2004) and de Fontnouvelle and 
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Rosengren (2004) have shown that loss data for most business lines and event types may be well 

modelled by a Pareto-type distribution.   

 

A Pareto distribution is a right-skewed distribution parameterized by two quantities: a minimum 

possible value or location parameter, xm, and a tail index or shape parameter, ξ. Therefore, if X is a 

random variable with a Pareto distribution, the probability that X is greater than some number x is 

given by: 

 
for all x ≥ xm., and for  xm and  k= 1/ξ >0. 

 

The parameters of our distributions are Pareto(100;0.3), Pareto(100;0.5) and Pareto(100;0.7): the 

larger the value of the tail index, the fatter the tail of the distribution. The choice of these functions has 

been found to be reasonable with a sample of real data obtained from a large European institution.  

 

We ran three simulations: one for the thin-tailed Pareto severity distribution case, one for the medium-

tailed Pareto severity distribution case and one for the fat-tailed Pareto severity distribution case. For 

each of these cases, we simulated two sets of 1000 years of 20 and respectively 50 operational losses 

and two sets of 100
10 

series of  200 losses and 300, respectively. For each of the 6600 simulated years 

(3 x 2 x 1100), the aggregated loss distribution has been computed with the algorithm described in 

Section 2.2.  

 

Table 4 gives the characteristics of each of the twelve databases (each thus comprising 1000 or 100 

simulated aggregate loss distributions) constructed in order to implement OpRisk+. For each series of 

operational losses we computed the expected loss, that is, the mean loss multiplied by the number of 

losses. The five last lines present the mean, standard deviation, median, maximum and minimum of 

these expected losses.   

 

 

[TABLE 4] 

 

 

These results clearly show that data generated with a thin-tailed Pareto-distribution exhibit 

characteristics that make the samples quite reliable. The mean loss is very close to its theoretical level 

even for 20 draws. Furthermore, we observe a standard deviation of aggregate loss that is very limited, 

from less than 10% of the average for N=20 to less than 3% for N=200. The median loss is also close 

to the theoretical value. For a tail index of 0.5 (medium-tailed), the mean loss still stays close to the 
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theoretical value but the standard deviation increases. Thus, we can start to question the stability of the 

loss estimate. 

 

When the tail index increases, all these nice properties collapse. The mean aggregate loss becomes 

systematically lower than the theoretical mean, and this effect aggravates when one takes a lower 

number of simulations (100 drawings) with a larger sample. The standard deviation and range become 

extremely large, making inference based on a given set of loss observations extremely adventurous. 

 

3.2. Application of OpRisk+  

To apply OpRisk+ to these data, the first step consists of computing A0 = e
-μ

, where μ is the average 

number of loss events. For instance, for N=200, this gives the following value:

87200

0 1038.1eA . Then, in order to assess the loss distribution of the entire population of 

operational risk events, we use the recursive equation (7) to compute A1, A2 etc. 

 

Once the different probabilities An for the different sizes of losses are computed, we can plot the 

aggregated loss distribution as illustrated in Figure 1. 

 

 

 

 

[FIGURE 1] 

 

 

With this information, we can compute the different Operational Values-at-Risk (OpVaR). This is 

done by calculating the cumulated probabilities for each amount of loss. The loss for which the 

cumulated probability is equal to p% gives us the OpVaR at percentile p. 

 

The average values for the different OpVaRs are given in Tables 4 and 5. Table 4 compares the 

OpVaRs obtained using OpRisk+ with the simulated data for the small databases. The first column 

represent the average observed quantiles of the aggregated distribution when simulating 25000 years 

with a Poisson(mu) distribution for the frequency and a Pareto(100, ξ.) for the severity. The tables also 

gives the minimum, maximum and standard deviation of the 100(0) OpVaRs produced by OpRisk+. 

 

Panel A of Table 5 shows that OpRisk+ achieves very satisfactory OpVaRs for the Pareto-distribution 

with thin tail. The mean OpVaRs obtained for both the samples of 20 and 50 observations stays within 

a 4% distance from the true value. Even at the level of 99.9% required by Basel II, the OpRisk+ 
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values stay within a very narrow range, while the standard deviation of the estimates is kept within 

10% around the good value.  

 

 

[TABLE 5] 

 

 

The results obtained with the OpRisk+ procedure with medium and fat tails tend to deteriorate, which 

is actually not surprising as the adaptation of the credit risk model strictly uses observed data and does 

necessarily underestimate the fatness of the tails. However, we still have very good estimation for 

OpVaR95. It mismatches the true 95% quantile by 2% to 7% for the medium and fat tailed Pareto-

distribution, while the standard deviation tends – naturally – to increase very fast.  

 

The bad news is that the procedure alone is not sufficient to provide the OpVaR99.9 required by Basel 

II. It severely underestimates the true quantile, even though this true value is included in the range of 

the observed values of the loss estimates. 

 

Table 6 displays the results of the simulations when a large sample size is used. 

 

 

 

[TABLE 6] 

 

 

Table 6, Panel A already delivers some rather surprising results. The OpRisk+ procedure seems to 

overestimates the true operational risk exposure for all confidence levels; this effect aggravates for a 

high number of losses in the database. This phenomenon is probably due to an intervalling effect, 

where losses belonging to a given band are given the value of the band. Given that extreme losses are 

likely to occur in the lower part of the band, as the distribution is characterized by a thin tail Pareto-

distribution, taking the upper bound limit value for aggregation seems to deteriorate the estimation, 

making it too conservative. Nevertheless, the bias is almost constant in relative terms, indicating that 

its seriousness does not aggravate as the estimation gets far in the tail of the distribution.  Sub-section 

5.4. will go further in this assumption. 

 

This intervalling phenomenon explains the behaviour of the estimation for larger values of the tail 

index. In Panel B, the adapted credit risk model still overestimates the distribution of losses up to a 

confidence level of 99%, but then does not capture to distribution at the extreme end of the tail 
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(99.9%). In Panel C, the underestimation starts earlier, around the 90% percentile of the distribution. 

The procedure, using only observed data, is still totally unable to capture the fat tailedness of the 

distribution of aggregated losses. 

 

Nevertheless, from panels B and C altogether, the performance of OpRisk+ still stays honourable 

when the confidence level of 95% is adopted. The standard deviation of the estimates also remains 

within 15% (with the tail index of 0.5) and 30% of the mean (with a tail index of 0.7), which is fairly 

large but mostly driven by large outliers as witnessed in the last column of each panel. 

 

A correct mean estimate of the OpVaR95 would apply to a tail index between 0.5 and 0.7, which 

corresponds to a distribution with a fairly large tail index. Only when the tail of the Pareto-distribution 

is actually thin, one observes that the intervalling effect induces a large discrepancy between the 

theoretical and observed values.  

 

It remains to be mentioned that the good application of OpRisk+ does not depend on the number of 

observed losses as it only affects the first term of the recurrence, namely A0.   

 

3.3. Comparison with the CCHP approach and the Lower-Bound of Alexander. 

These results, if their economic and statistical significance have to be assessed, have to be compared 

with a method that aims at specifically addressing the issue of operational losses in the Advanced 

Measurement Approaches setup. We choose the CCHP approach, which is by definition more 

sensitive to extreme events than OpRisk+, but has the drawback of requiring a large number of events 

to properly derive the severity distributions of “normal” and “large” losses.   

 

The graphs from Figure 2 display the OpVaRs (with confidence levels of 90, 95, 99 and 99.9%) 

generated from three different kind of approaches, that is the sophisticated CCHP approach, OpRisk+ 

and the simpler Alexander (2003) approach (See Section 4.3) for three small databases of 20 and of 50 

loss events, and for three larger databases of 200 and of 300 events. 

 

 

[FIGURE 2] 

 

 

From the graphs in Figure 2, we can see that for most databases, OpRisk+ is working out a capital 

requirement higher than the lower bound, but smaller than the CCHP approach. This last result could 

be expected as CCHP is more sensitive to extreme events. We will discuss the fact that the database 
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with 300 observations shows higher OpVaRs for OpRisk+ than CCHP in the last sub-section.  

However, we can already conclude that our model is more risk sensitive than a simple IMA approach.   

 

Considering the thin tailed Pareto-distribution in Panel A, we can observe that OpRisk+ produces the 

best estimations for the small database. Indeed, those are very close to the theoretical OpVaRs for all 

confidence level. However, for the large database, it is producing too cautious (large) OpVaRs. The 

comparison with other methods sheds new light on the results obtained with Panel A of Table 6: 

OpRisk+ overestimates the true VaR, but the CCHP model, especially dedicated to the measurement 

of operational risk, does even worse. Actually, Alexander’s (2003) lower bound, also using observed 

data but not suffering from an intervalling effect, works out very satisfactory results when the standard 

deviation of loss is a good proxy of the variability of the distribution. 

 

For the medium and fat tailed Pareto-distributions, neither of the models is sensitive enough for 

OpVaRs of 99% and more. However, as far as the small databases are concerned, it is interesting to 

note that OpRisk+ is producing the best estimations for OpVaR95.  

 

Figure 3 compares the different values for the OpVaR90, OpVaR95, OpVaR99 and OpVaR99.9, for one of 

the small samples and one of the large samples. It shows that the CCHP model produces a heavier tail 

than OpRisk+ does, except for the Pareto(200;0,7), where they are quite similar. However, OpRisk+ 

yields OpVaRs that are much closer to the theoretical ones as far as small databases are concerned. It 

even consistently produces very good OpVaR95 in all cases. However, at the level of confidence 

required by Basel II, this procedure leaves estimates that are still far from the expected value, 

especially when the tail of the Pareto-distribution gets bigger. 

 

[ FIGURE 3] 

 

3.4. Comparison with OpRisk+ taking an average value of loss for each band. 

As shown above, taking the upper bound limit value for aggregation as described in the CreditRisk+ 

model tends to overestimate the true operational risk exposure for all confidence levels; especially 

with larger databases. A solution could be to take the average value of losses for each band
11

. Table 7 

displays the results of the simulations when a relatively large sample size is used. 

 

Panel A of Table 7 shows that OpRisk+ achieves very good results for the Pareto-distribution 

characterized by a thin tail when using an average value for each band (“round” column). The OpVaR 

values obtained for the sample of 200 observations is very close from the theoretical value, whereas it 

stays within a 6% range from the “true” value with a 300 observations sample, including at the Basel 

II level of 99.9%. 
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When the loss Pareto-distributions are medium-tailed, the results obtained with the OpRisk+ 

procedure with the databases are very good for quantiles up to 95% but deteriorate for more sensitive 

OpVaRs.  OpRisk+ is still totally unable to capture the tailedness of the distribution of aggregated 

losses for very high confidence interval, such as the Basel II requirement.  

 

[TABLE 7] 

 

Table 8 compares the two methods when applied to small databases of 20 and 50 observations. In such 

cases, OpRisk+ provides better results with the “round up” solution than with the “round” one.  This 

bias could be due to the fact that with the second method we tend to loose the “extreme value theory” 

aspect of the model.  Small databases tend indeed to lack extreme losses and taking the upper bound 

limit value for the aggregation makes the resulting distribution’s tail fatter.   

 

[TABLE 8] 

4.  Conclusions 

This paper introduces a structural operational risk model, named OpRisk+, that has been inspired from 

the well known credit risk model, CreditRisk+, which had characteristics transposable to the 

operational risk modelling.  

 

In a simulations setup, we work out aggregated loss distributions and operational Value-at-Risks 

(OpVaR) corresponding to the confidence level required by Basel II. The performance of our model is 

assessed by comparing our results to theoretical OpVaRs, to a lower bound issued from a simpler 

approach, that is, the IMA approach of Alexander (2003), and to a more sophisticated approach using 

two distributions in order to model the severity distributions of “normal” and “extreme” losses 

proposed in Chapelle et al. (2008), or “CCHP” approach.   

 

The results show that OpRisk+ produces higher OpVaRs than the lower bound of Alexander (2003), 

but that it is not receptive enough to extreme events. On the other hand, our goal is not to produce an 

adequate economic capital, but to try to propose a first solution to the lack of operational risk models. 

Besides, whereas the CCHP approach has better sensitivity to very extreme losses, the simplicity of 

OpRisk+ gives the model the advantage of requiring no large database in order to be implemented.  

 

Specifically, we view the value-added of the OpRisk+ procedure as twofold. Firstly, it produces 

average estimates of operational risk exposures that are very satisfactory at the 95% level, which 

makes it a very useful complement to approaches that specifically target the extreme tail of the loss 
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distribution. Indeed, even though the performance of OpRisk+ is clearly not sufficient for the 

measurement of unexpected operational losses as defined by the Basel II Accord (the VaR should be 

measured with a 99.9% confidence level), it could be thought of as a sound basis for the measurement 

of the body of losses; another more appropriate method must relay OpRisk+ for the measurement of 

the far end of the distribution. 

 

Secondly, despite the fact that we can not conclude that OpRisk+ is an adequate model to quantify the 

economic capital associated to the bank’s operational risk in the LDA approach, its applicability to 

approximate the loss distribution with small databases is proven. Even for such a small database as 

one comprising 20 observations, the estimation could make it attractive as a complement to more 

sophisticated approaches requiring large numbers of data per period. The fit is almost perfect when the 

Pareto-distribution has a thin tail, and the OpVaR95 is the closest among the three specifications tested 

when the tail gets fatter. 

 

Of course, this approach is still subject to refinements, and could be improved in many ways. Indeed, 

internal data rarely includes very extreme events (banks suffering those losses probably would no 

more be there to tell us), whereas the last percentiles are very sensitive to the presence of those events. 

The problem would therefore be to determine which weight to place on the internal data and on the 

external ones. From our study, we could imagine that fitting a distribution calibrated with external 

data or relying on EVT beyond the 95% percentile would justify the simultaneous use of OpRisk+ 

preferably to other models. This advantage can prove to be crucial for business lines or event types 

where very few internal observations are available, and thus where most approaches such as the 

CCHP would be powerless. 

5. Notes 

1 The Value-at-Risk (VaR) is the amount that losses will likely not exceed, within a predefined confidence level 

and over a given time-period.   

2 CreditRisk+’s authors argue that the exact amount of each loss cannot be critical in the determination of the 

global risk. 

3 See Appendix.  

4 Several unit amounts were tested and did not lead to significantly different results. The size of the unit amount 

should especially be chosen according to the number of losses: the bigger the number of losses in the database, 

the bigger the unit amount, in order to lighten the computations. 

5
 More precisely the ALD is obtained through the n-fold convolution of the severity distribution with itself, n 

being a random variable following the frequency density function. 
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 6 While frequency could also be modelled with other discrete distributions such as the Negative Binomial for 

instance, many authors use the Poisson assumption (see de Fontnouvelle, DeJesus-Rueff, Jordan and Rosengren, 

2003, for instance). 

7 This solution has been advocated by many other authors; see for instance King (2001), Cruz (2004), 

Moscadelli (2004), de Fontnouvelle and Rosengren (2004) or Chavez-Demoulin, Embrechts and Neslehova 

(2006). 

 8 See Embrechts, Klüppelberg and Mikosch (1997) for a comprehensive overview of EVT.   

9 The unexpected loss is defined as the difference between the VaR at 99.9% and the expected loss. 

 10 Only 100 years of data were simulated for high-frequency databases as the computation becomes too heavy 

for a too large number of data.  

11 That is, every loss between 15000 and 25000 would be in band 20, instead of every loss between 10,000 and 

20,000 being in band 20.  
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7. Tables 

Loss Amount Loss in L round-off loss band j 

(LGE)  νj  

1 500 1.5 2.00 2 

2 508 2.51 3.00 3 

3 639 3.64 4.00 4 

1 000 1.00 1.00 1 

1 835 1.84 2.00 2 

2 446 2.45 3.00 3 

7 260 7.26 8.00 8 

Table 1 - Allocating losses to bands. 

 

 

νj μj εj 

1 9 9 

2 121 242 

3 78 234 

4 27 108 

5 17 85 

6 15 90 

7 8 56 

8 4 32 

      

Table 2 - Exposure, number of events and expected loss. 

 

 

 100 50 40 30 20 10 8 6 

VaR99.9 131.81 72.75 60.45 47.81 34.71 20.66 17.63 14.45 

 3.18 3.22 3.23 3.25 3.29 3.37 3.41 3.45 

 0.32 0.46 0.51 0.59 0.74 1.07 1.21 1.41 

         

 5 4 3 2 1 0.9 0.8 0.7 

VaR99.9 12.77 10.96 9.13 7.11 4.87 4.55 4.23 3.91 

 3.48 3.48 3.54 3.62 3.87 3.85 3.84 3.84 

 1.55 1.74 2.04 2.56 3.87 4.06 4.29 4.59 

         

 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.01 

VaR99.9 3.58 3.26 2.91 2.49 2.07 1.42 1.07 0.90 

 3.85 3.90 3.97 4.00 4.19 4.17 4.54 8.94 

 4.97 5.51 6.27 7.30 9.36 13.21 20.31 89.40 

Table 3 - Gamma and phi values (no loss severity variability) (source: Alexander (2003), p151). 
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Panel A : Thin-tailed-Pareto distribution (shape parameter = 0.3) 

Poisson parameter μ 

Number of losses. 

20 50 200 300 

Theoretical Mean 2,857 7,143 28,571 42,857 

Mean  2,845 7,134 28,381 42,886 

Standard deviation 287 472 847 1,118 

  Median 2,796 7,078 28,172 42,763 

Maximum 4,683 9,026 30,766 45,582 

Minimum 2,268 6,071 26,713 40,383 

Number of simulated years 1000 1000 100 100 

 

Panel B : Medium-tailed-Pareto distribution (shape parameter = 0.5) 

Poisson parameter μ 

Number of losses 

20 50 200 300 

Theoretical Mean 4,000 10,000 40,000 60,000 

Mean  3,924 9,913 39,871 59,431 

Standard deviation 1,093 1,827 3,585 5,504 

Median 3,676 9,594 39,777 57,947 

Maximum 15,680 29,029 54,242 91,182 

Minimum 2,567 7,097 33,428 52,436 

Number of simulated years 1000 1000 100 100 

 

Panel C : Fat-tailed-Pareto distribution (shape parameter = 0.7) 

Poisson parameter μ 

Number of losses. 

20 50 200 300 

Theoretical Mean 6,667 16,667 66,667 100,000 

Mean  6,264 16,165 61,711 93,724 

Standard deviation 5,940 13,018 13,899 24,514 

Median 5,180 13,721 57,713 87,646 

Maximum 157,134 265,621 137,699 248,526 

Minimum 2,646 8,304 45,315 69,991 

Number of simulated years 1000 1000 100 100 

Table 4 - Characteristics of Twelve Databases under OpRisk+. 
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Panel A : Thin-tailed-Pareto distribution (shape parameter = 0.3)               

 N = 20  N = 50 

 
Simulated 

OpRisk+  
Simulated 

OpRisk+ 

  Mean Δ S.D. Min  Max   Mean Δ S.D. Min  Max 

OpVaR90 3770 3880 3% 448 3080 7580  8573 8882 4% 706 7530 16980 

OpVaR95 4073 4173 2% 505 3290 8020  9030 9334 3% 769 7880 17010 

OpVaR99 4712 4744 1% 612 3710 8110  9942 10209 3% 906 8560 17020 

OpVaR99,9 5596 5410 -3% 717 3780 9800   11141 11250 1% 1241 9340 30010 

              

Panel B : Medium-tailed-Pareto distribution (shape parameter = 0.5)             

 N = 20  N = 50 

 
Simulated 

OpRisk+  
Simulated 

OpRisk+ 

  Mean Δ S.D. Min  Max   Mean Δ S.D. Min  Max 

OpVaR90 5579 5672 2% 2209 3470 29360  12630 12855 2% 3102 8760 51800 

OpVaR95 6364 6247 -2% 2896 3720 40860  13862 13734 -1% 3838 9190 70420 

OpVaR99 8966 7329 -18% 3940 4190 53610  18051 15410 -15% 4900 10020 91180 

OpVaR99,9 18567 8626 -54% 5120 4750 66930   33554 17338 -48% 6013 10990 112940 

              

Panel C : Fat-tailed-Pareto distribution (shape parameter = 0.7)                

 N = 20  N = 50 

 
Simulated 

OpRisk+  
Simulated 

OpRisk+ 

  Mean Δ S.D. Min  Max   Mean Δ S.D. Min  Max 

OpVaR90 9700 11410 18% 10214 4300 106700  22495 23992 7% 25901 11700 526900 

OpVaR95 12640 12931 2% 12441 4600 142450  28103 27089 -4% 37495 12300 777800 

OpVaR99 27261 15583 -43% 15736 5150 189050  55994 32020 -43% 49854 13450 1033000 

OpVaR99,9 114563 18726 -84% 19524 5850 236200   220650 38761 -82% 69020 14750 1290300 

Table 5 - Values-at-Risk generated by OpRisk for small databases, with 20 and 50 loss events. 

  



 25 

 

Panel A : Thin-tailed-Pareto distribution (shape parameter = 0.3)               

 N = 200  N = 300 

 
Simulated 

OpRisk+  
Simulated 

OpRisk+ 

  Mean Δ S.D. Min  Max   Mean Δ S.D. Min  Max 

OpVaR90 31448 33853 7% 14819 31780 36640  46355 56470 22% 1240 53950 59800 

OpVaR95 32309 34728 7% 15435 32600 37780  47403 57683 22% 1305 55100 61200 

OpVaR99 33995 36397 7% 16677 34180 40340  49420 59992 21% 1431 57200 63950 

OpVaR99,9 36063 38310 6% 18197 36000 43740   51750 62628 21% 1589 59650 67150 

              

Panel B : Medium-tailed-Pareto distribution (shape parameter = 0.5)             

 N = 200  N = 300 

 
Simulated 

OpRisk+  
Simulated 

OpRisk+ 

  Mean Δ S.D. Min  Max   Mean Δ S.D. Min  Max 

OpVaR90 45757 51836 13% 5875 43500 79650  67104 75723 13% 9683 66600 146300 

OpVaR95 48259 53816 12% 6935 44650 89600  70264 78161 11% 11515 68100 164700 

OpVaR99 55919 57668 3% 8940 46900 105300  79718 82817 4% 14571 70950 193300 

OpVaR99,9 83292 62237 -25% 11431 49450 123600   113560 88309 -22% 18259 74250 226700 

              

Panel C : Fat-tailed-Pareto distribution (shape parameter = 0.7)  

 N = 200  N = 300 

 
Simulated 

OpRisk+  
Simulated 

OpRisk+ 

  Mean Δ S.D. Min  Max   Mean Δ S.D. Min  Max 

OpVaR90 82381 82539 0% 24959 57200 218600  120654 119943 -1% 34805 86100 364800 

OpVaR95 96971 88248 -9% 30247 58950 247000  139470 127037 -9% 42644 88400 436550 

OpVaR99 166962 98972 -41% 39404 62300 303400  234442 55846 -40% 55846 92850 550800 

OpVaR99,9 543597 111875 -79% 50432 66150 373100   733862 156642 -79% 71810 98000 687000 

Table 6 - OpVaRs generated by OpRisk+ for databases with 200 and 300 loss events. 
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Panel A : Thin-tailed-Pareto distribution (shape parameter = 0.3)         

 N = 200  N = 300 

 
Simulated 

OpRisk+  
Simulated 

OpRisk+ 

  Roundup Δ Round Δ   Roundup Δ Round Δ 

OpVaR90 31448 33853 8% 30576 -3%  46355 56470 22% 43558 -6% 

OpVaR95 32309 34728 7% 31404 -3%  47403 57683 22% 44563 -6% 

OpVaR99 33995 36397 7% 32991 -3%  49420 59992 21% 46486 -6% 

OpVaR99,9 36063 38310 6% 34813 -3%   51750 62628 21% 48687 -6% 

Panel B : Medium-tailed-Pareto distribution (shape parameter = 0.5)           

 N = 200  N = 300 

 
Simulated 

OpRisk+  
Simulated 

OpRisk+ 

  Roundup Δ Round Δ   Roundup Δ Round Δ 

OpVaR90 45757 51836 13% 44338 -3%  67104 75723 13% 64523 -4% 

OpVaR95 48259 53816 12% 46222 -4%  70264 78161 11% 66849 -5% 

OpVaR99 55919 57668 3% 49885 -11%  79718 82817 4% 71296 -11% 

OpVaR99,9 83292 62237 -25% 54257 -35%   113560 88309 -22% 76544 -33% 

Panel C : Fat-tailed-Pareto distribution (shape parameter = 0.7)          

 N = 200  N = 300 

 
Simulated 

OpRisk+  
Simulated 

OpRisk+ 

  Roundup Δ Round Δ   Roundup Δ Round Δ 

OpVaR90 82381 82539 0% 75696 -8%  120654 119943 -1% 112596 -7% 

OpVaR95 96971 88248 -9% 81375 -16%  139470 127037 -9% 120850 -13% 

OpVaR99 166962 98972 -41% 91991 -45%  234442 55846 -76% 135481 -42% 

OpVaR99,9 543597 111875 -79% 104699 -81%   733862 156642 -79% 152904 -79% 

Table 7 - Comparison of OpRisk+ with an upper bound limit value (rounded up) and an average 

value (rounded) for each band, for large databases. 
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Panel A : Thin-tailed-Pareto distribution (shape parameter = 0.3)           

 N = 20  N = 50 

 
Simulated 

OpRisk+  
Simulated 

OpRisk+ 

  Roundup Δ Round Δ   Roundup Δ Round Δ 

OpVaR90 3770 3880 3% 3535 -6%  8573 8882 4% 8074 -6% 

OpVaR95 4073 4173 2% 3815 -6%  9030 9334 3% 8501 -6% 

OpVaR99 4712 4744 1% 4363 -7%  9942 10209 3% 9332 -6% 

OpVaR99,9 5596 5410 -3% 5010 -10%   11141 11250 1% 10311 -7% 

Panel B : Medium-tailed-Pareto distribution (shape parameter = 0.5)          

 N = 20  N = 50 

 
Simulated 

OpRisk+  
Simulated 

OpRisk+ 

  Roundup Δ Round Δ   Roundup Δ Round Δ 

OpVaR90 5579 5672 2% 5332 -4%  12630 12855 2% 11323 -10% 

OpVaR95 6364 6247 -2% 5901 -7%  13862 13734 -1% 12152 -12% 

OpVaR99 8966 7329 -18% 6945 -23%  18051 15410 -15% 13668 -24% 

OpVaR99,9 18567 8626 -54% 7904 -57%   33554 17338 -48% 14377 -57% 

Panel C : Fat-tailed-Pareto distribution (shape parameter = 0.7)          

 N = 20  N = 50 

 
Simulated 

OpRisk+  
Simulated 

OpRisk+ 

  Roundup Δ Round Δ   Roundup Δ Round Δ 

OpVaR90 9700 11410 18% 9413 -3%  22495 23992 7% 25235 12% 

OpVaR95 12640 12931 2% 10914 -14%  28103 27089 -4% 28537 2% 

OpVaR99 27261 15583 -43% 13353 -51%  55994 32020 -43% 33837 -40% 

OpVaR99,9 114563 18726 -84% 16290 -86%   220650 38761 -82% 40024 -82% 

Table 8 - Comparison of OpRisk+ with an upper bound limit value (round up) and an average 

value (round) for each band, for small databases. 
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8. Figures 

 

 

Figure 1. Aggregated loss distribution for a series of 200 loss events characterized by a 

Pareto(100;0.3). 

 

 

 

 

    PANEL A : THIN-TAILED DISTRIBUTION (TAIL INDEX = 0,3)  
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    PANEL B : THIN-TAILED DISTRIBUTION (TAIL INDEX = 0,5)  

 
 

 
 

 

 

 

 

 

 

 
 

 

    PANEL C : THIN-TAILED DISTRIBUTION (TAIL INDEX = 0,7)  

  

 
 

 

 

 

Figure 2 - Comparison of CCHP, OpRisk+ and the lower bound proposed by Alexander (2003). 
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Figure 3. OpVaR levels generated by CCHP, OpRisk+ and theoretical OpVaR for databases of 

20 events characterized by a Pareto distribution with parameters (100;0.3), (100;0.5) and 

(100.0.7), namely 20_3, 20_5 and 20_7, respectively, and for databases of 50 events 

characterized by the same distribution, that is respectively 200_3, 200_5 and 200_7. 
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9.  Appendix - CreditRisk+: The distribution of Default losses  Calculation 

procedure
i
 

 

CreditRisk+ mathematically describes the random effect of the severity distribution through its 

probability generating function G(Z): 

 

Comparing this definition with the Taylor series expansion for G(z), the probability of a loss of n x L, 

An, is given by: 

 
In CreditRisk+, G(Z) is given in closed form by : 

 

Therefore, using Leibniz formula we have: 

 

However 

 

and by definition 

 

Therefore 

 

Using the relation jjj μ.νε
, the following recurrence relationship is obtained: 

 

                                                
i
 
Source : Credit Suisse (1997);  “CreditRisk+ :  A Credit Risk Management Framework”, Credit Suisse Financial Products, Appendix A, Section A4, p36.

 


