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Abstract

This paper decomposes the popular risk measure Value-at-Risk (VaR) into one jump-
and one continuous component. The continuous component corresponds to general market
risk and the jump component is proportional to the event risk as defined in the Basel 11
accord. We find that event risk, which is currently not incorporated into most banks’
VaR models, comprises a substantial part of total VaR. It constitutes 30% of the risk for
a portfolio of small cap stocks but less than 1% for a portfolio of large cap stocks. The
national supervising agency in each membership country is advised by the Basel rules
to add an additional capital charge to a bank whose models do not capture event risk.
The large variation in event risk, also found across 10 individual stocks, suggests that an
approach that varies the capital surcharge, based on the type of asset, should be used by

the supervisors.
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1 Introduction

Because of its conceptual simplicity and prominent role in the Basel II accord (Basel, 2006)
Value-at-Risk (VaR) is today one of the leading measures of market risk. VaR summarizes
the market risk into a single number that expresses the largest expected loss in an investor’s
portfolio for a given level of confidence and target horizon. There is currently a very active
literature concerning the estimation and evaluation of VaR models, see for example Bali
et al. (2008), Kuester et al. (2006) as well as Engle and Manganelli (2004).

This paper is the first to decompose Value-at-Risk into one jump- and one continuous
component. The continuous component corresponds to general market risk and the jump
component is suggested to measure the event risk, as defined in the Basel IT accord (BIS
2006). The decomposition is achieved by a new model for financial returns that allows
for discontinuous price movements (jumps) and time variation in the first four conditional
moments.

Models with time varying higher moments have been proposed before by among others
Hansen (1994), Harvey and Siddique (1999), Mittnik and Paolella (2003), Bali et al. (2008)
as well as Lanne and Saikkonen (2007), however these models do not allow for jumps in
the price process. The two existing models that are most closely related to the model
we propose is the NIG-GARCH model of Forsberg and Bollerslev (2002) and the GARJI
model of Maheu and McCurdy (2004). Our model nests both of these previous models as
special cases and can be viewed as the NIG-GARCH model with an added jump component
or as the GARJI model with a changed distribution assumption.

The motivation to change the distribution assumption in Maheu and McCurdy (2004)
stems from the fact that their model can only accommodate non-zero skewness and excess
conditional kurtosis by the jump intensity parameter. This means that their model will
overestimate the jump component if the true price process has a continuous part with
non-zero skewness and/or excess kurtosis.

The rules in the Basel II framework apply an additional capital charge when a bank’s



internal model used for VaR calculation cannot properly capture the event risk. They
further state that few models used today are able to achieve this. Our model is of interest
to banks since it incorporates the event risk and thus allows for VaR modelling without
additional capital charges. We also believe that our model used in conjunction with our
proposed quantitative measure of event risk is of interest to regulators since it allows for
a direct measurement of the event risk in an asset. This should be a valuable tool when
determining the magnitude of the additional capital charge added to models that cannot
capture event risk. We show empirically that the proportion of event risk varies greatly
between different assets. The total VaR of a portfolio of the 30% smallest companies of
the market index is found to consist of about 1/3 event risk. In contrast to this, a portfolio
of the 30% largest companies has an event risk proportion less than 1%. This suggests
that the regulatory surcharge should differentiate between assets and not be a constant
scale factor that is independent of the asset’s actual event risk.

The rest of the paper proceeds as follows. Section 2 describes the econometric model
and section 3 gives an overview of Value-at-Risk and proposes a measure for event risk.

Section 4 presents the data and section 5 displays the results. Section 6 concludes.

2 Models for equity returns

There is now a large body of literature' that documents the presence of discontinuities in
the sample paths of financial returns. It is also known (see Maheu and McCurdy (2004)
and Andersen et al., 2007) that news that give rise to jumps in prices take shorter time to
dissipate than price movements due to “normal” news. Consequently, it may be necessary
to use two components, one measuring the impact of normal news and one measuring the
impact of more extreme events, to correctly measure financial risk. Explicit modelling of
the jump component (that captures the extreme events) is shown important in variance
forecasting by Maheu and McCurdy (2004), Andersen et al. (2007) and Lanne (2007).

Further there is evidence of time variation not only in the conditional variance but also



in the conditional skewness and kurtosis of financial returns. Models that capture this
higher order dependence have been suggested by for example Hansen (1994), Harvey and
Siddique (1999, 2000) and recently in a Value-at-Risk setting by Bali et al. (2008) and
Wilhelmsson (2009). Below we will develop a model that allows for all the empirical

features of financial data described above.

2.1 The GARJI model

Maheu and McCurdy (2004) suggest an interesting model, called the GARJI model, where
the return consists of a sum of a Poisson distributed number of jumps and a continuous
residual. The continuous residual is given an interpretation as a return shock due to normal
news and more extreme news are picked up by the Poisson jump component. Since the
return is modelled as a sum of these two components, both components must be drawn
from a distribution that is closed under convolution, such as the normal, in order to get a
closed form expression for the conditional distribution of the returns.

We propose to change the normality assumption in Maheu and McCurdy (2004) be-
cause under this assumption the model can only accommodate non-zero conditional skew-
ness and excess conditional kurtosis by the jump intensity parameter?. This means that
the original GARJI model will overestimate the jump component if the true price process
has a continuous part with non-zero skewness and/or excess kurtosis. We propose to in-
stead use the normal inverse Gaussian (NIG) distribution both for the error term of the
continuous part and as a distribution for the jump size. The NIG distribution is very flex-
ible in accommodating varying levels of skewness and kurtosis. Furthermore, it is closed
under convolution for fixed values of the skewness and kurtosis parameters. Changing the
distributional assumption gives us a more flexible model while at the same time retaining

the analytical properties of the original GARJI model.



2.2 The Normal Inverse Gaussian distribution

The density function of the NIG distribution using the location scale invariant parameter-

ization, @ = ad and B = 39, is given by

Flradms) = Sewlar 3300 (1) )
i (o0 (75))

with 0 < ‘B} <@, d>0and q(z) =1+ 22 Here, K (-) is the modified Bessel function

of third order and index one. The parameter & controls the kurtosis of the distribution
and f the asymmetry. The location and scale of the distribution is decided by p and 6,
respectively. For financial applications of the NIG distribution see e.g. Eberlein and Keller
(1995), Barndorff-Nielsen (1997) as well as Forsberg and Bollerslev (2002) and references
therein. The NIG distribution nests several distributions including the normal distribution

N(u,0?), as can be seen by setting 3 = 0, — oo and §/a = o2.

2.3 The NIG-GARJI model

Consider the return ry = (P, — P,_1)/P;—1, with P, being the price of a financial asset at

time ¢t. The return is modelled as

re—rp =+ VhAP+ e+ e, ®

with 7¢ being the risk free rate. The parameter 7 = /&% — 52 can be interpreted as
a tail thickness parameter. Furthermore, p = 3/a = 3/« is a measure of skewness. More
details on these parameters are given in e.g. Barndorff-Nielsen and Prause (2001). The
first part of the return, x4 +/h/7p+ 1,4, is equal to the specification of the NIG-S&ARCH
model of Jensen and Lunde (2001). Here, p is a constant compensating for risk and

v¥p compensates for the time varying (continuous) volatility risk, v/h:. The continuous
P



return innovation, €1 ¢, is given by €1+ = vhi2z and the jump innovation e is defined

Tt -
_ . ] pé; . . e
as €4 = l;:o Tkt — Mt (,uj + ﬂ) Both innovations are conditionally mean zero. The
distribution of the standardized residual, z;, is NIG(a, 3, —/7p, 73/2 /@) giving mean zero

and unit variance.

The conditional variance evolves according to

hy = w+4exp (Fi,l + K15 * Fi1+1 (IQLQ + K1,j,a * Ft—l)) X (3)

(e14-1 +€2.4-1)% + Kahi_1,

with

F(rlng = 3, Q1) exp(=A) X /5!

Fior = F el 1)

7=0,1,2... (4)

being the filtered number of jumps and A; is the jump intensity parameter specified in
equation (5) below. I is an indicator function taking the value 1 if ;41 + €241 < 0 and
zero otherwise. The variance specification is equal to that of Maheu and McCurdy (2004)
and allows for four different responses depending on if there is a jump and on the sign of
the sum of the jump and the normal residuals. The effect of positive normal news is given
by x1 and the effect of negative normal news are given by k1 + k1,4. The effect of positive
news when there is one jump is given by k1 4 x1,; and finally the effect of negative news

in the presence of one jump is given by K1 + k1 + K1,4 + K1j,a-

2.3.1 Jump intensity

The dynamics for the jump intensity are given by

At = Ao+ PAi—1 + O, (5)



where &,_; = F;_1 — M1 is the expected (filtered) number of jumps at time ¢ — 1
given time ¢t — 1 information minus the expected number of jumps at time ¢t — 1 given
t — 2 information. Hence, &,_; has the interpretation of an innovation to the jump arrival
process. The jump size J; is distributed as NIG(a, 3, uj,éj), meaning that the jump
size has the same shape parameters as the GARCH type residual z; but it is allowed to
have different scale and location parameters. It should be emphasized that setting the
shape parameters in the jump size distribution and in the GARCH type residual equal is
less restrictive than assuming normality as was done in the original GARJI model. The
specification for the jump dynamics (5) is identical to those of Maheu and McCurdy (2004).
The GARJI model is obtained as the special case when = 0,& — oo and dj/o = o2

The NIG-GARCH model is the special case obtained when k1; = K14 = Ki1ja = B =

2.3.2 Conditional moments

The conditional moments are calculated using the moment results for the NIG distribution

that are given in e.g. Jensen and Lunde (2001) together with appendix A in Das and

Sundaram (1997). To simplify notation we denote the mean jump size, y; + \/%, by w5

2
and the jump variance, #, by 5;. The first four conditional moments of the model
a(1-p
are then given by
Elr|Qi-1] = p+ pv/hev, (6)
Varlr Q1] = he + A ((u;f)2 + 5;) , (7)
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As seen above, the conditional variance can be divided into a continuous part h; and a
jump part that will be zero if A\; = 0. For the case with no asymmetry in the distribution
B =0 = p = 0 so the mean jump size simplifies to p; and the jump variance to i—%.
The expression for the conditional skewness shows that skewness can be attained from a
non-zero p, meaning that the return innovation distribution and jump size distribution are
both skewed. Skewness can also be attained from a jump size, uj, different from zero. For
the special case when the number of jumps is zero, the skewness simplifies to (kﬁz;’%
and the kurtosis to 3 <a(fit;” + 1) which are the same conditional moments as for the
NIG-S&ARCH model of Jensen and Lunde (2001). Since p is constant during the sample
period the time-variation in the conditional skewness and conditional kurtosis are induced

by time-variation in the jump intensity parameter A\; and, just as for the GARJI model,

also by time-variation in the conditional variance h;.

2.4 Likelihood function

Given that €1 and €2, are contemporaneously independent then conditional on j jumps

occurring it is easily found using the convolution property of the NIG distribution that



. = . o Y
re(Ine = 3, 2-1) ~ NIG(@, B, p+ (5 — M) (f — +Mj) V172 @+ js5), (10)
-

so the conditional distribution of r; for a given number of jumps is
[}

f (Tt|77t = j7 Qtfl) = ¥ €Xp <'y + ’B(t_’ut)> %
oy o

*\ —1 %
q <Tt 5*Mt) x K; (aq (Tt 5*/% >> : (11)
t t

with pf = p+(j — M) <\/% + ,uj> and 8} = /h7°/? /a+j6;. The number of jumps

j is latent but with a known distribution so we can just integrate it out of the expression,

resulting in the likelihood function

f(red Q1) = > f (relng = 5, Q1) x exp(=A)A] /3. (12)
7=0

In the empirical part we find that the contribution to the likelihood is negligible for
j > 8 so we truncate the infinite sum in (12) at j = 8. Gauss code for estimation of the

model is available from the authors.

3 Value-at-Risk

Value-at-Risk is the maximum loss expected to incur over a certain time period (h) with
a given probability a. Statistically, VaR; (o, h) = F} +h( a) €, where F h is the h-step
conditional forecast of the inverse cumulative distribution function (CDF) of the return.
There is much interest in the measure because of the ongoing adoption of Basel II, which
allows banks to use internal VaR models for the purpose of regulating capital requirements.

For a survey, see for example Duffie and Pan (1997) or the textbook treatment in Jorion

10



(2000).

3.1 VaR computation and decomposition

Using the fact that the conditional distributions of the GARJI and NIG-GARJI models
are probability weighted sums of the conditional distributions for fixed values of j and by
exchanging the order of summation and integration , the CDFs for the two models can be

expressed as

Pro(a) = 3 / F(rely = 3, Quct) % exp(—A)A /5. (13)
]ZO

The contribution to the total CDF from the continuous component is given by setting
J = 0 so that
Foont(x / f(relny = 0, Q1) x exp(—=As). (14)

For the NIG-GARJI model f (r¢|n, = j, Q1) is given in (11) and for the GARJI model

by

. 1 re —p+ 0N —0j
f (i = 5.9u1) = exp (— e ) (15)
2m (07 + j63) (oF +43)

Total Value-at-Risk (VaRqrotq) is computed by numerical inversion of (13) and continuous
Value-at-Risk (VaRcont) is computed by inverting the CDF (numerically) conditioned on
the number of jumps being equal to zero and then multiplying with the probability of
getting zero jumps (exp(—A;)). Trunctation of the sum is made at j = 8. The jump
component of Value-at-Risk is defined as VaRjump = VaRrota — VaRcont. Matlab code

for the VaR computation is available from the authors.
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3.2 Specific risk and event risk

The Basel accord (Basel 2006) distinguishes between two types of market risk: general
and specific with the event risk being a component of the specific risk. It further states
that most banks use models that only incorporate general risk and they should therefore
have a separate capital charge added for the specific risk.

n

Specific risk is defined as "... the risk that an individual debt or equity security moves

" and event risk is

by more or less than the general market in day-to-day trading ...
defined as "where the price of an individual debt or equity security moves precipitously
relative to the general market” Basel (2006) page 163. Event risk can be thought of as
jump risk as pointed out by Gibson (2001). However, Gibson argues that jump risk and
event risk are the same thing. Since event risk is defined as a precipitous move in relation
to the market, this only holds true if there are no market wide jumps that affect all or
most stocks. Contrary to this, we find in the empirical part of this paper that almost
1/3 of the VaR in the market index is due to the jump component. If jumps were purely
idiosyncratic (asset specific), their effect would be diversified away in the market portfolio.

We therefore propose to measure the average proportion of event risk in a position ¢ over

the period [t,T] as

T
Z max (VCLRjump7i,t - VaRjump,m,t’ O)
t=1

VaRevent,i = S [0, 1] , (16)

T

Z VaRtotal,i,t
t=1

with VaRjumpm, being the VaR due to the jump component for the market portfolio
on day t. This quantitative definition, in accordance with the qualitative definition in
Basel II, implies that the market as a whole cannot have any event risk. Furthermore,
we only measure event risk as VaR jump risk that is greater than the market’s jump risk
each day. We do this since the VaR jump contribution of an asset consists of both the

VaR risk from asset specific jumps and from jump risk common to the whole market.

12



Subtracting the market’s VaR jump risk gives us a measure that is in better accordance
with the Basel definition of the event risk. If the market-wide jump risk is greater than
the jump risk of the asset for a given day we set the asset-specific event risk to zero since
negative event risk lacks any natural interpretation. The model in this paper can be used
in conjunction with the above definition to measure the proportion (or absolute level if
one prefers) of the event risk in an asset. However, the suggested definition in (16) is more
general and not dependent on the particular model being used.

It is worth pointing out that since VaReypent is always less than or equal to VaR;ump
we will have the relationship VaRcont + VaReyent < VaRrotar, SO we do not propose that
capital adequacy should be computed from VaR ont+V aReyent. It should still be computed
from VaRyoar, but being able to measure the part of total VaR that stems from event
risk is useful both for regulators and banks. For regulators, who have to impose additional
capital charges on those bank’s whose models do not capture event risk, measuring the
event risk will help to determine an appropriate magnitude of the surcharge. For a bank,
showing that it uses a model that can properly measure event risk, lets the bank avoid the
additional capital charge. Further, for a bank to hedge its positions, it may be helpful to
know how much of its jump risk exposure stems from the market component (which can
be hedged by a short position in the market) and how much stems from the event risk

component which cannot easily be hedged.

4 Data

Evaluation of VaR is a study of extreme events which makes it important to use a long
series of data. As a proxy for the market we use the value weighted market index from
the CRSP record available from the data library at Professor Kenneth French’s homepage.
From the same source we also get the risk free rate proxied by the 30 day T-bill. Further-
more, we use three portfolios sorted on market capitalization, Size 1 (smallest 30% of the

market), Size 2 (Middle 40% of the market) and Size 3 (largest 30% of the market). These
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series are also available from Professor French’s data library.

In addition to this we use data on the 10 individual stocks with start dates in parenthe-
sis: Amgen (17 June, 1983), Apple (December 12, 1980), Coca Cola (KO, July 1, 1963),
General Motors (GM, July 1, 1963), Home Depot (HD, September 22, 1981), Hewlett-
Packard (HWP, July 1, 1963), Intel (December 14, 1972), Johnson & Johnson (J&J, July
1, 1963), Motorola (MOT, July 1, 1963) and Texaco ( July 1, 1963). The end date for
all the individual stocks is June 29, 2007 except for Texaco which ends October 9, 2001.
The market index data is from July 1, 1963 to September 28, 2007. For the three size
portfolios the start date is July 1, 1963 and the end date is August 31, 2007. As seen in
table 1, normality is clearly rejected with p-values from the Jarque and Bera (1987) test
less than 0.001 for all the data series. The market and the three size sorted portfolios
all have considerable negative skewness and excess kurtosis. While most of the individual
stocks also have negative skewness, all are less left skewed than the market portfolio. It
is commonly the case that stock indices are more left skewed than individual stocks as

documented in Kim and Kon (1994).

[Insert table 1 here]

5 Results

The interpretation of the parameter estimation results focus on the market index for
brevity but the parameter estimates for the three size sorted portfolios are also displayed
in table 2. The parameter estimates and residual diagnostics for the 10 individual stocks

are readily available from the authors upon request.

5.1 Variance equation

The effects of jumps and the effect of the sign of the return innovation on the volatility
process can be seen from the four parameters in the variance equation. The effect of a

positive return innovation when there is no jump is given by s (6*2'8906 =0.05 6) for the

14



NIG-GARJI model and 0.015 for the GARJI model. For a negative return innovation
with no jump the effect for the NIG-GARJI model is k1 + k1,4 (6_2'8906+1'2570 =0.195 2)
and 0.076 for the GARJI model showing that the leverage effect (Black, 1976) is present
in the sample. The effect of a positive return innovation when there is one jump is given
by K1 + Ky (e728906+(=12.0955) = 3.1 % 1077) and by 9.3 x 1072 for the GARJI model
showing that positive jumps does not lead to higher future volatility. For a negative
return innovation when there is one jump the effect is given by k1 + k1,4 + K1,j + K1,j.a
(e2:8906+1.2570+(—12.0955)+10.9816 — 0,06 4) and for the GARJI model 0.030. From this we
can see that the effect on the squared residual is lower (the mean reversion rate is higher)

when we have a jump, leading to lower persistence in the jump component consistent with

the findings in Maheu and McCurdy (2004) and Andersen et al. (2007).

[Insert table 2 here]

5.2 Shape parameters and jump equation

Including jumps in the models seems justified from the drastic improvement in log like-
lihood value from the NIG-GARCH to the NIG-GARJI model. A likelihood ration test
shows that the NIG-GARJI model is favored over the NIG-GARCH model for all the four
reported data sets with p-values less than 0.001.

In the NIG-GARJI model the observed sample skewness of -0.74 and excess kurtosis
of 17.83 can both be accommodated by a fat tailed and skewed error distribution or by
the jump component. This makes it possible to examine if skewness and excess kurtosis is
due to more extreme news events (picked up by the jump component) or if they are due to
normal news (picked up by the GARCH residual). In the original GARJI model this cannot
be examined since all skewness and excess conditional kurtosis must per construction be
modeled by the jump component.

The skewness parameter 5 = —0.0467 is insignificant but the jump size location para-

meter y; is equal to —0.51 and significant, showing that skewness "prefers" to be modeled
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by the jump component. It thus appears that skewness is better modeled as a result of
rare and more extreme return innovations than as a result of normal news innovations
being drawn from a skewed distribution. This cannot be accommodated by other popular
models with time varying skewness such as the Autoregressive Conditional Density model
of Hansen (1994).

The tail thickness parameter & = 3.34 (implies a kurtosis of around 4 in the standard-
ized residual z;) indicates that some of the excess kurtosis "prefers" to be modeled by
the GARCH residual. One caveat to the above interpretation of the shape parameters is
that the jumpsize distribution and the normal news residual have to share the same shape
parameters.

The ARMA parameters, ¢ and ¢, in the jump equation are significant in both the
GARJI and NIG-GARJI models showing that assuming a constant jump intensity is too
restrictive. The unconditional average number of jumps is A\g/ (1 — ¢) = 0.17 for the NIG-
GARJI model and 0.13 for the GARJI model, this would at first seem contrary to the fact
that more of the tails of the distribution can be captured by the normal news innovation
in the NIG-GARJI model, as seen from figure 1. The reason for this, as can also be seen
in figure 1, is that the jump distributions for the GARJI and NIG-GARJI models are
very different. The GARJI model has much higher jump variance which leads the jump
proportion of both the standard deviation (45% for the GARJI model and 31% for the
NIG-GARJI model) and the jump proportion of VaR at the 0.5% level (38% instead of

30%) to be higher for the GARJI model.

[Insert figure 1 here]

5.3 Higher moment dynamics

During the sample period the conditional skewness varies from -0.86 to -0.02 for the NIG-
GARJI model and from -1.84 to -0.03 for the GARJI model with the lowest (most negative)

skewness during the 1960s for both models. The conditional kurtosis varies from 3.52 to
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5.42 for the NIG-GARJI model and from 3.05 to 23.35 for the GARJI model, the highest
kurtosis is also found during the 1960s when the conditional variance for both models was
very low.3.

We compute the conditional skewness and kurtosis with parameter values from the
estimation on the CRSP market index to study if the conditional skewness and conditional
kurtosis of the NIG-GARJI model is primarily affected by changes in the conditional
variance or by changes in the jump intensity. By using equation (8) and by setting A\
equal to its average value, we find that the skewness varies from -1.03 when h; = 0.04 (the
lowest value in the sample) to -0.02 when h; = 15.61 (the highest value in the sample).
By using equation (9) we see that the kurtosis changes from 5.16 to 3.89 for the same
changes in conditional variance. The size of these changes can be compared to the effects
of changes in );. For the CRSP market index, A\; varies from a minimum of 0.07 to a
maximum of 1.01 which results in changes in skewness from -0.04 to -0.17 and in kurtosis
from 3.89 to 3.55 when keeping h; fixed on its average value. Interestingly, the conditional
kurtosis can be both increasing and decreasing in )A; depending primarily on the size of

the variance parameter J; in the jump size distribution.

5.4 Model diagnostics

The residual diagnostics in table 3 show the heteroscedasticity adjusted Ljung-Box test of
West and Cho (1995) for remaining serial correlation in the squared standardized residual
2z and in the jump residual &;. The GARJI model shows no significant remaining autocor-
2
relation in the squared residual, M, when fitted to the market index and to the
VaR(r¢|Q—1)
large cap portfolio (Size 3) but for the two smaller size sorted portfolios there is remaining
structure in the variance evident from the significant LB statistics at 5 lags. The pattern
is the same for the NIG-GARJI model.

The jump innovations show significant remaining autocorrelation for the NIG-GARJI

model for three of the four test portfolios and for the GARJI model for the Size 1 and
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Size 2 portfolios. We have tried different specifications for the jump equation without
being able to mitigate this problem. For the ten individual stock returns (unreported)
the residual diagnostics generally show much less autocorrelation indicating that both
the NIG-GARJI and the GARJI model are better at capturing the variance and jump

dynamics in individual stocks than in portfolios of stocks.

[Insert table 3 here]

To test if the models can produce realistic VaR estimates we use the Likelihood Ratio
tests of Christoffersen (1998). These three tests allow us to ascertain if the number of VaR
violations are correct (LRyn.), if the violations are independently distributed over time
(LR;nq) and finally we have a joint test for independence and correct number of violations

(LRcc). The tests are performed on the indicator series I; defined as

1, if’l“t > VaRmt ‘Qt—l

I (17)

0 Otherwise
with ¢ being a time subscript and « being the VaR level. This means that I; will be 0
each time there is a violation (the loss is larger than the VaR level) and otherwise 1. The
test statistics (LRunc) and (LR;,q) are asymptotically distributed x2(1) and (LR..) is
distributed x?(2). We perform these test for the VaR levels 0.5%, 1%, 2%, 3%, 4%, and
5% for both long and short positions (left and right tails of the distribution) in the CRSP

market index. The results are displayed in table 4.

[Insert table 4 here]

Even with 11,138 observations the expected number of VaR violations is rather small
at the 0.5% level (55.7 violations) so we simulate the distribution of the test statistics
instead of relying on the asymptotics. This is easily done since the indicator series is 7id

Bernoulli(1 — ) under the null hypothesis. The reader is referred to Christoffersen (1998)
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for further details on the tests and to Christoffersen and Pelletier (2004) for details of the
simulation design.

Both models perform very well with the GARJI model perhaps performing somewhat
better for long position and the NIG-GARJI model performs somewhat better for short
positions. The NIG-GARJI model cannot be rejected as having the wrong number of
rejections for any of the VaR levels at the 1% significance level and the GARJI model can
only be rejected at the 0.5% VaR level.

The results from the independence tests are mixed but at least at the higher VaR
levels (4% and 5%) both models seem to produce VaR violations that are clustered over
time. This can be expected given the residual diagnostics test which showed remaining
dependence in the innovations to the jump process.

By using the LR, test we examine if the models can produce a correct number of
violations that are also independent over time. The GARJI model performs better and
can only be rejected at the 0.5% VaR level at the 1% significance level. At this significance

level the NIG-GARJI model can be rejected at 3 of the 12 VaR levels.

5.5 Volatility decomposition

The higher jump variance in the GARJI model results in an average 45.47% of the total
standard deviation being due to jumps compared with 31.12% for the NIG-GARJI model,
see figure 2. From the figure it can be seen that the jump component of the GARJI model
varies considerably more over the sample period whereas for the NIG-GARJI model it
is rather stable at around 3.4% expressed as yearly standard deviation. However, the
proportion of jump risk decreases slightly over time. The average level of total volatility
is close for the two models with 12.68% for the GARJI and 12.37% for the NIG-GARJI

model compared with the sample standard deviation of 13.97%.

[Insert figure 2 here]
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5.6 Value-at-Risk decomposition

We use the NIG-GARJI and GARJI models to decompose the proportion of the total VaR
that is attributable to the jump component. The results can be seen in figure 3 and table
5. For the CRSP market index the 1% VaR from a long position consists of 29.38% jump
risk compared with 30.07% for the 5% VaR. The jump risk proportion behaves much
more erratically over time for the GARJI model because of the higher estimated jump

variance in this model.

[Insert table 5 here]

[Insert figure 3 here]

For a short position, the jump proportion of the VaR is considerably smaller with
15.74% for the 1% VaR and 14.61% for the 5% VaR. The reason for this asymmetry is
the negative average jump size of -0.51.

For the three size sorted portfolios we see a very clear pattern: the jump VaR is
decreasing when the size of the firms is increasing. The smallest 30% of the stocks in
the CRSP database (Size 1) have 60.02% jump VaR for the 1% VaR level. This can be
compared to 42.30% for Size 2 and with 6.35% for the largest 30% of the companies. For a
short position, the pattern is the same but the proportion of jump VaR is smaller because
all the three size portfolios have negative average jump sizes.

Since the market portfolio holds a rather large degree of jump risk we would overes-
timate the event risk (in the Basel sense) in individual assets by equating jump risk and
event risk. We therefore instead use our definition in (16) to calculate the event risk.
The event risk proportions for each day are displayed in figures 4, 5 and 6 for the size
sorted portfolios and the average event risk percentage for the size portfolios and for the

10 individual stocks are given in table 6.

[Insert table 6 here]
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[Insert figures 4,5 and 6 here]

The proportion event risk varies greatly between the different assets. The small stock
portfolio has an event risk of roughly 30% of the total VaR, the mid cap portfolio has
around 13-14% event risk and the large cap portfolio has almost no event risk with a pro-
portion less than 1%. We would like to emphasize that the large cap portfolio constitutes
30% of the value of the market portfolio and so does the portfolio of small cap stocks.
The inverse relation between event risk and market size can therefore not simply be a
mechanical artifact of subtracting the market’s jump induced VaR.

The individual stocks have large variations in event risk. Motorola and General Motors
have an event risk of 1%-2% whereas for Apple, Hewlett Packard and J&J the event risk
is around 30% of the total VaR. For all the individual stocks the event risk is higher
for short than for long positions even though the jump risk is lower for short than long
positions for some of the stocks. This happens because even though some of the individual
stock returns are left skewed (explaining the lower jump proportion for short positions)
they are less left skewed than the market resulting in a higher event risk for short than

long positions.

6 Conclusions

Models such as the NIG-GARJI that can capture and measure event risk are important for
banks since they can use the models to better calculate their VaR with the added benefit
of avoiding capital surcharges from regulators. Such models should also be of interest to
supervisors since they have to be able to quantify the event risk in an asset or portfolio of
assets to add a capital surcharge of appropriate magnitude.

We show that the Value-at-Risk of the market consists of about 30% jump risk and
hence equating event risk and jump risk as suggested by Gibson (2001) would seriously
overestimate the event risk since it is defined as a precipitous move relative to the market.

We further show that the event risk varies much across different assets. The total VaR
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of a portfolio of the 30% smallest companies of the market index is found to consist of
around 30% event risk. In contrast to this, a portfolio of the 30% largest companies has
an event risk proportion less than 1%.

Also for individual stocks we find a large variation in the event risk across stocks but a
rather small variation in the event risk for a given stock over time. The observed variation
highlights the importance for the regulator to vary the capital surcharge, based on the
type of assets, imposed on banks that do not properly model the event risk. Furthermore,
the finding that the event risk for some assets constitutes nearly 1/3 of the total VaR
shows it to be very important for banks to incorporate the event risk in their internal VaR

models.
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Legends

Legend 1: This figure shows the probability density plots for the jump size distribution
(top left) and for the standardized return innovation distribution (top right), for the NIG-
GARJI and GARJI models. The bottom left plot magnifies the left tail and the bottom
right plot magnifies the right tail of the standardized return innovation distribution.

Legend 2: This figure shows the jump component in the standard deviation (top), the
total standard deviation (middle) and the jump proportion (bottom) of the CRSP market
portfolio from July 1, 1963 to September 28, 2007. The results for the NIG-GARJI model
are to the left and for the GARJI model to the right.

Legend 3: This figure shows the jump proportion of the total Value-at-risk for the
1% VaR (top) and 5% VaR (bottom) of the CRSP market portfolio from July 1, 1963 to
September 28, 2007. The results for the NIG-GARJI model are to the left and for the
GARJI model to the right.

Legend 4: This figure shows the jump proportion of the total Value-at-risk for the 1%
VaR long position (top) and 1% VaR short position (bottom) in the small cap portfolio
from July 1, 1963 to August 31, 2007 for the NIG-GARJI model.

Legend 5: This figure shows the jump proportion of the total Value-at-risk for the 1%
VaR long position (top) and 1% VaR short position (bottom) in the medium cap portfolio
from July 1, 1963 to August 31, 2007 for the NIG-GARJI model.

Legend 6: This figure shows the jump proportion of the total Value-at-risk for the 1%
VaR long position (top) and 1% VaR short position (bottom) in the large cap portfolio

from July 1, 1963 to August 31, 2007 for the NIG-GARJI model.
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Notes

'See e.g. Andersen et al. (2003), Eraker et al. (2003), Barndorff-Nielsen and Shephard (2004, 2006)
and references therein.

*However, as pointed out by a referee, the GARJI model can accomodate non-zero unconditonal skew-
ness through the asymmetry in the variance equation.

3Time series plots of the conditional moments can be obtained from the corresponding author but are

left out because of space considerations.
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Table 5
Value-at-Risk decomposition - Proportion Jump risk
This table shows the average proportion of jump risk of the total VaR for the 1% and 5% VaR for both long and
short positions in the assets. The results are for the CRSP market portfolio (Market) from July 1, 1963 to
September 28, 2007, the three size sorted portfolios (Size 1, Size 2 and Size 3) from July 1, 1963 to August 31,

2007 and for 10 individual stocks. See the main text for details on dates and acronyms for the individual stocks.

Proportion jump risk

1% VaR, long 5% VaR, long 1% VaR, short 5% VaR, short

Market 29.38% 30.07% 15.74% 14.61%
Sizel 60.02% 59.88% 48.17% 46.11%
Size2 42.30% 43.05% 26.06% 24.53%
Size3 6.35% 3.83% 2.74% 1.96%
Amgen 23.14% 16.69% 25.15% 18.52%
Apple  36.25% 31.01% 44.78% 38.62%
KO 24.711% 20.65% 29.22% 24.14%
GM 0.89% 0.56% 3.94% 1.85%
HD 15.39% 10.03% 14.89% 9.96%
HWP 38.51% 34.93% 43.90% 40.31%
Intel 12.94% 7.94% 10.30% 6.67%
J&J 47.56% 43.97% 51.76% 48.33%
MOT 10.75% 6.28% 10.22% 6.09%
Texaco 19.47% 16.56% 28.04% 23.38%
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Table 6

Value-at-Risk decomposition - Proportion Event risk

This table shows the average proportion event risk calculated according to (16) of the total VaR for the 1% and
5% VaR for both long and short positions in the assets. The results are for the CRSP market portfolio (Market)
from July 1, 1963 to September 28, 2007, the three size sorted portfolios (Size 1, Size 2 and Size 3) from July 1,
1963 to August 31, 2007 and for 10 individual stocks. See the main text for details on dates and acronyms for the

individual stocks.

Proportion event risk

1% VaR, long 5% VaR, long 1% VaR, short 5% VaR, short

Market 0% 0% 0% 0%
Sizel 29.95% 28.29% 31.18% 30.45%
Size2 13.70% 13.74% 10.09% 10.04%
Size3  0.95% 0.58% 0.47% 0.32%
Amgen  14.38% 8.74% 20.91% 14.25%
Apple  28.56% 22.86% 41.16% 34.86%
KO 9.44% 6.37% 21.57% 16.54%
GM 0.34% 0.21% 1.77% 0.92%
HD 6.56% 3.50% 10.10% 5.61%
HWP  27.49% 23.53% 38.87% 35.24%
Intel 5.11% 2.17% 6.00% 3.02%
J&J 31.26% 27.31% 44.30% 40.94%
MOT  2.30% 0.66% 5.56% 2.15%
Texaco 9.70% 7.55% 22.15% 17.84%
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Figure 1

Probability density plots - NIG-GARJI and GARJI models
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Figure 2

Variance decomposition market index - NIG-GARJI and GARJI models
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Value-at-Risk decomposition market index - NIG-GARJI and GARJI model

Proportion of Total VaR due to Jump Component

Proportion of Total VaR due to Jump Component

Figure 3

One Percent VaR, Jump Proportion NIG-GARJI model
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Proportion of VaR due to Event Risk

Proportion of VaR due to Event Risk

Figure 4

Event risk - Sizel (Smallest 30%)
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Proportion of VaR due to Event Risk

Proportion of VaR due to Event Risk

Figure 5

Event risk - Size2 (Middle 40%)
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Proportion of VaR due to Event Risk

Proportion of VaR due to Event Risk
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Event risk - Size3 (Largest 30%)
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