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Private Equity Funds: Valuation,
Systematic Risk and Illiquidity

Abstract

This paper is concerned with the question how the value and systematic
risk of private equity funds evolve over time and how they are affected by
illiquidity. First, we develop a continuous-time approach modeling the cash
flow dynamics of private equity funds. Second, intertemporal asset pricing
considerations are applied to derive the dynamics of the value, expected return
and systematic risk of private equity funds over time under liquidity and
illiquidity. Third, the closed-form solutions obtained are used to calibrate the
model to a comprehensive sample of mature European private equity funds.
Most importantly, the analysis of the calibrated model shows that: (i) the
average private equity fund has a risk-adjusted excess value on the order of
24.80 percent relative to $1 committed; (ii) (upper boundary) illiquidity costs
are around 2.49 percent of committed capital p.a. and illiquidity discounts
of the fund values are increasing functions in the remaining lifetimes of the
funds; (iii) expected fund returns are non-stationary as systematic fund risk
and illiquidity premiums vary with distinct patterns over time.
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1 Introduction

Investments in private equity have become an increasingly significant portion of
institutional portfolios as investors seek diversification benefits relative to traditional
stock and bond investments. Despite the increasing importance of the private equity
asset class, we have only a limited understanding of the economics of private equity
funds – the typical vehicle through which private equity investments are made.
Particularly, three questions are mostly unresolved in the current private equity
literature: (i) What is the value of a private equity fund and how does it develop
over time? (ii) How does a fund’s expected return and systematic risk change over
time? (iii) How does illiquidity affect fund values and expected returns?

These questions are difficult to evaluate without models that explicitly tie these
variables of interest to the cash flow dynamics of private equity funds. In this paper
we provide such a model and use it to develop answers to the above-mentioned
questions. Private equity funds differ from other managed funds because of their
particular bounded life cycle. When the fund starts, the investors make an initial
capital commitment. The fund manager then gradually draws down the committed
capital into investments. Finally, returns and proceeds are distributed as the in-
vestments are realized and the fund is eventually liquidated as the final investment
horizon is reached. Modeling private equity funds therefore requires two stages:
modeling capital drawdowns and modeling capital repayments (or capital distribu-
tions) of the funds. This paper develops a new continuous-time approach modeling
these two components. Specifically, a mean-reverting square-root process is ap-
plied to model the rate at which capital is drawn over time. Capital distributions
are assumed to follow an arithmetic Brownian Motion with a time-dependent drift
component that incorporates the typical time-pattern of the repayments of private
equity funds.

We use our model to explore the dynamics of private equity funds in three
ways. First, by applying equilibrium intertemporal asset pricing considerations, we
endogenously infer the value of a fund through time as the difference between
the present value of all outstanding future distributions and the present value of
all outstanding future capital drawdowns. The closed-form expressions we obtain
permit us to illustrate how the dynamic evolution of the value of a fund within our
model is related to its cash flow dynamics and to other economic variables, such as
the riskless rate of return or the correlation of the cash flows to the return of the
market portfolio. Private equity funds are also characterized by illiquidity as there is
no liquid and organized market where they can be traded. We capture this feature
by a simple model extension that allows us to demonstrate the effect of illiquidity
on fund values over time. This shows, for example, that the impact of illiquidity on
fund values increases with the remaining lifetime of the fund. This result is in line
with economic intuition.

Second, we employ our model to explore the dynamics of the expected return and
systematic risk of private equity funds through time. We start by deriving analytical
expressions for the conditional expected return and systematic risk of private equity
funds. These expressions then allow us to evaluate directly how, within the model,
these variables depend on the underlying economic characteristics of a fund and
how they change over time. In particular, we find that the beta coefficient of the
fund returns is simply the value weighted average of the betas of a fund’s capital
distributions and drawdowns. This is an important result, as it implies that the beta
coefficient of the fund returns – and hence also the expected fund return – will, in
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general, be time-dependent. This result is foreshadowed in the finance literature by
the works of Brennan (1973), Myers and Turnbull (1977) and Turnbull (1977) on
the systematic risk of firms. However, we are the first to acknowledge the existence
and importance of this effect for private equity funds. In addition, we also show that
incorporating illiquidity into the analysis induces a second time-variable component
into expected fund returns.

Third, the closed-form expressions we obtain permit us to calibrate the model
to real fund data and analyze its empirical implications in detail. For the purpose
of our empirical analysis, we use a comprehensive data set of European private
equity funds that has been provided by Thomson Venture Economics (TVE). We
first calibrate the model to the cash flow data of 203 mature funds and show
that its fits historical data nicely. The calibrated model is then used to explore a
number of interesting observations, some of which have not been documented in
the private equity literature before. Regarding the value and illiquidity costs, several
important observations are in order: (i) We find that private equity funds create
excess value on a risk-adjusted basis. The results show that the risk-adjusted excess
value (net-of-fees) of an average private equity fund in our sample is on the order
of 24.80 percent relative to $1 committed. That is, $1 committed to a private
equity funds is worth 1.2480 in present value terms. These excess values hold for
both venture and buyout funds, though, in our sample buyout funds create slightly
more value. (ii) By interpreting these excess values as compensation required by
investors for illiquidity of the funds, we can implicitly derive illiquidity costs of the
funds. Overall, the results suggest that (upper boundary) illiquidity costs are on
the order of 2.49 percent of committed capital p.a. Interestingly, the results also
imply that buyout funds have higher (upper boundary) illiquidity costs than venture
funds. One possible explanation for this is that investors of buyout funds require
higher compensation for illiquidity because of the larger size of the investments of
these funds. (iii) We document how fund values and illiquidity discounts of the
funds evolve over time. In particular, this shows how illiquidity discounts of private
equity funds decrease over time.

The most important implications of our empirical analysis with respect to ex-
pected return and systematic risk of private equity funds are as follows: (i) We
find that expected returns and systematic risk of private equity funds decrease over
the lifetime of the funds. From an economic standpoint, this result follows as the
structure of stepwise capital drawdowns of private equity funds acts like a financial
leverage that increases the beta coefficients of the funds as long as the committed
capital has not been completely drawn. (ii) The results show that venture funds
have higher beta coefficients and therefore generate higher ex-ante expected returns
than buyout funds. Specifically, the results suggest that the beta risk of venture
funds is higher than the market and that the beta risk of buyout funds is substan-
tially lower than the market for all times during the lifetime considered. (iii) We
also document how illiquidity of private equity funds affects expected returns. As
expected, the results show that illiquidity increases expected funds returns. This
holds, in particular, at the start and at the end of a fund’s lifetime, where increases
in expected returns are highest. This follows as relative illiquidity costs are highest
when fund values are low.

This paper is related to two branches of the private equity literature. First, it
shares with a number of recent papers, notably Takahashi and Alexander (2002)
and Malherbe (2004, 2005), the goal of developing models for the value and cash
flow dynamics of private equity funds. Takahashi and Alexander (2002) carried out
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the first attempt to develop a model for the value and cash flow dynamics of a
private equity fund. However, their model is fully deterministic and thus fails to
reproduce the erratic nature of real private equity cash flows. Furthermore, as a
deterministic model it does not allow calculating any risk parameters. Malherbe
(2004, 2005) developed a continuous-time version of the deterministic model of
Takahashi and Alexander (2002) and introduced stochastic components into the
model. In specific, Malherbe (2004, 2005) uses a standard lognormal specification
for the dynamics of the investment value. Squared Bessel processes are utilized
for the dynamics of the rates of drawdowns and repayments over time. With this
stochastic multi-factor model, Malherbe (2004, 2005) is able to reproduce the erratic
nature of private equity cash flows. However, the model relies on the specification
of the dynamics of the unobservable value of the fund’s assets over time, where
model parameters have to be estimated from the disclosed net asset values of the
fund management. This can cause severe problems as the reported net asset values
of the fund management might suffer from stale pricing problems and thus might
not reflect the true market valuations.1 The model developed here does not suffer
from this drawback. This follows as we endogenously derive the value of a fund by
using equilibrium intertemporal asset pricing considerations. The dynamics of our
model are thus solely based on observable cash flows data, which seems to be a
more promising stream for future research in the area private equity fund modeling.
Furthermore, these models do not focus on how fund values and expected fund
returns evolve over time and they do not analyze the impact of illiquidity on these
variables. Both these features are central to our model.

Second, we relate to the literature on risk and return of private equity invest-
ments. Examples of this area of research include, among others, Cochrane (2005),
Kaplan and Schoar (2005), Diller and Kaserer (2009), Ljungquist and Richardson
(2003a,b), Metrick and Yasuda (2009), Moskowitz and Vissing-Jorgenson (2002),
Peng (2001a,b) and Phalippou and Gottschalg (2009). These articles have in com-
mon that they deal with the risk and return characteristics of the private equity
industry, either on a fund, individual deal or aggregate industry level. Our model
contributes to this strand of literature by developing implications for the dynamics
of expected returns and systematic risk of private equity funds through time. As
pointed out above, we can show that the systematic risk of private equity funds
will, in general, be time-dependent. This aspect that has not been pointed out
in the private equity literature before. It is, for example, important with respect
to portfolio optimization. If a constant systematic risk and expected return of a
private equity fund over its lifetime are assumed, this could result in non-optimal
investment decisions.

Finally, our paper is also related to the literature of liquidity risk. This strand of
literature was pioneered by Amihud and Mendelson (1986) that show that investors
require a higher return for investments that are more liquid than to otherwise similar
assets that are liquid. More recent articles in this area include, for example, Amihud
(2002), Pastor and Stambaugh (2003) and Acharya and Pedersen (2005). These
articles almost focus exclusively on the effects of illiquidity on traded assets. In con-
trast, compensation for illiquidity of private equity funds is still a largely unresolved
area of research. One exception is Ljungquist and Richardson (2003a) that estimate
the risk-adjusted excess value of the typical private equity fund is on the order of

1Note that Malherbe (2004, 2005) tries to account for the inaccurate valuation of the fund
management by incorporating an estimation error in his model. However, the basic problem
remains under his model specification.
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24 percent relative to the present value of the invested capital and interpret this as
compensation for holding an illiquid investment. Our empirical results extend the
evidence of significant compensation for illiquidity to private equity fund investors.
In addition, we are the first to show how illiquidity affects fund values and expected
returns over time.

The rest of the paper is organized as follows. In the next section we set forth the
notation, assumptions, and structure of the model. Section 3 shows how the value
of a private equity fund can be derived by using a risk-neutral valuation approach.
Section 4 presents our expressions for the expected return and systematic risk of a
private equity fund. In Section 5 we present the results of the model calibration and
discuss the empirical implications of our model. The paper concludes with Section
6. Additional proofs and derivations are contained in Appendixes A and B. Details
of our estimation methodology are outlined in Appendix C.

2 The Model

This section develops our new model for the cash flow dynamics of private equity
funds. We start with a brief description that lays out the typical construction of
private equity funds. This gives the motivation for our subsequent model that is
composed of two independent components. In developing the stochastic model,
we explicitly choose to work in a continuous-time framework. The reason for this
approach is modeling convenience, which allows us to obtain analytical results that
would be unavailable in discrete-time. We assume that all random variables intro-
duced in the following are defined on a probability space (Ω,F , P), and that all
random variables indexed by t are measurable with respect to the filtration {Ft},
representing the information commonly available to investors. After presenting our
new model, a theoretical model analysis illustrates the influence of the various model
parameters on the drawing and distribution process.

2.1 Institutional Framework

Investments in private equity are typically intermediated through private equity
funds. Thereby, a private equity fund denotes a pooled investment vehicle whose
purpose is to negotiate purchases of common and preferred stocks, subordinated
debt, convertible securities, warrants, futures and other securities of companies that
are usually unlisted. As the vast majority of private equity funds, the fund to be
modeled here is organized as a limited partnership in which the private equity firm
serves as the general partner (GP). The bulk of the capital invested in private equity
funds is typically provided by institutional investors, such as endowments, pension
funds, insurance companies, and banks. These investors, called limited partners
(LPs), commit to provide a certain amount of capital to the private equity fund –
the committed capital denoted as C. The GP then has an agreed time period in
which to invest this committed capital – usually on the order of five years. This
time period is commonly referred to as the commitment period of the fund and will
be denoted by Tc in the following. In general, when a GP identifies an investment
opportunity, it “calls” money from its LPs up to the amount committed, and it can
do so at any time during the prespecified commitment period. That is, we assume
that capital calls of the fund occur unscheduled over the commitment period Tc,
where the exact timing does only depend on the investment decisions of the GPs.
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However, total capital calls over the commitment period Tc can never exceed the
total committed capital C. The capital calls are also called drawdowns or take-
downs. As those drawdowns occur, the available cash is immediately invested in
managed assets and the portfolio begins to accumulate. When an investment is
liquidated, the GP distributes the proceeds to its LPs either in marketable securities
or in cash. The GP also has an agreed time period in which to return capital to the
LPs – usually on the order of ten to fourteen years. This time period is also called
the total legal lifetime of the fund and will be referred to by Tl in the following,
where obviously Tl ≥ Tc must hold. In total, the private equity fund to be modeled
is essentially a typical closed-end fund with a finite lifetime.2

Following the construction of the private equity fund outlined above, our stochas-
tic model of the cash flow dynamics consists of two components that are modeled
independently: the stochastic model for the drawdowns of the committed capital
and the stochastic model of the distribution of dividends and proceeds.

2.2 Capital Drawdowns

We begin by assuming that the fund to be modeled has a total initial committed
capital given by C, as defined above. Cumulated capital drawdowns from the LPs
up to some time t during the commitment period Tc are denoted by Dt, undrawn
committed capital up to time t by Ut. When the fund is set up, at time t = 0,
D0 = 0 and U0 = C are given by definition. Furthermore, at any time t ∈ [0, Tc],
the simple identity

Dt = C − Ut (2.1)

must hold. In the following, we assume capital to be drawn over time at some
non-negative rate from the remaining undrawn committed capital Ut = C − Dt.

Assumption 2.1 Capital drawdowns over the commitment period Tc occur in a
continuous-time setting. The dynamics of the cumulated drawdowns Dt can be
described by the ordinary differential equation (ODE)

dDt = δtUt1{0≤t≤Tc}dt, (2.2)

where δt ≥ 0 denotes the rate of contribution, or simply the fund’s drawdown rate
at time t and 1{0≤t≤Tc} is an indicator function.

In most cases, capital drawdowns of private equity funds are heavily concentrated
in the first few years or even quarters of a fund’s life. After high initial investment
activity, drawdowns of private equity funds are carried out at a declining rate, as
fewer new investments are made, and follow-on investments are spread out over a
number of years. This typical time-pattern of the capital drawdowns is well reflected
in the structure of equation (2.2). Under the specification (2.2), cumulated capital
drawdowns Dt are given by

Dt = C − C exp

(
−
∫ t≤Tc

0

δudu

)
(2.3)

2For a more thorough introduction on the subject of private equity funds, for example,
refer to Gompers and Lerner (1999), Lerner (2001) or to the recent survey article of Phalippou
(2007).
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and instantaneous capital drawdowns dt = dDt/dt, i.e. the (annualized) capital
drawdowns that occur over an infinitesimally short time interval from t to t + dt,
are equal to

dt = δtC exp

(
−
∫ t≤Tc

0

δudu

)
1{0≤t≤Tc}. (2.4)

Equation (2.4) shows that the initially very high capital drawdowns dt at the start
of the fund converge to zero for t = Tc → +∞. This follows as the undrawn

amounts, Ut = C exp
(
−
∫ t≤Tc

0
δudu

)
, decay exponentially over time. A condition

that leads to the realistic feature that capital drawdowns are highly concentrated
in the early times of a fund’s life under this specification. Furthermore, equation
(2.3) shows that the cumulated drawdowns Dt can never exceed the total amount
of capital C that was initially committed to the fund under this model setup, i.e.,
Dt ≤ C for all t ∈ [0, Tc]. At the same time the model also allows for a certain
fraction of the committed capital C not to be drawn, as the commitment period Tc

acts as a cut-off point for capital drawdowns.
Usually, the capital drawdowns of real world private equity funds show an erratic

feature, as investment opportunities do not arise constantly over the commitment
period Tc. A stochastic component can easily be introduced into the model by
defining a continuous-time stochastic process for the drawdown rate δt.

Assumption 2.2 We model the drawdown rate by a stochastic process {δt, 0 ≤ t ≤
Tc}, adapted to the stochastic base (Ω,F , P) introduced above. The mathematical
specification under the objective probability measure P is given by

dδt = κ(θ − δt)dt + σδ

√
δtdBδ,t, (2.5)

where θ > 0 is the long-run mean of the drawdown rate, κ > 0 governs the rate of
reversion to this mean and σδ > 0 reflects the volatility of the drawdown rate; Bδ,t

is a standard Brownian motion.

This process is known in the financial literature as a square-root diffusion.3 The
drawdown rate behavior implied by the structure of this process has the following two
relevant properties: (i) Negative values of the drawdown rate are precluded under
this specification.4 This is a necessary condition, as we model capital distributions
and capital drawdowns separately and must, therefore, restrict capital drawdowns
to be strictly non-negative at any time t during the commitment period Tc. (ii)
Furthermore, the mean-reverting structure of the process reflects the fact that we
assume the drawdown rate to fluctuate randomly around some mean level θ over
time.

Under the specification of the square-root diffusion (2.5), the conditional ex-
pected cumulated and instantaneous capital drawdowns can be inferred. Given that

3It was initially proposed by Cox et al. (1985) as a model of the short rate, generally
referred to as the CIR model. Apart from interest rate modeling, this process also has other
financial applications. For example, Heston (1993) proposed an option pricing in which the
volatility of asset returns follows a square-root diffusion. In addition, the process (2.5) is
sometimes used to model a stochastic intensity for a jump process in, for example, modeling
default probabilities.

4If κ, θ > 0, then δt will never be negative; if 2κθ ≥ σ2

δ
, then δt remains strictly positive

for all t, almost surely. See Cox et al. (1985), p. 391.
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Es[·] denotes the expectations operator conditional on the information set available
at time s, expected cumulated drawdowns at some time t ≥ s are given by

Es[Dt] = C − Us Es

[
exp

(
−
∫ t

s

δudu

)]

= C − Us exp[A(s, t) − B(s, t)δs], (2.6)

where A(s, t) and B(s, t) are deterministic functions that are given by:5

A(s, t) ≡ 2κθ

σ2
δ

ln

[
2fe[(κ+f)(t−s)]/2

(κ + f)(ef(t−s) − 1) + 2f

]
,

B(s, t) ≡ 2(ef(t−s) − 1)

(f + κ)(ef(t−s) − 1) + 2f
, (2.7)

f ≡
(
κ2 + 2σ2

δ

)1/2
.

The expected instantaneous capital drawdowns, Es[dt] = Es[dDt/dt], are given by

Es[dDt/dt] =
d

dt
Es[Dt] =

= −Us[A
′(s, t) − B′(s, t)δs] exp[A(s, t) − B(s, t)δs], (2.8)

where A′(s, t) = ∂A(s, t)/∂t and B′(s, t) = ∂B(s, t)/∂t.
We are now equipped with the first component of our model. The following

section turns to the modeling of the capital distributions of private equity funds

2.3 Capital Distributions

As capital drawdowns occur, the available capital is immediately invested in man-
aged assets and the portfolio of the fund begins to accumulate. As the underlying
investments of the fund are gradually exited, cash or marketable securities are re-
ceived and finally returns and proceeds are distributed to the LPs of the fund. We
assume that cumulated capital distributions up to some time t ∈ [0, Tl] during the
legal lifetime Tl of the fund are denoted by Pt and pt = dPt/dt denotes the instan-
taneous capital distributions, i.e., the (annualized) capital distributions that occur
over infinitesimally short time interval from t to t + dt.

We model distributions and drawdowns separately and, therefore, must also re-
strict instantaneous capital distributions pt to be strictly non-negative at any time
t ∈ [0, Tl]. The second constraint that needs to be imposed on the distributions
model is the addition of a stochastic component that allows a certain degree of
irregularity in the cash outflows of private equity funds. An appropriate assump-
tion that meets both requirements is that the logarithm of instantaneous capital
distributions, ln pt, follows an arithmetic Brownian motion.

Assumption 2.3 Capital distributions over the legal lifetime Tl of the fund occur
in continuous-time. Under the objective probability measure P, the logarithm of the
instantaneous capital distributions, ln pt, follows an arithmetic Brownian motion of
the form

d ln pt = µtdt + σP dBP,t, (2.9)

5See Cox et al. (1985), p.393.
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where µt denotes the time dependent drift and σP the constant volatility of the
stochastic process; BP,t is a second standard Brownian motion, which – for sim-
plicity – is assumed to be uncorrelated with Bδ,t, i.e., d〈BP,tBδ,t〉 = 0.6

From (2.9), it follows that the instantaneous capital distribution pt must exhibit
a lognormal distribution. Therefore, the process (2.9) has the relevant property that
it precludes instantaneous capital distributions pt from becoming negative at any
time t ∈ [0, Tl], and is therefore an economically reasonable assumption. For an
initial value ps, the solution to the stochastic differential equation (2.9) is given by

pt = ps exp

[∫ t

s

µudu + σP (BP,t − BP,s)

]
, t ≥ s. (2.10)

Taking the expectation Es[·] of (2.10), conditional on the available information at
time s ≤ t, yields

Es[pt] = ps exp

[∫ t

s

µudu +
1

2
σ2

P (t − s))

]
. (2.11)

The dynamics of (2.10) and (2.11) both depend the specification of the integral
over the time-dependent drift µt. The question posed now is to find a reasonable
and parsimonious yet realistic way to model this parameter.

Defining an appropriate function for µt is not an easy task, as this parameter
must incorporate the typical time pattern of the capital distributions of a private
equity fund. In the early years of a fund, capital distributions tend to be of minimal
size as investments have not had the time to be harvested. The middle years of
a fund, on average, tend to display the highest distributions as more and more
investments can be exited. Finally, later years are marked by a steady decline in
capital distributions as fewer investments are left to be harvested. We model this
behavior by first defining a fund multiple. If C denotes the committed capital
of the fund, the fund multiple Mt at some time t is given by Mt = Pt/C, i.e.,
the cumulated capital distributions Pt are scaled by C. This variable will follow a
continuous-time stochastic process as the multiple can also be expressed as Mt =∫ t

0
pudu/C. When the fund is set up, i.e. at time t = 0, M0 = 0 holds by definition.

As more and more investments of the fund are exited, the multiple increases over
time. We assume that its expectation converges towards some long-run mean m.
In specific, our modeling assumption can be stated as follows:

Assumption 2.4 Let Ms
t = EP

s [Mt] denote the conditional expectation of the
multiple at time t, given the available information at time s ≤ t. We assume that
the dynamics of Ms

t can be described by the ordinary differential equation (ODE)

dMs
t = αt(m −Ms

t )dt, (2.12)

where m is the long-run mean of the expectation and αt = αt governs the speed
of reversion to this mean.

Solving for Ms
t by using the initial condition Ms

s = Ms yields

Ms
t = m − (m − Ms) exp

[
−1

2
α(t2 − s2)

]
. (2.13)

6This simplifying assumption can easily be relaxed to incorporate a positive or negative
correlation coefficient ρ between the two processes.
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With the condition, pt = (dMt/dt)C, the expected instantaneous capital distribu-
tions Es[pt] = (dMs

t/dt)C turn out to be

Es [pt] = α t(m C − Ps) exp

[
−1

2
α(t2 − s2)

]
. (2.14)

With equations (2.11) and (2.14) we are now equipped with two equations for the
expected instantaneous capital distributions. Setting (2.11) equal to (2.14), we can

solve for the integral
∫ t

s
µudu. Substituting the result back into equation (2.10),

the stochastic process for the instantaneous capital distributions at some time t ≥ s
is given by

pt = αt(mC − Ps) exp

{
−1

2
[α(t2 − s2) + σ2

P (t − s)] + σP ǫt

√
t − s

}
, (2.15)

where ǫt

√
t − s = (BP,t − BP,s) and ǫt ∼ N(0, 1). The structure of this process

implies that high capital distributions in the past decrease average future capital
distributions. This follows as the expression in the first bracket, (mC − Ps), de-
creases with increasing levels of cumulated capital distributions Ps up to time s.
This assumption can easily be relaxed by making the long run multiple m also de-
pendent on the available information at time s. The stochastic process (2.15) can
directly be used as a Monte-Carlo engine to generate sample paths of the capital
distributions of a fund. In the next section, we illustrate the dynamics of both model
components and analyze their sensitivity to changes in the main model parameters.

2.4 Model Analysis

The purpose of this section is to illustrate the model dynamics and to evaluate
the model’s ability to reproduce qualitatively some important features that can be
observed from the drawdown and distribution patterns of real world private equity
funds. First, we examine the influence of the various model parameters on the
dynamics of the drawing and distribution process. Second, the model dynamics are
illustrated by considering two hypothetical funds.

Our model consists of two independent components that are governed by dif-
ferent model parameters. The only parameter that enters both model components
is the committed capital C. This variable does not affect the timing of the capital
drawdowns or distributions. Rather, it serves as a scaling factor to influence the
magnitude of the overall expected cumulative drawdowns and distributions. As far
as the capital drawdowns are concerned, the main model parameter governing the
timing of the drawing process is the long-run mean drawdown rate θ. Increasing θ
accelerates expected drawdowns over time. Thus, higher values of θ, on average,
increase the capital drawn at the start of the fund and decreases the capital drawn in
later phases of the fund’s lifetime – a behavior which is in line with intuition. Com-
pared to the impact of θ, the influence of the mean reversion coefficient κ and the
volatility σδ on the expected drawing process are only small. In general, the effect
of both parameters is about the same relative magnitude. However, the direction
may differ in sign. Increases in σδ tend to slightly decelerate expected drawdowns,
whereas increases in κ tend to slightly accelerate them. In contrast, σδ is the main
model parameter governing the volatility of the capital drawdowns. The higher σδ,
the more erratic the capital drawdowns will be over time. In addition, the volatility
of the capital drawdowns is also influenced by the mean reversion coefficient κ.
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Thereby, high values of κ tend to decrease the volatility of the capital drawdowns,
as a high levels of mean reversion “kill” some volatility of the drawdown rate.

The timing and magnitude of the capital distributions is determined by three
main model parameters. The coefficient m is the long-run multiple of the fund,
i.e., m times the committed capital C determines the total amount of capital that
is expected to be returned to the investors over the fund’s lifetime. The higher m,
the more capital per dollar committed is expected to be paid out. The coefficient
σP governs the volatility of the capital distributions. Higher values of σP , hence,
lead to more erratic capital distributions over time. Finally, α governs the speed at
which capital is distributed over the fund’s lifetime. To make this parameter easier
to interpret, it can simply be related to the expected amortization period of a fund.
Let tA denotes the expected amortization period of the fund, i.e., the expected
time needed until the cumulated capital distributions are equal to or exceed the
committed capital C of the fund, then it follows from equation (2.13) that

E0[MtA
] ≡ 1 = m

[
1 − exp

(
−1

2
· α · t2A

)]
(2.16)

must hold. Solving for α gives

α =
2 ln m

m−1

t2A
. (2.17)

That is, α is inversely related to the expected amortization period tA of the fund.
Consequently, higher values of α lead to shorter expected amortization periods.

Table 1: Model Parameters for the Capital Drawdowns and Distri-
butions of Two Different Funds

Table 1 shows the sample model parameters for the capital drawdowns and distributions of two
different funds. The committed capital C of both funds is standardized to 1. In addition, the
starting values of the drawdown rates δ0 are set equal their corresponding long-run means θ.

Model Drawdowns Distributions

κ θ σδ m α σP

Fund 1 2.00 1.00 0.50 1.50 0.03 0.20

Fund 2 0.50 0.50 0.70 1.50 0.06 0.30

To illustrate the model dynamics, Figures 1 and 2 compare the expected cash
flows (drawdowns, distributions and net fund cash flows) and standard deviations
for two different hypothetical funds.7 As the different sets of parameter values
in Table 1 reveal, both hypothetical funds are assumed to have the same long-run
multiple m and a committed capital C that is standardized to 1. That is, both funds
are assumed to have cumulated capital drawdowns equal to 1 over their lifetime and
expected cumulated capital distributions equal to 1.5. However, they differ in the
timing and volatility of the capital drawdowns and distributions, as indicated by the
different values of the other model parameters. For the first fund it is assumed

7The corresponding expectations are obtained from equations (2.6) and (2.8) for the capital
drawdowns and from equations (2.13) and (2.14) for the capital distributions. In addition,
note that unconditional expectations are shown, i.e., we set s = 0.
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(a) Expected Quarterly Capital Drawdowns (Left) and Cumulated Capital Drawdowns (Right)
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(c) Expected Quarterly Net Fund Cash Flows (Left) and Cumulated Net Fund Cash Flows (Right)

Figure 1: Model Expectations for Fund 1 (Solid Lines represent Ex-
pectations; Dotted Lines represent Expectations ± Stan-
dard Deviations)
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(c) Expected Quarterly Net Fund Cash Flows (Left) and Cumulated Net Fund Cash Flows (Right)

Figure 2: Model Expectations for Fund 2 (Solid Lines represent Ex-
pectations; Dotted Lines represent Expectations ± Stan-
dard Deviations)
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that drawdowns occur rapid in the beginning, whereas capital distributions take
place late. Conversely, for the second fund it is assumed that drawdowns occur
more progressive and that distributions take place sooner. This is mainly achieved
through a lower value of α and a higher value of θ for Fund 1. The effect can
be inferred by comparing the different model expectations in Figures 1 and 2. For
this reason, both funds also have different expected amortization periods. From
equation (2.17), the expected amortization periods of Funds 1 and 2 are given by
8.6 years and 6.1 years, respectively. In addition, the cash flows of the two funds
are also assumed to have different volatilities. Thereby, the capital drawdowns and
distributions of Fund 2 exhibit higher variability as can be observed by comparing
the standard deviations displayed in Figures 1 and 2.

It is important to acknowledge that the basic patterns of the model graphs of
the capital drawdowns, distributions and net cash flows in Figures 1 and 2 conform
to reasonable expectations of private equity fund behavior. In particular, the cash
flow streams that the model can generate will naturally exhibit a lag between the
capital drawdowns and distributions, thus reproducing the typical development cycle
of a fund and leading to the private equity characteristic J-shaped curve for the
cumulated net cash flows that can be observed on the right of Figures 1 (c) and 2 (c).
Furthermore, it is important to stress that our model is flexible enough to generate
the potentially many different patterns of capital drawdowns and distributions. By
altering the main model parameters, both timing and magnitude of the fund cash
flows can be controlled in the model. Finally, our model captures well the erratic
nature of real world private equity fund cash flows. This is illustrated in Figures 1 and
2 by the standard deviations shown. The results show that our model incorporates
the economically reasonable feature that volatility of the fund cash flows varies over
time. Specifically, the volatility of the drawdowns (distributions) is high in times
when average drawdowns (distributions) are high, and low otherwise.

So far, we our analysis was focussed on the cash flows of private equity funds.
Modeling private equity funds also requires a third ingredient: the valuation of
private equity funds, which is considered in the following section.

3 Valuation

In this section we derive the value of a private equity fund. The valuation of
private equity funds is complicated by the fact that the state variables underlying
the valuation, the cash flow processes of private equity funds, do not represent
traded assets. Therefore, we are dealing with an incomplete market setting and a
preference-free pricing, which based on arbitrage considerations alone, is not feasible.
For this reason, we have to impose additional assumptions on preferences of the
investors in the economy. We first outline the assumptions underlying our valuation.
The valuation results are presented and illustrated thereafter. Our basic valuation
framework assumes that private equity funds are traded in a liquid market that is free
of arbitrage. We then relax this assumption by a model extension that incorporates
illiquidity of private equity funds into the valuation.

3.1 Assumptions

Our subsequent valuation framework for private equity funds is based on four major
assumptions that are outlined and discussed in the following:
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Assumption 3.1 Absence of Arbitrage: Assume that the private equity funds con-
sidered here are traded in a liquid, frictionless market that is free of arbitrage.

This assumption seems to be in contradiction to reality where no organized and
liquid markets for private equity funds exist. However, even if no market exists our
results can be used as an upper price boundary for private equity funds. In addition,
we relax this assumption in following by incorporating illiquidity of private equity
funds into the valuation.

In a complete market setting, the price of any new financial claim is uniquely de-
termined by the requirement of Assumption 3.1. This follows because in a complete
market setting, every new financial claim can be perfectly replicated by a portfolio
of traded securities and thus pricing by arbitrage considerations alone is feasible.
Since the capital distributions and drawdowns are not assumed to be spanned by the
assets in the economy, the risk factors underlying our model cannot be eliminated
by arbitrage considerations. Therefore, we are dealing in an incomplete market set-
ting. In an incomplete market the requirement of no arbitrage alone is no longer
sufficient to determine a unique price for a financial claim. The reason for this is
that several different price systems may exist, all of which are consistent with the
absence of arbitrage. In general, prices of financial claims result from balancing sup-
ply and demand among agents who trade to optimize their lifetime investment and
consumption. Thus, unique prices of financial claim in incomplete markets emerge
as a consequence of investor’s preferences and not just as a constraint to preclude
arbitrage. Therefore, our valuation requires an additional assumption on investor’s
preferences in the economy.

Assumption 3.2 Investor Preferences: All investors have (identical) time-additive
von Neumann-Morgenstern utility functions of the logarithmic form defined over the
rate of consumption of a single consumption good.

Using this assumption, Merton (1973) has shown that the equilibrium expected
security returns will satisfy the specialized version of the intertemporal capital asset
pricing model:8

µi − rf = σiW , (3.1)

where µi is the expected instantaneous rate of return on some asset i, σiW is the
covariance of the return on asset i with the return of the market portfolio W , and rf

is the instantaneously riskless interest rate. By µW and σW we denote the expected
return and standard deviation of the market portfolio that are both assumed to be
constant. It is this general equilibrium model that we employ in the following to
derive a valuation model for private equity funds.

Using this general equilibrium model for valuation of private equity funds requires
two additional assumptions on the correlation structure of the risk factors underlying
our model with the returns on the market portfolio W .

Assumption 3.3 Correlation of Capital Drawdowns: The drawdown rate δt is un-
correlated with returns of the market portfolio W , i.e., ρδW = 0.

8This specialization arises from the assumption of logarithmic utility, which permits us to
omit all additional terms relating to stochastic shifts in the investment opportunity set that
would arise in (3.1) under a more general specification of investor’s preferences. See Merton
(1973) and Brennan and Schwartz (1982) for a detailed derivation and discussion.
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For simplicity, it is assumed that changes in the drawdown rates of private
equity funds are uncorrelated with returns of the market portfolio. This is not
an unreasonable assumption and basically means that the drawdown rate carries
zero systematic risk.9 Stated differently, we assume that all changes in the capital
drawdowns of private equity funds constitute idiosyncratic risk that is not priced in
the model economy.

Assumption 3.4 Correlation of Capital Distributions: There is a constant corre-
lation, ρPW ∈ [0, 1], between changes in capital distributions and returns of the
market portfolio W .

In contrast to the capital drawdowns, we allow for systematic risk of changes
in capital distributions by assuming an arbitrary correlation ρPW ∈ [0, 1] between
changes in capital distributions and returns of the market portfolio.

It is these four assumptions that we employ for our following valuation of private
equity funds.

3.2 Liquid Case

Using our stochastic models for the capital drawdowns and distributions, we can
now derive the value of a fund over its lifetime. The value V F

t of a private equity
fund at time t ∈ [0, Tl] is defined as the discounted value of the future cash flows,
including all capital distributions and drawdowns, of the fund. From Assumption
3.1, the arbitrage free value of a private equity fund can be stated as

V F
t = EQ

t

[∫ Tl

t

e−rf (τ−t)dPτ

]
− EQ

t

[∫ Tl

t

e−rf (τ−t)dDτ

]
1{t≤Tc}

= V P
t − V D

t . (3.2)

That is, the market value V F
t is simply given by the difference between the present

value of all capital distributions V P
t and the present value of all capital drawdowns

V D
t . To assure that discounting by the riskless rate rf is valid in equation (3.2), all

expectations are now defined under risk-neutral (or equivalent martingale) measure
Q. Valuing private equity funds therefore involves two steps. First, the risk sources
underlying our model have to be transformed under the equivalent martingale mea-
sure Q. Second, the conditional expectations in (3.2) have to be determined under
this transformed probability measure.

Applying Girsanov’s Theorem, it follows that the underlying stochastic processes
for the capital drawdowns and distributions under the Q-measure are given by

dδt = [κ (θ − δt) − λδσδ

√
δt] dt + σδ

√
δt dBQ

δ,t, (3.3)

d ln pt = (µt − λP σP )dt + σP dBQ
P,t, (3.4)

where BQ
δ,t and BQ

P,t are Q-Brownian motions;10 λδ and λP are market prices of
risk, defined by

λδ ≡ µ(δt, t) − rf

σ(δt, t)
, λP ≡ µ(ln pt, t) − rf

σ(ln pt, t)
. (3.5)

9Some empirical evidence for this assumption is provided by Ljungquist and Richardson
(2003a,b). Ljungquist and Richardson (2003a,b) show that the rate at which private equity
funds draw down capital is not correlated with conditions in the public equity markets.

10For a detailed derivation and discussion of Girsanov’s Theorem see, for example, Duffie
(2001).
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We can derive these two market prices of risk by using the intertemporal CAPM
that arises from Assumption 3.2. Additionally imposing Assumption 3.3, we have
λδ = 0. Similarly, with the additional Assumption 3.4, it follows λP = σPW /σP ,
where σPW = σP σW ρPW and σW is the constant standard deviation of the market
portfolio returns. Inserting these results into equations (3.3) and (3.4) finally gives
the two processes under the risk-neutral measure Q.

Solving the conditional expectations in (3.2) by using these transformed pro-
cesses gives the following theorem for the arbitrage free value of a private equity
fund.

Theorem 3.1 The arbitrage free value of a private equity fund at any time t ∈
[0, Tl] during its finite lifetime Tl can be stated as

V F
t = α (m C − Pt)

∫ Tl

t

e−rf (τ−t)D(t, τ) dτ

+Ut

∫ Tl

t

e−rf (τ−t)C(t, τ)dτ1{t≤Tc}, (3.6)

where C(t, τ) and D(t, τ) are deterministic functions given by

C(t, τ) =(A′(t, τ) − B′(t, τ)δt) exp[A(t, τ) − B(t, τ)δt],

D(t, τ) = exp

[
ln τ − 1

2
α(τ2 − t2) − σPW (τ − t)

]
,

and A(t, τ), B(t, τ) are as stated in condition (2.7).

PROOF: see Appendix A.

Note that except for the two integrals that can easily be evaluated by using
numerical techniques, Theorem 3.1 provides an analytically tractable solution for
the arbitrage free value of a private equity fund.

Figure 3 illustrates the dynamics of the theoretical market value over a fund’s
lifetime for varying values of the correlation coefficient ρPW .11 The model inputs
used are given as follows: C = 1, Tc = Tl = 20, rf = 0.05, κ = 0.5, θ = 0.5,
σδ = 0.1, δ0 = 0.01, m = 1.5, α = 0.025 and σP = 0.5. In addition, the
standard deviation of the market portfolio return is assumed to be σW = 0.2. It
is important here to stress that the basic time patterns of the fund values shown
in Figure 3 conform to reasonable expectations of private equity fund behavior.
Specifically, the value of a fund increases over time as the investment portfolio is
build up and decreases towards the end as fewer and fewer investments are left
to be harvested. In the context of our model, this characteristic behavior follows
mainly from the fact that capital drawdown occur, on average, earlier than the
capital distributions (see also Figures 1 and 2 above). Hence, the present value
of outstanding capital drawdowns decreases faster over the fund’s lifetime than
the present value of outstanding capital distributions. Figure 3 also illustrates the
effect of the correlation coefficient ρPW on the fund values. A positive correlation

11Note that for all t > 0, Figure 3 shows the unconditional expectations of the fund values,
that is V F

t = E[V F
t ] for all t > 0. This is done here for illustrative purposes. Otherwise, the

fund values would certainly be stochastic processes over time as the value of a fund at some
time t in Theorem 3.1 does also depend on the cumulated capital distributions Pt and the
undrawn amounts Ut at time t.
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Figure 3: Market Value over the Fund’s Lifetime for Varying Values
of the Correlation Coefficient ρPW

ρPW implies that high capital distribution especially occur in states of the world
in which the return of the market portfolio, and consequently aggregate wealth, is
also high. This is an unfavorable condition for a rational investor seeking attractive
risk-diversification benefits. Therefore, Figure 3 shows that the fund values slightly
decrease with rising values of ρPW .12

3.3 Illiquid Case

In the preceding section, we have derived a valuation formula under the assumption
that private equity funds are traded in a frictionless market that is free of arbitrage.
This assumption seems to be in contradiction to reality where no organized and
liquid markets for private equity funds exist. The impact of illiquidity on asset
prices has been the subject of numerous empirical and theoretical studies.13 In
general, both the theory and the empirical evidence suggest that investors attach a
lower price to assets that are more illiquid than to otherwise similar assets that are
liquid. Thus, if private equity investors value liquidity, they will discount the value
of a private equity fund for illiquidity. Using this line of argument, we define the
fund value under illiquidity V F,ill

t as

V F,ill
t = V F

t − Cill
t , (3.7)

where Cill
t is the illiquidity discount of the fund at time t and V F

t is the arbitrage free
value of a liquid fund as defined above. Following Amihud and Mendelson (1986),
Cill

t is the present value of all illiquidity costs of the fund during its remaining

12One can easily infer that this relationship would be reversed in the case that ρPW < 0.
13See, for example, Amihud and Mendelson (1986), Amihud (2002), Pastor and Stambaugh

(2003) and Acharya and Pedersen (2005). These studies almost exclusively focus on illiquidity
in stock markets. The only studies that we are aware of that deal with illiquidity in the context
of private equity are Das et al. (2003), Lerner and Schoar (2004) and Franzoni et al. (2009).
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lifetime Tl − t. From risk-neutral valuation arguments, we can then define

V F,ill
t = V F

t − EQ
t

[∫ Tl

t

e−rf (τ−t)cill
τ dτ

]
, (3.8)

with instantaneous illiquidity costs cill
t . If instantaneous illiquidity costs cill

t are, for
simplicity, assumed to be constant over time, i.e. cill

t = cill, it follows

V F,ill
t = V F

t − cill (1 − e−rf (Tl−t))

rf
. (3.9)

We can calculate V F
t from our valuation equation derived above. In contrast, the

value V F,ill
t of a“real” illiquid fund is generally unobservable over time. However, we

know that investors enter private equity funds at t = 0 without paying an explicit
price.14 Therefore, V F,ill

0 = 0 must hold. Using this equality, we can implicitly
derive instantaneous illiquidity costs cill from the identity

V F,ill
0 = V F

0 − cill (1 − e−rf Tl)

rf
= 0. (3.10)

Solving for cill yields

cill =
V F

0 rf

(1 − e−rf Tl)
. (3.11)

Substituting (3.11) into (3.9) gives the following theorem for the value of an illiquid
fund.

Theorem 3.2 The value of an illiquid private equity fund at any time t ∈ [0, Tl]
during its finite lifetime Tl can be stated as

V F,ill
t = V F

t − will
t V F

0 , (3.12)

where

will
t =

(1 − e−rf (Tl−t))

(1 − e−rf Tl)

holds and V F
t denotes the value of the corresponding liquid fund as given in Theorem

3.1.15

The value V F,ill
t of an illiquid fund at time t is the difference between the value

V F
t and V F

0 of the corresponding liquid fund. Thereby, the value V F
0 is weighted by

the factor will
t . This weighting factor is a increasing function in the fund’s remaining

lifetime (Tl − t). That is, the longer the remaining lifetime of the fund, the more

14This holds, at least, when ignoring all direct or indirect transaction costs, such as search
costs for the investor.

15Note that the value V F
t might get (slightly) negative at the end of a fund’s lifetime under

this specification. This happens here if the present value of the constant illiquidity cost cill

at some time t is higher than the value of the liquid fund V F
t . One might argue here that a

rational investor will never sell a private fund if the costs are higher than its current value.

Therefore, it is better to define the value V
F,ill
t as

V
F,ill
t = max

[
V F

t − will
t V F

0 ; 0
]

,

for all t ∈ [0, Tl].
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illiquidity affects its value.16 A result that is fully in line with economic intuition.
At t = Tl, it must hold that will

t = 0. From this, it follows that the values of the
illiquid and liquid fund at the end of the fund’s lifetime are equal and are given by
V F,ill

Tl
= V F

Tl
= 0 per definition.

Figure 4 illustrates our results by comparing the values of an illiquid fund with
the values of the corresponding liquid fund over time.17 It shows that the value
of the illiquid fund is always below the value of the liquid fund. Over time, the
difference between the values decreases as the illiquidity discount of the fund is a
decreasing function of the fund’s remaining lifetime.

Perhaps the strongest assumption for this model extension is that illiquidity costs
are constant over time. A more general modeling framework would have to account
for time-varying, possibly stochastic illiquidity costs. While our model extension to
account for illiquidity is mostly suggestive, it is helpful since it shows how illiquidity
affects fund values over time. Specifically, the approach also allows us to explicitly
calculate the illiquidity costs cill of a fund, which would be an onerous task under
a more complex model setting.

Regarding the illiquidity costs, two additional points have to acknowledged.
First, it should be noted that instantaneous illiquidity costs cill here should be un-
derstood as expected liquidation costs of a fund (per unit time), equal to the product
of the probability that an (average) investor has to liquidate his fund investment in
the time interval [t, t + dt] by the costs of selling the fund.18 Second, in a narrow
interpretation, the costs of selling represent transaction costs such as fees for an
intermediary that sells the fund on the secondary market. More broadly, however,
the costs of selling the fund could also represent other real costs, for instance, those
arising from delay and search when selling the fund.

We now turn to the implications of our model with respect to the expected
return and systematic risk of private equity funds.

4 Expected Return and Systematic Risk

The objective of this section is to derive expressions for the expected return and
systematic risk of a private equity fund. This shows how returns are related to
underlying economic characteristics of a fund’s cash flows. Similar to the preceding
section, we first examine expected returns and systematic risk under the simplifying
assumption that private equity funds are traded on a frictionless market that is free
of arbitrage. In a second step, we relax this assumption to show how illiquidity
affect expected fund returns in equilibrium.

4.1 Liquid Case

A fund’s gross return is given by its cash flows plus changes in value, divided by
its current value. The conditional expectation of instantaneous fund returns can be

16This result is qualitatively similar to many other theoretical studies that also point out
that the illiquidity discounts depend on the investor’s holding periods. See, for example,
Amihud and Mendelson (1986).

17The model inputs used for Figure 4 are given as follows: C = 1, Tc = Tl = 20, rf = 0.05,
κ = 0.5, θ = 0.5, σδ = 0.1, δ0 = 0.01, m = 1.5, α = 0.025, σP = 0.5 and σPW = 0. In
addition, note that Figure 4 shows the unconditional expectations of the fund values over
time for illustrative purposes.

18See Amihud and Mendelson (1986) for a similar definition of illiquidity costs.
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stated as19

Et

[
RF

t

]
=

Et

[
dV F

t

dt

]
+ Et

[
dPt

dt

]
− Et

[
dDt

dt

]

V F
t

. (4.1)

To evaluate condition (4.1), we must obtain expressions for the conditional expec-
tation of a fund’s instantaneous price changes, i.e. Et[dV F

t /dt]. This quantity,
in turn, is determined by the difference of the expected instantaneous changes in
present values of the capital distributions and capital drawdowns, as Et[dV F

t /dt] =
Et[dV P

t /dt]−Et[dV D
t /dt] holds. Under the condition that Assumptions 3.1 to 3.4

hold, Appendix B shows that these two quantities can be represented as

Et

[
dV D

t

dt

]
= −Et

[
dDt

dt

]
+ rf V D

t (4.2)

and

Et

[
dV P

t

dt

]
= −Et

[
dPt

dt

]
+ (rf + σPW )V P

t . (4.3)

Substituting (4.2) and (4.3) into (4.1), the expected instantaneous fund return is

Et

[
RF

t

]
= rf + σPW

V P
t

V P
t − V D

t

. (4.4)

That is, the expected return of a private equity fund is given by the riskless rate of
return rf plus the risk premium σPW V P

t /(V P
t − V D

t ). This risk premium depends
on two components. First, this risk premium is determined by the covariance σPW .
The economic intuition behind this follows from standard asset pricing arguments.
A positive covariance σPW implies that high returns of the market portfolio are as-
sociated with high capital distributions. That is, as the market portfolio increases in

19See Appendix B for a detailed derivation of this relationship.
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value, the probability of large capital distributions increases. This is an unfavorable
condition for an investor, as the highest capital distributions occur in states where
marginal utility is already low. Therefore, the ex-ante expected return will exceed
the riskless rate of return rf in this case. Conversely, for σPW < 0 the opposite will
be true. Second, the risk premium is also determined by the ratio V P

t /(V P
t −V D

t ).
This second term is particularly interesting because it implies that the expected
returns of a fund will vary over time. The reason for this is that the systematic risk
of a fund changes over time. To make this result more obvious, we can view the
expected fund returns in (4.4) from a traditional “beta” perspective. It follows

Et

[
RF

t

]
= rf + βF,t(µW − rf ), (4.5)

where βF,t is the beta coefficient of the fund returns at time t and µW is the
expected return of the market portfolio. Setting (4.4) equal to (4.5), the beta
coefficient of a private equity fund turns out to be

βF,t = βP
V P

t

V P
t − V D

t

, (4.6)

where βP = σPW /σ2
W is the constant beta coefficient of the capital distributions

of the fund.20 From specification (4.6), we can infer that beta coefficient of a
fund varies over time as the present values V P

t and V D
t change stochastically over

time. The result (4.6) follows partly from the fact that we have assumed the capital
drawdowns to be uncorrelated with the return on the market portfolio. Therefore, a
beta coefficient of the capital drawdowns does not enter into equation (4.6). Under
a more general setting, where the beta coefficient of the capital drawdowns βD 6= 0,
the beta of the fund returns can be represented as

βF,t = βP
V P

t

V P
t − V D

t

− βD
V D

t

V P
t − V D

t

. (4.7)

The beta coefficient of the fund returns is then of course simply the value weighted
average of the betas of the fund’s capital distributions and drawdowns. In general,
this result implies that the beta coefficient of the fund is non-stationary whenever
βP 6= βD holds, i.e., capital distributions and drawdowns carry different levels
of systematic risks. This follows again because over time, stochastic changes in
the values V P

t and V D
t affect the weighting factors wP

t = V P
t /(V P

t − V D
t ) and

wD
t = V D

t /(V P
t − V D

t ). To our best knowledge, we are the first to acknowledge
the existence and importance of this effect for private equity funds.21

Our model sheds light on the determinants of the systematic fund risk and
provides insight into some of the deficiencies of recent empirical studies on the
expected return and systematic risk of private equity funds. Typically, the expected
return and systematic risk of a private equity fund are estimated by a single constant
number for the whole lifetime of the vehicle. Using (4.7), it is possible to examine

20Note that according to the general equilibrium model (3.1), it must hold that the market
risk premium can be represented as µW − rf = σ2

W
.

21This basic result is foreshadowed in the finance literature by the works of Brennan (1973),
Myers and Turnbull (1977) and Turnbull (1977) on the systematic risk of firms. For example,
Brennan (1973) defines the beta coefficient of a firm as “. . . the market value weighted average
of the betas of all the firm’s expected cash flows” and concludes that this specification will
generally imply that “. . . the beta coefficient of the firm is non-stationary . . . ” (Brennan
(1973), p. 671.)
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some of the deficiencies of this traditional procedure. Aggregating systematic risk
of a fund into a single number implicitly assumes that all fund cash flows are equally
risky and that the risk arises from a common economic source. However, if these
conditions are not met, this will imply a misspecification, as the systematic risk
of a fund will, in general, be changing stochastically over time. Using the beta
representation form, the structure of the fund returns is given by

Et

[
RF

t

]
= rf + wP

t βP (µW − rf ) − wD
t βD(µW − rf ). (4.8)

The variables on the right hand side of (4.8) are of the form of an elasticity multiplied
by the expected excess return on the market. Both weighting factors, wP

t and wD
t ,

change over time and thus a constant expected return will not, in general, provide
an adequate description of a private equity fund. This result is also important
with respect to portfolio optimization. If a constant systematic risk and expected
return of a private equity fund over its lifetime are assumed, this could also result
in non-optimal investment decisions.

4.2 Illiquid Case

This section derives a liquidity-adjusted version of the expected fund return. We
start by noting that the conditional expectation of a fund’s net return in an economy
with constant instantaneous illiquidity costs, cill, can be stated as

Eill
t

[
RF

t − cill

V F
t

]
=

Et

[
dV F

t

dt

]
+ Et

[
dPt

dt

]
− Et

[
dDt

dt

]

V F
t

. (4.9)

Then, from a similar derivation as applied in the preceding section, expected fund
returns in the beta representation form are given by

Eill
t

[
RF

t

]
= rf +

cill

V F
t

+ βF,t(µW − rf ), (4.10)

where the fund’s beta, βF,t, is again as given by (4.6), or more generally by (4.7).
This condition states that the required excess return is now the sum of the (ex-
pected) relative illiquidity costs, cill/V F

t , plus the fund’s beta times the risk pre-
mium.22 Intuitively, the positive association between expected returns and relative
illiquidity costs reflects the compensation required by investors for the lack of an
organized and liquid market where private equity funds can be sold at any instant
in time.

It is also important here to acknowledge that incorporating illiquidity costs here
induces a second time variable component into the expected fund returns. For
constant instantaneous illiquidity costs cill, relative illiquidity costs cill/V F

t vary
over time as the fund value V F

t follows a distinct, albeit stochastic time pattern. In
general, the value of the fund V F

t increases over time as the investments portfolio
is build up and decreases towards the end as fewer and fewer investments are left to
be harvested. Therefore, the ratio cill/V F

t will be highest in the beginning and at
the end of a fund’s lifetime when its value is low.23 This effect particularly increases
expected fund returns at the start and towards the end of its lifetime.

22This statement is qualitatively similar to the relationship found theoretically and empir-
ically by Amihud and Mendelson (1986) for conventional stocks markets.

23Note that this result will continue to hold in a more general setting with time-varying
illiquidity costs.
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So far, our analysis was based on theoretical reasoning. The next section turns
to the application of the model and examines its empirical implications.

5 Empirical Evidence

This purpose of this section is to present the empirical results of our paper. We
show how our model can be calibrated to private equity fund data and discuss its
empirical implications in various directions. We start by introducing the private
equity fund data and our estimation methodology used for empirical analysis. The
empirical results are presented thereafter.

5.1 Data Description

We use a dataset of European private equity funds that has been provided by
Thomson Venture Economics (TVE). It should be noted that TVE uses the term
private equity to describe the universe of all venture investing, buyout investing and
mezzanine investing.24 We have been provided with various information related to
the exact timing and size of cash flows, residual net asset values (NAV), fund size,
vintage year, fund type, fund stage and liquidation status for a total of 777 funds
over the period from January 1, 1980 through June 30, 2003.25 All cash flows and
reported NAVs are net of management fees and carried interest.

Table 2: Descriptive Statistics

Tabelle 2 provides a descriptive overview on the fund data provided by Thomson Venture Economics
(TVE). The complete data set includes 777 European private equity funds. In accordance with
TVE we use the following stage definitions: Venture capital funds (VC) represent the universe
of venture investing. It does not include buyout investing, mezzanine investing, fund of fund
investing or secondaries. Angel investors or business angels are also not included. Buyout funds
(BO) represent the universe of buyout investing and mezzanine investing.

All Liquidated
Funds

Extended Sam-
ple

Number of Funds
VC

absolute 456 47 102
relative 58.69% 49.47% 50.25%

BO
absolute 321 48 101
relative 41.31% 50.53% 49.75%

Total
absolute 777 95 203
relative 100.00% 100.00% 100.00%

Before presenting our empirical results, we have to deal with a problem caused
by the limited number of liquidated funds included in our data set. The purpose

24Fund of fund investing and secondaries are also included in this broadest term. TVE is
not using the term to include angel investors or business angels, real estate investments or
other investing scenarios outside of the public market. For a detailed overview on the TVE
dataset and a discussion of its potential biases see Kaplan and Schoar (2005).

25The initial database also contained 14 funds of funds which we excluded from our data
set for the analysis as we focus on core private equity funds.
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of our study requires the knowledge of the full cash flow history of the analyzed
funds. In principle, this is only possible for those funds that have already been fully
liquidated at the end of our observation period. Table 2 shows that this reduces
our data set to a total number of only 95 funds. So, only a small subset of the full
data can be used for analysis. Furthermore, given that the age of the liquidated
funds in our sample is about 13 years, one can infer that restricting the analysis to
liquidated funds could also limit our results as more recently founded funds would
be systematically left out.

In order to mitigate this problem, we follow an approach of Diller and Kaserer
(2009) that increase their data universe by adding funds that have small net asset
values compared to their realized cash flows at the end of the observation period.
In specific, we add non-liquidated funds to our sample if their residual value is
not higher than 10 percent of the undiscounted sum of the absolute value of all
previously accrued cash flows. In such cases, treating the current net asset value
at the end of the observation period as a final cash flow will have a minor impact
on our results. All funds that are not liquidated by 30 June 2003 and satisfy this
condition are added to the liquidated funds to form an extended data sample. As
one can see from Table 2, the extended sample consists of a total of 203 funds and
comprises 102 venture capital funds (50.25 percent) and 101 buyout funds (49.75
percent). We base our subsequent model estimation and empirical analysis on this
extended sample of private equity funds.

5.2 Estimation Methodology

The application of stochastic models frequently encounters the difficulty that struc-
tural parameters underlying the model are unobservable. In our model, the com-
mitted capital C, the commitment period Tc and the fund’s legal lifetime Tl are
fixed by contractual arrangements, whereas the other structural model parameters
cannot be observed directly and need to be estimated. The procedure employed
for the following model calibration is an explicit parameter estimation based on
historical private equity fund cash flow data. The immediate practical difficulty
here arises from the fact that the observation period of private equity fund data is
generally only quarterly or monthly at most. This low observation frequency means
that only limited time-series data of fund cash flows is available for estimation. It
is well known that standard maximum likelihood estimation (MLE) methods for
continuous-time stochastic processes do not work considerably well when the total
number of observations is very low or time steps are too large.

To mitigate these problems we estimate the model parameters by using the
concept of Conditional Least Squares (CLS). The concept of conditional least
squares, which is a general approach for estimating the parameters involved in
a continuous-time stochastic process {X(t)}, was given a thorough treatment by
Klimko and Nelson (1978).26 The general intuition behind the CLS method is to
estimate the parameters from discrete-time observations of the stochastic process
Xt, t = 1, 2, . . . , n, such that the sum of squares

n∑

t=1

(Xt − Et−1[Xt])
2 (5.1)

26An application of the CLS method to the CIR process is given by Overbeck and Rydén
(1997).
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is minimized, where Et−1[Xt] is the conditional expectation given the information
set generated by the observations X1, . . . , Xt−1. This basic idea can be slightly
adapted to our particular estimation problem. As we have time-series as well as
cross-sectional data of the cash flows of our sample funds, a natural idea is to
replace the single observations Xt in relation (5.1) by the sample average values
X̄t.

27 See Appendix C for a detailed description of the estimation methodology.

5.3 Estimation Results

In implementing our estimation procedure, we use the quarterly cash flow data
of the 203 sample private equity funds. To make funds of different investment
size comparable, all capital drawdowns and distributions are first expressed as a
percentage of the corresponding total committed capital. Model parameters are
then estimated by using the time-series and cross-sectional data of the normalized
fund cash flows. Therefore, estimated model parameters represent the dynamics of
an average fund from our sample.

Table 3: Drawdown and Distribution Process Parameters

Table 3 shows the estimated (annualized) model parameters for the capital drawdowns and dis-
tributions of the 203 sample funds. Standard errors of the estimates are given in parentheses.
Standard errors of the estimated θ, κ and α coefficients are derived by a bootstrap simulation. In
addition, note that we set δ0 = 0 for all (sub-)samples.

Model Drawdowns Distributions

κ θ σδ m α σP

Total 7.3259 0.4691 4.7015 1.8462 0.0284 1.4152
(5.8762) (0.1043) - (0.1355) (0.0007) -

VC 13.3111 0.4641 5.2591 2.0768 0.0230 1.4667
(6.4396) (0.0869) - (0.2254) (0.0010) -

BO 4.9806 0.4797 4.5696 1.6133 0.0379 1.1966
(2.9514) (0.1142) - (0.0833) (0.0006) -

Table 3 shows the model parameters we estimated for the three (sub-)sample
of all (Total), venture (VC) and buyout (BO) funds. As for the capital drawdowns,
the estimated annualized long-run mean drawdown rate θ of all N = 203 sample
funds amounts to 0.47 p.a. This implies that in the long-run approximately 11.75
percent of the remaining committed capital is drawn on average in each quarter of
a fund’s lifetime. In addition, the exceptionally high value reported for the volatility
σδ indicates that the sample private equity funds draw down their capital at a very
fluctuating pace over time. When comparing the parameter values for venture and
buyout funds, it seems that venture and buyout funds on average draw down capital
at a qualitatively similar pace as the coefficients θ are almost equal among these
two sub-samples. However, it can also be inferred that the venture funds draw down
capital at a more fluctuating pace than their buyout counterparts. This conclusion

27In general, this technique especially draws appeal from the fact that it is very easy to
implement and works well with a low number of observations. Of course, other statistical
techniques could be utilized, tested, and compared against this approach as well.
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is supported by the higher value of the volatility σδ for the venture funds.28 As far
as the capital distributions are concerned, the long-run multiple m for all N = 203
sample funds is estimated to equal 1.85. That is, on average, the funds in our sample
distribute 1.85 times their committed capital over the total lifetime. The reported α
coefficient further implies that all sample funds have an average amortization period
of 7.41 years or around 89 months.29 The sub-sample of venture funds returned
substantially more capital to the investors than the corresponding sample buyout
funds. An additional comparison of the α coefficients reveals that the average
buyout fund tends to pay out its capital much faster than the average venture
fund.30 This result corresponds to the common economic notion that venture funds
invest in young and technology-oriented start-ups, whereas buyout funds invest in
mature and established companies. Growth companies typically do not generate
significant cash flows during their first years in business. Furthermore, it usually
takes longer until these investments can successfully be existed, for example, by an
IPO or trade-sale to a strategic investor. These conceptual differences in venture
and buyout funds can also help to explain the differences in the standard deviations
σP given in Table 3. Buyout funds distribute their capital at a more constant pace
and less erratic than venture funds. Therefore, the volatility σP is lower for the
buyout funds in our data sample.

Table 4: Other Structural Model Parameters

Table 4 shows the estimated annualized model parameters for the riskless rate of return (rf ), the
expected return (µW ) and standard deviation (σW ) of the market portfolio, and the correlation
(ρPW ) between changes in log capital distributions and market returns.

Correlation

Interest Rate Market Returns Total VC BO

Parameter rf µW σW ρPW ρPW ρPW

Value 0.0587 0.1072 0.1507 0.0662 0.1190 0.0129

To apply our model for the purpose of valuation and to calculate the expected
return of private equity funds, four additional parameter values have to be estimated:
the riskless rate of interest rf ; the expected return µW and standard deviation σW

of the market portfolio; and the correlation ρPW between changes in log capital
distributions and market returns. Table 4 summarizes our choices of parameter
values for these variables. We set rf = 0.0587, the sample mean of the annualized
monthly money market rates for three-month funds reported by Frankfurt banks
over the period from January 1, 1980 through June 30, 2003.31 The parameters
µW and σW are estimated from continuously compounded monthly returns of the
MSCI World Index over the same observation period, and are stated annualized.
The correlation ρPW between changes in log capital distributions and the market

28However, note that some of the higher volatility of the venture funds is absorbed by the
higher mean reversion coefficient κ that tends to “kill” some of the volatility.

29The expected amortization period can directly be inferred by solving equation (2.17) for
the amortization period tA.

30Note that these differences in α are also statistically significant for both data sample.
31Data can be obtained at: http://www.bundesbank.de.
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return is more difficult to estimate. Using the full sample of all 777 funds, we first
calculate for each month the rolling difference between the log capital distributions
over the last year and the log capital distributions over the previous year. We
then approximate ρPW by the correlation between the rolling changes in log capital
distributions and the corresponding continuously compounded rolling yearly MSCI
World returns. This gives a correlation of 0.4411 for venture funds and of 0.1739
for buyout funds. However, we find that the magnitude of these correlations is
mainly driven by a highly positive correlation between the variables from the year
2000 onwards.32 We exclude this period from the analysis, as the largest portion of
the capital distributions of our sample funds occurs before that period. This gives
the substantially lower correlation coefficients stated in Table 4 which are used in
the following.

5.4 Empirical Results

Having thus calibrated the model to historical fund cash flow data, we now turn
to the empirical results. First, a simple consistency test is presented to assess the
model’s goodness-of-fit with empirical cash flow data. Second, the implications of
our model with respect to valuation, illiquidity costs and expected returns of private
equity funds are analyzed.

A. Goodness-of-Fit of the Calibrated Model

We begin our examination of the calibrated model by assessing the model’s goodness-
of-fit with empirical data. A simple way to gauge the specification of our model
is to examine whether the model’s implied cash flow patterns are consistent with
those implicit in the time series of our defined data sample. That is, are the model
expectations of the cash flows similar in magnitude and timing to the average values
derived from their data samples counterparts?

In this sense, Figure 5 compares the historical average capital drawdowns, capital
distributions and net fund cash flows of all N = 203 sample funds to the correspond-
ing expectations that can be constructed from our model by using the parameters
reported in Table 3. Overall, the results from Figure 5 indicate an excellent fit of
the model with the historical fund data. In particular, as measured by the coefficient
of determination, R2, our model can explain a very high degree of 97.73 percent of
the variation in average yearly net fund cash flows. In addition, the mean absolute
error (MAE) of the approximation is only 1.56 percent p.a. (measured in percent of
the committed capital). Splitting the overall sample for venture and buyout funds,
we find that the quality of the approximation differs somewhat between these two
sub-samples. In general, the quality of approximation is slightly lower for the sub-
sample of venture funds, where R2 with 94.69 percent (MAE: 2.74 percent) takes
a smaller value than the for buyout funds with 97.02 percent (MAE: 1.58 percent).

This form of consistency test of our model can certainly only provide an incom-
plete picture of the goodness of fit of our model with empirical cash flow, as it is
only based on a comparison of the first distributional moment of the fund’s cash
flows. However, its economic relevance stems from the following line of argument.
Correctly forecasting expected cash flows of private equity funds over time is a

32This finding is consistent with very active IPO market in the years 2000 and 2001 and
declining equity markets and vanishing exit possibilities for private equity funds thereafter.
This, in particular, affects the magnitude of the correlation of venture funds.
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(a) Yearly Capital Drawdowns (Left) and Cumulated Capital Drawdowns (Right)
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(b) Yearly Capital Distributions (Left) and Cumulated Capital Distributions (Right)
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(c) Yearly Net Fund Cash Flows (Left) and Cumulated Net Fund Cash Flows (Right)

Figure 5: Model Expectations Compared to Historical Data of All
N = 203 Sample Funds (Solid Lines represent Model Ex-
pectations; Dotted Lines represent Historical Data)
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main ingredient in a model’s ability to correctly assess fund values. This follows as
the value is just the difference between the discounted sum of all expected capital
distributions and drawdowns, where expectations have to be evaluated under the
risk-neutral probability measures. Although our analysis focuses on expectations
under the objective probability measures here, the results suggest that our model
is of economic relevance for the valuation of private equity funds. The following is
concerned with its valuation implications.

B. Valuation Results

Having assessed the goodness-of-fit of our model, we can now turn to its empirical
implications. We start with the implications of our model concerning the value and
illiquidity costs of private equity funds. First, we employ the model to calculate
risk-adjusted excess values and implicit illiquidity costs of the sample private equity
funds. Second, we show how fund values and illiquidity discounts evolve over the
lifetime of the funds.

B.1 Excess Value and Illiquidity Costs

Table 5 gives our valuation results for the sample funds overall and broken down
by venture capital versus buyout funds. All reported values are derived under the
null that our model holds with the calibrated parameter values shown in Tables 3
and 4. The first panel of Table 5 gives the present values V P

0 and V D
0 of the capital

distributions and capital drawdowns, respectively, and the resulting fund values V F
0

at the starting date t = 0. The fund values V F
0 are equivalent to the ex-ante risk-

adjusted net present values of investing in a fund. Intuitively, this can be thought
of the present-valued return on committed capital, that is, the excess value created
for each dollar committed. Thus, $1 committed to private equity funds is worth
one plus V F

0 in present value terms. In addition, the second panel of Table 5 gives
the instantaneous illiquidity costs cill that are derived implicitly by assuming that
the risk-adjusted net present values V F

0 are compensation required by the investors
for the illiquidity of the funds. Instantaneous illiquidity costs are annualized and are
given as a percentage of the committed capital.

Table 5: Fund Value and Illiquidity Costs

The first panel of Table 5 gives the present values V P
0

and V D
0

and the resulting fund values V F
0

for the sample funds overall and broken down by venture capital versus buyout funds. The second
panel gives the instantaneous costs cill that are derived implicitly by assuming that the ex-ante
excess values V F

0
are compensation for holding an illiquid fund. Instantaneous illiquidity costs are

annualized and are given as a percentage of the committed capital of the funds.

Model Value Illiquidity Costs

V P
0 V D

0 V F
0 cill

All 1.1143 0.8663 0.2480 2.49%

VC 1.0918 0.8770 0.2147 2.15%

BO 1.1113 0.8541 0.2572 2.58%
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Several observations are in order. First, we find that private equity funds create
excess value on a risk-adjusted basis. The results in Table 5 show that the risk-
adjusted excess value (net-of-fees) of an average private equity fund in our sample
is on the order of 24.80 percent relative to $1 committed. That is, $1 committed
to a private equity funds is worth 1.2480 in present value terms. Second, these
excess values hold for both venture and buyout funds, though, in our sample buyout
funds create slightly more value. Third, by interpreting these excess values as a
compensation required by investors for illiquidity of the funds, we can implicitly
derive annualized illiquidity costs cill. Overall, the illiquidity costs are in the order
of 2.49 percent of committed capital p.a.33 The results also show that illiquidity
costs depend on the type of fund. Interestingly, the results imply that buyout
funds offer a higher compensation for illiquidity than venture funds. One possible
explanation for this is that investors of buyout funds require higher compensation
for illiquidity because of the larger size of the investments of these funds.34

A word of caution should be added in interpreting the above results. The
illiquidity costs are derived under the implicit assumption that excess values are
compensation for illiquidity of the funds only. The perils of doing so can be man-
ifold. In addition to illiquidity, private equity investors often are not sufficiently
diversified and some of the compensation may represent a premium for this non-
diversification. Furthermore, private equity investors may require additional com-
pensation for agency conflicts and asymmetric distribution of information. Overall,
these additional sources could reduce the estimated illiquidity costs stated above.
Therefore, the values given here should better be interpreted as an upper boundary
for the illiquidity costs that investors require.

B.1 Value Dynamics and Illiquidity Discounts

We can also employ our model to illustrate the dynamics of the fund values over
time. In this sense, Table 6 gives the dynamics of fund values under liquidity, V F

t ,

the corresponding fund values under illiquidity, V F,ill
t , and the illiquidity discounts,

Cill
t , for all three (sub-)samples of funds.35

It should first be noted that the dynamics of the fund values shown in Table 6
conform to reasonable expectations of private equity fund behavior. In particular,
the fund values increase over time as the investment portfolios are build up and
decrease towards the end as fewer and fewer investments are left to be exited.
In addition, two interesting differences between venture and buyout funds become
apparent. First, it can be inferred that buyout funds reach their maximum value
before the venture funds and that their values decrease faster towards the end. This
follows as venture funds have a slightly slower drawdown schedule and also distribute
capital slower than the buyout funds. Second, venture fund reach higher maximum
values. This holds as they, on average, also distribute substantially more capital to
the investors than the buyout funds. Table 6 does also give the illiquidity discounts

33Illiquidity costs are calculated using equation (3.11) by assuming an average lifetime of
the funds of 15 years.

34This hypothesis is supported by the results of Franzoni et al. (2009). Franzoni et al.
(2009) show that investment size is a positive and significant determinant of compensation
for illiquidity. They conjecture that larger investments are more sensitive to exit conditions
than smaller investments and thus, via this channel, are more exposed to liquidity risk.

35Note that for all t > 0, we suppress the stochastic behavior of the fund values and
illiquidity discounts over time by showing the unconditional expectations of these variables.
This is done here for illustrative purposes.
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Table 6: Value Dynamics over Time for Liquid and Illiquid Funds

Table 6 illustrates the dynamics of fund values under liquidity (V F
t ), the corresponding fund values under illiquidity (V F,ill

t ) and the illiquidity discounts (Cill
t ) for

all three (sub-)samples of funds. Note that unconditional expectations of the fund values and illiquidity discounts are shown for all t > 0 for illustrative purposes.

All Funds VC Funds BO Funds

Year V F
t V

F,ill
t Cill

t V F
t V

F,ill
t Cill

t V F
t V

F,ill
t Cill

t

0 0.2480 0.0000 0.2480 0.2147 0.0000 0.2147 0.2572 0.0000 0.2572
1 0.5756 0.3343 0.2413 0.5919 0.3829 0.2089 0.5340 0.2837 0.2502
2 0.7875 0.5533 0.2342 0.8314 0.6286 0.2028 0.7072 0.4644 0.2429
3 0.8803 0.6536 0.2267 0.9496 0.7534 0.1962 0.7634 0.5284 0.2350
4 0.8860 0.6673 0.2187 0.9797 0.7904 0.1893 0.7360 0.5092 0.2267
5 0.8313 0.6211 0.2102 0.9469 0.7650 0.1820 0.6550 0.4370 0.2179
6 0.7388 0.5377 0.2012 0.8717 0.6976 0.1742 0.5464 0.3378 0.2086
7 0.6271 0.4355 0.1916 0.7708 0.6049 0.1659 0.4305 0.2318 0.1987
8 0.5107 0.3291 0.1815 0.6576 0.5004 0.1572 0.3219 0.1337 0.1882
9 0.4000 0.2292 0.1708 0.5427 0.3948 0.1479 0.2289 0.0518 0.1771
10 0.3018 0.1424 0.1594 0.4338 0.2958 0.1380 0.1549 0.0000 0.1549
11 0.2195 0.0722 0.1474 0.3360 0.2084 0.1276 0.0998 0.0000 0.0998
12 0.1538 0.0193 0.1346 0.2519 0.1354 0.1165 0.0612 0.0000 0.0612
13 0.1037 0.0000 0.1037 0.1825 0.0777 0.1047 0.0356 0.0000 0.0356
14 0.0670 0.0000 0.0670 0.1271 0.0348 0.0923 0.0196 0.0000 0.0196
15 0.0411 0.0000 0.0411 0.0844 0.0053 0.0791 0.0101 0.0000 0.0101
16 0.0236 0.0000 0.0236 0.0523 0.0000 0.0523 0.0048 0.0000 0.0048
17 0.0120 0.0000 0.0120 0.0288 0.0000 0.0288 0.0020 0.0000 0.0020
18 0.0046 0.0000 0.0046 0.0120 0.0000 0.0120 0.0006 0.0000 0.0006
19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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we have constructed by assuming that ex-ante excess fund values are compensation
for illiquidity alone. In line with economic intuition, the results show that illiquidity
discounts are an increasing function in the remaining lifetime of the private equity
funds. That is, the higher the remaining lifetime of the fund, the higher are the
illiquidity discounts of the fund.

C. Expected Return and Systematic Risk

Finally, we turn to the implications of our model regarding the systematic risk and
expected return of private equity funds. Table 7 illustrates the dynamics of the
systematic risk, as measured by the beta coefficients, and of the expected fund
returns under liquidity and illiquidity that can be derived from our model for the
overall sample of funds and for the sub-samples of venture and buyout funds.36

These results reveal a number of interesting observations, some of which have not
yet been documented in the private equity literature.

First, and possibly most important, the results show that the beta coefficients,
βF

t , and expected fund returns under liquidity, Et[R
F
t ], follow distinct time-patterns.

The highest values of these variables can be observed at the start of the funds. Over
time, both variables decrease towards some constant level. Mathematically, this
time-pattern can easily be explained by equation (4.6) for the beta coefficient of a
private equity fund. Over time, as the fund builds up its investment portfolio and
draws down capital from the investors, the present value of the capital drawdowns
V D

t decreases. On average, drawdowns occur earlier than capital distributions under
our model specification. Therefore, the value V D

t decreases faster over the fund’s
lifetime than the value V P

t . As time passes by, V D
t eventually decreases to zero.

Therefore, the beta coefficient of the fund converges to the beta coefficient of the
capital distributions βP = σPW /σ2

W over time, and expected returns converge to
rf +βP (µW −rf ). From an economic standpoint, this result follows as the structure
of stepwise capital drawdowns of private equity funds acts like a financial leverage
that increases the beta coefficients of the funds as long as the committed capital
has not been completely drawn. Second, the results show that venture funds have
higher beta coefficients and therefore generate higher ex-ante expected returns than
buyout funds. Specifically, the results suggest that the beta risk of venture funds
is higher than the market and that the beta risk of buyout funds is substantially
lower than the market for all times during the lifetime considered. Third, we also
document how illiquidity of private equity funds affects expected returns over time.
All calculations here are again performed under the simplifying assumptions that
the excess values of the funds reported in Table 5 are compensation for illiquidity
alone and that illiquidity costs are constant over time. As expected, the results
show that illiquidity increases expected funds returns. This holds, in particular, at
the start and at the end of a fund’s lifetime, where increases in expected returns are
highest. The rationale behind this result is as follows. As discussed in Section 3.3,
illiquidity costs represent expected liquidation costs of a fund. That is the product
of the probability that an (average) investor has to liquidate his fund investment
per unit time by the costs of selling the fund. If the liquidation probability and
costs of selling a fund are assumed to be constant, regardless of the fund’s stage in
life, then relative illiquidity costs cill/V F

t are highest when the fund values are low.
That is at the start and end of a fund’s lifetime. From this effect, one can also see

36Note that the beta coefficients and expected returns in Table 7 are calculated by using
the unconditional expectations of the fund values shown in Table 6.
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Table 7: Expected Return and Systematic Risk over Time

Table 7 illustrates the dynamics of the beta coefficients (βF,t), the expected returns under liquidity (Et[RF
t ]) and the expected returns under illiquidity (Eill

t [RF
t ])

for all three (sub-)samples of funds.

All Funds VC Funds BO Funds

Year βF,t Et[R
F
t ] Eill

t [RF
t ] βF,t Et[R

F
t ] Eill

t [RF
t ] βF,t Et[R

F
t ] Eill

t [RF
t ]

0 2.7838 19.37% 27.86% 5.8753 34.35% 42.85% 0.4396 8.00% 16.50%
1 1.2559 11.96% 15.60% 2.2638 16.85% 19.91% 0.2181 6.93% 11.00%
2 0.9239 10.35% 13.01% 1.6536 13.89% 16.07% 0.1614 6.65% 9.73%
3 0.7979 9.74% 12.12% 1.4311 12.81% 14.72% 0.1393 6.55% 9.40%
4 0.7356 9.44% 11.81% 1.3245 12.29% 14.15% 0.1282 6.49% 9.45%
5 0.7006 9.27% 11.79% 1.2662 12.01% 13.93% 0.1219 6.46% 9.78%
6 0.6791 9.16% 12.01% 1.2317 11.84% 13.93% 0.1180 6.44% 10.42%
7 0.6653 9.10% 12.45% 1.2100 11.74% 14.10% 0.1156 6.43% 11.47%
8 0.6559 9.05% 13.17% 1.1958 11.67% 14.44% 0.1140 6.42% 13.15%
9 0.6491 9.02% 14.27% 1.1860 11.62% 14.98% 0.1130 6.42% 15.85%
10 0.6440 8.99% 15.94% 1.1790 11.59% 15.79% 0.1122 6.41% 20.25%
11 0.6396 8.97% 18.50% 1.1735 11.56% 16.98% 0.1114 6.41% 27.61%
12 0.6352 8.95% 22.49% 1.1688 11.54% 18.75% 0.1102 6.40% 40.24%
13 0.6298 8.92% 28.88% 1.1641 11.51% 21.46% 0.1077 6.39% 62.23%
14 0.6218 8.88% 39.41% 1.1584 11.49% 25.72% 0.1023 6.37% 100.34%
15 0.6218 8.88% 58.59% 1.1584 11.49% 32.95% 0.1023 6.37% 182.19%
16 0.6218 8.88% 95.58% 1.1584 11.49% 46.14% 0.1023 6.37% 359.17%
17 0.6218 8.88% 178.70% 1.1584 11.49% 74.41% 0.1023 6.37% 799.04%
18 0.6218 8.88% 448.74% 1.1584 11.49% 163.08% 0.1023 6.37% 2341.95%
19 - - - - - - - - -
20 - - - - - - - - -
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that illiquidity particularly increases expected returns at the end of the lifetime as
fund value V F

t decreases towards zero here.37

6 Conclusion

In this paper, we present a new stochastic model for the dynamics of a private equity
fund. Our work differentiates from previous research in the area of venture and pri-
vate equity fund modeling in the following respects. Our model of a fund’s capital
drawdowns and distributions is based on observable economic variables only. In this
sense, we do not specify a process for the dynamics of the unobservable value of a
fund’s assets over time, as done in the existing models of Takahashi and Alexander
(2002) and Malherbe (2004, 2005). Rather, we endogenously derive the market
value of a fund by using equilibrium intertemporal asset pricing considerations. The
combination of equilibrium asset pricing principles and appropriate economic mod-
eling of the underlying stochastic processes allows us to derive a simple closed-form
solution for the market value of a fund over time. This theoretical value enables
us to show how the value of a fund is related to its cash flow dynamics and to
general economic variables, such as the riskless rate of return and the correlation
between the fund’s cash flows and the returns on a market portfolio. With a simple
model extension, we also show how illiquidity affects fund values and how illiquid-
ity discounts of the funds change over time. Furthermore, we use our model to
explore the dynamics of the expected return and systematic risk of private equity
fund over time. This analysis complements the literature on the risk and return
characteristics of private equity funds, as it reveals that the systematic risk of a
funds will, in general, be non-stationary. To our knowledge, we are the first in the
finance literature that acknowledge the existence and importance of this effect for
private equity funds. The empirical part of our paper shows how our model can
be calibrated to cash flow data of a sample of European private equity funds and
analyzes its empirical implications. This provides a number of interesting insights,
some of which have not been noted in the private equity literature before.

37However, note that this is not necessarily the effect we want to stress here. Rather, the
point is to show how illiquidity affects returns during time periods in which fund values are
not close to zero.
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A Appendix: Derivation of the Value Under

Liquidity

In this appendix, we derive the arbitrage free value of a private equity fund stated
in Theorem 3.1. We start with the present value of the capital drawdowns V D

t that
can be stated as

V D
t = EQ

t

[∫ Tl

t

e−rf(τ−t)dτdτ

]
1{t≤Tc}. (A.1)

Note that we can first reverse the order of the expectation and the time integral in
(A.1) because of Fubini’s Theorem. That is

EQ
t

[∫ Tl

t

e−rf (τ−t)dτdτ

]
=

∫ Tl

t

e−rf (τ−t)EQ
t [dτ ]dτ (A.2)

holds, as the riskless rate rf is assumed to be constant. In addition, we have assumed
the drawdown rate to carry zero systematic risk. Therefore, the expectation on the
right hand side of (A.2) is similar under the risk-neutral measure Q and the objective
probability measure P, i.e. EQ

t [dτ ] = EP
t [dτ ]. Thus, inserting (2.8) directly yields

V D
t = −Ut

∫ Tl

t

e−rf (τ−t)C(t, τ)dτ1{t≤Tc}, (A.3)

where
C(t, τ) = (A′(t, τ) − B′(t, τ)δt) exp[A(t, τ) − B(t, τ)δt],

and A(t, τ), B(t, τ) are as given in (2.7)
We now turn to the present value of the capital distributions V P

t . Similarly to
above, applying Fubini’s Theorem gives

V P
t =

[∫ Tl

t

e−rf (τ−t)EQ
t [pτ ]dτ

]
. (A.4)

This reduces the problem to finding EQ
t [pτ ]. Solving the risk-neutralized process

(3.4) with λP = σPW /σP yields

pτ = αt(mC − Pt) exp{ − 1

2
[α(τ2 − t2) + σ2

P (τ − t)]

+ σP ǫt

√
τ − t − σPW (τ − t)}, (A.5)

for τ ≥ t.38 Taking the conditional expectations of (A.5) gives

EQ
t [pτ ] = αt(mC − Pt) exp

{
−1

2
[α(τ2 − t2) − σPW (t − s)

}
, (A.6)

Inserting this into (A.4), the present value of the capital distributions can be repre-
sented as

V P
t = α (m C − Pt)

∫ Tl

t

e−rf (τ−t)D(τ, t)dτ, (A.7)

38Note that the derivation of the risk-neutralized process (A.5) is similar to that shown in
Section 2.3.
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where

D(t, τ) = exp

[
ln τ − 1

2
α(τ2 − t2) − σPW (τ − t)

]
.

Finally, substituting (A.3) and (A.7) into the valuation identity, V F
t = V P

t −V D
t ,

gives the result stated in Theorem 3.1.

B Appendix: Derivation of the Expected Re-

turn

The purpose of this appendix is to derive the expected return of a private equity
fund stated in equation (4.4). The instantaneous return RF

t of a private equity fund
at time t is defined by

RF
t dt =

dV F
t + dPt − dDt

V F
t

. (B.1)

From an economic perspective, RF
t gives the return that can be earned by investing

in the fund over an infinitesimally short time interval [t, t + dt]. Dividing by the
time increment dt on both sides of equation (B.1) yields

RF
t =

dV F
t

dt + dPt

dt − dDt

dt

V F
t

. (B.2)

Substituting the conditions, V F
t = V P

t − V D
t and dV F

t /dt = dV P
t /dt − dV D

t /dt,
equation (B.2) can be rewritten as

RF
t =

dV P
t

dt − dV D
t

dt + dPt

dt − dDt

dt

V P
t − V D

t

. (B.3)

Taking the conditional expectation EP
t [·] of (B.3), the expected instantaneous fund

return is given by

EP
t

[
RF

t

]
=

EP
t

[
dV P

t

dt

]
− EP

t

[
dV D

t

dt

]
+ EP

t

[
dPt

dt

]
− EP

t

[
dDt

dt

]

EP
t

[
V P

t

]
− EP

t [V D
t ]

, (B.4)

where EP[dPt/dt] and EP[dDt/dt] denote expected instantaneous capital distribu-
tions and capital drawdowns, respectively. Under the specifications of our model,
the expected instantaneous change of the present value of the capital drawdowns
EP

t [dV D
t /dt] can be represented as

EP
t

[
dV D

t

dt

]
= −EP

t

[
dDt

dt

]
+ rf V D

t . (B.5)

This result can essentially be derived by using to different ways: (i) The first way is
to directly differentiate the value V D

t given by equation (3.6) with respect to t and
then take the conditional expectation of the result. After some tedious algebraic
transformations, it follows that, in fact, (B.5) holds. (ii) The second and much
faster way is to directly derive (B.5) by using the general equilibrium model given
by equation (3.1). From this, it must hold that

EP
t

[
dV D

t + dDt

V D
t

]
= rfdt, (B.6)
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where equality with the riskless rate of return rf follows from the fact that we have
assumed capital drawdown to carry zero systematic risk. Multiplying by V D

t and
rearranging directly leads to (B.5).

Following a similar line of argument, it can be inferred that the expected instan-
taneous change of the present value of the capital distributions EP

t [dV P
t /dt] can be

represented as

EP
t

[
dV P

t

dt

]
= −EP

t

[
dPt

dt

]
+ (rf + σPW )V P

t , (B.7)

where now, compared to equation (B.5), the additional term σPW V P
t enters into

the equation on the right hand side, as we have assumed (log) capital distributions
and the return on the market portfolio to be correlated with a constant coefficient
of covariation σPW .

Finally, substituting (B.5) and (B.7) into (B.4), the expected instantaneous fund
return turns out to be

µF
t = rf + σPM

V P
t

V P
t − V D

t

. (B.8)

C Appendix: Estimation Methodology

In this appendix, we present our estimation methodologies for the processes of the
capital drawdowns and capital distributions.

A. Capital Drawdowns

The modeling of the drawdown dynamics requires the estimation of the following
parameters: the long-run mean of the fund’s drawdown rate θ, the mean reversion
speed κ, its volatility σδ and its initial value δ0.

The objective is to estimate the model parameters θ, κ, σδ and δ0 from the
observable capital drawdowns of the sample funds at equidistant time points tk =
k∆t, where k = 1, . . . , M and M = T/∆t holds. To make the funds of different
size comparable, the capital drawdowns of all j = 1, . . . , N sample funds are first
standardized on the basis of each fund’s total invested capital. Let D∆t

k,j denote the
standardized capital drawdowns of fund j in the time interval [tk−1, tk]. Using this
definition, cumulated capital drawdowns Dk,j of fund j up some time tk are given

by Dk,j =
∑k

i=1 D∆t
i,j and undrawn committed amounts Uk,j at time tk are given

by Uk,j = 1 − Dk,j .
Using these definition, the (annualized) arithmetic drawdown rate δ∆t

k,j of fund
j in the interval [tk−1, tk] can be defined as

δ∆t
k,j =

D∆t
k,j

Uk−1,j · ∆t
. (C.1)

To estimate the model parameters we use the concept of conditional least squares
(CLS). The concept of conditional least squares, which is a general approach for es-
timation of the parameters involved in the conditional mean function EP[Xk|Xk−1]
of a stochastic process, was given a thorough treatment by Klimko and Nelson
(1978).39 The idea behind the CLS method is to estimate the parameters from

39An application of the CLS method to the CIR process considered here is given in Overbeck
and Rydén (1997).
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discrete-time observations {Xk} of a stochastic process, such that the sum of
squares

M∑

k=1

(Xk − EP[Xk|Fk−1])
2 (C.2)

is minimized, where Fk−1 is the σ-field generated by X1, . . . , Xk−1. This basic
idea can be slightly adapted to our particular estimation problem. As we have time-
series as well as cross-sectional data of the capital drawdowns of our sample funds,
a natural idea is to replace the Xk in relation (C.2) by the sample average X̄k.

Let Ūk denote the sample average of the remaining committed capital at time
tk of the sample funds, i.e., Ūk = 1

N

∑N
j=1 Uk,j . An appropriate goal function to

estimate the parameters θ and κ is then given by

M∑

k=1

(Ūk − EP[Uk|Fk−1])
2, (C.3)

where Fk−1 is the σ-field generated by Ū1, . . . , Ūk−1. The conditional expectation
can in discrete-time be written as:40

EP[Uk|Fk−1] = Ūk−1(1 − EP[δ∆t
k |Fk−1]∆t). (C.5)

Under the mean reverting square root process defined by (2.5), the conditional
expectation of the drawdown rate EP[δ∆t

k |Fk−1] is given by:41

EP[δ∆t
k |Fk−1] = θ(1 − e−κ∆t) + e−κ∆tδ̄∆t

k−1, (C.6)

where δ̄∆t
k denotes the average (annualized) drawdown rate of the sample funds

that is defined by

δ̄∆t
k =

1
N

N∑
j=1

D∆t
k,j

1
N

N∑
j=1

Uk−1,j∆t

. (C.7)

Substituting equation (C.6) and (C.5) into (C.3), the goal function to be minimized
turns out to be

M∑

k=1

{Ūk − Ūk−1[1 − (θ(1 − e−κ∆t) + e−κ∆tδ̄∆t
k−1)∆t]}2. (C.8)

Appropriate estimates of θ̂ and κ̂ can then be derived by a numerical minimization of
relation (C.8). This also requires the knowledge of the initial values of the drawdown

rate. For simplicity, this value is set to zero. That is, we assume δ̂0 = δ̄∆t
0 = 0 in

the following.

40This follows directly from the continuous-time specification dUt = −δtUtdt. In discrete-
time, this relation can be written as

Utk
= Utk−1

(1 − δ∆t
tk

∆t). (C.4)

Taking the conditional expectation EP[·|Fk−1] and replacing Utk−1
by the sample mean Ūtk−1

,
it follows that equation (C.5) holds.

41See Cox et al. (1985), p.392.
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The conditional variance of the capital drawdowns of fund j in the interval
[tk−1, tk] can be formulated as

EP[D∆t
k,j − EP[D∆t

k,j |Fk−1]|Fk−1]
2 = V arP[δ∆t

k,jUk−1,j∆t|Fk−1]

= (Uk−1,j∆t)2V arP[δ∆t
k,j |Fk−1]. (C.9)

Under the specification of the mean reverting square root process defined by (2.5),
the conditional variance V arP[δ∆t

k,j |Fk−1] of the drawdown rate is given by:42

V arP[δ∆t
k,j |Fk−1] = σ2

k,j(η0 + η1δ
∆t
k−1,j), (C.10)

where

η0 =
θ

2κ

(
1 − e−κ∆t

)2
,

η1 =
1

κ

(
e−κ∆t − e−2κ∆t

)
.

The conditional expectation EP[D∆t
k,j |Fk−1] can in discrete-time be written as

EP[D∆t
k,j |Fk−1] = EP[δ∆t

k,j |Fk−1]Uk−1,j∆t

= (γ0 + γ1δ
∆t
k,j)Uk−1,j∆t, (C.11)

with

γ0 = θ
(
1 − e−κ∆t

)
,

γ1 = e−κ∆t.

Substituting equation (C.10) and (C.11) into (C.9), an appropriate estimator of the
variance σ2

j of the drawdown rate of fund j turns out to be

σ̂2
j =

M∑

k=1

[D∆t
k,j − (γ̂0 + γ̂1δ

∆t
k−1,j)Uk−1,j∆t]2

(Uk−1,j∆t)2(η̂0 + η̂1δk−1,j)
, (C.12)

where γ̂0 and η̂0 are evaluated at (θ̂, κ̂) and so on. In the following, the sample
variance is then defined to be the simple average of the individual fund variances,
i.e., σ̂2

δ = 1
N

∑N
j=1 σ̂2

j .

B. Capital Distributions

The modeling of the distribution dynamics requires the estimation of the following
parameters: the long-run mean of the fund’s multiple m, the constant share of the
mean reversion speed α and the volatility σP .

The objective is to estimate the model parameters m, α and σP from the
observable capital distributions of the sample funds at equidistant time points tk =
k∆t, where k = 1, . . . , M and M = T/∆t holds. To make the funds of different
size comparable, the capital distributions of all j = 1, . . . , N sample funds are first
standardized on the basis of each fund’s total invested capital. Let P∆t

k,j denote the
standardized capital distributions of fund j in the time interval [tk−1, tk]. Using this

42See Cox et al. (1985), p.392.
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definition, cumulated capital distributions Pk,j of fund j up some time tk are given

by Pk,j =
∑k

i=1 P∆t
i,j .

From the definitions given above, the multiple Mj of fund j at the end of the
lifespan T is given by

Mj =

M∑

i=1

P∆t
i,j . (C.13)

An unbiased and consistent estimator for the long-run mean m is given by the
sample average, i.e.,

m̂ =
1

N

N∑

j=1

Mj . (C.14)

The second model parameter α cannot be observed directly from the capital distri-
butions of the sample funds. However, it can be estimated by using the conditional
least squares (CLS) method introduced above. In this case the conditional least
squares estimator α̂ minimizes the sum of squares

M∑

k=1

(P̄k − EP[Pk|Fk−1])
2, (C.15)

where P̄k = 1
N

∑N
j=1 Pk,j is the sample average of the cumulated distributions

at time tk and Fk−1 is the σ-field generated by P̄1, . . . , P̄k−1. By definition, the
conditional expectation EP[Pk|Fk−1] of the cumulated capital distributions is given
by:43

EP[Pk|Fk−1] = mC − (mC − P̄k−1) exp[−0.5α(t2k − t2k−1)]. (C.16)

Substituting this condition into equation (C.15), the corresponding sum of squares
to be minimized is given by

M∑

k=1

{
P̄k − m̂C + (m̂C − P̄k−1) exp[−0.5α(t2k − t2k−1)]

}2
, (C.17)

where the conditional expectation EP[Pk|Fk−1] is evaluated with m̂ and tk =
k∆t. An simple estimate for the parameter α̂ can then be derived by a numerical
minimization of statement (C.17).

In order to estimate the volatility of the capital distributions σP , we first calculate
the variances of the log capital distributions in each time interval [tk−1, tk] by

σ̂2
k = ln



 1

N

N∑

j=1

(P∆t
k,j )2



− 2 ln



 1

N

N∑

j=1

P∆t
k,j



 . (C.18)

The variance of the capital distributions σ2
P is then defined as the average of the

individual variances σ̂2
k (k = 1, . . . , M), where weighting is done with the average

distributions that occur in the given time period, i.e.,

σ̂2
P =

M∑

k=1





1
N

N∑
j=1

P∆t
k,j

m̂
σ̂2

k




. (C.19)

43This can directly be inferred from equation (2.13).
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The idea behind this is to weight the individual variances according to the magnitude
of the average capital distributions that occur in this time period.
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