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1 Introduction 

Traditional capital markets theory relies on the assumption that log prices are 

martingales, implying the expected value of log price is the log price in the previous period, 

and log returns are uncorrelated. Therefore, log prices follow random walks and log returns 

are unpredictable. This theory is called Random Walk Hypothesis (RWH) and represents one 

of the variants of the broader Efficient Market Hypothesis (EMH).  

Mainstream financial economics also relies on Normality of the log returns. For 

instance, non-Normality is not consistent with the Mean-Variance approach of portfolio 

theory (Markovitz, 1952, 1959) and the related Capital Asset Pricing Model. The pricing of 

financial derivatives according to the models developed by Black and Scholes (1972, 1973) 

and the risk-management approach Value At Risk (RiskMetrics, 1996) also rely on the 

assumption of Normality. 

In order to allow for non-Normality and autocorrelation in log returns, Peters (1994) 

introduces the Fractal Markets Hypothesis (FMH). The FMH does not reject a priori the 

assumption that returns are log-Normal and uncorrelated, but allows for a broader range of 

returns behaviour. As a result, the FMH does not necessarily constitute an alternative to the 

EMH, but rather a generalisation. 

The FMH derives its name from the theory of fractals (Mandelbrot, 1982). A fractal is 

an object whose parts resemble the whole. Peters (1994) argues that markets have a fractal 

nature: when markets are stable, returns calculated over different time scales (daily, weekly, 

monthly, and so on) exhibit the same statistical properties. For instance, if daily returns are 

leptokurtic, so are monthly returns; if daily returns exhibit positive autocorrelation, so do 

monthly returns. This feature is called self-affinity. 

The distributional properties and autocovariance structure of a self-affine time series 

can be represented by the Hurst exponent. In a financial time series, the Hurst exponent can 

be estimated to test the validity of the RWH. For Normal log returns, if the Hurst exponent is 

smaller (larger) than 0.5, negative (positive) autocorrelation exists for log returns calculated 

for any time scale. If the Hurst exponent is 0.5 the process is random, and the RWH is valid. 

A Hurst exponent larger than 0.5 suggests positive long-range autocorrelation in the log 

returns, and therefore the autocorrelation function decays slowly for log returns calculated for 

any time scale. A Hurst exponent smaller than 0.5 suggests negative autocorrelation for log 

returns calculated for any time scale. For independent returns, if the Hurst exponent is larger 

than 0.5 the distribution of returns calculated over any time scale is leptokurtic and the 

population variance is infinite. If the Hurst exponent is 0.5 the process is Normal. Often, the 

literature neglects the likely influence of non-Normality on the calculation of the Hurst 

exponent, or it simply assumes non-Normality increases the Hurst exponent and may thus 

lead to H > 0.5 even in the absence of long-range autocorrelation. The Rescaled Range 

Analysis (RRA) has been employed widely to calculate the Hurst exponent.   

This paper presents tests for the validity of the RWH for six stock markets located in 

developed European countries. We examine stock market indices comprising a large number 

of stocks, and therefore predictability due to thin trading is very unlikely. Rejection of the 

RWH due to long-range autocorrelation would therefore suggest that patterns in the stock 

returns of individual stocks do not dissipate quickly, and are likely to generate arbitrage 

opportunities.   
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We contribute to the extant literature in several ways. First, we provide robust 

evidence of significant long-range autocorrelation for the Mibtel, the index of the Italian 

stock market. Significant long-range autocorrelation is contrary to the RWH, because it 

implies that correlation patterns in the log returns do not dissipate quickly and could therefore 

be used for arbitrage opportunities.  

Second, unlike most of the extant literature, we employ Monte Carlo simulations to 

construct critical values for the null hypothesis of uncorrelated and Normal log returns. This 

enables us to assess whether the estimated Hurst exponents for the log return series are 

significantly different from the joint hypothesis of no long-range autocorrelation and 

Normality, and therefore do not comply with the RWH. 

Third, for each of the six log return series we compare the estimated Hurst exponent 

with the Hurst exponent estimated for two surrogate series: a shuffled surrogate, with the 

same probability distribution of the original series, but no autocorrelation; and a Normalised 

surrogate, with the same autocorrelation properties of the original series, but whose 

distribution is Normal. A comparison with both series is necessary if one aims to determine 

whether statistical departure from the RWH is genuine, that is, it is due to long-range 

autocorrelation, rather than non-Normality.  

Fourth, previous literature uses the RRA on the residuals of an autoregressive model 

of log returns, to avoid that short-range autocorrelation produce spurious detection of long-

range autocorrelation, or persistence (Peters, 1994; Opong et al., 1999). However, we argue 

that this procedure may impair the self-affine structure of the time series, which implies that 

the autocovariance function be the same at all time scales. We use both procedures (that is, 

we run the RRA both after pre-filtering is carried out, and on the log return series that have 

not been pre-filtered), and compare the results. The RRA applied to the pre-filtered log 

returns fails to reject the RWH for any of the indices. However, when the RRA is run on the 

log return series, evidence contrary to the RWH is found for the Mibtel, for which the Hurst 

exponent is significantly larger than 0.5. The Hurst exponent for a shuffled surrogate of the 

Mibtel log returns is found not to differ significantly from 0.5, while the Hurst exponent for a 

Normalised surrogate of the Mibtel log returns is found to differ from 0.5 at the 10% level of 

significance. Therefore, contravention of the RWH for the Mibtel is due to long-range 

autocorrelation. An examination of the fractal properties of the six indices over small and 

large time scales only has confirmed this finding.  

The results of the RRA for the other five indices do not provide evidence contrary to 

the RWH. However, there is evidence of short-term autocorrelation and non-Normality for 

small scales. We also find that pre-filtering the log return series prior to the RRA may 

increase the chances of a spurious detection of long-range autocorrelation, contrary to widely 

held belief.  

The rest of the paper is as follows. Section 2 reviews the properties of self-affinity, 

long-range autocorrelation, and the generalised Central Limit Theorem. Section 3 describes 

the methodology and data. Section 4 reports the results. Section 5 concludes. 

2 Self-affinity, long-range autocorrelation, and the generalised Central 

Limit Theorem 

Self-similarity is the distinguishing feature of fractals: each part comprising a fractal 

resembles the whole. In a financial time series, the weaker concept of self-affinity is 
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employed: self-affine time series have the same properties irrespective of the time scale (for 

instance, daily, weekly, or monthly returns). Section 2.1 describes the concept of self-affinity 

and the implications of self-affinity on the autocorrelation structure of the log returns 

measured over different time scales. Section 2.3 describes the properties of the Stable 

Paretian distribution and the generalised Central Limit Theorem.  

2.1 Self-affinity and the autocorrelation structure of a time series 

Self-affinity can be described mathematically as follows (Calvet and Fisher, 2002, p. 

383): 

         k

HH
d

k tXntXnntXntX ,...,,..., 11        (1) 

Where H > 0 and n, k, t1…tk ≥ 0, and 
d

  denotes equality in distribution. 

Self-affinity in a time series with Normal increments implies that the variance, γ0, 

scales proportionately with the time scale over which increments are measured, n, according 

to a factor of proportionality governed by the Hurst exponent, H: 

 )1(

0

2)(

0  Hn n           (2) 

The brackets encircling n and 1 are to denote that they are not exponents, but denote 

the time scale over which the increments are calculated. Self-affinity also implies that the 

autocorrelation function for lag k, )()()( / n

o

n

k

n

k γγρ  , does not depend on n. That is, 

)1()(

k

n

k ρρ  for n ≥ 1 and k ≥ 1. The first-order autocorrelation is 12 )12()(

1  Hn for n ≥ 1, and 

there are equivalent expressions for )(n

k  for k > 1 (Onali and Goddard, 2009). 

Fractional Brownian Motion (FBM) satisfies the property of self-affinity
1
. The FBM 

is a generalisation of the Brownian Motion, used to define a random walk process, and was 

introduced by Mandelbrot and van Ness (1968). This model has the same features as the 

Brownian Motion, but its increments can be dependent
2
. Correlation (at all time scales) in a 

self-affine series is represented by the parameter 10  H . For 0 < H < 0.5, the series is 

negatively correlated at all time scales, or antipersistent. For 0.5 < H < 1, the series is 

positively correlated at all time scales, or persistent. Temporal self-affinity ensures that ‘[…] 

the distribution of returns over different sampling intervals are identical except for a single, 

non-random contraction’ (Mandelbrot, Fisher and Calvet, 1997, p. 8). This has important 

consequences for researchers, as a time-inconsistent model renders the results reliable only 

for the selected time scale. For example, if weekly data are analysed, the results might not be 

valid for monthly data. 

Techniques based on the (temporal) self-affinity property have been employed to 

assess the degree to which returns are long-range dependent. If a log return series is found to 

be either persistent (H > 0.5) or antipersistent (H < 0.5), the Efficient Market Hypothesis 

                                                 
1
 Long-range dependence, and thus a slow decay for the autocorrelation function, is found in Autoregressive 

Fractionally Integrated Moving Average processes (ARFIMA, Granger and Joyeux, 1980; Hosking, 1981). 

ARFIMA(0,d,0) processes, where d = H-0.5, are asymptotically self-affine (Fisher, Calvet and Mandelbrot, 

1997).  
2
 The increments of the FBM constitute the Fractional Normal Noise (FGN), a stationary continuous process. 
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(EMH), in the form of the Random Walk Hypothesis (RWH), is violated. An extensive 

literature examines whether the RWH correctly represents the behaviour of stock market 

returns using fractal analysis. If the RWH is rejected, the FMH may represent a better 

explanation for the behaviour of stock returns. 

Empirical studies on the long-range autocorrelation properties of returns precede the 

FMH (Peters, 1994). Initially, evidence of long-range autocorrelation is found for the US 

stock market (Greene and Fielitz, 1977; Peters 1991). Subsequent refinements of the 

methodology used to measure long-range autocorrelation have produced results consistent 

with the Random Walk Hypothesis (Lo, 1991). Recently, Serletis and Rosenberg (2009) do 

not find evidence of persistence for four US stock market indices. International equity 

markets have also been examined (Cheung and Lai, 1995; Opong et al., 1999; Howe et al., 

1999; McKenzie, 2001; Costa and Vasconcelos, 2003; Kim and Yoon, 2004; Zhuang et al., 

2004; Norouzzadeh and Jafari, 2005; Onali and Goddard, 2009), as well as commodities 

markets (Cheung and Lai, 1993; Alvarez-Ramirez et al., 2002; Serletis and Rosenberg, 

2007), and exchange rates (Mulligan, 2000; Kim and Yoon, 2004; Da Silva et al., 2007). 

Recently, the connection between the Hurst exponent and market crashes has been 

investigated (Grech and Mazur, 2004; Grech and Pamula, 2008). Cajueiro and Tabak (2004, 

2005) endeavour to rank the degree of efficiency of emerging markets on the basis of the 

Hurst exponent for either stock returns or volatility of returns. Their findings differ according 

to whether stock returns or volatility of returns is examined.   

Many of the studies above neglect that, if the assumption of Normality of the 

increments is not satisfied, H > 0.5 does not necessarily imply long-range autocorrelation, 

because the estimation of H can be affected by the presence of non-Normality. Certain 

studies compare the Hurst exponent of a log return series with the Hurst exponent of a 

shuffled surrogate of the series (for instance, Peters, 1991). If the Hurst exponent of the 

shuffled surrogate is found to be lower than the Hurst exponent for the log return series, it is 

argued that there is long-range positive autocorrelation. However, in our view, this 

interpretation assumes that non-Normality can only result in an increase of the Hurst 

exponent. In the absence of a properly defined theory as to the impact of non-Normality on 

the Hurst exponent of a long-range autocorrelated series calculated using RRA, one cannot 

rely on this comparison only. A comparison of the estimated Hurst exponent with the Hurst 

exponent of a Normally distributed series with the same autocorrelation structure as the 

original series may be useful to improve robustness, although it may still not be decisive. In 

the next section, we discuss the properties of the Stable Paretian distribution, which is able to 

account for self-affinity of independent variables that are non-Normally distributed. 

2.2 The Stable Paretian distribution and the generalised Central Limit Theorem 

For independent processes, the Hurst exponent is the reciprocal of the characteristic 

exponent for Stable Paretian distributions
3
, α = 1/H. Unlike the Normal distribution, the 

Stable Paretian distribution allows for high ‘peakedness’, fat tails, and nonzero skewness. 

The log of the characteristic function of a Stable Paretian distribution, ψ(t), can be expressed 

as follows (Elton et al., 1975, p. 232): 

                                                 
3
 Stable Paretian distribution is also referred to as Mandelbrot-Lévy, L-stable, Lévy-stable, and Pareto-Lévy 

(Mulligan, 2004). 
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Where 1i . There are four parameters that define the shape of a Stable Paretian 

distribution:  

    is an estimate of the central tendency of the distribution. For α 

> 1, δ is the mean of the distribution. 

υ > 0  is a measure of the degree of dispersion about the central 

tendency parameter δ, and replaces the standard deviation when 

the distribution is not Normal (for α < 2). For δ = 0 and υ = 1 

the distribution is said to be in its reduced form (Peters, 1994). 

-1 < ζ < 1  is a measure of skewness; if ζ = 0 the distribution is 

symmetrical around δ, if ζ > 0 the distribution is skewed to the 

right and if ζ < 0 the distribution is skewed to the left. As 

2α , the distribution tends to become symmetric and ζ 

becomes irrelevant for the shape of the distribution (Jin and 

Frechette, 2002).  

α ≤ 2
4
  is a measure of the kurtosis of the distribution, i.e. the degree to 

which the data are clustered around the mean, and of the 

‘fatness’ of the tails. α = 2 for a Normal distribution and α < 2 

for a leptokurtic distribution. If α < 2 the variance is not 

defined, and if α < 1 the mean and the variance are not defined.  

Infinite variance is a feature that might appear counter-intuitive as it implies non-

stationarity in returns (i.e. absolute value of returns can be infinitely large). However, 

according to Mandelbrot, Fisher and Calvet (1997), there is no a priori justification for 

rejecting the hypothesis of infinite variance in returns. Early studies (Mandelbrot, 1963, 

1967; Fama, 1965; Roll, 1970) find that for log return series 1 < α < 2 (or 1 > H > 0.5).  More 

recently, evidence of existing second moments is found (Jansen and de Vries, 1991; Loretan 

and Phillips, 1994; Mantegna and Stanley, 1995; Pagan, 1996; Hiemstra and Jones, 1997; 

Annaert et al., 2001). 

Independent variables that are distributed according to (3) satisfy the property of 

‘stability under addition’, which is a generalisation of the Central Limit Theorem (CLT). The 

sum of independent and Stable Paretian distributed variables with α and ζ is a Stable Paretian 

distributed variable with the same α and ζ (Fama, 1965). In other words, the Stable Paretian 

distribution is able to account for self-affinity of a time series with independent non-Normal 

increments.  

                                                 
4
 According to Hols and de Vries (1991), non-integrated ARCH models and Student’s t processes can produce α 

> 2. However, Jamdee and Los (2005) argue that if α > 2 the probability distribution is not properly defined, 

because one or both tails of the distribution are outside the interval [0,1]. According to Annaert et al. (2001), α 

> 2 suggests that the Stable Paretian distribution simply cannot account for the properties of the time series 

examined. 
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3 Methodology and data 

In this paper, we use the Rescaled Range Analysis (RRA) to examine the fractal 

properties of six European indices. Section 3.1, describes the steps of the RRA for calculation 

of the Hurst exponent. Section 3.2 reports some descriptive statistics for the log returns of the 

six indices.   

3.1  Methodology 

The RRA is based on an examination of the average rescaled range of the cumulative 

deviation of a time series from its mean value within each of a number of subperiods. The 

rescaled range statistic, denoted (R/S)n, is specific to the time scale, n, equivalent to the 

number of daily returns observations included in each subperiod. To obtain an indication of 

the scaling behaviour of (R/S)n as n varies, (R/S)n is constructed so as to vary proportionately 

with n
H
. The RRA is performed using all observations of the log return series, for each n. 

Most previous studies discard the last few observations of the series when the total number of 

observations is not a multiple of n. Finally, in order to assess to what extent H ≠ 0.5 indicates 

violation of the RWH, Monte Carlo simulations of random Normal innovations are 

performed to obtain critical values for the significance of the departure from the null 

hypothesis, H = 0.5.  

Previous literature argues that pre-filtering using an AR(p) model is needed to avoid 

detecting spurious long-range autocorrelation (Peters, 1994; Opong et al., 1999). However, 

we argue that eliminating short-term autocorrelation might eliminate genuine long-range 

autocorrelation. For the properties of self-affine processes, the autocovariance structure for a 

certain lag k should be the same regardless of n. Therefore, eliminating autocorrelation for lag 

k and n = 1 could result in the elimination of autocorrelation for values of n other than 1. For 

this reason, and for comparability with previous literature, we run the RRA on both filtered 

and unfiltered log returns. 

Let N denote the total number of observations in the series zt, where zt is either the 

residuals of an AR(p) model on the log return series, tptt zrr   5
, or the log return 

series itself, rt. Starting from the first observation, subdivide N into M contiguous subperiods 

labelled m = 1,...,M, each containing n observations such that NMnnN  . For the 

observations within subperiod m, the mean and standard deviation of zt are: 





mn

nmt

tm zn
1)1(

1          (4) 




 
mn

nmt

mtm znS
1)1(

21 )(          (5) 

for Mm ,...,1 . 

The cumulative deviations of 
tz  from m within subperiod m are: 

                                                 
5
 The number of lags of the AR model, p, is equal to the lags for which the Partial Autocorrelation Function 

(PACF) is statistically significant at the 5%. Only lags up to the tenth lag are considered. 
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Where 1,...,1)1(  mnnmt , and 0nmx . 

The range for subperiod m is defined as the difference between the maximum and 

minimum values of xt for the observations within subperiod m: 

Rm = maxtm(xt) – mintm(xt)        (7) 

Commonly, N is not a multiple of n. If Mn < N, then L = N – nM observations at the 

end of the observation period are unused in the above procedure. To avoid discarding these L 

observations, the procedure is repeated starting from the L+1th observation (rather than from 

the first observation). A second set of M calculated values of Rm and Sm is obtained, where 

m=M+1,...,2M. If Mn = N, Rm and Sm for m = 1,...,M  are identical to Rm and Sm for m = 

M+1,...,2M. 

The (R/S)n statistic is the mean of the rescaled range values for m = 1,...,2M 





M

m

mmn SRMSR
2

1

1 )/()2()/(        (8) 

Finally, the scaling behaviour of (R/S)n can be investigated by examining the power-

law relationship (R/S)n ~ n
H
, where H is the Hurst Exponent. Having obtained values of (R/S)n 

for several time scales n, H can be estimated by running the ordinary least squares (OLS) 

regression 

ln[(R/S)n] = ln(c) + H ln(n) + ηn       (9)

  

where ηn is a disturbance term. 

The theoretical property of self-affinity applies to the distribution of returns calculated 

over all time scales. In practice, however, the scaling behaviour summarized by 

H

t

d
n

t nrr  )1()(  may vary with the time scale. In the case of the RWH (zero temporal 

correlation), (R/S)n ~ n . The Vn statistic is defined: 

nSRV nn /)/(                    (10)     

A plot of Vn against n provides a convenient visual indication of the variation in the 

scaling behaviour of (R/S)n with n . Asymptotically, Vn is constant over all n under the 

RWH, that is under the assumption of Normality and no autocorrelation. If there is 

persistence in the returns measured over a specific range of values for the time scale n, 

asymptotically Vn is increasing in n over this range. Similarly if there is antipersistence in 

returns measured over a specific range of values for n, asymptotically Vn is decreasing over 

this range.   

As noted earlier, the Hurst exponent is able to identify long-range autocorrelation in a 

Normal series as well as non-Normality in an independent series. However, when there is 
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both dependence and non-Normality the interpretation of the results is ambiguous. For this 

reason, I run the RRA on shuffled and Normalised surrogates of the log return series. The 

shuffle eliminates temporal correlation while preserving the original probability distribution. 

The Normalising procedure preserves temporal correlation but ensures that the log return 

series is distributed Normally.  

A shuffle surrogate is created using a method described by Norouzzadeh and Rahmani 

(2006, p331). Two integers t1 and t2 (1t1,t2N, where N is the number of observations) are 

drawn randomly from a uniform distribution, and the positions of rt1 and rt2 in {rt} are 

exchanged. The same procedure is repeated 20×N times, ensuring that the shuffled series is 

devoid of temporal correlation.  

A Normalising transformation is performed as follows. The original series {rt}, for 1 

 t  N, is sorted in ascending order. A variable s = 1,…,N is generated where 1  s  N. The 

original order is then replaced by sorting {rt}, {t} and {s} according to t. These steps ensure 

that, while the ordering of {rt} and {s} is based on the values of t, {s} can be used as an 

indicator for ranking {rt}: the smallest value for {rt} is for s = 1, the largest value for {rt} is 

for s = N, and for s1 < s2, rs1 < rs2. In the next step, two variables are generated: p ~ N(0,1) 

with N observations; and pσrq r  , where 



N

t

tr
N

r
1

1
and 

 

 




N

t

t
r

N

rr

1

2

1
 . Finally, 

{rt} is replaced by corresponding values of qs. For instance, the tenth observation for rt sorted 

according to t (rt=10) is replaced by the tenth observation of q sorted according to s (qs=10). 

The resulting series will have the same autocorrelation structure as {rt}, but the probability 

distribution will be Normal, because the variable q is Normal, with the same mean and 

standard deviation as {rt}.  

Several previous studies have noted that the application of the RRA in finite samples 

produces an upward-biased estimator of H (Feller, 1951; Anis and Lloyd, 1976; Peters, 1994; 

Qian and Rasheed, 2004; and Norouzzadeh and Jafari, 2005). Furthermore, in finite samples 

Vn is increasing in n under the RWH. Following Onali and Goddard (2009), Monte Carlo 

simulations are used to examine whether the estimated Hurst exponents for the log return 

series of the indices differ significantly from the value that is expected under the RWH
6
, and 

similarly whether the realised Vn statistics for each n differ significantly from those expected 

under the RWH. This procedure involves generating 5,000 simulated returns series 

containing random Normal innovations. The RRA is repeated for each of the simulated 

series, and the sampling distributions are obtained for the estimated H, and for the realized Vn 

for each n.  

3.2 Data and descriptive statistics 

Daily log returns have been calculated, based on closing daily prices provided by 

Thomson Analytics, for the following stock market indices: Mibtel (Milan), CDAX 

(Frankfurt), FTSE 350 (London), Amsterdam S.E. all-share (henceforth, ASE), Madrid S.E. 

all-share (MSE), and Swiss Market Index (SWX, Zurich).  

                                                 
6
 For convenience, I consider the RWH in the form that requires log returns to be Normally distributed. As long 

as log returns are stochastic (instead of deterministic), the RWH is valid. Therefore, rejection of the Normality 

assumption does not necessarily imply rejection of the RWH. However, non-Normal log returns weaken asset 

pricing models and other important approaches of mainstream capital markets theory. 
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Figure 1 exhibits the daily log returns, rt, of the six indices over time. Volatility 

clustering (heteroskedasticity) is apparent, as large returns (of either sign) tend to be 

concentrated within certain periods (high-volatility periods). This condition is believed to 

cause leptokurtosis in log returns (Chen et al, 2001). The assumption rt ~ N(μ,σ
2
) is 

substituted by rt  ~ D(μ,ht), where D is some non-Normal probability distribution, ht is the 

conditional variance, 2/1

ttt hur  , and ut are IID.  

   [insert figure 1 here] 

Table 1 reports descriptive statistics for the log return series on the indices for four 

time scales: daily, weekly, monthly, and quarterly
7
. The total observations for the four series 

are 2,608, 522, 120, and 40, respectively. The descriptive statistics shown in Table 1 relate to 

the first four central moments of the distribution of the log returns: mean, standard deviation, 

skewness, and kurtosis.  

   [insert table 1 here] 

The skewness is negative in most cases. As the time scale increases, the probability 

density functions of the log return series do not appear to become more symmetric. The 

departure from Normality for quarterly data is contrary to the alleged phenomenon of 

‘aggregational Normality’ (Cont, 2001). The presence of negative skewness for long time 

scales suggests that negative daily returns tend to cluster, making large cumulative losses 

more likely than large cumulative gains. Negative skewness implies large losses are more 

likely than large gains. Ceteris paribus, negative skewness should encourage investors to 

require higher expected returns than if the skewness is zero.  

The probability density functions of the log return series seem to become less 

leptokurtic as the time scale increases (although for the FTSE 350 the quarterly log returns 

are more leptokurtic than the monthly log returns). Leptokurtosis implies extreme returns of 

either sign are more likely than in a Normal distribution. Ceteris paribus, investors should 

require higher expected returns when the distribution is leptokurtic than in the case of a 

mesokurtic distribution (where the kurtosis is three).  

Given a random Normal variable u, with mean μ and standard deviation σ, the 

variable 





u
z  is a Normal variable with mean 0 and standard deviation 1. A plot of z 

against u, where the values of both variables are sorted in ascending order, is called Normal 

probability graph. Because z is a linear transformation of u, the graph is a straight line. 

However, for variables that are not Normal, the Normal probability graph is a curve that may 

assume a variety of shapes (Fama, 1965).  

Figure 2 shows the Normal probability graphs for the log returns of the six indices at 

the daily and monthly frequencies. The comparison between the quantiles of the probability 

density functions of the log returns and the quantiles of a Normal distribution shows for 

which quantiles there is evidence of departure from Normality, and the degree of such 

departure. As said before, if the distribution of log returns were Normal, the plot should be a 

straight line. Leptokurtosis should cause the extreme parts of the plots to diverge from a 

                                                 
7
 Given n the number of trading days comprising each time scale, for the daily returns, n = 1. For the other time 

scales, there is no exact correspondence between n and the actual time scale used in the analysis, as the number 

of trading days may vary according to the week, month, or quarter.   
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straight line representing the Normal case: for lower quantiles the lower half of the plot 

should bend downwards, since large negative returns are more likely than in a Normal 

distribution; for upper quantiles the upper part of the plot should bend upwards, since large 

positive returns are more likely than in a Normal distribution. 

   [insert figure 2 here] 

The plots show evidence of leptokurtosis in the daily log returns. The plots assume a 

typical inverted-S shape. Leptokurtosis decreases as the time scale becomes longer. This is 

reflected in the plots for the monthly returns lying closer to the straight line representing the 

case for which a Normal variable is plotted against the standard Normal distribution. 

However, it can be noticed that for the lower quantiles outliers still exist. Outliers for the 

lower quantiles cause the plots to diverge from the straight line in the extreme part of the 

lower half of the plots. The lower quantiles correspond to large negative returns. Consistent 

with Table 1, there is asymmetry even for long time scales. Negative skewness for long time 

scales may be due to clustering of negative daily returns. 

Provided the population variance is finite, the Central Limit Theorem (CLT) ensures 

that the sum of independent random variables converges to a Normal distribution as the 

number of variables increases, regardless of the distribution of each individual random 

variable. If the variance of the population is infinite, the standard CLT does not hold. In this 

case, the sum of IID variables converges to a Stable Paretian distribution with a characteristic 

exponent equal to that of the individual random variables. In order to investigate whether my 

data comply with the CLT once temporal correlation has been eliminated, the procedures 

described above are repeated on shuffled surrogates of the log return series, in which the 

ordering of the observations is randomised.     

Table 2 reports descriptive statistics for the shuffled surrogate of the log return series 

for four time scales: daily, weekly, monthly, and quarterly. There is little evidence of 

leptokurtosis for long time scales. In comparison with the results reported in Table 1, the 

degree of skewness is also less for long time scales. The reduction in skewness for long time 

scales in the shuffled series supports the hypothesis that negative skewness for long time 

scales may be due to clustering of negative daily returns. These results support the validity of 

the CLT.   

   [insert table 2 here]  

Similar to Figure 2, Figure 3 shows the Normal probability graphs for the shuffled log 

returns of the six indices at the daily and monthly frequencies. The plots for the daily 

frequency are the same as those exhibited in Figure 2, as the shuffle destroys temporal 

correlation leaving the probability density function unaltered. However, the shuffle may 

modify the probability density function of the monthly log returns. Before the shuffle, the 

clustering of positive (or negative) daily returns in a month may result in larger positive (or 

negative) monthly returns. On the other hand, periods of negative correlation in the daily 

returns tend to produce smaller monthly returns of either sign. The shuffle eliminates the 

effect of clustering, and therefore should also reduce skewness and leptokurtosis for large 

time scales.   

   [insert figure 3 here] 
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The plots for monthly returns in Figure 3 show a closer fit to the straight line than 

those exhibited in Figure 2. Consistent with Table 2, eliminating the temporal correlation 

through the shuffle procedure results in a significant reduction of leptokurtosis for log returns 

calculated for long time scales. The degree of asymmetry is also reduced. 

4 Results 

The Rescaled Range Analysis (RRA) is carried out over 40 values of the time scale 

parameter n, defined by increasing ln(n) in steps of 0.1 from a minimum of ln(n) = 1.6 (n = 5) 

to a maximum of ln(n) = 5.7 (n = 299). For each value of ln(n), n is obtained by rounding 

e
[ln(n)]

 to the nearest integer. Two of the 42 values of ln(n) in the range (1.6, 5.7) are 

discarded, because the integer values of e
[ln(n)]

 and e
[ln(n–0.1)]

 are identical. The results of the 

RRA for each index are compared with critical values obtained via Monte Carlo simulations. 

Section 3.1 reports the results for the pre-filtered log returns. Section 3.2 reports the results 

for the unfiltered log returns.  

4.1 Results for pre-filtered returns  

Tables 3, 4, and 5 report the estimation results for the RRA when the original log 

returns are pre-filtered using an AR(p) model before calculating the R/S statistic. The first 

column reports the name of the index. The second column reports the estimated Hurst 

exponent for the log return series of each index, Hi. The third column reports the estimated 

Hurst exponent for the shuffled log return series of each index, Hs. The fourth column reports 

the estimated Hurst exponent for the Normalised log return series of each index, HN. The 

sixth column reports the average Hurst exponent estimated with respect to the 5,000 Monte 

Carlo simulations, μH, and the Hurst exponents associated with the quantiles: 0.005, 0.025, 

0.050, 0.950, 0.975, and 0.999.  

Table 3 reports the estimation results for the time scales 2995  n . For the log return 

series of all six indices, the Hurst exponent estimated over the time scales 2995  n  is 

higher than the average H obtained from the 5,000 Monte Carlo simulations (μH = 0.572). 

However, none of such values is higher than the critical value associated with the 10% level 

of significance. Accordingly, a two-tail test fails to reject the null hypothesis of H = 0.5 (log 

returns are temporally uncorrelated at all time scales) in favour of the alternative H ≠ 0.5 

(long-range autocorrelation at all time scales) for any of the 6 indices. The estimated Hurst 

exponents for the shuffled log return series of all six indices are considerably lower than the 

estimated Hurst exponents for the original log return series. The estimated Hurst exponents 

for the Normalised log return series of all six indices are lower (but in some case the 

difference is very slight) than the estimated Hurst exponents for the original log return series. 

For all six indices, Hs < HN < Hi.  Therefore, temporal correlation seems to affect the 

estimated Hurst exponent for the log return series of the indices to a greater extent than non-

Normality does. However, none of such values is lower than the critical value associated with 

the 10% level of significance.  

   [insert table 3 here] 

To investigate whether there is any statistical evidence of departure from the RWH 

(due to either persistence or antipersistence) when returns are measured over small or large 

time scales only, the estimation of equation (9), ln[(R/S)n] = ln(c) + H ln(n) + ηn, and the 

Monte Carlo simulations are repeated, by fitting a spline function to allow for a change in the 
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estimated Hurst exponent at the midpoint of the set of 40 values for ln(n) used in the 

estimation. 

Table 4 reports the results for the spline regressions for the small time scales 5 ≤ n ≤ 

40. The format of the table is similar to that of Table 3. Hi is smaller (for the CDAX and 

SWX), larger (for the FTSE350 and the ASE), or equal (for the Mibtel and MSE) to the 

average Hurst exponent estimated via Monte Carlo simulations (μH = 0.606). However, as 

before, Hi is neither smaller nor larger than the critical values obtained via Monte Carlo 

simulations for any index. Unlike what observed for 5 ≤ n ≤ 299, Hs < Hi does not apply to all 

six indices, but only in four cases, and Hs < HN  only in two cases. On the contrary, HN < Hi 

still applies to all six indices. Therefore, non-Normality influences the estimated Hurst 

exponent for 5 ≤ n ≤ 40 to a greater extent than for 5 ≤ n ≤ 299. This is consistent with a more 

leptokurtic distribution for small n than for large n, as shown in section 3.2.  

    [insert table 4 here] 

Table 5 reports the results for the spline regressions for the large time scales 40 ≤ n ≤ 

299. The format of the table is similar to that of Table 3 and Table 4. Hi is neither smaller nor 

larger than the relevant critical values obtained via Monte Carlo simulations. However, Hi is 

larger than the average Hurst exponent estimated via Monte Carlo simulations (μH = 0.540) 

for all six indices. Therefore some pattern, due to either long-range autocorrelation or non-

Normality, might be present. For all six indices Hs < Hi. Similar to what obtained for 5 ≤ n ≤ 

299, HN > Hi for all six indices. Temporal correlation appears to affect the time series 

properties of the log return series to a greater extent than non-Normality does. For the Mibtel 

and MSE HN > Hi, indicating that, once non-Normality is taken into account, temporal 

correlation appears even stronger. Thus, it appears that non-Normality and long-range 

temporal correlation in a series might combine together in various ways, which may hinder 

the interpretation of the Hurst exponent. 

   [insert table 5 here] 

4.2 Results for unfiltered returns 

Tables 6, 7, and 8 report the estimation results for the RRA when the original log 

returns are not pre-filtered using an AR(p) model before calculating the R/S statistic. 

Table 6 reports the estimation results for the time scales 2995  n . There are several 

differences with respect to the results reported in Table 3. Hi for the FTSE 350 is lower than 

μH and than Hi when pre-filtering of the log returns is carried out prior to the RRA. A higher 

Hi when pre-filtering is carried out is due to significantly negative autocorrelation for the lags 

3, 5, 6, and 10 in the latter. Therefore, pre-filtering might increase the probability of a 

spurious detection of long memory, contrary to widely held beliefs (for instance, Lo, 1991). 

Hi for the Mibtel is significantly larger than 0.5 (at the 5% level of significance). This result 

is in contravention of the RWH, and implies that using pre-filtered log returns may prevent 

the detection of long-range autocorrelation. Moreover, Hs is not significantly different from 

0.5, while HN is very close the Hi, suggesting that long-range autocorrelation is correctly 

detected. Further discrepancies between the results reported in Table 6 and those reported in 

Table 3 are as follows: 
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- When pre-filtering is carried out on the log returns, Hs < HN < Hi for 

all six indices – when pre-filtering is not carried out, Hs < HN < Hi only for the 

Mibtel, CDAX, and SWX 

- For the FTSE 350 Hs > Hi > HN, suggesting that non-Normality has a 

large impact on the estimation of the Hurst esponent 

- For the ASE HN < Hs < Hi.  

 [insert table 6 here] 

Table 7 reports the results for the spline regressions for the small time scales 5 ≤ n ≤ 

40. For all indices except the Mibtel, Hi for the original log returns is lower than Hi for the 

pre-filtered log returns, suggesting that pre-filtering may increase the chances of a spurious 

detection of long-range autocorrelation. For the Mibtel, Hi and HN for the original log returns 

are higher than Hi and HN for the pre-filtered log returns.  

  [insert table 7 here] 

Table 8 reports the results for the spline regressions for the large time scales 40 ≤ n ≤ 

299. Consistent with what found for 5 ≤ n ≤ 299, some departure from the RWH is found for 

the Mibtel, for which Hi and HN are different from 0.5 at the 10% level of significance. 

Rejection of the null hypothesis for large time scales, even if for a relatively low level of 

significance, suggests long-range autocorrelation is not spurious. For the FTSE 350, similar 

to what found for 5 ≤ n ≤ 299, Hi estimated without pre-filtering the log returns is lower than 

when pre-filtering is carried out. Therefore, as before, pre-filtering might cause detection of 

long memory when it does not exist, rather than avoiding detection of long memory when 

returns are not long-range autocorrelated.  

 

  [insert table 8 here] 

 

The behaviour of the V-statistic, Vn = (R/S)n/n
0.5

, indicates how patterns in temporal 

correlation vary over different time scales.  

Figure 4 shows the plot of the realized values of Vi against ln(n) for the log returns of 

the Mibtel, together with the plots of the shuffled and Normalised log return series, Vs and VN 

respectively, and the plots of the mean values of the V-statistic for each n obtained from the 

5,000 replications of the Monte Carlo simulation (Vm), and the 0.975 and 0.025 quantiles of 

the sampling distributions of the V-statistic for each n obtained from the Monte Carlo 

simulation (V.975 and V.025, respectively). The realised values of Vi are similar to those of Vm 

over low values of n, but the two plots tend to diverge for large n. Evidence contrary to the 

RWH is found for values for which the plot of Vi breaks through the upper critical value 

associated with the 5% level of significance: 49 ≤ n ≤ 67 (3.9 ≤  ln(n) ≤ 4.2), 99 ≤ n ≤ 110 

(4.6 ≤  ln(n) ≤ 4.7), n = 134 (ln(n) = 4.9), n = 164 (ln(n) = 5.1), and 245 ≤ n ≤ 299 (5.5 ≤  

ln(n) ≤ 5.7). Similar comments can be made with respect to the plot of VN for the scales: n = 

67 (ln(n) = 4.2), n = 99 (ln(n) = 4.6), n = 164 (ln(n) = 5.1), and 245 ≤ n ≤ 299 (5.5 ≤  ln(n) ≤ 

5.7). The plot of Vs tends to bend downward for large values of n. Therefore, the V-statistic 

confirms that long-range autocorrelation may exist for the Mibtel.    

  [insert figure 4 here] 
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Figure 5 shows the plots of Vi, Vs, and VN for the CDAX, along with Vm, V.975 and 

V.025. Evidence contrary to the RWH is found for n = 270 (ln(n) = 5.6), for which Vi >  V.975. 

The plot of Vs breaks through V.025 for approximately 49 ≤ n ≤ 60, or 3.9 ≤ ln(n) ≤ 4.1.  

  [insert figure 5 here] 

Figure 6 shows the plots of Vi, Vs, and VN for the FTSE 350, along with Vm, V.975 and 

V.025. The plots show that Vi and Vs, never fall outside the range of values defined in (V.975, 

V.025). Therefore, the FTSE 350 behaves consistently with the RWH for all time scales (5 ≤ n 

≤ 299).  

  [insert figure 6 here] 

Figure 7 shows the plots of Vi, Vs, and VN for the ASE, along with Vm, V.975 and V.025. 

Vi lies within the boundaries defined by V.975 and V.025 for all time scales.  

  [insert figure 7 here] 

Figure 8 shows the plots of Vi, Vs, and VN for the MSE, along with Vm, V.975 and V.025. 

The plot of Vi suggests departure from the RWH for n = 15 (ln(n) = 2.7), for which Vi > V.975. 

For larger values of n, the results are consistent with the RWH. Therefore, some departure 

from the RWH appears due to short-range autocorrelation. 

  [insert figure 8 here] 

Finally, Figure 9 shows the plots of Vi, Vs, and VN for the SWX, along with Vm, V.975 

and V.025. The plots of Vi and VN tend not to diverge substantially from Vm, although VN > V.975 

for n = 5, 10 (ln(n) = 1.6, 2.3). While for very large scales Vi and VN tend to be larger than 

Vm, the plots do not break through the boundary represented by the plot of V.975. Departure 

from the RWH is therefore not detected according to conventional standard criteria.  

  [insert figure 9 here] 

5 Conclusions 

This paper presents an empirical analysis of the unifractal properties of the log returns 

of six European stock market indices. Preliminary tests have shown non-Normality in the 

probability distribution function of the log returns calculated for various time scales. 

However, once temporal correlation in the daily log returns is eliminated through a shuffle 

procedure, the distribution of the log returns calculated for large time scales tends towards 

Normality.  

We have employed the Rescaled Range Analysis (RRA) to investigate the long-range 

properties of the log returns of the indices. The RRA enables the calculation of the Hurst 

exponent. If the estimated Hurst exponents for any of the six stock market indices were found 

to be significantly larger than 0.5, there would be long-range autocorrelation, or non-

Normality, or both. In order to correctly identify long-range autocorrelation and/or non-

Normality, two surrogate series for each index have been created: a Normal series with the 

same autocorrelation structure as the original log return series; and a series with no 

autocorrelation but the same probability distribution as the original log return series. For the 

properties of the Stable Paretian distribution, if H > 0.5 and log returns are independent the 
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population variance is infinite. If H > 0.5 and log returns are Normally distributed, there is 

long-range positive autocorrelation, and returns are predictable.  

We run the RRA on the log return series of the six indices and find evidence contrary 

to the RWH is for the Mibtel, for which the Hurst exponent is significantly larger than 0.5. 

The Hurst exponent for a shuffled surrogate of the Mibtel log returns is found not to differ 

significantly from 0.5, while the Hurst exponent for a Normalised surrogate of the Mibtel log 

returns is found to differ from 0.5 at the 10% level of significance. Therefore, contravention 

of the RWH for the Mibtel is due to long-range autocorrelation. Long-range autocorrelation 

in the log returns implies possible arbitrage opportunities that exploit predictability in the log 

returns. The results for the other five indices do not provide evidence contrary to the RWH.  
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Figure 1: Fluctuations of rt over the period 31/08/1995-30/08/2005. 
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Figure 2: Normal probability graphs for the daily and monthly log returns. 

     Mibtel 

-.
1

-.
0

5

0

.0
5

.1

-.04 -.02 0 .02 .04

-.
2

-.
1

0
.1

.2

-.2 -.1 0 .1 .2

 
     CDAX 

-.
1

-.
0

5

0

.0
5

.1

-.05 0 .05

-.
3

-.
2

-.
1

0
.1

.2

-.2 -.1 0 .1 .2

 
     FTSE 350 

-.
0

5

0

.0
5

-.04 -.02 0 .02 .04

-.
1

5
-.

1
-.

0
5

0

.0
5

.1

-.1 -.05 0 .05 .1

 

 

 

 

 

Monthly Daily 

Daily Monthly 

Daily Monthly 



23 

 

Figure 2 continued 
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Figure 3: Normal probability plots for the daily and monthly shuffled log returns. 
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Figure 3 continued 
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Figure 4: Plots of the realised values of Vi against Vs, VN, Vm, V.975 and V.025 – Mibtel. 

 

 
       Notes:  

Vi  refers to the V-statistic for the log return series of Mibtel for scale {n}. 

Vs refers to the V-statistic of the shuffled log return series of Mibtel for scale {n}. 

VN refers to the V-statistic of the Normalised log return series of Mibtel for scale {n}. 

Vm refers to the average V-statistic calculated for each scale {n} and obtained from the 5,000 

Monte Carlo simulations. 

V.975 refers to the upper critical value (5% level) of the V-statistic calculated for each scale {n} 

and obtained from the 5,000 Monte Carlo simulations. 

V.025 refers to the lower critical value (5% level) of the V-statistic calculated for each scale {n} 

and obtained from the 5,000 Monte Carlo simulations. 
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Figure 5: Plots of the realised values of Vi against Vs, VN, Vm, V.975 and V.025 – CDAX. 

 

 
       Notes:  

Vi  refers to the V-statistic for the log return series of CDAX for scale {n}. 

Vs refers to the V-statistic of the shuffled log return series of CDAX for scale {n}. 

VN refers to the V-statistic of the Normalised log return series of CDAX for scale {n}. 

Vm refers to the average V-statistic calculated for each scale {n} and obtained from the 5,000 

Monte Carlo simulations. 

V.975 refers to the upper critical value (5% level) of the V-statistic calculated for each scale {n} 

and obtained from the 5,000 Monte Carlo simulations. 

V.025 refers to the lower critical value (5% level) of the V-statistic calculated for each scale {n} 

and obtained from the 5,000 Monte Carlo simulations. 
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Figure 6: Plots of the realised values of Vi against Vs, VN, Vm, V.975 and V.025 – FTSE 350. 

 

  
       Notes:  

Vi  refers to the V-statistic for the log return series of FTSE 350 for scale {n}. 

Vs refers to the V-statistic of the shuffled log return series of FTSE 350 for scale {n}. 

VN refers to the V-statistic of the Normalised log return series of FTSE 350 for scale {n}. 

Vm refers to the average V-statistic calculated for each scale {n} and obtained from the 5,000 

Monte Carlo simulations. 

V.975 refers to the upper critical value (5% level) of the V-statistic calculated for each scale {n} 

and obtained from the 5,000 Monte Carlo simulations. 

V.025 refers to the lower critical value (5% level) of the V-statistic calculated for each scale {n} 

and obtained from the 5,000 Monte Carlo simulations. 
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Figure 7: Plots of the realised values of Vi against Vs, VN, Vm, V.975 and V.025 – ASE. 

 

  
       Notes:  

Vi  refers to the V-statistic for the log return series of ASE for scale {n}. 

Vs refers to the V-statistic of the shuffled log return series of ASE for scale {n}. 

VN refers to the V-statistic of the Normalised log return series of ASE for scale {n}. 

Vm refers to the average V-statistic calculated for each scale {n} and obtained from the 5,000 

Monte Carlo simulations. 

V.975 refers to the upper critical value (5% level) of the V-statistic calculated for each scale {n} 

and obtained from the 5,000 Monte Carlo simulations. 

V.025 refers to the lower critical value (5% level) of the V-statistic calculated for each scale {n} 

and obtained from the 5,000 Monte Carlo simulations. 
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Figure 8: Plots of the realised values of Vn against Vm, V.975 and V.025 – MSE. 

 

 
       Notes:  

Vi  refers to the V-statistic for the log return series of MSE for scale {n}. 

Vs refers to the V-statistic of the shuffled log return series of MSE for scale {n}. 

VN refers to the V-statistic of the Normalised log return series of MSE for scale {n}. 

Vm refers to the average V-statistic calculated for each scale {n} and obtained from the 5,000 

Monte Carlo simulations. 

V.975 refers to the upper critical value (5% level) of the V-statistic calculated for each scale {n} 

and obtained from the 5,000 Monte Carlo simulations. 

V.025 refers to the lower critical value (5% level) of the V-statistic calculated for each scale {n} 

and obtained from the 5,000 Monte Carlo simulations. 
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Figure 9: Plots of the realised values of Vn against Vm, V.975 and V.025 – SWX. 

 

  
       Notes:  

Vi  refers to the V-statistic for the log return series of SWX for scale {n}. 

Vs refers to the V-statistic of the shuffled log return series of SWX for scale {n}. 

VN refers to the V-statistic of the Normalised log return series of SWX for scale {n}. 

Vm refers to the average V-statistic calculated for each scale {n} and obtained from the 5,000 

Monte Carlo simulations. 

V.975 refers to the upper critical value (5% level) of the V-statistic calculated for each scale {n} 

and obtained from the 5,000 Monte Carlo simulations. 

V.025 refers to the lower critical value (5% level) of the V-statistic calculated for each scale {n} 

and obtained from the 5,000 Monte Carlo simulations. 
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Table 1: Descriptive statistics for the log return series calculated for the time scales: daily, weekly, 

monthly, and quarterly. 

 Mean Standard deviation 

 D W M Q D W M Q 

Mibtel 0.0004 0.0018 0.0077 0.0230 0.0128 0.0285 0.0644 0.1037 

CDAX 0.0002 0.0009 0.0041 0.0123 0.0138 0.0296 0.0654 0.1062 

FTSE350 0.0002 0.0008 0.0036 0.0109 0.0103 0.0212 0.0400 0.0661 

ASE 0.0003 0.0013 0.0055 0.0165 0.0135 0.0284 0.0589 0.0982 

MSE 0.0005 0.0024 0.0103 0.0310 0.0124 0.0268 0.0585 0.0957 

SWX 0.0003 0.0015 0.0066 0.0199 0.0124 0.0263 0.0530 0.0898 

 Skewness Kurtosis 

 D W M Q D W M Q 

Mibtel -0.2069 -0.3173 0.2048 0.4449 6.1328 5.0851 3.8485 3.2967 

CDAX -0.2404 -0.4544 -0.8957 -0.4392 5.9983 5.9294 5.5214 3.3556 

FTSE350 -0.2426 -0.3489 -0.9070 -0.8632 5.9985 5.0516 4.1338 4.5561 

ASE -0.2144 -0.6814 -0.8963 -1.0305 6.4857 5.6720 4.3286 4.2485 

MSE -0.2481 -0.5190 -0.6175 -0.4311 5.7933 5.5297 4.4316 3.1450 

SWX -0.1546 -0.3278 -1.0693 -0.8010 7.2722 6.9835 5.3010 4.0282 

Notes:  

D = daily, W = weekly, M = monthly, and Q = quarterly. The number of observations for each sample 

frequency is: 2,608 (D), 522 (W), 120 (M) and 40 (Q). 
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Table 2: Descriptive statistics for the shuffled log return series calculated for the time scales: daily, 

weekly, monthly, and quarterly. 

 Mean Standard deviation 

 D W M Q D W M Q 

Mibtel 0.0004 0.0018 0.0077 0.0230 0.0128 0.0284 0.0594 0.1053 

CDAX 0.0002 0.0009 0.0041 0.0123 0.0138 0.0306 0.0576 0.1050 

FTSE350 0.0002 0.0008 0.0036 0.0109 0.0103 0.0233 0.0479 0.0719 

ASE 0.0003 0.0013 0.0055 0.0165 0.0135 0.0296 0.0678 0.1189 

MSE 0.0005 0.0024 0.0103 0.0310 0.0124 0.0277 0.0568 0.1011 

SWX 0.0003 0.0015 0.0066 0.0199 0.0124 0.0247 0.0529 0.1008 

 Skewness Kurtosis 

 D W M Q D W M Q 

Mibtel -0.2069 0.0058 -0.1245 0.2896 6.1328 3.5781 3.3671 2.8103 

CDAX -0.2404 -0.2658 0.0869 -0.1896 5.9983 3.3644 3.6264 2.8605 

FTSE350 -0.2426 -0.1545 -0.3739 -0.3915 5.9985 3.5712 2.7612 3.1666 

ASE -0.2144 0.0029 0.3306 0.3772 6.4857 3.1832 3.6534 2.6888 

MSE -0.2481 -0.1944 -0.3888 -0.2709 5.7933 3.6475 3.6577 2.2852 

SWX -0.1546 -0.2709 0.1806 -0.2209 7.2722 3.5318 2.9351 2.6644 

Notes:  

D = daily, W = weekly, M = monthly, and Q = quarterly. The number of observations for each sample 

frequency is: 2,608 (D), 522 (W), 120 (M) and 40 (Q). 
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Table 3: Rescaled Range Analysis results (with pre-filtering). 

Index Hi Hs HN 

Monte Carlo simulations 
 

Mean and critical 

values 
Estimated H 

Mibtel 0.593 0.560 0.592 μH 0.572 

CDAX 0.592 0.559 0.580 quantiles  

FTSE350 0.585 0.564 0.576 0.005 0.528 

ASE 0.596 0.575 0.586 0.025 0.539 

MSE 0.590 0.561 0.589 0.050 0.545 

SWX 0.598 0.550 0.588 0.950 0.601 

    0.975 0.612 

    0.999 0.618 

Notes:  

The second column reports the estimated Hurst exponent for the log return series of each index, Hi. The third column reports the estimated Hurst exponent for the shuffled log 

return series of each index, Hs. The fourth column reports the estimated Hurst exponent for the Normalised log return series of each index, HN. The sixth column reports the 

average Hurst exponent estimated with respect to the 5,000 Monte Carlo simulations, μH, and the Hurst exponents associated with various quantiles of the Monte Carlo 

simulations. The series have been pre-filtered using an AR(p) model, where p includes the lags (up to the tenth lag) for which the partial autocorrelation function of the log 

returns is significantly (α = 5% level at least) different from zero. The lags used for each index are: Mibtel – 4
th

 lag; CDAX – 6
th

 and 8
th

 lag; FTSE350 – 3
rd

, 5
th

, 6
th

, 8
th

, 10
th

 

lag; ASE – 3
rd

, 5
th

, 8
th

, 9
th

 lag; MSE – 3
rd

, 8
th

, 10
th

 lag; SWX – 5
th

 lag.  
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Table 4: Rescaled Range Analysis (with pre-filtering) with spline regressions for 5 ≤ n ≤ 40. 

Index Hi Hs HN 

Monte Carlo simulations 
 

Mean and critical 

values 
Estimated H 

Mibtel 0.606 0.611 0.598 μH 0.606 

CDAX 0.591 0.580 0.577 quantiles  

FTSE350 0.617 0.612 0.612 0.005 0.562 

ASE 0.614 0.593 0.600 0.025 0.573 

MSE 0.606 0.613 0.597 0.050 0.579 

SWX 0.603 0.577 0.598 0.950 0.633 

    0.975 0.645 

    0.999 0.650 

Notes:  

The second column reports the estimated Hurst exponent for the log return series of each index, Hi. The third column reports the estimated Hurst exponent for the shuffled log 

return series of each index, Hs. The fourth column reports the estimated Hurst exponent for the Normalised log return series of each index, HN. The sixth column reports the 

average Hurst exponent estimated with respect to the 5,000 Monte Carlo simulations, μH, and the Hurst exponents associated with various quantiles of the Monte Carlo 

simulations. The series have been pre-filtered using an AR(p) model, where p includes the lags (up to the tenth lag) for which the partial autocorrelation function of the log 

returns is significantly (α = 5% level at least) different from zero. The lags used for each index are: Mibtel – 4
th

 lag; CDAX – 6
th

 and 8
th

 lag; FTSE350 – 3
rd

, 5
th

, 6
th

, 8
th

, 10
th
 

lag; ASE – 3
rd

, 5
th

, 8
th

, 9
th

 lag; MSE – 3
rd

, 8
th

, 10
th

 lag; SWX – 5
th

 lag. 

 

 

 

 

 

 

 

 



36 

 

Table 5: Rescaled Range Analysis (with pre-filtering) with spline regressions for 40 ≤ n ≤ 299. 

Index Hi Hs HN 

Monte Carlo simulations 
 

Mean and critical 

values 
Estimated H 

Mibtel 0.580 0.510 0.586 μH 0.540 

CDAX 0.593 0.539 0.582 quantiles  

FTSE350 0.554 0.518 0.542 0.005 0.451 

ASE 0.578 0.558 0.572 0.025 0.475 

MSE 0.573 0.512 0.581 0.050 0.484 

SWX 0.593 0.524 0.579 0.950 0.597 

  
 

 0.975 0.618 

    0.999 0.630 

Notes:  

The second column reports the estimated Hurst exponent for the log return series of each index, Hi. The third column reports the estimated Hurst exponent for the shuffled log 

return series of each index, Hs. The fourth column reports the estimated Hurst exponent for the Normalised log return series of each index, HN. The sixth column reports the 

average Hurst exponent estimated with respect to the 5,000 Monte Carlo simulations, μH, and the Hurst exponents associated with various quantiles of the Monte Carlo 

simulations. The series have been pre-filtered using an AR(p) model, where p includes the lags (up to the tenth lag) for which the partial autocorrelation function of the log 

returns is significantly (α = 5% level at least) different from zero. The lags used for each index are: Mibtel – 4
th

 lag; CDAX – 6
th

 and 8
th

 lag; FTSE350 – 3
rd

, 5
th

, 6
th

, 8
th

, 10
th

 

lag; ASE – 3
rd

, 5
th

, 8
th

, 9
th

 lag; MSE – 3
rd

, 8
th

, 10
th

 lag; SWX – 5
th

 lag. 
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Table 6: Rescaled Range Analysis (without pre-filtering). 

Index Hi Hs HN 

Monte Carlo simulations 
 

Mean and critical 

values 
Estimated H 

Mibtel 0.613** 0.559 0.610 μH 0.572 

CDAX 0.588 0.557 0.573 quantiles  

FTSE350 0.553 0.561 0.543 0.005 0.528 

ASE 0.588 0.587 0.580 0.025 0.539 

MSE 0.595 0.562 0.595 0.050 0.545 

SWX 0.585 0.551 0.575 0.950 0.601 

    0.975 0.612 

    0.999 0.618 

Notes:  

The second column reports the estimated Hurst exponent for the log return series of each index, Hi. The third column reports the estimated Hurst exponent for the shuffled 

log return series of each index, Hs. The fourth column reports the estimated Hurst exponent for the Normalised log return series of each index,  HN. The sixth column reports 

the average Hurst exponent estimated with respect to the 5,000 Monte Carlo simulations, μH, and the Hurst exponents associated with various quantiles of the Monte Carlo 

simulations.  
** Denotes departure from the RWH at the 5% level of significance. 
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Table 7: Rescaled Range Analysis (without pre-filtering) with spline regressions for 5 ≤ n ≤ 40.  

Index Hi Hs HN 

Monte Carlo simulations 
 

Mean and critical 

values 
Estimated H 

Mibtel 0.623 0.610 0.613 μH 0.606 

CDAX 0.586 0.579 0.572 quantiles  

FTSE350 0.586 0.613 0.580 0.005 0.562 

ASE 0.588 0.600 0.580 0.025 0.573 

MSE 0.593 0.616 0.585 0.050 0.579 

SWX 0.594 0.577 0.589 0.950 0.633 

    0.975 0.645 

    0.999 0.650 

Notes:  

The second column reports the estimated Hurst exponent for the log return series of each index, Hi. The third column reports the estimated Hurst exponent for the shuffled log 

return series of each index, Hs. The fourth column reports the estimated Hurst exponent for the Normalised log return series of each index, HN. The sixth column reports the 

average Hurst exponent estimated with respect to the 5,000 Monte Carlo simulations, μH, and the Hurst exponents associated with various quantiles of the Monte Carlo 

simulations. 
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Table 8: Rescaled Range Analysis (without pre-filtering) with spline regressions for 40 ≤ n ≤ 299. 

Index Hi Hs HN 

Monte Carlo simulations 
 

Mean and critical 

values 
Estimated H 

Mibtel 0.602* 0.509 0.607 μH 0.540 

CDAX 0.590 0.535 0.573 quantiles  

FTSE350 0.520 0.510 0.506 0.005 0.451 

ASE 0.587 0.573 0.580 0.025 0.475 

MSE 0.597 0.510 0.604 0.050 0.484 

SWX 0.577 0.525 0.561 0.950 0.597 

  
 

 0.975 0.618 

    0.999 0.630 

Notes:  

The second column reports the estimated Hurst exponent for the log return series of each index, Hi. The third column reports the estimated Hurst exponent for the shuffled log 

return series of each index, Hs. The fourth column reports the estimated Hurst exponent for the Normalised log return series of each index, HN.The sixth column reports the 

average Hurst exponent estimated with respect to the 5,000 Monte Carlo simulations, μH, and the Hurst exponents associated with various quantiles of the Monte Carlo 

simulations. 

* Denotes departure from the RWH at the 10% level of significance. 
 


