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Abstract

This paper studies the relationship between the S&P 500 index

returns and the returns on the market volatility index (VIX) via a

nonparametric copula method. We further propose a conditional de-

pendency index to investigate how the dependency between the two

return series varies across di¤erent segments of market return distri-

bution. We observe the following �ndings: (a) the two series exhibit

strong, negative, extreme tail dependency; (b) the negative depen-

dency is stronger in extreme bearish markets than in extreme bullish

markets; (c) the dependency gradually weakens as the market return
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moves toward the center of its distribution, or in quiet markets. The

unique dependence structure supports the VIX as a barometer of mar-

kets�mood in general. Lastly, we propose a simple model of the returns

of VIX based on the S&P 500 returns that incorporates the asymmetry

and tail dependence between the two series.

Keywords: Kendall�s Tau; Nonparametric copula; Tail Dependence In-

dex; Conditional Dependence Index
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1 Introduction

Investors have seen severe downturn in stock markets since October 2008

and the mood of bearish market was often cited through a volatility index

(VIX). The VIX is a trade mark held by the Chicago Board Options Ex-

change (CBOE), which is constructed from S&P 500 index option prices

and is designed to retrieve market�s aggregate expectations of near-term (30

days) S&P 500 index volatility. The frequently observed counter-movements

between the market index and the market volatility index earn the VIX a

reputation of market barometer of investors�fear.

Although the relation between market returns and volatilities has been

extensively studied in both applied �nance and applied econometrics litera-

ture, we noticed that most of the existing work employs parametric models

such as variant versions of GARCH-in-Mean type of models combined with

leverage and asymmetric features in the conditional heteroschedastic volatil-

ity equation. See, the leverage model of Back (1976), the volatility feedback

model of Porterba and Summers (1986) and Campbell and Hentschel (1992),

and behavioral models of Hibbert, Daigle and Dupoyet (2009), to name a few

among many. To overcome possible model misspeci�cation problem, this pa-

per re-examines the relation between returns and volatilities via a model-free

nonparametric copula method.

Speci�cally, we study the joint distribution of the S&P 500 index re-

turns and the returns on the VIX index via a nonparametric copula method.

We then propose a conditional dependence index (given in Section 4) to in-

vestigate how the dependency between the two return series varies across

di¤erent segments of market return distribution. Consistent with Hibbert,

et al.�s (2009) �ndings, we observe strong daily negative asymmetric relation
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between market return and the return of market volatility. Moreover, we

observe these noteworthy results: (a) the two series exhibit strong, negative,

extreme tail dependency; (b) the negative dependency is stronger in extreme

bearish markets than in extreme bullish markets; (c) the dependency gradu-

ally weakens as the market return moves toward the center of its distribution,

or in quiet markets.

Investigation of the dependence structure between the S&P 500 index and

the VIX provides useful guidance on constructing predicatory models. For

example, Whaley (2009) reports asymmetric dependence between these two

series and proposes a simple model of the VIX returns based on the market

returns and a dummy variable for downturn market. In this paper, based

on our �nding that the asymmetric dependence between these two series is

largely driven by the di¤erent degrees of tail dependence in the extreme tails,

we propose an alternative model for the VIX based on the market returns

and two dummy variables indicating if the S&P 500 index is in its upper 5%

or lower 5% tails. The simple model is demonstrated to capture the overall

pattern between the two series well.

The rest of the paper is organized as follows. Section 2 presents the data

and summary statistics. Section 3 constructs tail dependence index from the

joint distribution of the returns of the S&P 500 index and of the VIX. In

Section 4, we construct conditional dependence index, which measures the

dependency between the two return series conditional on the return of the

S&P 500 index falling into speci�c segment of its distribution. Section 5

presents a simple model of VIX returns based on the S&P 500 index returns.

The last section concludes.
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2 Data and Descriptive Statistics

The CBOE started publishing the implied volatility index of the S&P 100

index since 1993, which was constructed from the at-the-money S&P option

prices using the Black-Scholes-Merton formula; see details in Whaley (1993,

2000). The VIX was introduced with two purposes in mind. First, it was

intended to provide a benchmark of expected short-term market volatility.

Second, it was intended to provide an index upon which futures and options

contracts on volatility could be written.1 In September 2003, the CBOE

replaced the old volatility index with the current volatility index, which is

constructed via a model-free formula developed by Demeter�, Derman, Ka-

mal and Zou (1999) and originated from the seminal work of Breeden and

Litzenberger (1978). The current volatility index is extracted from both

at-the-money and out-of�the-money S&P 500 index option prices. Detailed

information can be found at http://www.cboe.com.

In this study, we downloaded daily S&P 500 index prices from DataS-

tream, and the daily implied volatilities (VIX) from the CBOE. The data

spans from January 2, 1990 to December 31, 2008. The VIX is frequently

cited as a barometer of investors�fear and markets�aggregate expectations

of near-term market volatility. Such idea has found strong popularity among

investor community since its �rst debut at the CBOE in 1993. A high VIX

beyond 40 is usually linked to a strong bear market and a low VIX value is

linked to a market with more con�dence. The �rst time that VIX passed

the value of 40 was on August 31, 1998, a year marked with Russia�s cur-

rency devaluation and national debt moratorium, and the collapse of the

1The social bene�ts of trading volatility have long been recognized. The Chicago Board
Options Exchange (CBOE) launched trading of VIX futures contracts in May 2004 and
VIX option contracts in February 2006.
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Long Term Capital Management in the United States. For the sample pe-

riod under consideration, the number of transaction days with the VIX value

exceeding 40 is 15, 4, 10, and 64 in 1998, 2001, 2002, and 2008, respectively.

On November 20, 2008, the VIX reached its record high of 80.86, marking an

unprecedented �nancial crisis faced by global stock markets. It is interesting

to observe that the counter-movement between the VIX and the S&P 500

index did not become a dominant tone until August 1998 as shown in Figure

1. See, of 76.76 percent of the total 2,259 transaction days that the S&P

500 fell, the VIX gained; of 76.85 percent of the total 2,531 transaction days

that the S&P 500 index gained, the VIX fell. In total, the two return series

moved to opposite directions in 76.58 percent of transaction days considered

in this paper, and the number increased to 84.92% and 88.93% in 1998 and

2008, respectively. These numbers indicate prominent counter-movements

between the market index and market volatility index, especially in bearish

markets.

Let Pt and VIXt be the S&P 500 index price and the volatility index at

date t, respectively. Next, we construct the daily (or monthly) returns from

the daily (or monthly) S&P 500 index and VIX by

rspt = 100� ln (Pt=Pt�1) and rvixt = 100� ln (V IXt=V IXt�1) :

Table 1 reports the summary statistics of daily and monthly returns of the

two indexes. First, as the VIX has lower average return but signi�cantly

higher volatility than the S&P 500 index, investors having a concave utility

function will prefer the S&P 500 index to the VIX as an investment vehicle.

We then split the data according to the signs of the returns of the S&P 500

index, and calculate the upside and downside average returns and sample
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standard deviations for both series. Interestingly, we observe that both se-

ries exhibit stronger volatilities in the downturn markets than in the upturn

markets. In the downturn markets, market index performed considerably

worse than in the upturn markets, and the opposite holds true for the VIX

index.2

Next, to study the counter-movement between the two returns series, we

calculate three statistics such as Pearson�s correlation coe¢ cient, Kendall�s

tau, and the probability that the two return series move to opposite direction,

which is de�ned as � = Pr (rspt � rvixt < 0). The closer � is to one, the
stronger is the negative association between the two series. Kendall�s tau is

given by

� = Pr[(X1 �X2)(Y1 � Y2) > 0]� Pr[(X1 �X2)(Y1 � Y2) < 0]

= 2Pr[(X1 �X2)(Y1 � Y2) > 0]� 1;

where (X1; Y1) and (X2; Y2) are continuous random vectors drawn from the

joint and marginal distribution F (x; y), FX(x) and FY (y) respectively(see

Chapter 5 of Nelsen, 1999). Apparently, Kendall�s tau reveals a strong neg-

ative (or positive) association between the two return series if it is close

to negative (or positive) one, and a weak association if it is close to zero.

Kendall�s tau equals zero, if rspt and rvixt are independent; but it may not

hold vice versa.

Table 2 reports the sample correlation, Kendall�s tau, �, and the com-

2Some results are studied but not reported in the main text for brevity. We constructed
two optimal portfolios based on minimum variance criterion and maximum Sharpe ratio
criterion. The results show that the optimal portfolios enjoy much smaller volatility than
the market index, but not much improvement on average returns. In addition, consistent
with our intuition, the optimal portfolios allot higher percentage of investment to the VIX
in bearish markets than in bullish markets.
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pound returns of the S&P 500 index for the whole sample period and for each

year from 1990 to 2008. We �nd that the sample correlation and Kendall�s

tau are both signi�cantly negative, where the sample correlation ranges from

-0.450 in 1995 to -0.850 in 2007 and Kendal�s tau ranges from -0.295 in 1995

to -0.690 in 2008. Also, during the sample period, there are 76.6 percent

of chances that the S&P 500 index and the VIX moved to opposite direc-

tions, and this �gure even reached 88.9 percent in 2008 and bottomed at 63.9

percent in 1995.

Given the summary statistics presented in Tables 1 and 2, we observe

strong negative association between the VIX and the S&P 500 index, and

the negative dependence was more prominent in the �rst decade of the 21th

century than in the 1990�s. Also, the worse the market is, the stronger is the

negative dependence. In the following section, we shall further explore the

negative dependence by examining the joint distribution of the two return

series.

3 Copula Function and Tail-Dependence In-

dex

To further our understanding of the dependence relationship between the

S&P 500 index and the VIX, we use the device of copula to decompose

their joint PDF. According to the Skalar�s theorem, the joint density of two

continuous random variables X and Y can be written as

f (x; y) = fX (x) fY (y) c (FX (x) ; FY (y)) ;

6



where f (x; y) ; fX (x), and fY (y) are the joint and marginal PDFs respec-

tively. The function c (FX (x) ; FY (y)) is called the copula density function,

which completely summarizes the dependence structure between X and Y .

See Nelsen (1999) for a thorough treatment of the copula. Below, we estimate

the copula density function of the two return series, using the Exponential

Series Density Estimator (ESE) in Wu (2007). The estimator takes the form

c (u; v) = exp

 X
0<i+j<m

�iju
ivj + �0

!
; 0 � u; v � 1;

wherem is a positive integer, and �0 = � ln
R 1
0

R 1
0
exp

�P
0<i+j<m �iju

ivj
�
dudv

such that c(u; v) integrates to unity. The degree of the exponential polyno-

mial m is selected according to the information criterion AIC. Unlike the

kernel density estimator, the ESE does not su¤er from boundary bias.

For our sample, since we do not observe u � Frvix(x) and v � Frsp(y),

we replace them by their estimates û = 1=T
PT

t=1 I(rvixt � x) and v̂ =

1=T
PT

t=1 I(rspt � y) respectively. Serveral bene�ts could result from the

one-to-one transformation of the return series via its cumulative distribution

function: a) it can e¤ectively mitigate potential outlier problems in the non-

parametric estimation; b) as a measure of the likelihood of the occurrence of

an event, probability provides a direct way of capturing market relative sta-

tus than the raw return value does across time, which is upmost important in

our study of the relation between the two indexes in a quick-changing mar-

ket. On the other words, the study of the transformed data (u; v), instead of

the raw return series, provides a key tool to consolidate historical study of

silimiar issues.

The estimated copula density function of (u; v), with m = 6 selected
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by the AIC, is reported in Figure 2. The preliminary results in Section 2

indiate strong negative association between the two return series without

identifying the sources of the observed relation. By visualizing the copula

density function in Figure 2, we see that the negative dependence between

the S&P 500 index and VIX is largely driven by the counter-movements of

the tails, since the bulk of the copula density is along the anti-diagonal line

and spikes up at the two corners. In other words, the co-movements of the

opposite tails of two marginal distributions contribute signi�cantly to the

negative dependence between the S&P 500 index and the VIX. (More results

on the sources of negative association will be given gradually below.) In

addition, the density at the upper left corner in the �gure, corresponding to

the case of low market index returns and high VIX returns, is larger than its

counterpart associated with high market index returns and low VIX returns.

Except for the two tails along the anti-diagonal, the copula density appears

to be rather symmetric.

Motivated by our observation in Figure 2, we calculate the Tail Depen-

dence Index (TDI) between the daily returns on the S&P 500 index and the

VIX at opposite tails. Generally speaking, the TDI captures the tail proba-

bility of one variable given that another variable is residing in its tail area.

Taking clues from the estimated copula density reported above, we focus on

the following two TDIs that capture the co-movements of opposite tails of

the two series:

TDI1(�) = Pr
�
rvix < rvix�jrsp > rsp1��

�
= Pr (u < �jv > 1� �) ;

TDI2(�) = Pr (rvix > rvix1��jrsp < rsp�) = Pr (u > 1� �jv < �) ;

where rvix� and rsp� are the percentile of the return series rvix and rsp,
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respectively. Taking � = 0:01 and � = 0:05 respectively, we calculate the

TDIs based on the estimated copula function. We obtain TDI1(0:01) =

0:2292;TDI2(0:01) = 0:3542;TDI1(0:05) = 0:3687, and TDI2(0:05) = 0:4234.

If the two series were independent, we would have obtained TDIj(�) = � for

j = 1; 2. Therefore, the fact that TDIj(�) is substantially larger than �

indicates strong negative tail dependence between the two return series. In

particular, our results suggest that extreme movements in the S&P 500 index

are associated with extreme movements of the VIX to opposite direction with

rather strong probability. These results are consistent with the notion that

the VIX is a barometer of stock market�s mood.

In addition, the fact that TDI1(�) < TDI2(�) for both � = 0:01 and � =

0:05 reveals that the VIX asymmetrically responds to the extreme movements

in the S&P 500 index. The probability that the VIX jumps up at rare high

speed when the market index faces extreme free-fall is much higher than the

probability that the VIX falls back at high speed when the market index

enjoys strong rebound. The asymmetry is consistent with the stylized fact

that the markets tend to respond more to bad news than to good news. The fac

that the tail dependence is more pronounced when the market is in turmoil

explains why the VIX is dubbed the Investor Fear Gauge.

Next, extending the concept of TDI, we estimate the conditional CDF

curves F (ujv > 0:95) and F (ujv < 0:05), see the left panel in Figure 3. The
conditional CDFs describe the stochastic behavior of the returns of the VIX

while the market returns rose above its 5% right-tail distribution or fall below

its 5% left-tail distribution. We make the following observations. First, the

conditional CDF, F (ujv < :05), shows that rvix has a high probability to

move to the right tail of its distribution when rsp is at the far left tail of

its distribution, since our estimate gives P (u � :6jv � :05) < 0:04. Extreme
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down market is highly associated with strong market uncertainty on market

risk. Second, The conditional CDF, F (ujv > :95), shows that rvix has

a higher probability to move to the left tail of its distribution when rsp

is at the far right tail of its distribution, as our estimation gives that the

conditional probability that u � :2 given v > :95 is greater than 76%. Strong
upturn market is highly associated with market�s relief on potential market

volatilities.

To summarize, we �nd strong left-right and right-left tail dependency

between rsp and rvix. In the section below, we propose a conditional de-

pendence index to formally measure the dependence between the two return

series conditional on variant market status.

4 Conditional Dependence Index

Figure 3 plots several estimated conditional distribution functions of u given

v 2 A, where A is a subset of the interval [0; 1]. The left panel in Figure

3 shows that for a given � 2 [0; 1]; F (ujv < �) � F (u) � F (ujv > �) for

all u 2 [0; 1]: F (ujv < �) is further below F (u) = u as � is closer to zero,

and that F (ujv > �) is further above the 45-degree line as � is closer to one.
The right panel in Figure 3 shows that the conditional CDFs are closer to

the 45-degree line as A is closer to the center of the interval [0; 1].

If u and v; or rsp and rvix, are independent of each other, we have

F (ujv 2 A) = F (u) for all u 2 [0; 1], and knowing the information set

fv 2 Ag does not help make better prediction of u. On the other hand, the
further is the conditional CDF away from the 45-degree line, the higher is the

dependency between u (or rvix) and the realization segment of v (or rsp).

Therefore, it is natural to use the area between the conditional CDF and the
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45-degree line as a proxy of the predictive power of v on u. In doing so, we

are able to learn where u and v are most dependent. Consequently, we can

make inference on the relation between the VIX and its underlying market

index conditional market status.

Speci�cally, we propose a conditional dependence index which equals the

area between the conditional CDF and the 45-degree line, conditional on the

information set fv 2 Ag. Thus, the index is de�ned as a functional of A:

G (A) = 2

Z 1

0

jF (ujv 2 A)� uj du = 2E [jF (ujv 2 A)� uj] :

Apparently, for any given subset A � [0; 1], 0 � G(A) � 1.3 This can be

considered as a conditional version of the Gini index.

Partitioning the [0,1] interval into twenty equal-width intervals, we cal-

culate G(A) for each interval based on the estimated copula density between

rvix and rsp. We also calculate their corresponding 95% con�dence inter-

vals using the block bootstrap method. The results are reported in Table 3.

It is shown that there exists strong left-right and right-left tail dependency

between rvix and rsp, and much weaker but still signi�cant dependency be-

tween the two series when rsp moves to the middle of its distribution. Also,

we �nd that both G(v � 0:05) = 0:8064 and G(v � 0:10) = 0:7346 are larger
than G(v > 0:95) = 0:7004. This shows asymmetric negative dependency be-

tween the two return series: the negative dependency is stronger for extreme

down market periods than for extreme upturn market periods of similar mag-

nitude. In addition, Table 3 also presents the estimated probability that the

VIX falls given the return of the S&P 500 index falling into a speci�c inter-

3Following the de�nition of the Gini index, we multiply the area between the conditional
CDF and the 45-degree line by two such that 0 � G(A) � 1.
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val of its distribution: on a given date, the probability that the VIX falls is

around 6.22% if the S&P 500 return is in the [�1:724%;�1:183%] range (or
its return falls into 0.05th and 0.10th interval), while the probability that the

VIX increases is around 11.3% if the S&P 500 index moves up by 1.168% to

1.644% (or its return falls into 0.90th and 0.95th interval), see the last three

columns of Table 3.

To sum up, we �nd strong dependency between rvix and rsp and the

dependency is stronger in volatile market periods than in relatively quiet

market periods. As the VIX reveals market�s expectation on the future 30-

day volatility, our results indicate that investors made sharp revision on their

belief of market risks during extreme volatile market periods, and that the

revision is less noticeable during tranquil market periods.

Moreover, the conditional dependence index proposed indicates that the

dependence between the returns on the S&P 500 index and the VIX exhibits

a U-shape curve as the returns on the S&P 500 index move from tails to the

middle of its distribution, see Table 3.4 It again con�rms that the negative

association between the S&P 500 index and the VIX mainly come from tail

events.

5 Regression Analysis

Whaley (2009) notes that the VIX spikes during periods of market turmoil,

which explains why it has become known as the investors� fear gauge. If

expected market volatility increases (decreases), investors demand higher

4The U-shape relation also holds true when we calculate the conditional independence
index conditional on rvix; i.e., G(A) = E[jF (vju 2 A)�vj] for any subset A of the interval
[0; 1]. The results are omitted for brevity.
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(lower) rates of return on stocks, so stock prices fall (rise). This suggests

the relation between rate of change in the VIX should be proportional to the

rate of return on the S&P 500 index. But, the relation is more complicated.

As we argued and documented above, the relation between the VIX and the

S&P 500 index is asymmetric: the change in the VIX rises at a higher ab-

solute rate when the market index falls than when the market index rises. In

addition, the asymmetry is largely driven by di¤erent degrees of tail depen-

dence. Guided by the �ndings we reported above, we consider the following

three models:

Model 1: Regressing rvix on rsp gives

rvixt = :0863
(.0616)
< :1610 >

� 3:5761
(.0542)
< :0000 >

rspt + errort; �R
2 = :4765 (1.1)

Model 2: Regressing rvix on rsp and rsp+ = rsp� I(rsp � 0) gives

rvixt = :2768
(.0829)
< :0009 >

� 3:0853
(.0928)
< :0000 >

rspt � :9485
(.1459)
< :0000 >

rsp+t + errort;
�R2 = :4810 (1.2)

Model 3: Regressing rvix on rsp, rspU and rspL gives

rvixt = :0040
(.0632)
< :9500 >

� 4:4263
(.0911)
< :0000 >

rspt� 1:7136
(.1327)
< :0000 >

rspUt + :9116
(.1305)
< :0000 >

rspLt +errort; �R
2 = :4941

(1.3)

where �R2 is the adjusted R2, standard errors are included in the parentheses,

and the p-values are included in the brackets. In addition, in model (1.3),

we de�ne rspUt = rspt if the value of rspt is greater than the .95th empirical

quantile of frsptg and zero otherwise; we de�ne rspLt = rspt if the value
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of rspt is less than the .05th empirical quantile of frsptg and zero other-
wise. Therefore, adding rspUt and rsp

L
t allows us to explicitly investigate the

impacts of stock market returns at extreme tails on the changes of market

volatilities.

In model (1.1) and (1.3), the intercept term is not signi�cantly di¤erent

from zero at the 5% signi�cance level. This is consistent with the prediction

that the expected VIX remains constant when there is no change in market

return. On the other hand, all the slope parameters are signi�cantly di¤erent

from zero at the 5% level. We also estimated a fourth model with the market

returns divided into four intervals: the market return is less than its lower

.05th quantile, between its lower .05th quantile and zero, between 0 and

its upper .95th quantile, and beyond its upper .95th quantile. However,

the F test does not reject model (1.3) against the fourth model at the 5%

signi�cance level. We therefore take model (1.3) as our �nal model.

Model (1.1) implies that a 1% increase in market return reduces market

volatility by around 3.6% and that a 1% drop in market return pushes up

market volatility by around 3.6%. Accounting for the asymmetry in the tail

dependence between rsp and rvix, model (1.3) implies that

rvix = :0040� 3:5147 rsp+ error, if rsp < rsp:05

rvix = :0040� 4:4263 rsp+ error, if rsp 2 [rsp:05; rsp:95] (1.4)

rvix = :0040� 2:7127 rsp+ error, if rsp > rsp:95

where rsp� is the �th quantile of frsptg. Therefore, when the market returns
fall between its .05th and .95th quantiles, a 1% increase (or drop) in the

market return reduces (pushes up) the market volatility by around 4.4%.
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When the market returns fall below its .05th quantile in an extreme down-

market, a 1% drop of the market return pushes up the market volatility by

around 3.5%. If the market returns grow beyond its .95th quantile in an

extreme up-market, a 1% increase of the market return reduces the market

volatility by around 2.7%.

The results from model (1.4) tell us that the marginal e¤ect of 1% change

in market returns on the change of the market volatilities is the highest for

stable market and the lowest for extremely upbeat market. This seems to

be a surprise to investors who experienced higher market volatilities in bear

markets than in bull markets. The importance is that readers should not

confuse the marginal e¤ects of market returns on market volatilities with the

total changes of market volatilities. Extreme movements in market returns

drive up market volatilities, although changes in market volatilities per unit

change of market returns may not be high. Take one numerical example. The

estimated expected change in market volatility is .004% when the market

return is zero, and it is 6.06% when the market return is -1.72 (the .05th

quantile of frsptg).
Moreover, equation (1.4) reveals asymmetric marginal e¤ects: the mar-

ginal e¤ects are higher at the lower 5% tail of the market returns than at

the upper 5% tail of the market returns in absolute values. From (1.4), we

�nd that the estimated expected changes in market volatilities are no less

than 6.06% conditional on the fact that market return lies at the lower 5%

tail of its distribution, and that the estimated expected changes in market

volatilities are at most -4.46% conditional on the fact that market return lies

at the upper 5% tail of its distribution.
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6 Conclusions

The VIX, a trade-mark held by the CBOE, is commonly cited as a barom-

eter of stock market volatility. Applying nonparametric copula method and

constructing conditional dependence indices, we �nd that the dependence

between the returns on the S&P 500 index and the VIX exhibits a U-shape

curve as the returns on the S&P 500 index move from tails to the middle of its

distribution, and that extreme market downturns are involved with market�s

correction on near term expectation of market risks at very high probabil-

ity. Lastly, we present a simple model to predict changes in the VIX, based

on market returns, that accounts for the asymmetric and tail dependence

between these two series.
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Appendix: Tables and Figures

Table 1: Summary Statistics (01/02/1990-12/31/2008)
Data Frequency Variable �x �x� �x+ �̂ �̂� �̂+

Daily rvix 0.018 3.410 -3.010 5.888 5.432 4.454
rsp 0.019 -0.791 0.742 1.137 0.882 0.802

Monthly rvix 0.201 11.961 -6.911 16.851 16.276 12.771
rsp 0.445 -3.689 2.966 4.223 3.376 2.241

a. �x=average return,�x�=downside average return over times with rsp < 0,
�x+=upside average return over times with rsp � 0;
b. �̂=sample standard deviation, �̂�=downside sample standard deviation
over times with rsp < 0, �̂+=upside sample standard deviation over times
with rsp � 0.

18



Table 2: Sample Correlation, Kendall�s � , �, and Compound Return of the
S&P 500 Index
Year Sample Correlation Kendall�s � � Compound Return

of the S&P 500 Index
ALL -0.690 -0.5165 0.766 92.077
1990 -0.537 -0.353 0.710 -8.548
1991 -0.557 -0.362 0.727 24.503
1992 -0.547 -0.351 0.673 4.327
1993 -0.510 -0.362 0.672 6.893
1994 -0.724 -0.496 0.750 -1.334
1995 -0.450 -0.295 0.639 29.384
1996 -0.687 -0.457 0.713 17.675
1997 -0.701 -0.531 0.771 27.514
1998 -0.819 -0.641 0.849 23.166
1999 -0.799 -0.600 0.829 17.928
2000 -0.784 -0.571 0.810 -9.731
2001 -0.820 -0.600 0.794 -11.132
2002 -0.818 -0.647 0.810 -27.185
2003 -0.642 -0.462 0.746 20.147
2004 -0.759 -0.539 0.806 8.922
2005 -0.831 -0.621 0.814 3.772
2006 -0.822 -0.564 0.737 11.139
2007 -0.850 -0.672 0.813 3.589
2008 -0.847 -0.690 0.889 -47.136
The compound return of the S&P500 index is the log-di¤erence of market indexes
observed at the ending and starting date of the period under consideration multiplied
by 100; � gives the relative frequency that the market index and market volatility index
moved to opposite directions for the period of time under consideration.
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Figure 1: Raw Data Plot (01/02/1990-12/31/2008)
(Black line: S&P 500 Index; red line: the VIX)
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Figure 2: Estimated Joint Copula Density Function: c(u; v)

The joint copula density humps up along the u+v=1 diagonal of the [0,1]x[0,1] space
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Figure 3: Empirical Conditional Probability Curves of u Given v 2 A
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