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Commonality and Information in Return/VolatilityVolume Relations 

 

 

Abstract 

 

This paper develops a multi-asset mixture distribution hypothesis model to investigate 

commonality in stock returns and trading volume. The model that characterizes how factor 

structures stem from information effects predicts: first, the factor structure of stock returns is 

uncorrelated to the factor structure of trading volume although factor impacts on returns and 

volume share a common dynamic latent information variable. Second, positive volatility-

volume linkages exist across assets. The empirical analyses using intraday data on the 28 

Dow Jones stocks identify a one-factor structure in both stock returns and trading volume, 

and the results confirm the model’s predictions. 
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Commonality and Information in Stock Return/VolatilityVolume Relations 

 

1. Introduction 

The object of this study is to provide theory as well as empirical evidence on 

commonality in stock returns measured by price changes and trading volume. To that end, we 

develop a common-factor mixture distribution hypothesis model to examine how stock 

returns and trading volume move together.  

Several implications emerge from the model. First, factor structures of both stock 

returns and trading volume are equilibrium outcomes of information effects. Second, the 

factor impacts on stock returns and trading volume depends on an underlying latent 

information variable. Third, the return factor structure is independent of the factor structure 

of trading volume. Finally, the covariance structure of stock returns is positively related to 

volume across stocks, and the cross-sectional positive relations result from the latent 

information variable.  

We use half-hour intraday data for Dow Jones stocks over a sample period from April 

through June, 2007, to fit our common-factor mixture distribution hypothesis model. We 

apply the method in Lamoureux and Lastrapes (1994) to extract the latent information flow, 

and the expectation-maximization (EM) algorithm to estimate the model’s unobservable 

factor variables as well as its parameters. We use Akaike's information criterion (AIC) and 

the Bayesian information criterion (BIC) for model selection. These criteria suggest a one-

factor structure in both stock returns and trading volume.  

To examine return-volume independence across stocks, we conduct Pearson’s 

correlation test on each return-volume pair for the Dow Jones stocks in our sample. We find 

that only 13% of return-volume correlations are statistically significant; all the sample stocks 
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show significant return-return and volume-volume correlations across firms, however. We 

also perform a canonical correlation analysis to examine the positive cross-asset relations 

between return volatility and volume. The empirical results confirm the implications of our 

model.  

In addition, as the latent information flow plays an important role in price formation 

in our model, and it is well-known that returns exhibit ARCH (GARCH) dynamics, we 

remove the information content from returns to see whether return behavior changes. While 

13 stocks in our sample show ARCH (GARCH) patterns, and these patterns all disappear 

after we control for the impact of information on returns. 

Our study is inspired by other research in modern portfolio theory and market 

microstructure theory. Studies of cross-sectional behavior of stock returns have long been 

separate from work on equity trading volume.
 1

 The primary study on joint return-volume 

cross-sectional patterns is Hasbrouck and Seppi (2001), which uses a statistical factor model 

to examine co-movements in prices and order flows. Their study suggests that the factor 

structure of valuation and liquidity fundamentals may account for cross-firm commonalities.  

More recently, Bernhardt and Taub (2008) present a speculative trading model 

including a K-fundamental structure in formulating asset value. They provide some analytical 

characterizations of how the informational structure of the market matters in prices and order 

flows.  

These studies motivate our construction of a theoretical model to unify these lines of 

research. The model is a multi-asset extension of the mixture distribution hypothesis (MDH) 

model proposed by Tauchen and Pitts (1983). They derive a joint distribution of price change 

 

 
1 For studies on stock returns, see, for example,  Markowitz (1952), Ross (1978), and Brenner, Pasquariello and 

Subrahmanyam (2009). For work on trading volume, see, for example, Lo and Wang (2000) and Tookes (2008). 
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and trading volume for a single security by imposing a variance-component structure on 

information effects. To incorporate possible interactions among securities, we add K 

common-factor components to the variance decomposition. These K common-factor 

components, consistent with the conjectures of Hasbrouck and Seppi (2001), represent 

various aspects of common information effects on trading activity (such as spillover or 

market effects.
2
)  

 

2. Common-Factor MDH Model 

In our multi-asset mixture distribution hypothesis model, J investors choose to trade a 

portfolio of M assets. Following Tauchen and Pitts (1983), we assume that J is high and fixed 

within a particular time period.
3
 Each time new information, including macroeconomic or 

liquidity-motivated information, arrives in the market, trader j will take a long or short 

position in each asset in the portfolio, depending on his or her reservation price ( *

jP ) of that 

asset and the asset’s market price ( P ).
 4

 We assume that traders will never change the 

portfolio components when they rebalance their portfolios. This assumption is less restrictive 

than that of Lo and Wang (2000).  

Thus, trader j’s equilibrium position, jQ , of asset m and the aggregate trading 

volume, jV , of asset m are given by: 

 

 

 
2 See, for example, Fleming, Kirby and Ostdiek (1998), and Kodres and Pritsker (2002). 
3 A fixed J is for simplicity, and a high J is for normality of trading volume. 
4 It is impossible to distinguish between informed and liquidity trades in our settings. 
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where c is a positive constant, and the subscript i indexes equilibrium phases.
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where *
j,i

*
ij

*
ij PPP 1  is the increment to trader j’s reservation price, and 1 iii PPP  is 

the change in market price. 

The single-security MDH model in Tauchen and Pitts’ (1983) incorporates two 

components in the change in trader j’s reservation price. One component, i , is common to 

all investors trading the stock; the other, ijψ , is specific to trader j. As we are dealing with a 

multi-asset market, we extend Tauchen and Pitts’ decomposition by introducing a set of 

common components, Kkξijk  ..., ,2 ,1 ,  . Now, we have: 
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5 To simplify notations, we omit index m in model derivations. 
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All components in this equation have mutually independent normal distributions with 

a mean of zero. We further assume that these components are independent across securities 

and through time. Clearly, the first two components stand for the idiosyncratic effects of the 

information, and the third component, 


K

k
ijkξ

1

, represents the K-factor structure embedded in 

the information effects. We are thus able to capture all types of trading activity, whether 

publicly informed, strategically informed or liquidity trades.  

Summing up the price changes and trading volume across all traders, we have: 
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Proposition 1: (a) The price change iP  is normally distributed with mean zero and variance 

P
2
. (b) For high J, the volume iV  is asymptotically normally distributed with mean  and 

variance V
2
. (c) The price change iP  and trading volume iV  are stochastically 

independent. 
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Proposition 1(a) and 1(b) are evident.
6

 Proposition 1(c) follows because the 

generation of trading volume eliminates the component ( i ) common to all traders of a 

certain stock; also, components 
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 and   are independent of their respective deviations 

from the means, 


K

k
ik

K

k
ijkiij ξ- ξψψ

11

  and  .  

Aggregating price changes and trading volume over a fixed time interval yields the 

formulas for price changes and volume: 
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where I is the number of the information flow within the fixed time interval. Standardizing 

notation, we have the equations: 
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where the  Kkzz kk  ..., ,0    and  21   are all standard normal. All z are mutually independent, 

and independent of I.  

Generalizing these equations for M stocks in matrix form, we have: 

 

 

 
6 See Tauchen and Pitts (1983). 
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We call the model in matrix form a common-factor MDH model. Vectors of both 

price changes and of trading volume are governed by three groups of mutually independent 

variables: idiosyncratic variables ( and ), common factor variables (G and F) and the 

mixing variable (I). From Proposition 1, we know that E(G) = E(F) = 0, Cov(G) = Cov(F) = 

I, where I is an identity matrix.  
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Note that the latent information variable enters the factor loadings of both price 

changes and volume. This gives a dynamic feature to the factor impacts on returns and on 

volume. Conditional on the mixing variable, the common-factor MDH model reduces to the 

statistical factor model in Hasbrouck and Seppi (2001). If K = 0, our MDH model reduces to 

the single-security MDH model in Tauchen and Pitts (1983). 

 

Proposition 2: The cross-sectional interactions among price changes and those among 

trading volume depend upon the underlying latent information flow. 

Proof:    
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Proposition 3: The factor structure of price changes is uncorrelated to the factor structure of 

trading volume. 

Proof:    Cov{I
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Proposition 4: The covariance structure of return is positively related to trading volume 

across firms as long as the mixing variable shows variation. 

Proof:  
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where subscripts i, j and l index stocks.              

                                                                              Q.E.D. 

 

Proposition 4 indicates that there are positive relations between return volatility and volume 

not only within a stock but also across stocks. 

 

3. Data Analysis 

3.1 Data 

The sample includes 28 stocks in the Dow Jones Industrial Average from April 1 

through June 30, 2007. Microsoft and Intel do not trade on the New York Stock Exchange 

(NYSE). So we exclude them from our sample. Similar to Hasbrouck and Seppi (2001), 

this study focuses on Dow Jones stocks in order to increase the possibility of detecting 

common factors and to mitigate the nonconcurrent problem.  

The transaction data is from NYSE Trade and Quote (TAQ) database. Each trading 

day from 9:30 a.m. to 4:00 p.m. Eastern Standard Time is evenly divided into 13 half-hour 

intervals. We use mid-quotes at the beginning and at the end of each interval to compute 

the log return for each stock at that interval. Volume is in dollars. To avoid potential stale 

quotes at the market opening, transaction data for the first three minutes of trading are 
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deleted. We also eliminate observations with zero price changes and observations with 

overnight price changes and trading volume. This leaves a final sample of 369 half-hour 

observations for each stock.  

Table 1 provides the means and standard deviations of returns and volume for each 

Dow Jones stock over the entire sample period. General Motors has the highest mean return, 

0.037%, while JPMorgan has the lowest mean return, 0.027%. Dollar volume means range 

from $180,852 (Altria Group Incorporated ) to $1,315,054 (General Electric).  

 

<Table 1 inserted here> 

 

3.2 Preliminary Analyses 

We conduct various correlation analyses to justify the model specifications. 

Specifically, we need to determine whether the empirical data conform to the implications of 

propositions two through four.  

First, we perform a canonical correlation analysis to examine the relation between 

return volatility and trading volume. Canonical correlation analysis seeks to identify and 

quantify associations between two sets of variables. The aim is to summarize the associations 

between two sets of variables via a few carefully chosen pairs of canonical variables. 

Through canonical correlation analysis, not only can we determine directions of the relation 

between return volatility and trading volume, but we can also explore whether the relation 

holds across firms.  

In our sample, for example, if the analysis cannot concentrate the 28-dimension 

relationship into a few pairs of canonical variables, variables other than common factors may 
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explain the positive correlations between return volatility and trading volume. Moreover, if 

the return volatility of each sample stock is only positively correlated with its own volume, 

but uncorrelated with other stocks’ volume, all canonical correlations should be 1.0.  

Table 2 presents the canonical correlation analysis results. Half of the canonical 

correlations are statistically significant, positive, and less than 1.0. This confirms the cross-

asset positive relations between return volatility and volume. 

<Table 2 inserted here> 

 

Next, we undertake a simple pair-wise Pearson correlation test to see whether returns 

and volume are cross-correlated. With 28 stocks in the sample, we have respective 784 

pairwise return-return correlations, volume-volume correlations and return-volume 

correlations. Only 103 pairs show significant return-volume correlations, but all 784 return-

return and volume-volume correlations are statistically significant (not reported here).  

The canonical redundancy analysis in Table 3 shows that neither the return nor 

volume canonical variables are good overall predictors of the opposite set of variables. The 

proportions of variance in returns explained by trading volume are all below 0.02, and vice 

versa.  

<Table 3 inserted here> 

 

3.3 Estimation of the Model 

Given the encouraging results in section 3.2, we now proceed to estimate the model. 

Two main empirical issues arise when using the maximum likelihood estimation (MLE) 

method. First, the joint distribution of returns and volume is not a multivariate normal 
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distribution unless conditioned on the mixing variable I. Second, factors and the mixing 

variable are unobservable. To address these issues, we follow a natural three-stage estimation 

strategy by combining the information extraction method in Lamoureux and Lastrapes (1994) 

and the EM algorithm.
7
  

In the first stage, we minimize the conditional moment criterion from Lamoureux and 

Lastrapes (1994) using the current parameter estimates of the model to extract the 

information flow.  Then we normalize the original return and volume series by eliminating 

the extracted information flow.  

With the normalized return and volume series, our second and third stages are just 

typical expectation and maximization steps of the EM algorithm for factor analysis. We use 

Akaike's information criterion (AIC) and the Bayesian information criterion (BIC) to choose 

the number of factors. Both criteria favor models with low AIC and BIC values.
8
 The best 

model our computed AIC and BIC values indicate has a one-factor structure. All the point 

estimates of parameters in the one-factor MDH model are statistically significant at the 5% 

level (not reported here).  

 

3.4 Impact of Information Flow 

The underlying information flow plays an important role in cross-firm variations, so 

we further explore characteristics of the impact using the extracted information flow tÎ .  We 

start the investigation by examining whether the information flow accounts for the serial 

 

 
7 See, for example,  Dempster, Laird a nd Rubin (1977); Louis (1982);Rubin and Thayer (1982); Meng and 

Rubin (1991); Dyk, Meng and Rubin (1995). 
8 For example, see Tanner (1993). 
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dependence in returns. Given the extracted information tI  series, tÎ , we adjust the return 

series for the information flow by: 
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If, as our model implies, the underlying information drives stock returns, the serial 

dependence of the adjusted return series should disappear. We estimate a GARCH(1, 1) 

model for raw and adjusted returns of each sample stock, respectively. The GARCH (1, 1) 

model is as follows: 

 

 tt

ttat

h,N~

yaay

0      

10



 
 

 

 

and 

12
2

110   ttt hh   

 

where ty  is stock returns at time t.  

Table 4 displays the estimation results (reporting only those where GARCH 

persistence is evident). The third column reports the estimates of the GARCH (1, 1) model 

for raw return series. We find that 13 out of the 28 stocks present persistence in variance. The 

fourth column shows the estimates of the GARCH (1, 1) model for the adjusted return series. 

After we control for the information effect in raw return series, none of the 28 stocks exhibits 

persistence in return variance.  

<Table 4 inserted here> 
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Another aspect of the information flow that we can explore is from the prediction of 

proposition 4, which states that the information flow is the sole determinant of the positive 

volatility-volume relations. In other words, if we separate the impact of the information flow 

from return and volume, trading volume will have no explanatory power for return volatility.  

We implement a simple regression approach to test this prediction.  The regression 

model takes the following form:  

  XY  

where the dependent variable is return volatility, and the independent variable is trading 

volume. We run the regression model respectively for the original and the information-

adjusted series. The information-adjusted volume is given by 
I

IV

adj
V

ˆ

ˆ̂
 . 

Table 5 summarizes the results. The results for the original series in the second 

column reveal a positive and significant volatility-volume relation for 24 stocks, but the 

majority of transformed volume series appear to have no significant explanatory power for 

adjusted return volatility (see results in column 3). This differential result supports the 

prediction of proposition 4. The result also indicates that volume is a rough proxy for 

information flow.  

In practice, the implied volatility index (VIX) is perceived as a benchmark for stock 

market volatility. Empirical studies have been conducted to test if VIX is a superior 

informative variable.
9
 We perform a similar study by comparing the time series plots of the 

VIX and the extracted information flow, and find that the time-varying features of both series 

 

 
9 See, for example, Blair et al. (2001); Degiannakis and Floros (2010). 
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are quite different. We also find that the correlation between the VIX and estimated 

information flow is low (0.29) albeit significant.  

<Figure 1 inserted here> 

 

 

4. Summary 

We have specified a multivariate mixture distribution hypothesis model of returns and 

volume. In our model, information affects cross-firm variations in two ways: through impact 

structure (such as an industry or size or market effect) and through the amount of information 

within a certain time interval. Using half-hour intraday data for Dow Jones stocks, the model 

seems to provide a useful framework that captures the important properties of the data. The 

estimated information flow appears to capture the heteroskedasticity in stock returns, 

although there is no pattern in the estimated factor loadings.. Therefore, the identity of the 

effect structure of the information remains unknown.  
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Table 1 

Descriptive Statistics of Returns and of Trading Volume 

The study sample includes data on 28 Dow Jones stocks from April 1, 2007, to June 30, 

2007. The means and standard deviations of returns and trading volume are calculated over 

the entire sample period. 

              
  Returns (%)  Volume ($)  

Ticker Name Mean Std. Dev.   Mean Std.Dev. 

AA Alcoa Incorporated 0.008 0.455  403281 396894 

AIG American International Group Inc. -0.012 0.195  414760 234542 

AXP American Express Company 0.000 0.290  238669 154571 

BA Boeing Company -0.010 0.275  187629 106685 

C Citigroup Incorporated -0.015 0.300  720347 435264 

CAT Caterpillar Incorporated -0.002 0.346  234245 151744 

DD DuPont -0.015 0.305  230200 149527 

DIS Walt Disney Company 0.001 0.294  375479 208295 

GE General Electric Company 0.008 0.291  1315054 776955 

GM General Motors Corporation 0.037 0.456  475619 372010 

HD Home Depot -0.014 0.312  503293 427210 

HON Honeywell International Inc. 0.005 0.315  272203 217163 

HPQ Hewlett-Packard Company 0.019 0.304  505981 256465 

IBM International Business Machines 0.008 0.267  326019 299917 

JNJ Johnson & Johnson -0.013 0.214  449686 254764 

JPM JPMorgan Chase & Company -0.027 0.313  529567 313201 

KO Coca-Cola Company 0.000 0.219  360966 200005 

MCD McDonald’s Corporation -0.003 0.319  305497 177436 

MMM 3 M Company 0.013 0.273  403787 242735 

MO Altria Group Incorporated -0.024 0.239  180852 150207 

MRK Merck & Company, Incorporated 0.008 0.326  457424 337455 

PFE Pfizer Incorporated -0.015 0.266  1235878 661629 

PG Proctor & Gamble Company -0.007 0.200  787030 442186 

T AT&T Incorporated -0.005 0.312  444908 258826 

UTX United Technologies Corporation 0.007 0.255  189547 100528 

VZ Verizon Communications Inc. 0.006 0.286  486536 324010 

WMT Wal-Mart Stores Incorporated -0.011 0.271  595420 449108 
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XOM Exxon Mobil Corporation 0.011 0.296  840262 362339 
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Table 2 

Canonical Correlation Analysis Results for Return Volatility and Trading Volume 

The second column reports canonical correlations for each of the 28 stocks in the study. The 

third column provides canonical correlation test results.  

  Canonical Correlations    F Value (P Value) 

1 0.819632 3.26 (<.0001) 

2 0.722151 2.86 (<.0001) 

3 0.691312 2.64 (<.0001) 

4 0.677421 2.45 (<.0001) 

5 0.638792 2.25 (<.0001) 

6 0.604625 2.07 (<.0001) 

7 0.549741 1.91 (<.0001) 

8 0.529986 1.80 (<.0001) 

9 0.474032 1.68 (<.0001) 

10 0.467845 1.61 (<.0001) 

11 0.440106 1.53 (<.0001) 

12 0.43673 1.45 (<.0001) 

13 0.406848 1.34 (0.0003) 

14 0.381699 1.25 (0.0086) 

15 0.334325 1.15 (0.0751) 

16 0.326688 1.10 (0.1901) 

17 0.316317 1.02 (0.4230) 

18 0.279081 0.91 (0.7348) 

19 0.24181 0.83 (0.8854) 

20 0.224843 0.77 (0.9321) 

21 0.214603 0.70 (0.9632) 

22 0.202325 0.59 (0.9886) 

23 0.148921 0.42 (0.9992) 

24 0.106878 0.30 (0.9997) 

25 0.087954 0.22 (0.9995) 

26 0.045166 0.10 (0.9996) 

27 0.026584 0.06 (0.9930) 

28 0.004225 0.01 (0.9379) 
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Table 3 

Canonical Redundancy Analysis Results for Return and Trading Volume 

The second column reports for each of the 28 stocks in the study the proportion of total 

variation in returns explained by trading volume. The third column presents the proportion of 

total variation in volume explained by return.  

  Return Variance  

Explained by 

Volume 

Volume Variance 

Explained by 

Return 

1 0.0102 0.0137 

2 0.0154 0.0120 

3 0.0117 0.0138 

4 0.0117 0.0092 

5 0.0087 0.0039 

6 0.0070 0.0073 

7 0.0034 0.0070 

8 0.0056 0.0080 

9 0.0047 0.0099 

10 0.0029 0.0025 

11 0.0052 0.0075 

12 0.0023 0.0038 

13 0.0032 0.0024 

14 0.0032 0.0019 

15 0.0014 0.0021 

16 0.0067 0.0015 

17 0.0014 0.0017 

18 0.0017 0.0005 

19 0.0008 0.0008 

20 0.0006 0.0005 

21 0.0006 0.0005 

22 0.0002 0.0005 

23 0.0002 0.0006 

24 0.0005 0.0002 

25 0.0001 0.0001 

26 0.0001 0.0001 

27 0 0 

28 0 0 
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Table 4 

Estimates of GARCH (1,1) for Returns  

The GARCH (1,1) model for the sample is: 

 ttttat hNyaay ,0~        ,10     

 

and 

12

2

110   ttt hh    

 

This table only reports cases in which GARCH persistence is evident. The third column 

provides results of the original return series. The fourth column provides results of the 

adjusted return series.  

 

 

Ticker 

 

Estimate 

Before  

Adjustment of Information  

After 

Adjustment of Information 

AIG        1  0.148  

AXP 

 

1  

2  
0.1455 

0.5978 

 

 

C 1  0.1592  

DD 1  0.1942  

GE 

 

1  

2  
0.1084 

0.7057 

 

 

HD        1  0.1045  

HON 

 

1  

2   
0.1891 

0.5242 

 

 

JNJ 2   9.999710
-7

  

KO 1   0.2622  

MMM 1   0.1822  

MRK 

 

1  

2   
0.0706 

0.8337 

 

 

T 2   0.9753  

WMT 2   0.4553  
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Table 5 

Regression Results 

For each of the 28 Dow Jones stocks in the sample, the regression model is   XY , where 

the dependent variable is return volatility, and the independent variable is trading volume. The second 

column presents the beta coefficients for the original series, and the third column reports the beta 

coefficients for the information-adjusted series. 

            
 Original Series  Adjusted Series 

Ticker ̂ (e-12) 
  ̂ (e-10) 

 

AA 33.4 *  20.0*  

AIG 4.55*  2.92     

AXP 7.78  6.63   

BA 38.6*  18.9  

C 7.58*  2.56  

CAT 45.2*  14.5  

DD 13.4*  4.92  

DIS 9.77*  4.23  

GE 12.8*  7.31*  

GM 30.3*  11.4  

HD 11.4*  -3.64  

HON 59.5*  -7.48  

HPQ 27.0*  1.26  

IBM 28.1*  -5.34  

JNJ 11.6*  -3.58  

JPM 19.8*  -4.91  

KO 3.67  13.9  

MCD 62.9*  3.08  

MMM -0.85  -6.52  

MO 21.1*  -23.1*  

MRK 15.8*  10.8  

PFE 2.90*  -4.23  

PG 3.76*  -2.17  

T 4.81  -7.10  

UTX 21.0*  8.85  

VZ 14.9*  2.30  

WMT 13.3*  7.46*  

XOM 13.4*  -1.17  

 

*Significant at the 5% level 
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Figure 1 

Daily Time Series Plots of VIX and of Information Flow (thick line = VIX, thin line = 

square root of the extracted information flow) 

 

 

 


