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ABSTRACT  
 
The object of this study was to investigate some implications of the tenets of 

behavioral finance on the pricing of financial derivatives. In particular, based on the work 
by Wolff et al  (2009) we have investigated how prospect theory (Kahneman and 
Tversky, 1979) can be intregrated into the Black and Scholes (1973) option pricing 
framework. We have then used the resulting “behavioral version” of the Black-Scholes 
equation to price market quoted options. As an empirical test we have calibrated three-
month market-quoted call options on the Standard & Poor’s 500 index (SPX) at the 
Chicago Board of Options Exchange (CBOE) during the period January to December 
2007. As a comparison, we have also calibrated the Heston (1993) stochastic volatility 
option pricing model to the same contracts. Our results show that during the period of study 
the market option prices are captured better by the behavioral version of the Black-
Scholes equation than by the Heston stochastic volatility model. Further work is required 
to investigate if this is the case for other option types and under different market 
conditions. 

 
Keywords: Black-Scholes Equation, Prospect Theory, Heston Stochastic Volatility 
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Option pricing is one of the most studied and fascinating topics in finance. The Black and 
Scholes (BS) formula, derived in 1973, it is still the benchmark of plain vanilla European option 
pricing for traders, market makers, sales people that use and price options. Even if widely used 
the BS formula is based on the existence of a set of “ideal conditions” in the market: short term 
interest rates are known and constant through time; the distribution of possible stock price is 
lognormal; the variance is constant; there are no transaction costs in buying and selling stocks 
and options; it is possible to borrow any fraction of the price of a security at the short term 
interest rate; there are no limitations on short selling. Furthermore in the framework of traditional 
finance investors are assumed to correctly update their beliefs when they receive new information 
and, conditional on those beliefs, make choices that maximize their expected utility.  

BS is widely used because it is very easy to implement, it provides a closed solution to option 
pricing and it also allows risk coefficients and sensitivities calculation.  

However the “ideal conditions” of the model are far away from reality. The observed returns 
exhibit fatter tails and higher peaks that what should be consistent with BS hypothesis of 
normally distributed returns. The volatility is not constant through time and strikes and is often 
negatively correlated with stock price level. Empirical evidence has also proved the existence of 
a substantial numbers of anomalies with respect to the expected utility theory.  

In these circumstances, it was natural that the finance literature started to re-explore option 
pricing trying to develop new models, able to give a more accurate description of the reality, and 
in the same time to keep the simplicity of Black and Scholes Model. Different approaches have 
been proposed. A first alternative to BS is the constant elasticity of variance model (CEV) 
proposed by Cox and Ross (1976). This model allow to incorporate the idea that volatility may 
increase as stock prices decreases (distribution with heavy fat tails as observed empirically).  The 
Jarrow and Rudd (1982), Corrado and Su (1996) models adjust BS model taking into 
consideration skewness and Kurtosis in underlying returns. Jump diffusion models (Merton 1976) 
incorporate the fact the observed prices do not move continuously but they jump from time to 
time. Discrete-time Garch option pricing models (Heynen et al. (1994), Duan (1996) Heston and 
Nandi (2000), Duan (2001)) that incorporate heteroskedasticity and negative correlation between 
volatility an spot returns have been proved to be successfully on explaining option prices. Finally 
stochastic volatility models (Hull and White 1988) introduce the idea of not constant observed 
volatility. In these models the volatility itself is described as a stochastic process.  One of the 
most widely used stochastic volatility model is today the Henston (1993) Model. In this model 
not only the stock prices but the volatility as well follow a geometric Brownian Motion (BM). 
The two BM, the one of the stock and the one of the volatility, are correlated and the volatility is 
assumed to be mean reverting to a long term level.  The Heston model is consistent with different 
return distributions and it allows to incorporate skewness and Kurtosis. The model is also 
computationally convenient since it provide a closed form solution for European Options.  In 
general the Heston model is the most famous and widespread of the models that try to improve 
Black and Scholes relaxing the assumptions upon which it is based.  However the rationality 
assumption is not proved by market observation and experiments. 

In recent years another avenue of research to improve BS has been explored: incorporating 
the idea of non rational and non risk neutral investors.  The BS derivation is built on the 
possibility to construct a risk-free replicating portfolio. If this is not true, then a possible 
explanation to the deviation of observed option prices respect to what implied BS could be 
related to the behavioral finance aspects.  
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With the pioneer works of two psychologists Kahneman and Tversky (1979, 1992), finance 
literature started to reconsider the role of attitudes, emotions and in general behavioral biases in 
investors’ decisions and actions.  Kahneman and Tversky  Prospect Theory  draws a framework 
of investors’ preferences deviating significantly from those postulated into the Von Neumann and 
Morgenstern  (1947) Expected  Utility Theory. Four main features of prospect theory appear 
relevant for behavioral-based asset pricing model. Firstly, investors are risk averse in the domain 
of gains but they tend to transform their attitude into risk seeking while facing losses. This relates 
to a second condition, that value is assigned to losses and gains rather than final wealth. There is 
no aggregation of positions into total wealth.  To state it differently, investors’ value function 
(prospect theory correspondent to utility function) is defined on deviations from a reference point 
and is normally concave for gains (implying risk aversion) while commonly convex for losses 
(risk seeking). A third relevant aspect refers to a further feature of the value function named loss 
aversion: the function is steeper for loss than for gains. In other words losses are looming higher 
than gains. Finally, prospect theory suggests that individuals’ subjective perception of 
probability, so called decision weights, differs from objective ones. Decision weights are 
generally lower than the corresponding probabilities, except in the range of low probabilities.  
Behavioral literature is also providing evidences on the way agents are presenting and 
interpreting problems. According to Kahneman and Tversky (1979), agents’ preferences are 
influenced by the way prospects are presented (framing). Since,  decisions process consists of an 
editing stage, when prospects are coded and categorized and complex problems are broken down 
into simpler sub problems, and an evaluation stage, when prospects with the highest value is 
chosen. As the editing can lead to different representations, the decision can change accordingly. 
Framing is at the basis of mental accounting, being the way a problem is subjectively interpreted.  
According to theory (Thaler, 1980) people group their assets into a number of nun-fungible metal 
accounts and these accounts are influenced by the way relevant information is displayed. 
Considering options, one might view naked options versus options in combination with its 
underlying asset: segregating in terms of entities; or one might aggregate or segregate current 
cash flows versus future cash flaw: segregating in terms of time. 

Most of the behavioral finance literature has been focused on stock markets and the empirical 
evidence on behavioral stock prices anomalies is huge. Behavioral finance has been applied to 
derivatives pricing in a lesser degree. 

To the best of our knowledge, the first “behavioral” option pricing model is Shefrin and 
Statman’s (1993). Concentrating on the features of value function, they compare a binomial value 
function modified option price of covered calls with prices based upon the CRR model (Cox, 
Ross, Rubenstein, 1979). Precisely, they conclude that writers of such options are influenced by 
their value function. The prospect theory expected value of the covered call position exceeds the 
prospect theory expected value of the stock-only position for investors who are sufficiently risk-
averse in the domain of gains. Breuer and Perst (2004) extend the analysis by including the 
weighting function to a prospect theory model of discount reverse convertible (DRCs), a 
combination of a risk free asset with put options writing. By comparing behavioral pricing with 
Black Scholes in a multi period continuous time setting they conclude that investments in risk 
free  assets are preferred in low drift stock markets; while stocks are chosen in high drift markets 
and finally DCRs are preferred in a medium drift markets. Several other researchers have been 
drawing their attentions to the possible behavioral explanations of peculiarities in index-options 
prices, precisely to the steepness of the volatility smiles. Raisel (2003),  Hodges, Tompkins and 
Ziemba (2003) and Gemmill and Schackleton (2005) they all account for option-pricing 
anomalies through the use of prospect theory. Mental accounting is used by Abbink and 
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Rockenbach (2006) to explain difference in pricing behaviour between students and professional 
traders.   

In a very recent study Wolff et al (2009) studied option prices in an economy where investors 
are valuing call options according to the cumulative prospect theory of Kahneman and Tversky. 
They considered two prospect option pricing models, based on whether cash flows are either 
considered to be segregated or aggregated over time. They compared these models with the 
Black-Scholes model and the stochastic volatility model of Heston on an empirical analysis of 
European call options on the S&P 500 index. Their results show that prospect option pricing 
models significantly improve the fitting performance, as compared with the Black-Scholes model 
and that especially the aggregated version’s performance is at least equivalent to the Heston 
model.  

In this paper we investigate the performance of a BS behavioral modified model and of the 
Heston model in terms of fitting actual option prices. Our paper differ from previous literature on 
various ways. First, in contrast to the above-mentioned work of Wolff et al (2009), we 
concentrate on the year 2007 and strictly on options with three-months to maturity. Second, in 
agreement with Wolff et al (2009) we use a behavioral, prospect theory modified  Black-Sholes 
option pricing model. Third, our aim is not to show that option prices incorporate behavioral 
aspect as in previous literature but to analyze if behavioral BS model perform better than Heston 
model on pricing. Finally, we intend to show that a fast and easy-to-compute behavioral BS 
option pricing formula can be used successfully to describe actually-traded option contracts. 

In the following sections we describe the metyhodology and data used, our results and 
conclude with a brief discussion of our findings.  

 

2. 
METHODS 

In our paper we compare option pricing obtained through Heston model and BS behavioral 
model to verify wich of the two perform better in terms of fitting real market data.   To reach this 
objective we apply Heston model, we develop and apply a BS behavioral model and apply it and 
finally we build an error function to calculate the pricing performances. In this section we 
introduce both models, the market data used and the calibration procedure employed.  

2.1 
Market Data 

 
We have collected daily option prices for calls and puts on the S&P 500 index from the 

Chicago Board Options Exchange (CBOE) during the period January to December 2007. We 
used the Market Data Express service (www.marketdataexpress.com). To reduce the amount of 
data to process, we concentrated only on call contracts with a expiry date of approximately three 
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months (range 90 to 100 days included). We further eliminated the data from contracts with a 
negligible daily trading volume (less than 10 contracts) and those which were far-from-the-
money, above 2000 and below 600. The above choices brought the total number of data points to 
1502 contracts. In the resultant sample the range of strikes varied between 600 and 1900, while 
the spot price varied roughly between 1400 and 1600. Figure 1 shows a graphical depiction of the 
data used. The red line indicates the spot value of the index for each day. The blue dots indicate 
the call contracts for the various strikes for each day.  

 
 
Apart from the option prices, the daily yield curves were downloaded and processed from the 

British Bankers Association (www.bbalibor.com). Figure 2 shows the USD LIBOR 3M in 
percent for the period of the study.  

2.2 
Prospect Theory 

In our empirical analysis we also propose a behavioral, prospect theory modified  Black-
Sholes option pricing model based on Wolff et al (2007). The value of  a prospect depends on 
both a value function (v), defining the value of an outcome (x)  and a weighting function (w), 
which insists on the probability of that same outcome (q). In a prospect with non negative 
outcome (x1, q1) and a negative one (x2, q2), we get: 

 

  [1] 

 

Both  value function and weighting function can be modelled in different ways, see Fox and 
Poldrack (2009) for an extensive review, but we decide to maintain  the original formulations by 
Kahneman and Tversky (1982) being respectively:  

 

 [2]    

   [3] 

 

 Parameters a, b, λ, in the value functions are respectively constants determining the curvature 
of the function in the domains of gains and losses and the degree of loss aversion in the case of 
losses. In the weighting function, γ controls for perceived over and underweighting of small and 
large probabilities. More precisely in Kahneman and Tversky cumulative prospect theory γ 
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assumes different values for losses and gains prospects, but we decided to mantain it invariant in 
our simulation as in Prelec (1998). 

As for the option, we assume that the marginal investor prices it according to the valuation of 
the prospect theory. In addition we assume that the marginal investor is “affected” by both entity 
and time segregated mental accounting. When a marginal investor is writing a  European style 
call option on a stock index she will face two possible state at the time of expiration (t=T). First,  
if the price of the underlying asset is higher than the exercise price 

(ST>K), the option will be exercised. The probability of being exercised (q) is given by: 

 

 [4] 

with ST being the price of the underlying asset at expiration, K being the exercise price and 
f(ST) being the probability density function of ST. The expected value (conditional on exercising 
the option), denoted by x, is then equal to: 

 [5] 

However, in a second state, when the price of the underlying asset is lower than the exercise 
price (ST ≤K), the option will not be exercised. In such a case the probability that the option is not 
exercised is equal to (1-q) and its pay-off is zero. 

 

Combining the two state and keeping in mind that when the option is exercised, from the 
writer’s point of view the expected value of the option is then a loss, the value function presented 
in Equation 1 can be simplified as follows: 

 

 [6] 

 

However, equation [6 ] does not take into account that in addition to the potential loss at t=T, 
the writer of the option receives at t=0 a premium c. Assuming to invest c at a risk free rate (rf ) at 
t=T its value is equal to cexp(rf T). In equilibrium,  the prospect value of c should equal the 
prospect value of x 

 

 [7]       

 

By substituting [2] into [7] we achieve the following option value: 

 

 [8] 
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Assuming a geometric Brownian price process with drift α and volatility σ, the future density 
function of the price of the underlying asset is 

 

  [9] 

 

With the equation [4], [5], and [9], q and x can be determined 

 

  [10] 

 

And 

 

  [11]  

 

with S0 being the current price of the underlying asset and Φ(δm) the cumulative standard 
normal distribution of δm, defined by 

 

  [12] 

 

Substituting the equation [10] and [11] into equation [8] gives the value of the call option 
from the writer’s point of view 

         [13] 

 
 

2.3 
Heston Stochastic Volatility Model 

Heston (1993) developed a model in which stock prices and volatility follow a geometric 
Brownian motion with negative correlation. More specifically: 
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       [14] 

   [15] 

     [16]      

Where is the underlying process, is the volatility process, and are the Brownian 
motion for stocks and volatility respectively and is their correlation coefficient. is the long 
run mean of volatility and is the speed or rate of reversion of the volatility to the long run 
mean. is the volatility of the volatility and  is  a square root mean reverting process.  

In BS the randomness in the option value is due to the randomness of the underlying. If the 
underlying (as in the case of stocks) is tradable, the option can be hedged by continuously trading 
the underlying. This makes the market complete.  

In Heston model option value depends on the randomness of the underlying and of the 
volatility of the asset’s return. Only the asset is tradable. Volatility is not traded. This makes the 
market incomplete with lot of implications in term of pricing. Heston model is consistent with 
different returns distribution hypothesis. Instead if >0 then the volatility will increase when 
asset prices increase. This will lead to fat right tail. Viceversa if <0 then volatility will increase 
when prices decrease creating a fat left-tail distribution.   affect the kurtosis. When =0 the 
volatility is deterministic and log returns will be normally distributed. When  increases the 
kurtosis will increase creating fat tails on both sides of the distribution.  

 
 
According to Heston the price of a European call option is  
 

      [17]  
 
with S0 being the current price of the underlying asset, K being the strike price, r being the 

risk-free interate rate and τ being the time till expiration. P1 and P2 are ‘probabilities’ determined 
by 

 

     
[18]  

 
With 
 

        
[19]  

 
And 
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([20]  

 

                       

([21]  

 
 

                                 
([22]  

 

     
([23]  

 

      ([24]  
 

                      ([25]  
 

2.4 
Calibration 

For each day in the analysis period (113 total), equations [13] and [17]] were calibrated to the 
market-quoted options prices for each combination of K and T available.  The parameter vector 

 to calibrate for the Heston model was:   
 

 
 
And for the BS Prospect model was:  
 

 
 
The constrained Levenberg Marquard method in Mathematica 7.0 was used, assuming constant 
values for the calibrated parameters. The minimization problem solved for each day in the period 
was then:  
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Following calibration, as a measurement of the quality of the calibrations, the norm of the vector 
of price differences between market and model was also computed for each day in the analysis 
period. Thus:  
 
 

 
 

 
 

Where  is the scalar which represents the norm of the price differences in the case of 

Heston. Where  is the scalar which represents the norm of the price differences in the 

case of Prospect Theory. represents the Euclidean norm. 
 

Where  is the vector of option prices as calculated with the Prospect Theory 

pricing model, is the vector of option prices as calculated with the Heston 

Stochastic Volatility model pricing model, is the vector of option prices as 
quoted in the market. Note that these three variables are function of strike and maturity,  and 

, respectively.  
 

 

 

 

 

3. 
RESULTS 
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Both the Prospect Theory and the Heston Stochastic Volatimilty Model were implemented in 
the scientific software Wolfram Mathematica 7. Each was separately calibrated to the market data 
for each day of the period of analysis (Jan-Dec 2007), so as to obtain a best fit between the 
mathematical model and the market data.  

 

Figure 3 shows an example of the market data and the calibrated of the models  for the 25th 
January 2007. The x-axis represents strike, while y-axis represents option price. The black dots 
represent individual market-quoted call options on the S&P500 index  for that day. All contracts 
have a maturity of 86 days. The USD LIBOR3M was 5.36%, while the spot value of the index 
was 1423.90. The red line represents the calibrated Heston model, the green line the calibrated 
Prospect Theory Black Scholes and the blue line represents the classic Black Scholes equation as 
reference. On that particular day the error norms were 12.3023 for Prospect and 14.7980 for 
Heston. As can be seen all models can be calibrated to closely follow the market data.  

 

Figure 5 shows the calibrated parameters for the Prospect Theory Black Scholes model. Each 
day the model is calibrated to market data and these parameters calculated. The x-axis represents 
dates in 2007. The graphs correspond from top to bottom, to parameters: , and .  The a and 
b parameters remained in the range [0.5, 0.9]. The  parameter remained in the range [0.8, 1.0]. 
The  parameter remained in the range [1.0, 1.86]. The  parameter remained in the range 
[0.0670, 0.41]. The mean and standard deviation of the results are shown in Table 1.  All the 
Prospect Theory parameters , and  are consistent with the literature  

 

Figure 6 shows the calibrated parameters for the Heston Stochastic Volatility model. Each 
day the model is calibrated to market data and these parameters calculated. The x-axis represents 
dates in 2007. From top to bottom: initial volatility (V0), mean reversion speed parameter ( ), 

mean reversion level ( ), and the volatility of volatility ( ). The V0 parameter remained in the 
range [0.0335, 0.1944]. The  parameter remained in the range [0.5000, 1.0000]. The  

parameter remained in the range [0.0700, 0.6150]. The  parameter remained in the range [2.5, 
3.5]. The  parameter remained in the range [-0.9500, -0.8500]. The mean and standard 
deviation of the results are shown in Table 2. 

 

Figure 4 shows the calibration quality of the Prospect Theory Black Scholes and the Heston 
stochastic volatility model . The quality is measured in terms of the Euclidean norm of the error 
vector (i.e. the difference between model price and market price) after calibration, for each day in 

the period of study. From top to bottom: the norm of the error for Prospect Theory , the 

norm of the error for the Heston Model and the difference between the norm of the error 

for Prospect Theory and  the norm of the error fo the Heston Model ( ). The 
mean of the differences was 17.8182, with a standard deviation of 15.0826. With a maximum 
difference of +70.1449 and a minimum of -25.7982. 

 
Figure 7 shows indicates which model is better in the sense of having a smaller error norm  

for each day in the study. The x-axis represents dates in 2007. In the top graph a value of 1 



 
14 

indicates the days in which the Prospect Theory Black Scholes model was better than the Heston 
Stochastic Volatility model. In the bottom graph the value of 1 indicates the days in which the 
Heston Stochastic Volatility model  was better than the Prospect Theory Black Scholes model. 
From a total of 113 business days in the study, Prospect Theory Black Scholes was better 103 
days, while the Heston Stochastic Volatility model was better 10 days. This represents a 
proportion of 91%  and is illustrated in Figure 8. 
 

 
Finally, a statistical test was conducted in order to confirm the significance between the 

difference in the quality of the calibrations, as measured in terms of the means in the error norms.  
A one-way ANOVA test performed in MATLAB, which resulted in an F-value of  40.48  and p-
value of 1.1038x10-9, which confirm the hypothesis that the means are significantly different. 
Figure 9 shows this graphically, there Heston  Stochastic Volatility model (column 1) and 
Prospect Theory Black  Scholes (column 2).  
 

4. CONCLUSIONS 
 

In this contribution we have investigated how a modified version of the Black Scholes 
equation based on Prospect Theory is able to describe market-quoted option prices. Our results 
show  that this “Behavioral Black Scholes” formula captures very well three-month call options 
on the S&P 500 index. Even when comparing with an advanced model, such as the Heston 
Stochastic Volatility model, the Prospect Theory formula shows a better performance  – 
measured in terms of the difference between model and market data – at least for the type of 
contracts (three-month to maturity, not far-from-the-money, calls) and the period investigated 
(2006). In addition, the Prospect Theory Black Scholes formula is easier to compute and 
calibrate, as it does not involve the complex integral (equation [18]) known to present numerical 
difficulties in the literature.  
 

 
The type of investigation that we have conducted, as is in the nature of empirical research, 

has a number of limitations. First, we have used constant parameters. The use of time-dependent 
parameters in the Heston model would certainly improve its performance, but at the expense of a 
greater mathematical complexity in its computation. Second, we have only investigated three-
month call options. Further work is required to investigate put options, other maturities and very 
out-of-the-money prices. Third, we have analyzed a single year. It would be advisable to study 
other periods including the financial crisis of 2008/2009. Fourth, we have relied on the in-built 
calibration methodology available in Mathematica. It is possible that more advanced calibration 
methods (hybrid, local-global, genetic algorithms) would lead different results.  Further work on 
these issues is under way. 

 
In conclusion, our empirical analysis suggests that a behavioral-based BS model can perform 

better than Heston model on pricing. This alternative fast and easy-to-compute behavioral BS 
option pricing formula can be used successfully to describe actually-traded option contracts.  
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TABLES 

Table 1 

Calibration results for Prospect Theory 

Parameter Mean ± Std dev 

a  0.7929 ± 0.0495 
b  0.7929 ± 0.0495 
  0.8035 ± 0.0265 
  1.1758 ± 0.2008 
  0.1504 ± 0.0574 

 

Table 2 

Calibration results for the Heston Stochastic Volatility model 

Parameter Mean ± Std dev 

  0.5133 ± 0.0807 
  0.0800 ± 0.0358 
  0.2334 ± 0.1042 
  3.0012 ± 0.0421 
  –0.9004 ± 0.0082 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FIGURES 

 

Figure 1  

Market data 
 
Market data used for the study. The x-axis represents dates in 2007. The y-axis strike. The blue 
dots represent individual European call option contracts, each with a maturity of approximately 
three months. There are 1502 contracts (dots) in total. The red line indicates the spot value of the 
SPX index as a function of time.  Data source: Chicago Board Options Exchange (CBOE). 
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Figure 2  

Interest rates 
 
Interest rates during the period of study. The x-axis represents dates in 2007. The y-axis 
represents USD LIBOR 3M in percent. Source: British Bankers Association. 
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Figure 3  

Calibration Example for 25th January 2007 
 
Market data and calibrated models  for the 25th January 2007. The x-axis represents strike. The 
y-axis represents option price. Black dots represent individual market-quoted call options on the 
S&P500 index  for that day. All contracts have a maturity of three months (86 days). USD 
LIBOR3M = 5.36%. Spot = 1423.90. The red line represents the calibrated Heston model, the 
green line the calibrated Prospect Theory Black Scholes and the blue line represents the classic 
Black Scholes equation. Market data source: Chicago Board Options Exchange (CBOE). 

  
 

 

 

 

 

 

 

 

 

 

Figure 4  

Calibration quality  
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Calibration quality of the Prospect Theory Black Scholes and the Heston stochastic volatility 
model . The quality is measured in terms of the Euclidean norm of the error vector (i.e. the 
difference between model price and market price) after calibration, for each day in the period of 
study. Above: the norm of the error for Prospect Theory. Middle: the norm of the error for the 
Heston Model. Below:  difference between the norm of the error between Heston  and  the norm 
of the error for Prospect Theory. 
 

 
 

 

 

 

 

 

Figure 5  

Calibrated parameters: Prospect Theory model  
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Calibrated parameters for the Prospect Theory model. Each day the model  is calibrated to market 
data and these parameters calculated. The x-axis represents dates in 2007. Above: volatility 
parameter ( ). Middle: lambda parameter ( ). Below:  gamma parameter ( ). 

 
 

 

 

 

 

 

 

 

 

Figure 6  

Calibrated parameter: Heston Stochastic Volatility model. 
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Calibrated parameters for the Heston Stochastic Volatility model. Each day the model  is 
calibrated to market data and these parameters calculated. The x-axis represents dates in 2007. 
Above: initial volatility (V0). Middle above: mean reversion speed parameter ( ). Middle 

below:  mean reversion level parameter ( ). Below: volatility of volatility parameter ( ). 

 
 

 

 

 

 

 

 

 

Figure 7  

Which model is better? 
 
The graphs below indicate which model had a smaller error norm for each day in the study. 

The x-axis represents dates in 2007. Above: shown in red, the value of +1 indicates the days in 
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which the Prospect Theory Black Scholes model was better than the Heston Stochastic Volatility 
model. Below: shown in blue, the value of +1 indicates the days in which the Heston Stochastic 
Volatility model  was better than the Prospect Theory Black Scholes model. 
 

 

 
 

 

 

 

 

 

 

 

 

 



 
24 

Figure 8  

Which model is better? 
 
Pie chart to indicate the proportion of days in which one model outperforms the other. Of the 113 
business days in the study, Prospect Theory Black Scholes was better  103 days, while the Heston  
Stochastic Volatility mode was better 10 days.  A proportion of 91% . 
 

 
 

 

 

 

 

Figure 9  

Statistical test  
 
Statistical test for the significance in the difference between the  error norms of  Heston  
Stochastic Volatility model (column 1) and Prospect Theory Black Scholes (column 2). One-way 
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ANOVA test performed. The results were:  F-value is  40.48  and p-value is 1.1038x10-9, which 
confirm the hypothesis that the means are significantly different. 
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