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Pricing of Longevity Risk: The Case of China 

 
 

Abstract: In this paper we use the Lee-Carter model to quantify longevity risk and to 

investigate the effect of longevity risk on pension and insurance pricing and liabilities 

in the context of China. We calculate the expected present value of life annuities for 

retired Chinese males and females, taking into account stochastic mortality 

development, revealing a significant impact of longevity risk on annuity pricing. 
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1. Introduction 

Like in most of the western world, the population of China has experienced a rapid 

aging over the past half century due to advances in public health, improved sanitation 

and personal hygiene, and general improvement in living standards (Lee, 2003; IMF, 

2004). For example, the proportion of population aged 65 or older was only 4.41% in 

1953 and 4.91% in 1982, respectively, but increased to 8.3% in 2008,1 and by 2030 it 

will be more than doubled to 22% (James, 2002). Although age-specific death rates at 

all ages have declined exponentially at a constant rate in most developed countries 

(Tuljapurkar, Li, and Boe, 2000), it is the dramatically increased life expectancy at old 

age, along with lower fertility rates, that contributes to an increasing share of elderly 

people in the total population at a rapid rate in both OECD countries and emerging 

economies, most notably in China (Visco and d’Italia, 2006). In 1981, for example, a 

                                                        
1 Data source: China Population and Employment Statistics Yearbook (2009). 
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60-year-old Chinese female individual had a life expectancy of 17.90 years, whereas 

in 2000 a 60-year-old female had a life expectancy of 19.62 years, representing an 

increase of 1.09 months per year (Zheng, 2005), i.e., more than five minutes per hour. 

The trends in improving mortality among the elderly are significantly challenging 

public pension plans as well as private pension funds and life insurers. In the U.K. and 

the U.S alone these institutions’ exposure to longevity amounts to 400 billion USD in 

2007 (Loeys, Panigirtzoglou, and Ribeiro, 2007). One more year of life expectancy at age 

65 is estimated to add at least 3% to the present value of the pension liabilities in the 

U.K. (Biffis and Blake, 2009). In developing countries, including China, where 

pension systems are underdeveloped, these trends also significantly affect personal 

saving to fund retirement consumption. For example, consider a fairly-priced annuity 

with annual payoff ￥1 at the real interest rate of 3% in China. Then in 1981 the 

annuity price for a 60-year female should have been ￥14.11, but could have 

increased by 7% to ￥15.11 in 2000. Without other retirement income, this means 

that the 60-year-old females in 2000 should have saved 7% more to finance their 

retirement consumption than in 1981.1   

Though the views regarding the outlook for human longevity are still 

controversial (Antolin and Blommestein, 2007),2 the general opinion from the experts 

tends to be the presence of upward trends in longevity. However, there is a large 

degree of uncertainty concerning the improvement magnitude, especially at older ages. 

                                                        
1 The result is based on author’s own calculation. 
2 For example, Olshansky et al. (2005) believe that there are natural limits to life expectancy, and suggest that the 
increase in life expectancy will slow down if not to stop; On the other hand, Oeppen and Vaupel (2002) argue that 
there are no limits to life expectancy and conclude from historical trends and age trajectories that longevity would 
keep increasing in the next decades. 
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From 1970 to 2000, the average increase in life expectancy of a 65-year-old male was 

1.12 years/decade in the U.S. and 1.23 years/decade in the U.K., respectively, but the 

corresponding increase had only been 0.15 years over the previous decade in the U.S. 

and 0.17 years/decade over the previous century in the U.K. (Cocco and Gomes, 

2008). China also experiences this uncertainty. According to Zhang (2005), in the 

1980s the average increase in life expectancy of a 60-year-old Chinese male was 0.06 

years per year, but increased to 0.09 years per year in the 1990s. Therefore, the major 

challenge faced by policy-makers, pension/insurance institutions, and individuals is 

not the trend in longevity itself, but rather be the uncertainty around the trend in life 

expectancy in the future (De Waegenaere, Melenberg, and Stevens, 2010). When 

future life expectancy outcomes and mortality improvement turn out to be different 

from anticipated, longevity risk occurs. 

Cocco and Gomes (2008) find that, when individuals use official period life 

tables, -which do not allow for future life expectancy improvement-, to make their 

retirement finance decision, the effect of longevity improvement on individual welfare 

can be significant. Moreover, the importance of longevity risk for the liabilities of 

private pension funds and annuity providers is that increasing portfolio size can only 

mitigate but cannot eliminate this risk. Therefore, several innovative solutions to 

longevity risk through the financial system, namely, reinsurance (Richards and Jones, 

2004), natural hedging (Cox and Lin, 2007), or securitization (Cowley and Cummins, 

2005), are being discussed. But all these solutions require better understanding of 

future mortality development. 
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In this paper we use the Lee-Carter model and its alternative approach to 

quantify longevity risk and to investigate the effect of longevity risk on pension and 

insurance pricing and liabilities in the context of China. On the one hand, as the 

largest country in terms of population, China has been experiencing a faster decline in 

mortality among the elderly since the 1964-82 periods than the now low-mortality 

countries at comparable levels of overall mortality (Banister and Hill, 2004) and with 

its increasing prosperity these trends might be expected to continue. On the other 

hand, since most populations in developed countries (at least) is covered by the public 

pension systems and the systematic pension forms in these countries reach maturity, 

the focus in is more concentrated on the distribution stage; namely, depending on 

pension laws, people at retirement age receive their pension benefit either as lump 

sum, programmed withdrawal or as an annuity. On the contrary, in China the 

systematic pension reforms have entailed a significant downsizing of public pension 

pillars and an expansion of private provision in the form of individual accounts in 

defined-contribution plans. Since the overall pension coverage rate in China is still 

rather low, for example, in 2008 among its 302 million urban employees and 473 rural 

employees, only 55% and 12% were covered by the public pension system, 

respectively (Oksanen, 2010), the attention is almost exclusively paid on the 

accumulation stage, namely extending the pension coverage rate. Given the low 

(public) pension coverage and paramount importance of ensuring the safety and 

efficiency of the accumulated stage, the longevity risk is generally ignored by the 

public and policy makers. These facts characterize the severity of longevity risk in 
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China. Since most existing literature has scrutinized longevity risk in developed 

countries with fewer having sought to understand it in the context of the developing 

world, our first contribution is to fill in this gap. By quantifying this risk and assessing 

its impact on annuity pricing, we attempt to highlight the importance of longevity 

risk, to increase the public’s awareness and understanding of longevity risk in the 

developing world, and to contribute to the current public pension reforms and product 

design in China. Second, following De Waegenaere, Melenberg, and Stevens (2010), 

and Hari, De Waegenaere, and Melenberg (2008), in this paper we distinguish 

diversifiable individual mortality risk and non-diversifiable longevity risk, 

investigating the impact of both risks on pension funds and annuity providers. Unlike 

its counterparts in the developed countries, the current public pension plans in China 

are decentralized to the local governments.1 The relative small portfolio of each 

public pension plan means that these plans might face both risks. Third, since the 

Chinese statistical data on mortality are comparatively limited, the sampling 

inaccuracy might cause parameter risk, a special case of model risk arising due to the 

lack of knowledge regarding the true probability distribution of future mortality rates. 

Moreover, even though we might exactly know the true probability distribution of the 

future mortality rates, the uncertainty in the mortality trends still remains and may 

result in the process risk. We contribute to the existing literature on China’s longevity 

risk by taking account of these risks. Finally, our research on the probability 

distribution of future mortality is important for China to respond to longevity risk 

                                                        
1 It is reported by China Business News (15 August 2008) that the public pension plans in China now are 
organized by around 2,000 entities. Even though people are free to relocate, their pensions are not allowed to 
transfer freely, especially between provinces. 
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through other innovative channels such as securitization. 

The remainder of this paper proceeds as follows. In section two, we introduce 

the source of longevity risk and its impact on annuity pricing. In section three, we 

present the data and the Lee-Carter model. In the next section, we show the estimation 

results, taking account of process risk and parameter risk. We analyze the impact of 

longevity on annuity pricing in section five. Finally, section six offers some 

concluding remarks. 

 

2. Introduction to Longevity Risk 

The uncertain mortality development may cause two kinds of risk, namely longevity 

risk and individual mortality risk.1 According to Dahl (2004), longevity risk results 

from changes in the underlying mortality density, whereas individual mortality risk 

results from the random individual deaths with a fixed mortality density. For better 

understanding of the distinction between the two risks, see also De Waegenaere, 

Melenberg, and Stevens (2010), we first introduce some scientific notation and 

terminologies of mortality. 

2.1 Scientific Notations and Terminologies 

The two basic building blocks of our projection of future life expectancy are the 

one-year death probability, denoted by)(
,
g
txq , and the central death rate, denoted by)(

,
g
txm . 

The one-year death probability, )(
,
g
txq , defines the probability that ax -year old person 

                                                        
1 In some literatures, the two kinds of risk are also named as systematic longevity risk and unsystematic longevity 
risk, respectively. In order to highlight the non-diversification of the former, following De Waegenaere, Melenberg, 
and Stevens (2010), we use longevity risk to indicate systematic longevity risk and individual mortality risk to 
unsystematic longevity risk.  
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belonging to groupg (female or male; rural or urban) will die within one year in yeart . 

The central death rate is defined by 

)(
,

)(
,()(

, g
tx

g
txg

tx
E

D
m = ,                                                (1) 

where )(
,
g
txD denotes the death number of people belonging to groupg at agex in yeart , 

while )(
,
g
txE , also called exposure, denotes the number of person years in groupg at 

agex in yeart .  

Since both )(
,
g
txD and )(

,
g
txE  can be obtained from the national statistics, we could 

obtain the one-year death probability, )(
,
g
txq , from the central death rate, 

)(
,
g
txm (McCutcheon and Nesbitt, 1973). In the general case, this relationship is 

complicated, but can be simplified with appropriate additional assumptions. For 

example, under the assumption that the central death rate equals to the force of 

mortality,1 we could establish the following relationship 

  )exp(1 )(
,

)(
,

g
tx

g
tx mq −−= ,                                        (2) 

With the one-year death probability, we could also obtain one-year survival 

probability, i.e., the probability that ax -year old individual belonging to 

groupg survives at least another year in yeart , by 

  )(
,

)(
, 1 g

tx
g
tx qp −= ,                                              (3) 

Under the assumption of constant time-independent mortality rates and 

one-year death probabilities over time, the one-year death (survival) probabilities 

                                                        
1 The force of mortality, often referred to as the hazard function in other fields such as in reliability theory, is 

defined as 
x

xXxxXxP
x

x ∆
>∆+≤<=

→∆

)|(
lim

0
µ and specifies the instantaneous rate of death for 

x -year old people belonging to groupg in yeart ,given that these individuals survive up to agex .   
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would be independent of time and thus the subscriptt can be suppressed. In this case, 

we could calculate the probability that ax -year old individual belonging to 

group g survives at leastτ years, )(g
xpτ , and the corresponding remaining life 

expectancy for this individual, )(g
xe , as follows. 

∏
−

=
+=

1

0

)()(
τ

τ
i

g
ix

g
x pp ,                                             (4) 

∑
≥

=
1

)()(

τ
τ

g
x

g
x pe ,                                              (5) 

where xx pp =1 . From the time point of yeart , this individual is expected to die in 

te g
x +)( years at the age of xe g

x +)( . 

However, the results above, based on the assumption of constant one-year 

death probabilities and mortality rates over time, might not be correct: neither are they 

constant over time, nor do they change in the same direction and at the same 

magnitudes for different cohorts. Figure 1 presents the mortality rates of selected age 

groups for different time periods, normalized to one for the year 1981. 

[Insert Figure 1 here] 

At least over longer time horizon, both Chinese females and males in these 

selected age groups experience significant mortality improvement, reflecting the 

increase in longevity over time. On the one hand, these improvements are different in 

terms of gender, ages, and years. On the other hand, at least to some extent, these 

improvements seem to be random, reflecting the stochastic chrematistics of the death 

probabilities. Since the death probabilities are not constant over time but rather 

stochastic, it’s inappropriate to use (4) and (5) for calculating the remaining life 

expectancy of ax -year old individual belonging to groupg in year t. With varying 
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death probabilities, the survival probability of ax -year old individual belonging to 

groupg for at leastτ years in yeart should follow  

∏
−

=
++=

1

0

)(
,

)(
τ

τ
i

g
itix

g
x pp ,                                            (6) 

The corresponding remaining life expectancy for this individual in 

yeart should be calculated by 

∑
≥

=
1

)(
,

)(

τ
τ

g
tx

g
x pe ,                                              (7) 

Both (6) and (7) need future death probabilities that are unobservable for the 

current period. Thus, when using current death probabilities rather than the projected 

ones, the expected life expectancy as well as the discounted value of pension 

liabilities might be underestimated. See, for example, Hari et al. (2008). Moreover, it 

is appropriate to assume the future death probabilities in a stochastic way instead of a 

deterministic way. With the assumption of stochastic future death probabilities, 

therefore, the longevity risk resulting from the long-term deviation from deterministic 

mortality improvement is unavoidable (De Waegenaere, Melenberg, and Stevens, 

2010). 

2.2 Significance of Longevity risk 

Assuming a finite number of scenarios for the evolution of future mortality 

probabilities, many studies (Olivieri, 2001; Coppola, Di Lorenzo, and Sibillo, 2000, 

2003a, and 2003b) find that even when the size of portfolio is increased, the longevity 

risk cannot be diversified and does not disappear, whereas the individual mortality 

risk is diversifiable. In most developing countries the pooling size of pensions is 

relatively small. Thus, unlike their counterpart in developed world, the pension 

systems in developing countries typically might face both risks. 

In order to demonstrate the non-diversifiable characteristics and significance 
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of longevity risk and its distinction from individual mortality risk, we consider a 

pension plan composed ofN x -year old immediate lifetime annuitants belonging to 

groupg in yeart . For simplicity, we assume that each annuitant gets one Chinese Yuan 

per year after retirement conditional on his/her survival, with a constant risk-free 

interest rater . Thus, in year τ+t  ( 1≥τ ) the present value of the future payment to 

annuitanti should equal 

∑
≥

+ +
=

1
, )1(

1
1

τ
ττ

r
Y tii ,                                          (8) 

where τ+ti ,1 donates a dummy variable with value equal to one if annuitant i is still 

alive in year τ+t . 

We first only consider individual mortality risk, namely that the future 

mortality improvements are known with certainty. In yeart , the expected present 

value of the future payment to annuitanti is thus given by 

∑∑
≥≥

+ +
=

+
=

1
,

1
,, )1(

1

)1(

1
)1(

τ
ττ

τ
ττ

r
p

r
EA txtitx ,                      (9) 

According to the pooling argument, txA , should be the fair price of this 

annuity and the fair price of iY should be the same as the fair price of ∑
=

N

i
iY

N 1

1
. 

Under the assumption of independent annuitants, we can get the following variance 

  ∑
=

=
N

i
i N

Y
N

Var
1

2

)
1

(
σ

,                                          (10) 

where we take )(2
iYVar=σ and )( iYE=µ . 

Obviously, with increasing pooling size, the variance of ∑
=

N

i
iY

N 1

1
approaches 

zero, if known risk free, so its fair price equals its expected present value, without risk 
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premium. With certain future death probabilities, pension plans, and insurance 

companies only face individual mortality risk that can be eliminated by pooling. 

When the future death probabilities are uncertain, however, longevity risk 

becomes dominant. We continue with the pension plan composed ofN x -year old 

immediate lifetime annuitants belonging to groupg in yeart , given the set of future 

death rates in yeart  by }1|{ )(
, ≥= + ττ
g
txt qf . We follow the assumption of independent 

annuitants in individual mortality risk above but have different mean and variance 

both depending ontf , i.e. )( tfµ and )(2
tfσ . Thus, (10) should be replaced by 

∑ ∑∑
= ==

+=+=
N

i
t

t
t

N

i
it

N

i
ii fVar

N

fE
fY

N
EVarfY

N
VarEY

N
Var

1

2

11

)]([
)]([

]|
1

([]|)
1

([)
1

( µσ
.                                                                 

                                                                 (11) 

With increasing pooling size, the first term on the right side of (11) can still be 

eliminated, but the second term continues to exist, independently ofN . With the 

existence of longevity risk, the pooling argument cannot eliminate mortality risk any 

more and a risk premium should be included into the pricing of financial products 

whose payoffs depend on the future mortality development. 

In the context of China, on the one hand, the underdeveloped pension systems 

and low coverage might mean that both individual mortality risk and longevity risk 

exist. On the other hand, the incomplete market and non-diversifiable characteristics 

make the pricing of longevity risk and risk management more difficult in China than 

in developed countries. 

 

3. Lee-Carter Models and Data 
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In this paper, we only discuss purely statistical mortality models, without considering 

other exogenous demographic or epidemiological factors, because pension funds and 

annuity providers are much more interested in “all-cause” mortality (Hari, 2006). 

Generally, the stochastic mortality models are more parsimonious,1 trying to 

explain the death rates with unobserved latent factors. Actually, when looking at 

sequences of mortality curves over a relatively long horizon, we can easily find that 

they change unpredictably, not only from one period to another, but also over the long 

term, though they do exhibit a general trend. Thus, it is more accurately to model the 

mortality in a stochastic fashion. Among these stochastic models, the Lee-Carter 

model (1992) has become the “leading statistical model of mortality in the 

demographic literature” (Deaton and Paxson, 2004) and, along with its extensions, has 

been widely applied for many developed countries for its simplicity and robustness in 

the context of linear trends in age-specific death rates, for example, Japan (Wilmoth, 

1993), G7 countries (Tuljapurkar, Li, and Boe, 2000), Australia (Booth, Maindonald, 

and Smith, 2002), England and Wales (Renshaw and Haberman, 2003), Belgium 

(Brouhns, Denuit, and Vermunt, 2002), and the Netherlands (Hari et al., 2008; De 

Waegenaere, Melenberg, and Stevens, 2010). However, the existing literature using 

the Lee-Carter model for developing countries including China is rather limited and 

incomplete, partly due to the unavailability of data. To our knowledge, Hou, Yu, and 

Chen (2000) are the first to apply the Lee-Carter model to Chinese population. Using 

                                                        
1 There are two types of mortality models: deterministic model and stochastic model. Starting from De Moivre 
(1724)1, the deterministic approach (Gompertz, 1825; Makeham, 1860; Heligman and Pollard, 1980) typically 
only considers the age dimension, though recent models try to fit mortality rates in both of age and of time 
dimension. However, since this kind of approach usually does not take account of uncertainty and also the accurate 
in-sample fit is translated into only small prediction intervals, it has not seemed to be very realistic in practice. 
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the mortality data on the rural males during 1988-1994,1 they project the mortality 

movement for 1995-2000.The comparisons between the predicted mortality rates and 

the realized ones indicate that the Lee-Carter model has a significant prediction power. 

Yin (2005) estimates the Lee-Carter model with the mortality rates of Chinese males 

and females for 1986-2002. Since the Chinese mortality data might follow different 

ARIMA process, she first tests the appropriate model specification with the estimated 

coefficients and then compares the projected life expectancy at birth with the official 

prediction. Zhu and Chen (2009) use the Lee-Carter extension model and 1989-20062 

mortality data to project the mortality dynamics of the urban population. Nevertheless, 

these researches allow for neither parameter risk not process risk. Furthermore, they 

only focus on a specific population group, for example, urban population or rural 

population, or a specific gender group. 

3.1 Lee-Carter Model 

According to Lee and Carter (1992), the log central death rate of the x -year-old 

persons in yeart , )ln( ,txm , is determined by a common latent factor tκ , with an 

age-specific level parameter,xα , and an age-specific sensitivity parameter,xβ . 

Mathematically, the model can be expressed as follows: 

txtxxtxm ,, )ln( εκβα ++= ,                                    (12) 

where the white noise error terms,tx,ε , represent the transitory non-systematic shocks.  

Obviously, the OLS method cannot be applied to the Lee-Carter model 

because none of the variables on the right hand of equation (12) are observable. In 

                                                        
1 The mortality data for 1991 are missing. 
2 The mortality data for 1987-1988, 1991-1993, and 2000 are missing. 
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order for a unique solution, Lee and Carter first normalize the sum of xβ terms to 

unity and tκ  terms to zero, i.e., ∑ =
x

x 1β and 0=∑
κ

κ t , and get the value of xα  

since it becomes the average value of )ln( ,txm over time. Then they use a two-stage 

approach to solve this under-identification problem. The singular value decomposition 

(SVD) approach is used in the first stage for the matrix of xtxm α̂)ln( , −  to get 

estimates of tκ  and xβ . In the second stage, given the value of xα̂  and xβ̂ , tκ̂  is 

re-estimated by iteration until the implied death number equals the actual death 

number such that 

[ ]∑∑ +=
x

txxtx
x

tx ED )ˆˆexp(,, κβα )
,                               (13)  

Nevertheless, in the first stage of this two-step procedure above a weighted 

singular value decomposition could also be used (Wilmoth, 1993). Moreover, Lee and 

Miller (2001) proposed using a matching on the basis of observed and modeled life 

expectancy rather than the matching according to (13). In addition, in order to avoid 

the violation of the assumption of constant xα  and xβ , Booth, Maindonald, and 

Smith (2002) suggest using statistical techniques to select an appropriate sample 

period. 

Originally, Lee and Carter find that tκ satisfies a random walk with drift 

process as: 

      ttt c ξκκ ++= −1 ,                                            (14) 

where the white noise term, tξ , representing permanent shocks, is assumed to be 

independent of tx,ε  and to follow a normal distribution with mean zero and variance 

of 2
ζσ . With standard statistical or econometric time-series techniques, the 
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parameters in (14) can be estimated. However, the ARIMA process of tκ for other 

countries might be different from (13). For example, Yin (2005) finds that the Chinese 

male process follows ARIMA (0,1,1), whereas the Chinese female process is a 

random walk. Thus, standard statistical procedures should be applied to find an 

appropriate ARIMA model for the time series of tκ (Liu, 2008).    

In this way, the systematic path of the central mortality rate of thex -year-old 

persons in yeart  satisfies: 

)exp(, txxtxm κβα )))) += ,                                        (15) 

In order for the projection of future mortality, we firstly need to forecast the 

future values of τκ +T
~ (T is the final year of the sample) and then the systematic path 

of future central mortality rate by   

)~exp(, τκβα ++ += TxxTtxm
)))

,                                    (16) 

In order to avoid a jump-off bias, Lee and Miller (2001) alternatively propose 

using the observed (raw) central death rate of the final year in the sample as a 

jump-off value to predict the future central death rates such that 

)).~(exp(~
,, TTxtxTtx mm κκβ τ

))
−= ++ ,                               (17) 

With the assumption that the force of mortality does not change during a year, 

i.e., )10(,, <≤=++ smm txstsx , the survival probability of one more year for one 

x -year-old person at time t  is calculated by (2) and (3). From (6) and (7), we can 

obtain the projection of life expectancy at different ages. Undoubtedly, there might be 

several risks in our projection resulting from the scholastic nature of Tt+κ~ . First, since 

neither the true value of Tt+κ~  nor its distribution is known at time T , the process 



 16

risk might arise. Second, limited sample size and measurement error might cause 

inaccurately estimated coefficients of xα , xβ and tκ , which generates parameter risk. 

In addition, without knowing exactly the true distribution of Tt+κ) , but having to model 

it, there might cause model risk. For methods quantifying these risks, see Koissi, 

Shapiro, and Hognas (2006), Renshaw and Haberman (2008). 

3.2 Data  

Our data include 15 yearly observations of age-specific death and population counts 

for both males and females in China during the period of 1994-2008, provided by the 

China Population Statistical Yearbooks and the China Statistical Yearbooks compiled 

by the National Bureau of Statistics of China. Thus, we can obtain the age-specific 

central death rates through (1). However, it should be mentioned that the statistical 

methods obtaining these count numbers are inconsistent for each sample year. For 

example, the death and population counts in 2000 are based on national population 

census, while in other years on random samples of the population or sample survey on 

population changes. Additionally, for each year the data are different in terms of the 

last age category, with most being age group 85 and over. Since we are mainly 

concerned with the impact of longevity risk on pension and annuities, namely the 

impact of the uncertain life expectancy after retirement on pension and annuities, the 

missing mortality data at older ages might cause inaccurate estimation. Therefore, we 

need to first use the available mortality data to estimate the central death rates at older 

ages. 

The patterns of mortality at older ages have been well documented in many 
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studies (Horiuchi and Wilmoth, 1998; Thatcher, Kannisto, and Vaupel, 1998; Zeng 

and Vaupel, 2003). For example, Thatcher, Kannisto, and Vaupel (1998) use the 

observed population size and number of deaths for age 80-98 to examine the force of 

mortality, i.e. central death rate, at the oldest-old ages in 13 developed countries 

across several recent decades. By extrapolating for ages beyond 98, they find the 

mortality patterns are modeled better with Logistic, Kannisto, and quadratic methods 

than with Gompertz, Weibull, and Heligman and Pollar models for all the countries 

and across all these decades. Zeng and Vauple (2003) use the same methods to 

investigate mortality pattern for the oldest-old Han Chinese people in the 1990 census 

and find similar results. Since the Kannisto model works better than other model in 

fitting mortality pattern at old ages (Thatcher, Kannisto, and Vaupel, 1998), in this 

paper we use the Kannisto model proposed by Kannisto et al. (1994) to fit our 

available data to extrapolate the mortality rates at older ages. The model is expressed 

as 

)exp(1

)exp(

x

x
mx βα

βα
⋅+

⋅= ,                                          (18) 

where xm is the observable central death rate at agex ;α andβ are the two parameters 

that need to be estimated. 

Since the Kannisto model is not supposed to fit the mortality data on the whole 

age range, we first use the life-table ageing rate defined by Horiuchi and Cole (1990) 

to choose our fitting age range. This measure is given by 

5

)ln()ln( ,55, xxxx
x

mm
k −+ −

= ,                                     (19) 
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where 5, +xxm and xxm ,5−  are central death rates for successive 5-year of age. To 

calculate the confidence intervals, the corresponding standard error could be given 

approximately by 

      
xxxx

x DD ,55,

11

5

1

−+

+=σ ,                                       (20) 

where 5, +xxD and xxD ,5−  are the death counts in the age intervals between x and x+5 

and between x-5 and x, respectively. 

[Inset Table 1 Here] 

Table 1 presents the estimation results based on (19) and (20). For each gender 

group, the life table ageing rates and their corresponding confidence intervals from 

age 60 to 95 are reported for each sample year. Since the increase (decrease) in kx 

implies an acceleration (deceleration) in the age pattern of mortality (Horiuchi and 

Wilmoth, 1998), the lower age limit of our fitting range should be the one at which 

the estimate of life table aging rate falls off. Generally, the life-table aging rate begins 

to decrease at ages varying from 70 to 90. As a result, we use the Kannisto model to 

fit the mortality data from the age of 70 to the maximum age available in each year 

and extrapolate the central death rates up to age 120 for each sample year during the 

period of 1994-2008. Following Roli (2008), we replace the observed death rates for 

all ages at or abovex , where x is the lowest age at which there are fewer death 

counts than 100 but should satisfy 9580 ≤≤ x . 

 Now, our dataset covers the age-specific mortality rate from age 0 to 120 

during the period of 1994-2008. Figure 2 shows the logarithm of the central death 

rates of Chinese males and females for ages zero to 120 for the sample period 
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1994-2008. Like in most countries, the mortality pattern for each year in China firstly 

starts rather high for newborn infants and goes down at around age 15, then increasing 

again with the accident hump at around age 20-25. 

[Inset Figure 2 Here] 

 

4. Estimation Results 

Using the singular value decomposition (SVD) approach, we firstly estimate the 

values of xα , xβ and tκ , respectively.  

[Inset Figure 3 Here] 

Figure 3 plots the estimated xα  (left panel) and xβ  (right panel), 

respectively. Sincexα is the average value of )ln( ,txm over time, it can be interpreted 

as the mean age profile of mortality. The estimated xα  shows the similar mortality 

pattern as figure 2. Moreover, for most ages the estimated xα  for females is smaller 

than or equal to that for males, explaining the fact that females, on average, face a 

longer life expectancy than males. As the loading factor, xβ  measures the 

age-specific response to the changes in the latent factor, tκ . For example, a low (high) 

value of xβ  represents slowly (rapidly) decrease of mortality at specific age if tκ  

declines over time. Our estimation results (see right panel), after being smoothed, 

show that, even though the Chinese females show an overall declining sensitivity to 

the mortality movement as ages, indicating a diminishing increase in life expectancy, 

they still react more sensitively than the males before the age of 60. On the contrary, 

the U-shaped xβ  curve of the males shows that the young and older populations are 
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more sensitive to the mortality movement, with the middle aged population the least. 

It seems that older males experience much bigger mortality improvement tκ  

declines over time during the sample period. Moreover, the smoothed curves follow 

different patterns for males and females, with the hump at around 10-30 for females.  

[Insert Figure 4 Here] 

Figure 4 plots the estimated tκ , which, according to our expectation, shows 

the decreasing trends over time generally. In order to determine the appropriate 

ARIMA model for the time series of tκ , we use the Augmented Dickey-Fuller test 

and the Phillips-Perron Test to check stationarity. Panel A of table 2 shows the test 

results and confirms the existence of a unit root for the tκ  processes in level, but 

stationarity after first differencing. Thus, the tκ  processes for both Chinese males 

and females seem to be integrated of order one. Moreover, from panel B of table 2 we 

conclude that both the male and female tκ  processes follow a random walk, which 

differs from previous findings. For example, Yin (2005) finds that the male process is 

an ARIMA (0, 1, 1) process. We use the OLS method to estimate (14) and the 

estimation results of tκ  process for males and females are shown by (18) and (19), 

respectively.  

)()(
1

)( 5793.2 m
t

m
t

m
t e++−= −κκ , with 3846.3ˆ )( =m

ξσ                 (18) 

)()(
1

)( 1769.5 f
t

f
t

f
t e++−= −κκ , with 8483.2ˆ )( =f

ξσ                  (19) 

[Insert Table 2 Here] 

Based on the results above, we can use project future values of Tt+κ~  with (18) 

and (19) for males and females, respectively, and then calculate projected one-year 
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death probabilities and life expectancies at different ages according to the relevant 

equations above. 

We now show the longevity risk resulting from process risk and parameter 

risk through predicting the logarithm of the central death rate beginning from 2009, 

the first year after our sample period. Due to the random walk of the estimated tκ , 

we can use the Girosi and King (2006)-variant of the Lee-Carter model to illustrate 

these risks (see appendix) because the T-asymptotic characteristics of the estimator 

based on this variant imply that making predictions as well as quantifying the 

longevity risk becomes a standard exercise in statistics or econometrics (De 

Waegenaere, Melenberg, and Stevens, 2010).  

We show the observed and 30-year ahead prediction of the logarithm of the 

central death rate for 60-year old Chinese with parameter risk and process risk in 

figure 5 and figure 6, respectively. The prediction begins from 2009, the first year 

after our sample period. In figure 5, the two cases, i.e., only parameter risk and the 

combination of parameter risk and process risk, are taken into account, whereas figure 

6 considers only process risk and the combination of process and parameter risk, 

using computing 95% confidence intervals. Both figures show clearly the downward 

trends not only in sample, but also out-of-sample, predicting mortality improvements 

in the future. For example, at the beginning of our sample (1994), the one-year death 

probability calculated based on (2) for one 60-year old male is 0.0141, but decreases 

to 0.074 in 2038, representing around 47% in just four decades. However, figure 5 

and 6 also show the high uncertainty about future mortality movement in terms of 
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direction and magnitude.  

[Insert Figure 5 and 6 here] 

 

5. Pricing of Longevity Risk 

In this section we investigate the impact of longevity risk on public pension plans as 

well as private pension funds and life insurers by calculating the expected present 

value of a life annuity in different scenarios through simulation. We assume that each 

annuitant gets one Chinese yuan per year after retirement, conditional on his/her 

survival, with a constant risk-free interest rater or under term structure of interest rate 

of government bond. Thus, in yearτ+t  ( 1≥τ ) the present value of the future 

payment should follow (8). In order to highlight the impact of scholastic death 

probabilities on the annuity price, we also calculate the expected present value of a 

life annuity under the assumption of constant one-year death probabilities based on (4) 

and (5). 

[Insert Table 3 Here] 

Table 3 presents the simulation results for the annuity price in different 

scenarios with corresponding 95% confidence intervals in parenthesis. Column (1) 

and (5) show the expected present value of a life annuity for 60-year old Chinese 

males and females in 2009 under constant death probabilities, respectively. Without 

accounting for the stochastic death probabilities and future mortality improvement, 

these results are unsurprisingly lower than those in the framework of stochastic death 

probabilities. For example, with interest rate of 3%, the life annuity price for 60-year 

old female in 2009 is only 15.17 based on the assumption of constant death 
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probabilities; however, when stochastic mortality development is taken into account, 

the same person should pay, at least, 15.94 yuan or around 5% more for the same 

annuity product. Therefore, without taking into account longevity risk and its 

randomness when designing pension systems or products, the impact of longevity risk 

on risk management would be substantial. 

 

6. Conclusions 

In this paper we use the Lee-Carter model to quantify longevity risk and to investigate 

the effect of longevity risk on pension and insurance pricing and liabilities in the 

context of China. Unlike previous research, we find that both the latent factor process 

for Chinese males and females also follows a random walk. In addition to process risk, 

resulting from the unknown distribution of the latent factor in the future, we also take 

into account the impact of parameter risk on our projection of future mortality 

development. Though the future mortality development shows a strong downward 

trend, it also presents substantial uncertainties when process risk and parameter risk 

are involved. In order to investigate the impact of longevity risk on pension plans and 

insurance companies, we simulate the expected present value of life annuity for 

60-year old Chinese males and female beginning from 2009. As comparison, we also 

calculate the corresponding annuity price under constant death probabilities for 

comparison. Our simulated results show that, without taking into account the 

stochastic mortality development in the future, the pricing of life annuity products 

would be underestimated, significantly challenging public pension plans as well as 
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private pension funds and life insurers.  

As the world’s largest country in terms of population, China has experienced a 

rapid aging over the past half-century and thus the Chinese government is reforming 

its pubic pension system to meet the urgent challenges of an ageing society. Since 

(public) pension coverage is still low in China, compared with other developed 

economies, much attention in China now is almost exclusively paid to the 

accumulation stage, with the ignorance of longevity risk by the public and policy 

makers. However, this paper reveals the significant impact of longevity risk on risk 

management and pension/annuity pricing. Thus, increasing awareness and 

understanding of longevity risk by the public, especially the policy makers, would 

contribute to the current public pension reforms and product design in China.  
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Appendix: The Girosi and King (2006)-variant of the Lee-Carter model 

First of all, let 
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Then, let 
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Now, from  

tttl εβκα ++=  and ttt δεµε ++= −1  

the Lee-Carter model can be rewritten as 



 30

ttt ll ζθ ++= −1  

where βµθ =  and 1−−+= tttt εεβδζ  

Now, we can easily estimate the model, make prediction and quantify the longevity 

risk. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Normalized Death Rate for Selected Age Groups  
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This figure plots the observed death rates for Chinese males (left) and Chinese 

females (right), for selected age groups and for different time periods, normalized to 

one for year 1981. The data originates from the China Population Statistical 
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Yearbooks and the China Statistical Yearbook compiled by the National Bureau of 

Statistics of China.  
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Figure 2: Logarithm of Raw Central Death Rates in China, 1994-2008 
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This figure plots the logarithm of dentral death rates during the 1994-2008 period for 

Chinese males (left) and Chinese females (right) from age 0, 1, 2, and up to age 120. 

The mortality data for age 0 to age 85+ originates from the China Population 

Statistical Yearbooks and the China Statistical Yearbooks, both of which are compiled 

by the National Bureau of Statistics of China. The mortality data at older ages are 

extrapolated by the Kannisto model. 
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Figure 3: Estimated xα and xβ  
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This figure presents the estimated xα (left panel) and xβ (right panel, smoothed 

using cubic B-splines) for both Chinese males and females, from age 0, 1, 2, and up to 

120. 
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Figure 4: Estimated tκ  
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This figure plots the estimated tκ  for Chinese males and females for 1994-2008 

period. 
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Figure 5: Prediction of Log Mortality Rate at 60 with Parameter Risk 
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This figure shows the (observed and predicated) logarithm of central death rates at the age of 60 for Chinese males (left) and  

Chinese females (right) with only parameter risk and the combination of parameter risk and process risk within 95% confidence intervals. 
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Figure 6: Prediction of Log Mortality Rate at 60 with Process Risk 
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This figure shows the (observed and predicated) logarithm of raw central death rates at the age of 60 for Chinese males (left) and  

Chinese females (right) with only process risk and the combination of parameter risk and process risk within 95% confidence  

intervals.  
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Table 1: Estimates of Life-Table Ageing Rate (kx,), 1994-2008 

Panel A: Males 

 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

K60 0.127 0.106 0.082 0.127 0.106 0.136 0.106 0.134 0.101 0.095 0.078 0.096 0.095 0.091 0.089 

 

(0.089, 

0.165) 

(0.097, 

0.115) 

(0.053, 

0.111) 

(0.098, 

0.156) 

(0.074, 

0.138) 

(0.104, 

0.168) 

(0.105, 

0.107) 

(0.101, 

0.167) 

(0.071, 

0.131) 

(0.063, 

0.126) 

(0.048, 

0.108) 

(0.087, 

0.104) 

(0.062, 

0.128) 

(0.057, 

0.126) 

(0.057, 

0.120) 

K65 0.074 0.095 0.097 0.061 0.121 0.083 0.1 0.094 0.075 0.080 0.078 0.101 0.101 0.143 0.107 

 

(0.042, 

0.106) 

(0.087, 

0.103) 

(0.071, 

0.122) 

(0.036, 

0.085) 

(0.096, 

0.147) 

(0.057, 

0.109) 

(0.099, 

0.101) 

(0.068, 

0.121) 

(0.050, 

0.101) 

(0.052, 

0.107) 

(0.051, 

0.106) 

(0.094, 

0.109) 

(0.072, 

0.131) 

(0.113, 

0.173) 

(0.078, 

0.136) 

K70 0.108 0.098 0.106 0.099 0.093 0.096 0.109 0.095 0.126 0.126 0.114 0.101 0.103 0.094 0.088 

 

(0.077, 

0.138) 

(0.091, 

0.106) 

(0.083, 

0.129) 

(0.075, 

0.123) 

(0.070, 

0.115) 

(0.072, 

0.120) 

(0.108, 

0.110) 

(0.071, 

0.118) 

(0.103, 

0.148) 

(0.102, 

0.149) 

(0.090, 

0.139) 

(0.094, 

0.107) 

(0.077, 

0.129) 

(0.069, 

0.119) 

(0.062, 

0.133) 

K75 0.086 0.085 0.085 0.083 0.095 0.098 0.09 0.090 0.071 0.102 0.086 0.095 0.094 0.090 0.092 

 

(0.055, 

0.118) 

(0.077, 

0.093) 

(0.061, 

0.108) 

(0.059, 

0.108) 

(0.072, 

0.118) 

(0.074, 

0.122) 

(0.089, 

0.090) 

(0.066, 

0.114) 

(0.049, 

0.093) 

(0.079, 

0.124) 

(0.063, 

0.109) 

(0.089, 

0.101) 

(0.070, 

0.118) 

(0.067, 

0.113) 

(0.069, 

0.116) 

K80 0.082 0.094 0.081 0.113 0.105 0.105 0.102 0.086 0.090 0.090 0.107 0.093 0.075 0.072 0.084 

 

(0.045, 

0.118) 

(0.086, 

0.103) 

(0.054, 

0.108) 

(0.085, 

0.141) 

(0.079, 

0.131) 

(0.078, 

0.132) 

(0.102, 

0.103) 

(0.059, 

0.114) 

(0.064, 

0.115) 

(0.064, 

0.115) 

(0.082, 

0.133) 

(0.087, 

0.100) 

(0.049, 

0.102) 

(0.046, 

0.098) 

(0.058, 

0.109) 

K85 0.083 0.075 -- 0.091 0.050 0.056 0.07 0.104 0.070 0.083 0.096 0.087 0.052 0.075 0.073 

 

(0.032, 

0.133) 

(0.062, 

0.087)  

(0.053, 

0.129) 

(0.013, 

0.088) 

(0.020, 

0.093) 

(0.068, 

0.071) 

(0.067, 

0.140) 

(0.035, 

0.106) 

(0.050, 

0.117) 

(0.062, 

0.129) 

(0.078, 

0.096) 

(0.015, 

0.089) 

(0.041, 

0.108) 

(0.040, 

0.106) 

K90 -- 0.080 -- -- -- -- 0.071 -- -- -- -- 0.074 0.082 -- -- 

  

(0.058, 

0.102)     

(0.069, 

0.073)     

(0.060, 

0.089) 

(0.026, 

0.138)   

K95 -- 0.070 -- -- -- -- -0.021 -- -- -- -- 0.070 -- -- -- 
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(0.016, 

0.125)     

(-0.026, 

-0.017)     

(0.039, 

0.101)    

Panel B: Females 

 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

K60 0.085 0.093 0.106 0.128 0.114 0.083 0.109 0.178 0.145 0.075 0.099 0.109 0.119 0.083 0.136 

 

(0.036, 

0.134) 

(0.081, 

0.106) 

(0.068, 

0.144) 

(0.088, 

0.168) 

(0.074, 

0.154) 

(0.043, 

0.123) 

(0.108, 

0.110) 

(0.134, 

0.222) 

(0.105, 

0.186) 

(0.032, 

0.118) 

(0.059, 

0.139) 

(0.097, 

0.120) 

(0.074, 

0.165) 

(0.040, 

0.125) 

(0.046, 

0.178) 

K65 0.089 0.110 0.094 0.114 0.088 0.117 0.102 0.084 0.102 0.159 0.089 0.105 0.119 0.135 0.102 

 

(0.047, 

0.132) 

(0.099, 

0.120) 

(0.063, 

0.126) 

(0.083, 

0.146) 

(0.055, 

0.121) 

(0.084, 

0.150) 

(0.101, 

0.103) 

(0.051, 

0.117) 

(0.070, 

0.133) 

(0.123, 

0.195) 

(0.054, 

0.124) 

(0.095, 

0.115) 

(0.080, 

0.158) 

(0.097, 

0.173) 

(0.070, 

0.139) 

K70 0.140 0.116 0.1 0.1 0.111 0.096 0.116 0.111 0.081 0.101 0.118 0.109 0.104 0.107 0.127 

 

(0.103, 

0.177) 

(0.107, 

0.125) 

(0.071, 

0.128) 

(0.072, 

0.128) 

(0.082, 

0.140) 

(0.067, 

0.124) 

(0.115, 

0.117) 

(0.082, 

0.140) 

(0.053, 

0.108) 

(0.073, 

0.128) 

(0.088, 

0.147) 

(0.101, 

0.117) 

(0.072, 

0.136) 

(0.076, 

0.138) 

(0.057, 

0.158) 

K75 0.087 0.092 0.115 0.087 0.104 0.079 0.098 0.084 0.115 0.096 0.108 0.111 0.093 0.107 0.086 

 

(0.053, 

0.120) 

(0.083, 

0.100) 

(0.090, 

0.141) 

(0.061, 

0.114) 

(0.077, 

0.130) 

(0.051, 

0.106) 

(0.097, 

0.099) 

(0.058, 

0.111) 

(0.089, 

0.141) 

(0.070, 

0.122) 

(0.082, 

0.134) 

(0.104, 

0.118) 

(0.065, 

0.122) 

(0.080, 

0.134) 

(0.066, 

0.113) 

K80 0.118 0.105 0.082 0.111 0.093 0.133 0.112 0.092 0.087 0.127 0.096 0.103 0.106 0.081 0.100 

 

(0.084, 

0.151) 

(0.096, 

0.113) 

(0.056, 

0.108) 

(0.084, 

0.138) 

(0.066, 

0.120) 

(0.105, 

0.161) 

(0.111, 

0.113) 

(0.064, 

0.121) 

(0.061, 

0.133) 

(0.101, 

0.153) 

(0.069, 

0.122) 

(0.096, 

0.110) 

(0.078, 

0.135) 

(0.054, 

0.109) 

(0.057, 

0.127) 

K85 0.057 0.080 -- 0.037 0.069 0.084 0.08 0.09 0.103 0.047 0.085 0.089 0.068 0.081 0.080 

 

(0.016, 

0.098) 

(0.069, 

0.090)  

(0.003, 

0.072) 

(0.035, 

0.102) 

(0.052, 

0.116) 

(0.079, 

0.081) 

(0.057, 

0.123) 

(0.072, 

0.134) 

(0.016, 

0.078) 

(0.054, 

0.116) 

(0.081, 

0.097) 

(0.035, 

0.101) 

(0.050, 

0.113) 

(0.042, 

0.111) 

K90 -- 0.095 -- -- -- -- 0.093 -- -- -- -- 0.096 0.111 -- -- 

  

(0.080, 

0.110)     

(0.091, 

0.094)     

(0.085, 

0.107) 

(0.070, 

0.152)   
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K95 -- 0.027 -- -- -- -- 0.051 -- -- -- -- 0.041 -- -- -- 

  

(-0.006, 

0.060)     

(0.048, 

0.053)     

(0.021, 

0.062)    

Note: The corresponding confidence intervals are reported in the parentheses. 

 

This table presents the estimates of life table aging rage and their corresponding confidence intervals for Chinese males and females during the 

period of 1994-2008 based on different age groups.  
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Table 2: Unit Root Test and Model Selection for tκ  

Panel A: Unit Root Test in Level and first Difference 

 Male  Female 
Statistics t-Stat Prob. t-Stat Prob. 

Augmented Dickey-Fuller Test in Level -1.0225 0.7140 1.6843 0.9984 

Phillips-Perron Test in Level -0.9715 0.7324 0.2095 0.9625 

Augmented Dickey-Fuller Test first Difference -3.1315 0.0535 -3.9827 0.0140 

Phillips-Perron Test in first Difference -3.6908 0.0188 -5.5681 0.0008 

  
Panel B: Autocorrelation and Partial Correlation of First Difference 

 Male  Female 
 AC PAC Q-Stat Prob. AC PAC Q-Stat Prob. 

1 -0.108 -0.108 0.1996 0.655 -0.082 -0.082 0.1161 0.733 

2 0.034 0.023 0.2217 0.895 -0.446 -0.456 3.8267 0.148 

3 -0.002 0.004 0.2218 0.974 -0.013 -0.132 3.8302 0.280 

4 -0.015 -0.016 0.2270 0.994 0.308 0.109 5.9514 0.203 

5 -0.064 -0.068 0.3281 0.997 0.048 0.068 6.0085 0.305 
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Table 3: Simulation Results for Life Annuity Price, 60-year Male and Female in 2009 

Panel A: Flat Rates    

r Male Female       

 

Constant Death 

Probabilities (1) 

Process Risk 

(2) 

Parameter Risk 

(3) 

Process & Parameter 

Risk (4) 

Constant Death 

Probabilities (5) 

Process Risk 

(6) 

Parameter Risk 

(7) 

Process & Parameter 

Risk (8) 

0.01 16.1499 17.0634 17.0692 17.0393 18.4207 19.5873 19.5933 19.5487 

 (15.4562-16.8230) (15.2385-18.6268) (15.2834-15.6593) (15.2418-18.6116) (18.0970-18.7370) (18.8202-20.2484) (18.8335-20.2584) (18.7609-20.2403) 

0.02 14.7287 15.4900 15.4875 15.4627 16.6668 17.6302 17.6321 17.6043 

 (14.1348-15.3001) (13.9594-16.8147) (13.9982-16.7869) (13.9752-16.7864) (16.3872-16.9318) (16.9798-18.1824) (17.0120-18.1826) (16.9651-18.1654) 

0.03 13.5066 14.1282 14.1372 14.1310 15.1659 15.9578 15.9660 15.9440 

 (12.9968-14.0006) (12.8373-15.2423) (12.8533-15.2620) (12.8629-15.2388) (14.9342-15.3938) (15.4330-16.4217) (15.4361-16.4260) (15.4036-16.4242) 

0.04 12.4384 12.9832 12.9722 12.9592 13.8722 14.5351 14.5395 14.5161 

 (11.9969-12.8631) (11.9832-13.9337) (11.8954-13.9082) (11.8611-13.9187) (13.6733-14.0678) (14.0894-14.9274) (14.1008-14.9306) (14.0553-14.9237) 

0.05 11.5180 11.9737 11.9694 11.9636 12.7542 13.3152 13.3085 13.2910 

 (11.1309-11.8856) (11.0747-12.7768) (11.0666-12.7757) (11.0427-12.7690) (12.5797-12.9192) (12.9426-13.6392) (12.9243-13.6401) (12.9010-13.6332) 

Panel B: Term Structure         

 

Constant Death 

Probabilities (1) 

Process Risk 

(2) 

Parameter Risk 

(3) 

Process & Parameter 

Risk (4) 

Constant Death 

Probabilities (5) 

Process Risk 

(6) 

Parameter Risk 

(7) 

Process & Parameter 

Risk (8) 

Term  13.0671 13.6157 13.6158 13.5950 14.5559 15.2392 15.2362 15.2171 

Structure (12.6048-13.5097) 12.5002-14.6237) (12.4963-14.5842) (12.4556-14.5783) (14.3468-14.7542) (14.7850-15.6441) (14.7758-15.6408) (14.7459-15.6342) 

 

This figure table presents the simulated annuity price for 60-year old Chinese males and females in 2009 under different scenarios. Panel A is 

based on the flat rates and Panel B on term structure of China’s government bond 24th May, 2010.  

 


