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Abstract 
 

In this paper we realize an early warning system for hedge funds based on specific red flags that 

help to detect symptoms of impending extreme negative returns and contagion effect. To do this we 

rely on regression trees analysis identifying a series of splitting rules which act as risk signals. The 

empirical findings prove that contagion, crowded-trade, leverage commonality and liquidity 

concerns are the leading indicators to be used to predict worst returns. We do not only provide a 

variable selection among potential predictors, but we also assign the values for such predictors that 

should be considered as excessively risky. Out-of-sample analysis documents that such an approach 

would have been able to predict more than 90 per cent of the total worst returns occurred over the 

period 2007-2008. Yet, an in depth analysis of contagion reveals a changing and complex nature of 

hedge fund systemic risk which reflects on poor forecasting ability.        
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I. Introduction 

In June 2006 the European Central Bank issued a warning on the risk posed by hedge fund industry 

for financial stability arguing that “... the increasingly similar positioning of individual hedge funds 

within broad hedge fund investment strategies is another major risk for financial stability … . Some 

believe that broad hedge fund investment strategies have also become increasingly correlated, 

thereby further increasing the potential adverse effects of disorderly exits from crowded trades.” 

The events of 2007-2009 confirmed how this warning was so timely highlighting the importance of 

monitoring the comovements of hedge fund strategies over time.  

In a retrospective view, the sub-prime crisis goes back to August 1998, when LTCM collapsed 

because Russia defaulted on its GKO government bonds. In both cases, credit spreads widened then 

generating a “margin call spiral”, which in turn sparked extreme losses due to illiquid portfolio 

positions. However, this is an analogy on the crisis effects and not on their inner causes. On this 

point, Khandani and Lo (2007) note that “In contrast to August 2007 … the well-documented 

demand for liquidity in the fixed-income arbitrage space of August 1998 had no discernible impact 

on the very same strategy.”  

While LTCM and the sub-prime crises are two cases in which hedge funds have been clearly 

associated with systemic risk (Brown, et al., 2009), the difference between the two events is the way 

through which the risk propagated among fund managers. In 1998, the default was on the LTCM 

proprietary strategy, while August 2007 was a fund strategy failure as a whole, showing how the 

systemic risk induced by increasingly commonality in hedge fund strategies has become 

predominant within the industry. In such a new context, where complex and highly dynamic 

financial ramifications form intricate connections among institutions and markets, understanding 

and preventing systemic risk within hedge fund industry are of primary importance. The purpose of 

this paper is to consider both issues.  

How can we define systemic risk whithin hedge fund industry? While a clear definition is 

controversial among academics and policymakers, a possible generalization of the concept bringing 
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back its multiple facets is: the risk that an economic shock or institutional failure, i.e. a systemic 

event, causes a chain of bad economic consequences, such as contagion, spillover effects or, less 

dramatically, significant losses to financial institutions or substantial financial-market price 

volatility. This definition not only emphasizes the concept of a broad-based risk in the financial 

system, but also impliedly delineates a “pivotal” notion of systemic risk since it focuses on one 

financial sector to lever on the other interconnected sectors. For hedge funds, this signifies that 

exploring the risk of the industry as a whole is the first step to understand the potential destabilizing 

contribution of the hedge funds for the entire financial system.          

The economic mechanism by which systemic risk originates and propagates among hedge funds can 

be explained with Stein (2009), who argues that sophisticated investors, “in the process of pursuing 

a given trading strategy, … inflict negative externalities on one another” through crowded-trade and 

leverage effects. This is because if traders follow the same set of signals to buy the same stocks 

using leverage, a negative shock could force to liquidate common portfolio assets to meet margin 

calls, then reflecting on negative price pressures which in turn translate on negative returns of the 

traders. 

Ephasizing the role of comovements induced by both crowded-trade and leverage effects, Stein 

(2009) suggests a way to explore the systemic risk which is economically consistent with the new 

literature on liquidity spirals (Brunnermeier and Pedersen, 2009) and the studies on leveraged 

arbitrageurs (Shleifer and Vishny, 1997; Kyle and Xiong, 2001; Morris and Shin, 2004). 

Furthermore, the economic setting assumes a stylised world where sophisticated arbitrageurs have 

rational expectations making optimizing leverage decisions, which is consistent with the real world 

of hedge funds. Following this line of reasoning, many papers empirically explore how hedge funds 

comove together especially in times of stress. Billio et al. (2010) look at correlation to capture the 

degree of connectivity among financial institutions and its impact in terms of contagion, spillover 

effects and joint crashes. Boyson et al. (2010) focus on clustering of worst returns and using the 

arguments developed in Bakaert et al. (2005) they define hedge fund contagion as the “correlation 
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over and above what one would expect from economic fundamentals”. In their view, the clustering 

of worst returns is conceived as a form of excess correlation, which in turns reflects on contagion or 

interdependencies (Forbes and Rigobon, 2002)1. Adrian (2007) relies on hedge fund return 

correlation to proxy the degree of similarities of hedge fund strategies which is assumed to be a key 

determinant of the risk of the entire hedge fund industry.  

Using data from the CSFB/Tremont indices over the period from January 1994 to September 2008 

our work looks at excess correlation as a symptom of contagion, which is proxied by the number of 

the other hedge fund styles that have a worst return in the same month2 as in Boyson et al. (2010). 

We follow Boyson et al. (2010) also to define hedge fund tail event, which is identified by returns 

that fall in the bottom 10% of a hedge fund style’s monthly returns, and to compute correlations 

using filtered returns (asset pricing model residuals), in order to better circumscribe the risk induced 

by commonality in proprietary trading strategies then giving the proxy for crowded-trade. 

Correlations are also computed for systematic risk exposure estimates (proxy for leverage 

commonality) and common risk factors (proxy for risk factor commonality), since we conjecture 

that contagion could be connected also to commonalities in beta dynamics and cross-market 

comovements.  

The first question we address in this paper is about the value of the proxies for commonality in (i) 

trading strategies, (ii) leverage dynamics and (iii) risk factors we have to consider as alarm 

thresholds for hedge fund worst returns. We try to answer this question taking into account also the 

proxy for contagion as well as other potential predictors for excess negative returns. 

A second and related question we face concerns the contagion. Are we able to predict the 

number/proportion of hedge funds which will experience a worst return? In answering this second 

                                                 
1 Forbes and Rigobon (2002) define significant increases in cross-market comovements as contagion, while continued 
high levels of correlations are defined as interdependence. 
2 Such a definition of contagion derives from the literature on sovereign defaults. In Eichengreen et al. (1996) contagion 
is indeed defined as a case where knowing that there is a crisis elsewhere increases the probability of a crisis at home, 
even after taking into account for country’s fundamentals. 
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question we give a measure for systemic risk since we provide a probability estimate of hedge fund 

styles that could be subject to extreme negative returns.  

To do this we proceed in three methodological steps.      

In the first, we use a Bayesian time-varying CAPM-based beta model (Amisano and Savona, 2008; 

Savona, 2009) to estimate filtered returns and time-varying betas.  

In the second, we measure the dynamic conditional correlations using the model introduced in 

Alexander (2002) based on GARCH volatilities of the first few principal components of a specific 

system of covariates.  

In the third and final step, we realize an early warning system (EWS) using regression trees 

analysis. This is a nonparametric statistical technique, introduced in Breiman, et al. (1984), through 

which the predictor space is recursively partitioned into subsets in which the distribution of Y is 

successively more homogeneous. The structure of regression trees is based on some splitting rules, 

namely a series of threshold values associated with selected input variables in order to get the best 

nonlinear predictor (in a mean squared error sense) of the dependent variable of interest. Using 

regression trees analysis we develop a monitoring risk system for hedge funds in the spirit of the 

signal approach (Kaminsky et al. 1998; Manasse and Roubini, 2009) based on specific “red flags” 

that help to detect symptoms of impending hedge fund worst returns and contagion effect. 

In our empirical analysis we prove that contagion and leverage commonality play the role of 

leading indicators in signaling potential worst returns. Furthermore, market and funding liquidity 

concerns lead together to increase the risk for hedge funds, since risky clusters are signaled when 

credit spread widens and funds tend to de-leverage. A clinical study about the reasons of LTCM and 

sub-prime crises in terms of worst returns suffered by hedge funds suggests that, on the one hand, 

LTCM collapse was mainly due to extreme commonality in leverage dynamics and higher leverage 

level, on the other, the main reasons of sub-prime crisis were the crowded-trade together with 

substantial drop in leverage commonality due to strong de-leveraging. 
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By inspecting the contagion effect we found a more stronger changing nature of their inner 

mechanisms. In August-October 1998 extreme interconnectedness in leverage dynamics together 

with illiquidity shocks were the reasons for contagion; interestingly, crowded-trade effects were 

virtually absent. The story was different for the sub-prime crisis, when the transmission channels 

changed significantly. We indeed ascribed the quant crisis (August 2007) to dramatic de-leveraging 

and de-correlations in leverage dynamics together with strong crowded-trade. While the huge 

systematic volatility of hedge fund risk factors exploded with the Lehman crash (September 2008) 

was the culprit of the higher negative impact over the entire hedge fund industry ever.  

The paper is organized as follows. Section II describes how filtered returns and time-varying betas 

are estimated. Section III discusses the methodology used to estimate dynamic conditional 

correlations, while Section IV presents the regression trees approach we follow to realize the early 

warning system. The dataset used in the paper is discussed in Section V and Section VI reports the 

empirical result. Finally, Section VII concludes. 

 

II. Filtered Returns and Time-Varying Betas 

Hedge fund returns and time-varying betas are estimated using the 3-equation system implemented 

in Savona (2009), which is a model developed within a Bayesian framework in which fund returns 

are modelled by imposing a pseudo-stochastic process on the path of a CAPM-based beta. The 

econometric procedure is as follows3:  

• First, a multi-beta structural model with the 7+1 risk factors proposed in Fung and Hsieh 

(2004, 2007a,b) (FH) is estimated using the expectations net of the risk-free rate as a fund-

specific style benchmark, ( ) tftitib rREr ,,,, −=  with t,i
k

t,kk,iit,i EFBAR ++= ∑
=

8

1

( tfr ,  is the risk-

free rate, t,iR  is the return of the hedge fund index i, iA  is a constant, k,iB  is the beta on factor 

k, t,kF  is the return of factor k and t,iE  is the error term). 

                                                 
3 See Savona (2009) and Amisano and Savona (2008) for technical details.   
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• Second, within a Bayesian framework a 3-equation system is estimated where:  

(i) the first equation describes the excess return behavior using a CAPM-based model 

expressed as tptbtpptp rr ,,,, εβα ++=  ( pα  is a constant, tp ,β  is the time-varying beta, tbr ,  

is the excess benchmark return, and tp,ε  is error term, i.e. the “filtered return”); 

(ii) the second equation is the single beta relative to the regression-based style benchmark 

which is assumed to follow the process ( ) tpttptp ,1,, ημβφμβ +Γ′+−+= − z  (φ  is the 

persistence beta parameter, μ  the unconditional mean-reverting beta term, Γ′  the 

transposed vector of sensitivities towards tz , which is the vector of some 

contemporaneous observable covariates, and tp ,η  is the stochastic component); 

(iii) the third equation is the fund-specific style benchmark excess return which is modeled 

using the same set of covariates used to describe the beta evolution and expressed as 

tbttb ur ,, +Λ′= z  ( Λ′  is the transposed vector of sensitivities towards tz  and tbu ,  is the 

unexpected benchmark return).  

The hypothesis underlying this model is that some exogenous variables ( tz ) act as “primitive risk 

signals” (PRS) that hedge fund managers use in changing their trading strategies. For this reason 

these covariates enter into the beta process. In such a setting, the systematic risk exposure may be 

modified in response to changes in PRSs and risk factors themselves (the style benchmark). The 

model also imposes a non-negative covariance matrix in the system innovation, developing a 

framework that could help to explain how expected and unexpected hedge fund returns, i.e. the 

filtered returns, are correlated with systematic risk factors through the beta dynamics4.  

 

 

                                                 
4 As discussed in Savona (2009), by imposing such a non-negative covariance matrix we do not try to remove the 
stochastic inaccessibility inherent the price process, but, rather, we offer a possibility to tame it. In a sense, where the 
PRSs fail to explain the beta dynamics, the innovations try to measure what is, generally, unobservable, namely the 
measurement error of observable PRSs. 
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III. Time-Varying Correlations  

Since our objective is to scrutinize the time evolution of crowdedness in trading strategies, together 

with leverage commonality and risk factor commonality, we rely on dynamic conditional 

correlation estimators which allow to compute potentially very large correlation matrices with clear 

computational advantages, since they are parameterized directly.  

We followed Alexander (2002) whose method is based on GARCH volatilities of the first few 

principal components of a specific system of factors then using the corresponding factor weights for 

generating correlations of the original system.  

 

III.1. Principal Components and Covariances 

One starts with a kT ×  matrix Y of asset or risk factor returns extracting uncorrelated  r principal 

components with kr < , each component being a linear combination of the original data with 

weights the eigenvectors of the correlation matrix of Y and variances the corresponding 

eigenvalues. Letting W be the matrix of eigenvectors we have: 

 

(1) XWP = , 

 

where P is the rT × matrix of principal components and X the normalized (each column has zero 

mean and variance one) matrix of Y. Since W is orthogonal, then 

   

(2) EWPX +′= , 

 

in which E is the ( )rkT −×  matrix of error terms, since we use the first kr <  principal 

components. Having r orthogonalized components, their covariance matrix D will be diagonal and 

taking variances of Y gives    
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(3) eVAADV +′= , 

 

where A is the rk ×  matrix of normalized factor weights, ( ) ( )( )rpVpVD ++= K1diag  is the 

covariance matrix of the principal components and eV  is the covariance matrix of the errors. 

Choosing r so as to make E negligible, we can ignore eV , giving the approximation  

 

(4) AADV ′≈ , 

 

which leads to significant computational efficiency since we need to estimate only the r variances 

instead of the ( ) 21+kk  variances and covariances of the matrix Y. 

 

III.2. Dynamic Conditional Correlations 

Having discussed the relation between a generic dataset and the corresponding principal 

components, the computation of dynamic conditional correlations is now simple to understand. The 

procedure is as follows:  

• First, extract the first r principal components from the original matrix data Y so as to achieve a 

cumulative explained variance in order to make the residual variance as smaller as possible. 

• Second, for each component, estimate the conditional time-varying variance using the 

univariate GARCH(1,1):    

 

(5) 2
1

2
1

2
−− ++= ttt βσαεϖσ  

 

with 0,,0 ≥> βαϖ  and where α  measures the response to lagged innovation 2
1−tε  and β  

the persistence in volatility.  

• Third, over the period of interest compute the pairwise correlations for all ji ≠  in Y as 
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(6) 
( )[ ]( )[ ]5.05.0,,

jtjiti

jti
tji adaada

ada
′′

′
=ρ  

 

where a is the 1×r  vector of normalized factor weights for i and j, and td  is the 1×r  vector 

of the conditional variances in t for the first r principal components. 

 

III.3. Aggregating Dynamic Conditional Correlations 

In order to aggregate pairwise correlations in hedge fund filtered returns and time varying betas we 

looked at the hedge fund industry as a single portfolio, as recently suggested by Lo (2008) to 

inspect the systemic risk. First, we estimate all pairwise correlations between each index and all 

other ones, next computing the cross-sectional median of the estimated dynamic correlations 

relative to each index. Second, we compute the value-weighted average of cross-sectional median 

correlations using the monthly proportion of AUM for the hedge fund indices. Mathematically,  

 

(7) ( )∑=Ω
i

tjititit Mw ,,,, ρ ,   

 

where ( )tjiiM ,,ρ  is the cross-sectional median of all the pairwise correlations between the index i 

and all the remaining indices j with ji ≠  in the period t; tiw ,  are simply the proportion of assets 

under management for index i at time t, namely 
∑

=

= N

j
tj

ti
tiw

1
,

,
,

AUM

AUM
 with N denoting the number of 

indices. 

We run equation (7) for hedge fund filtered returns (crowded-trade) and corresponding time-varying 

betas (leverage commonality), while for correlations across the 7+1 FH risk factors (risk factor 



 11

commonality) we simply used the cross-sectional median computed over all the pairwise 

correlations, denoted by    

 

(8) ( )tmltt M ,,ρ=Ρ    

 

where ( )tml ,,ρ  are all the pairwise dynamic conditional correlations between factors l and m with 

ml ≠ . 

 

IV. An EWS for the Hedge fund Industry 

The monitoring risk system we propose for hedge funds pertains to the signal approach, largely 

used in the literature on sovereign crises (currency, banking, and debt crises). The objective of a 

signal approach is to realize a system in which a crisis is signaled when pre-selected leading 

economic indicators exceed some thresholds to be estimated according to a minimization procedure.  

The signal approach starts with Kaminsky et al. (1998) and recently a new generation of EWSs has 

been introduced using regression trees (Manasse and Roubini, 2009), which appear more robust 

since they consider simultaneously all possible risk signals issued by the various indicators allowing 

linear and nonlinear interactions.  

Regression tree analysis is a statistical technique introduced in Breiman et al. (1984) through which 

the predictor space is recursively partitioned by a series of subsequent nodes that collapse into 

distinct partitions in which the distribution of the dependent variable, Y, minimizes the prediction 

error within each region. This method uncovers general forms of nonlinearity and provides a 

general non-parametric way of identifying multiple data regimes from a set of predictor variables 

(Durlauf and Johnson, 1995). Such a technique, we briefly explain in the next section, can be 

viewed as a collection of piecewise linear functions defined by disjoint regions wherein 

observations are grouped.  
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IV.1. Methodological issues 

Let ( )[ ]rXX ,,1 K=X  be a collection of r vectors of predictors, both quantitative or qualitative. Let 

T denotes a tree with Mm ,,1K=  terminal nodes, i.e. the disjoint regions mT~ , and by 

Mθθ ,,1 K=Θ  the parameter that associates each m-th θ  value with the corresponding node. A 

generic dependent variable Y conditional on Θ  assumes the following distribution 

 

(9) ( )m

M

m
mi TIyf ~)(

1
∈=Θ ∑

=

Xθ   

 

where mθ  represents a specific mT~  region and I denotes the indicator function that takes the value of 

1 if mT~∈X . This signifies that predictions are computed by the average of the Y values within the 

terminal nodes, i.e.  

 

(10) ∑
∈

−⇒=
mi T

immi yNy
~

1ˆˆ
x

θ   

 

with Ni ,,1K=  the total number of observations and mN  the number within the m-th region.   

Computationally, the general problem for finding an optimal tree is solved by minimizing the 

following loss function5 

 

(12)  
{ }

[ ]2
,

)(minarg Θ−=
Θ=Ξ

YfYL
T

.  

 

This entails selecting the optimal number of regions and corresponding splitting values.  

                                                 
5 In solving such minimization process a common procedure is to grow the tree then controlling for the overfitting 
problem by pruning the largest tree according to a cost-complexity function that modulates the tradeoff between the size 
of the tree and its goodness of fit to the data. See Hastie et al. (2009) for technical details. 
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Let ∗s  be the best split value and ( ) ( )2

~

1 ˆ∑
∈

− −=
mi T

mim yNmR
x

θ  be the measure of the variability within 

each node, the fitting criterion is given by  

 

(11) ( ) ( )msRmsR
s

,max, Δ=Δ
∗

∗   

with  

(12) ( ) ( ) ( ) ( )[ ]21, mRmRmRmsR +−=Δ . 

 

The procedure is run for each predictor then ranking all of the best splits on each variable according 

to the reduction in impurity achieved by each split. The selected variables and corresponding split 

points are those that most reduce the loss function in each partition. 

Another interesting feature of regression trees is that they are conceived with the end to improve the 

out-of-sample predictability. The estimation process is indeed based on the cross-validation through 

which the data are partitioned into subsets such that the analysis is initially performed on a single 

subset (the training sets), while the other subset(s) are retained for subsequent use in confirming and 

validating the initial analysis (the validation or testing sets).  

 

IV.2. Discussion 

The previous points summarize the main technicalities of the regression trees approach, which 

appears as a useful way to inspect hedge fund tail events and contagion effect showing some 

interesting aspects. Indeed: 

• They allow for non-linear relationships and predictors can be quantitative or qualitative 

detecting and revealing interactions in the dataset. 

• The number of nodes as well as the corresponding splitting threshold values are the output of 

an optimization procedure then delivering the best aggregation of data within homogeneous 

clusters. 
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• The procedure is essentially a forecasting model conceived in a forward-looking basis making 

a trade off between fitting and forecasting ability. 

Tree models can then be used to develop EWSs based on a collection of binary rule of thumbs such 

as “ jji sx ≤ ” or “ jji sx > ” for each  j predictor, realizing a risk stratification that can capture 

situations of extreme risk whenever the values of the selected variables lead to risky terminal nodes, 

i.e. those clusters denoted by the higher value of the predicted response variable Y.   

In our study, the response variables, both defined according to Boyson et al. (2010), are: 

• Worst Return (WR), which is a dummy variable assuming 0 for no WR and 1 whether we 

observe a WR defined as an extreme negative return falling within the 10% of the left side of 

the return distribution of a given index. 

• Contagion (C), which is a counting variable and defined as the number of other hedge fund 

style indices experiencing a WR in the same month and ranging from 0, for no contagion, to 

1−H  with H the total number of hedge fund style indices, for maximum contagion. 

 

Using the regression trees approach for the two dependent variables we determine a series of “red 

flags” for crowded-trade, leverage and risk factor commonality together with other potential 

predictors, delivering a sort of rating system through which we try to predict: 

(i) an impeding worst return, giving the corresponding “physical” probability (i.e. the average 

number of worst returns over the total cases classified within each terminal node), i.e. 

 

(11) ( ) ∑
∈

−⇒=≈
mi T

immii WRNyWR
~

1ˆˆPr
x

θ ;  
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(ii) the number of hedge fund styles having a worst return in the same month (i.e. the average 

number of C measured within each terminal node)6. And since contagion is defined as the 

number of other hedge fund styles having an extreme negative return, the ratio “ ( )1ˆ −HC ”, 

with Ĉ  be the prediction for C, gives a measure of the intensity of contagion with values 

ranging from 0 (no contagion) to 1 (maximum contagion). As a result, such a ratio can be 

viewed as a proxy for the (physical) probability of having a contagion within the hedge fund 

industry7, i.e.  

 

 (12) ( ) ( ) ( ) ( )11

ˆ

1
ˆ

Pr
~

1

−
⇒

−
=

−
≈

∑
∈

−

H

CN

HH
yC mi T

im
mi

i
xθ .  

 

V. Data     

A. Hedge Fund Style Returns 

The data used for hedge fund styles are the monthly returns of the CSFB/Tremont indices over the 

period January 1994–September 2008. These are ten asset-weighted indices of funds with a 

minimum of $10 million of AUM, a minimum one-year track record and current audited financial 

statements, including Convertible Arbitrage, Dedicated Short Bias, Emerging Markets, Equity 

Market Neutral, Event Driven, Fixed Income Arbitrage, Global Macro, Long/Short Equity, 

Managed Futures, Multi-Strategy. To avoid redundancies we do not consider the aggregate index 

computed from the CSFB/Tremont database, and the three sub-indices of Event Driven Index 

(Event Driven–Distressed; Event Driven–Multi-Strategy; Event Driven–Risk Arbitrage). 

                                                 
6 In our empirical analysis we used a novel version of tree models. The algorithm, introduced in Vezzoli and Stone 
(2007), is a sort of generalized version of regression trees conceived when dealing with panel data. Briefly, the 
algorithm is in two steps: (1) in the first step, the subsets (the time series of each hedge fund style) in which the 
regression trees are estimated are repeatedly rotated for all the subsets of the sample, then generating multiple 
predictions; (2) in the second step, a final regression tree is grown using the average of predictions obtained in the first 
step in place of the original dependent variable. Vezzoli and Stone (2007) show that this two-step procedure represents 
a possible reconciling solution to our problem, since we obtain a parsimonious final model, with good predictions 
(accuracy), better interpretability and minimized instability. 
7 Consider, on this point, that regression trees are invariant to scale transformations of the data. 
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The time period used to inspect worst returns and contagion was split into two intervals, the first 

from January 1998 to December 2006 and the second from January 2007 to September 2008. The 

first sub-sample was used to estimate the dynamic conditional correlations and our EWS, using the 

second sub-sample as out-of-sample test set.  

The asset pricing model used to estimate filtered returns and time-varying betas was estimated over 

the same estimation period January 1998-December 2006, using the time interval January 1994-

December 1997 as a “pre-sample” for priors’ estimation according to the Bayesian approach 

outlined in Savona (2009).  Filtered returns and betas over the period January 2007-September 2008 

are computed using the model estimated in-sample to better inspect the impact of the sub-prime 

crisis. In so doing we reduce the potential bias induced by model parameters if estimated up to 

September 2008, since they would incorporate the market stress events occurred over the out-of-

sample period then spuriously measuring the crisis impact both in terms of filtered returns and 

betas. Descriptive statistics regarding the ten hedge fund styles indices are in Table 1 Panel A.  

 

B. Systematic Risk Factors 

The risk factors used to estimate the fund-specific style benchmark through a constant multi-beta 

model are the 7+1 risk factors used in Fung and Hsieh (2001, 2004, 2007a,b), who suggest to use: 

(i) three primitive trend-following strategies proxied as pairs of standard straddles and constructed 

from exchange-traded put and call options as described in Fung and Hsieh (2001); (ii) two equity-

oriented risk factors; (iii) two bond-oriented risk factors, and (iv) one emerging market risk factor. 

The following are the indices used in the empirical analysis: 

• Bond Trend-Following Factor;  

• Currency Trend-Following Factor; 

• Commodity Trend-Following Factor; 

• Standard & Poors 500 index monthly total return; 
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• Size Spread, proxied by Wilshire Small Cap 1750 minus Wilshire Large Cap 750 monthly 

returns; 

• 10-year Treasury constant maturity yield month end-to-month end change; 

• Credit Spread, proxied by the month end-to-month end change in the Moody’s Baa yield less 

the 10-year treasury constant maturity yield; 

• MSCI Emerging Market Index.  

Descriptive statistics regarding the 7+1 risk factors are in Table 1 Panel B. 

 

C. Primitive Risk Signals 

As briefly outlined in Section II, PRSs are contemporaneous variables that managers are assumed to 

use in changing their trading strategies and that enter into the beta and the benchmark equations. As 

discussed in Savona (2009), PRSs were chose by referring to empirical findings as well as 

theoretical explanations advanced in recent papers involved in the issue of risks in hedge funds. 

These are the following:  

• CBOE Volatility Index (VIX);  

• Month end-to-month end change in the 3-month T-bill;  

• Term Spread, computed as the monthly difference between the yield on 10-year Treasuries 

and 3-month Treasuries; 

• Innovations in the S&P’s 500 monthly standard deviation (Inn) as the proxy for liquidity 

shocks and estimated by the equation ( ) tftvtt svvcvv +−=− −− 11 ; tv  and 1−tv  are the market 

volatility at time t and 1−t , respectively; vc  is the persistence volatility parameter that shrinks 

the volatility process towards the long-run fundamental volatility fv , assumed to be constant; 

ts  is the error term used to proxy the liquidity shocks.   

Descriptive statistics regarding the four PRSs are in Table 1 Panel C. In the estimation process, we 

standardized each PRS so as to obtain scale-independent coefficient estimates.  
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VI. Analysis and Results  

Fist, estimating the 3-equation asset pricing model, then using filtered returns and time-varying beta 

estimates to, second, compute the dynamic conditional correlations, and, third, realize the EWS for 

the hedge fund industry through regression trees approach, are the three steps at the heart of this 

paper. The next sections describe and comment the main results obtained in our analysis, which are 

structured in order to give an answer to the following questions: (i) Are crowded-trade together with 

leverage and common risk factors commonalities, and other factors as liquidity shocks responsible 

to the increase in systemic risk of the hedge fund industry? (ii) Which values for excess correlations 

and other potential predictors for extreme negative returns and contagion effect should be 

considered as risk alarm thresholds? (iii) Are we able to put together all such predictors in order to 

get an EWS able to fit and predict past and future hedge fund extreme events which could propagate 

within the industry?  

 

VI.1. Filtered Returns, Betas, and Correlations  

Estimates of the 3-equation system used to compute filtered returns and time-varying betas are 

those in Savona (2009) and are summarized in Table 2, while results from the principal component 

analysis used to estimate correlations are reported in Table 3. The asset pricing model estimated to 

preliminarily explore hedge fund dynamics proves that PRSs significantly impact on the time 

variation of hedge fund betas, as indicated by the loadings (the λ parameters) which appear in some 

cases as all significant (Equity Market Neutral), also showing strong mean reversion in beta (the μ 

parameter). Moreover, the explained variance expressed by the adjusted R2 denotes variability, with 

values ranging from 0.1086 (Multi-Strategy) to 0.7733 (Emerging Markets)8.  

Results from the principal component analysis indicate that for filtered returns we need 8 

components to achieve an explained variance near 95% (Table 3 Panel A), while for betas the first 6 

                                                 
8 Anyhow, as discussed in Savona (2009) the model proves to be better than the simple 7+1 FH risk factors model with 
constant betas, when considering both in-sample and out-of-sample predictability. 
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principal components explain over 97% of their variation (Table 3 Panel B), which is virtually the 

same value of the variance explained by the first 4 components for the 7+1 FH risk factors (Table 3 

Panel C).  

With these results and running the GARCH (1,1) models for filtered returns, betas and the 7+1 FH 

risk factors, we then estimated the dynamic conditional correlations as discussed in section III.2 and 

III.3. Descriptive statistics are in Table 4 which reports the q–quantiles of the dynamic conditional 

correlation (DCC) distributions with 9.0,5.0,1.0=q  as well as the min, max and the standard 

deviation. Value-weighted average of cross-sectional medians of pairwise correlations of filtered 

returns range from 0.265 to 0.874 while for time-varying betas the values of the same statistics 

range from 0.108 to 0.744, also denoting a slightly high time variation as indicated by the standard 

deviation (0.156 for betas vs. 0.129 for filtered returns). For the 7+1 FH risk factors, the overall 

median of pairwise correlations is more narrow both in terms of range, from 0.05 to 0.256, and 

volatility, since the standard deviation is 0.047. However, single factor correlations show substantial 

differences: S&P’s exhibits on average higher correlations with values from 0.501 to 0.841, while 

the three primitive trend-following strategies show on average negative correlations.      

The q–quantiles of the distributions are interesting since they give some preliminary insights about 

potential risk alarm thresholds. To put the point into perspective let first inspect the time evolution 

of the three commonality proxies (crowded-trade, levarage, common risk factors). Figure 1 shows 

the value-weighted median pairwise conditional correlations of hedge fund filtered returns (DCC 

Filter) and betas (DCC Beta), together with the overall median of the 7+1 FH risk factors cross-

correlations (DCC FH) during the period January 1998–September 2008. The same figure plots the 

Gaussian Kernel smoothing we computed in order to detect trends and cycles occurred over time. 

The main findings are discussed in the next sub-sections.  
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A. DCC Filtered Returns 

The correlations shown significant changes both in level and variations over the entire time period. 

The Kernel smoothing denotes two main phases. The first is from January 1998 to December 2004 

in which the trend of correlations was descending, while the second starts in January 2005 and ends 

in September 2008 showing an increasing pattern. In more depth: 

• From January 1998 to April 1998 the level was high reaching 0.66, then declining to about 0.4 

in September 1998, i.e. one month after the LTCM collapse. These results are consistent with 

those of Adrian (2007), who presented evidence that the LTCM collapse was preceded by 

high correlations, due to an increase in return comovements, before declining in August 

1998.9 

• Significant structural breaks in correlations also occurred with the technology bubble of 2000, 

when values jumped from 0.45 in February 2000 to 0.7 in April 2000, i.e. surrounding the 

peak of the bubble, then sharply dropping to 0.36 in December 2000. Such a pattern seems to 

find a possible explanation with the findings of Brunnermeister and Nagel (2004) together 

with Adrian (2007). Brunnermeister and Nagel (2004) proved that hedge fund managers were 

riding the technology bubble, capturing the upturn and avoiding much of the downturn by 

reducing their holdings before prices collapsed. On the other hand, Adrian (2007) showed that 

volatility in the hedge fund sector declined from October 1998 to October 1999, becoming 

high in the time surrounding the peak of the bubble and then substantially declining from 

2001. Combining the findings of the two papers, we could explain the behaviour of 

correlations over the tech bubble period with the patterns of “pure” comovements 

(covariances), because spikes in correlations were associated with analogous spikes in 

volatility.  

                                                 
9 Adrian (2007) also notes that “By the time the LTCM crisis broke in August 1998, hedge fund return correlations had 
dropped from their peak levels in 1996 and 1997 to a level that was not particularly high. Some hedge fund strategies 
registered losses while others gained. By contrast, equity return correlations and volatilities increased sharply, a 
phenomenon known as financial market contagion. Thus, this episode provides evidence that while returns on equities 
and similar financial assets tend to move together during crises, returns on hedge funds tend to react independently, 
reflecting the differences in hedge fund exposures to various shocks.” 
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• Besides the recent 2007 crisis, other two spikes in correlations appeared as significant. The 

first was during the 9/11 attacks at the World Trade Centre and the months later until 

December 2001, when the DCC reached a local maxima of 0.61 next plunging at low levels 

until December 2004 when the value was 0.26 (the minimum over the entire period 1998-

2008). The second was surrounding the Ford and GM downgrade (in May 2005 they lost their 

investment grade ratings), when correlations rose from 0.39 in February 2005 to 0.56 in July 

2005.       

• From 2006 the dynamics of correlations shown an increasing trajectory moving towards 

higher and persisting levels. Such a strong linkage among hedge funds translated into high 

levels of systemic risk that exploded over the period 2007-2008. From July 2007 to November 

2007 correlations jumped from 0.45 to 0.8, and, interestingly, during the months January-

March 2008, the values slightly dropped to 0.7510. However, from April 2008, in conjunction 

with the Fed Funds rate cut11, correlations returned above 0.8, signaling the higher level 

registered over the entire period inspected.   

 

B. DCC Time-Varying Betas 

The path of the ΩBeta shown more cyclical variation than ΩFilter exhibiting three major phases, as 

denoted by the Kernel smoothing: 

• The first is from January 1998 to September 2002, wherein correlations were characterized by 

the peak of 0.72 in August 1998 next showing a cyclical downtrend plunging to its lowest 

level of 0.11 in September 2002, after a sharp rise occurred in March 2001, when correlations 

                                                 
10 A possible explanation for such a drop in value could be ascribed to some signals, such as the assistance in the Bear 
Stearns bailout in March together with marked reversals across equities, bonds and the U.S. dollar, which may have 
been interpreted differently by hedge fund managers, which in turn implied less dependency among hedge fund returns. 
As pointed out in a report on the hedge fund industry in April 2008, “Some managers have inferred that most of the 
troubles related to the US subprime meltdown and the consequent credit crisis are now behind us, while many others 
strongly believe that it is only the first phase of turbulence that has subsided” (Eurekahedge, April 2008 Hedge Fund 
Performance Commentary, May 2008).  
11 On 30 April, the Federal Reserve brought the Fed funds’ rate to 2%, i.e. the lowest over the past 3 years.  
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reached 0.7. During this phase another point of interest was the behaviour of correlations until 

April 2000, when the corresponding value reached 0.3.  

• The second phase is from October 2002 to October 2006; here correlations increased up to the 

higher level of 0.74.  

• The third phase, that starts from November 2006 and ends in September 2008, exhibited a 

sharp decline reaching 0.31 at the end of the period. Relative to the path exhibited by the 

ΩFilter, the main difference is the behaviour shown during the sub-prime crises when, on the 

one hand, leverage dynamics were different among hedge funds leading the correlations to 

low levels, on the other, crowded-trade became extremely high boosting the correlations over 

0.8.  

In Figure 1 we also report the value weighted average of time-varying betas using AUM of the 

indices as weights (see the next section), since we suspect that leverage commonality could move in 

level with leverage. As clearly depicted in the figure such hypothesis is confirmed since the overall 

leverage level of hedge funds shown the cyclical path commented for the leverage commonality, 

especially during the sub-prime crisis that was characterized by significant de-leveraging. 

 

C. DCC 7+1 FH Risk Factors 

The Kernel smoothing computed for the risk factor commonality denotes significant 

interdependence, namely a linkage among risk factors that over time more than doubled from 

January 1998, when the overall median was 0.08, to September 2008, when the value was over 0.2. 

Over time, several sharp up and down moves in correlations occurred, although the corresponding 

values stayed within modest levels compared to those of filtered returns and beta commonalities. 

However the overall median should be considered carefully, since single factors shown substantial 

differences as previously discussed. As a whole, the dynamics exhibited significant noise around 

the increasing trend. The strongest rise was associated with the LTCM collapse when values ranged 

significantly (1998-1999). The volatility was substantial also during the years 2000-2006, while 
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starting from January 2007 the pattern of correlations was less noisy as indicated by ranges which 

became narrowed.          

 

VI.2. An EWS for Extreme Negative Returns   

Through the EWS our aim is to both explain and predict when and why hedge fund styles could 

experience an extreme negative return. After having estimated and commented the DCC as proxies 

for crowded-trade, leverage commonality, and risk factor commonality, and considering other 

potential predictors, the objective is to realize a collection of thresholds to best stratify the potential 

risk for single hedge fund styles. To do this we used the following 30 potential predictors: 

• The three DCCs, using the cross-sectional median of all the pairwise correlations between the 

index i and all the remaining indices ( ( )tjiiM ,,ρ ), for filtered returns and time-varying betas, 

and the overall median for FH risk factors computed according to the equation (8). We both 

considered the levels of the three DCCs as well as their monthly differences, in order to 

capture sudden changes possibly induced by systemic risk impacts. 

• The time-varying betas of each index estimated using our Bayesian asset pricing model. The 

reason we include betas is because they represent the leverage level of the funds, and as noted 

in Chan et al. (2006), “Leverage has the effect of a magnifying glass, expanding small profit 

opportunities into larger ones but also expanding small losses into larger losses. And when 

adverse changes in market prices reduce the market value of collateral, credit is withdrawn 

quickly, and the subsequent forced liquidation of large positions over short periods of time can 

lead to widespread financial panic, as in the aftermath of the default of Russian government 

debt in August 1998.” Also in this case level and monthly changes have been considered.  

• The “risk factors volatility” (V), computed as the cross-sectional weighted average conditional 

standard deviation of the 7+1 FH risk factors, using the time-varying standard deviations 

estimated before through the univariate GARCH (1,1) and the portions of the variance per 

component as weights. Mathematically,  
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(14) ∑=
i

titit wV ,, σ , 

 

where tiw ,  is the portion of variance for the i-th component at time t, i.e. the eigenvalue of the 

factor i over the total eigenvalues of the components extracted12; ti ,σ  is the conditional time-

varying standard deviation for the factor i at time t. As is obvious, the volatility of hedge fund 

risk factors plays a critical role in the dynamics of hedge fund. With this proxy, we then 

explore whether and how the within-dispersion of hedge fund risk factors reflects on 

comovements across the strategies13. Level and monthly changes have been considered.     

• The 7+1 FH risk factors together with the four PRSs, since we have reason to believe that they 

could help to explain not only the overall dynamics of hedge funds but also their extreme 

events.  

• The measure of hedge fund illiquidity introduced in Getmansky et al. (2004) (Lo_ill) obtained 

by the cross-sectional weighted average first-order autocorrelations using a rolling window of 

36 past monthly returns and the relative AUM as weights: 

 

(15) ( )∑=
i

titit w ,, 1ρρ , 

 

in which ( ) ti ,1ρ  is the average first-order autocorrelation for index i at time t. As discussed by 

Chan et al. (2006), the weighted autocorrelation could play a significant role in the dynamics 

of systemic risk. The authors prove, indeed, that rising autocorrelations in returns are 

                                                 
12 As discussed in section VI.1 for the 7+1 FH risk factors we extracted 4 components. The total eigenvalues was then 
computed as the sum of the eigenvalues of these components, next used to express in relative terms the single 
eigenvalues.   
13 In studies on contagion, many authors used GARCH and ARCH models to estimate the volatility of some key 
variables then inspecting the volatility propagation across countries. For e.g., Edwards (1998) and Edwards and Susmel 
(2000) used interest rate data for a number of Latin American and East Asian countries to study the international 
volatility contagion.  
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connected to illiquid exposures taken by hedge funds, which imply indirect evidence of a rise 

in systemic risk in the industry. Level and monthly changes have been considered.  

• The AUM by single hedge fund style to proxy the dimension of funds. It is indeed reasonable 

to assume that the dimension of funds expressed in terms of the assets they manage could play 

a signaling role of potential risk. On this point, the evidence indicates that larger funds 

perform worse than smaller funds (Getmansky et al., 2004). 

• The Pastor and Stambaugh (2003) (PS) measures for US market liquidity, namely: (a) the 

levels of aggregate liquidity, which is a non-traded liquidity factor associated with temporary 

price fluctuations induced by order flow (PS1); (b) the innovations in the levels of aggregate 

liquidity factor (PS2); (c) the traded liquidity factor computed as the value-weighted return on 

the 10-1 portfolio from the ten sized portfolios sorted on historical liquidity betas (PS3). 

• Contagion (C), measured as the number of other hedge fund styles experiencing a worst return 

in the same month; hence, since we have ten indices, the values range from 0 to 9. This is 

clearly expected to play a central role since it measures the intensity of the systemic risk.    

All predictors were lagged one month in order to estimate the expected probability of WR at time t 

given the values of predictors observed in 1−t . However, since contagion will be our variable of 

interest in the next section, we also used C measured at time t. Another reason of the use of C in t 

(together with C in 1−t ) is because regression trees could endogenously detect switching regimes 

based on contagion effect, and to do this it is essential considering the value of contagion at the 

same time of the dependent variable. 

We pooled the data of the ten hedge fund indices and predictors based on the two time intervals 

January 1998-December 2006 and January 2007-September 2008. As indeed previously discussed, 

we used the period  January 2007-September 2008 to perform the out-of-sample analysis based on 

models estimated in the period January 1998-December 2006. Moreover, to focus more closely on 

the two major systemic events occurred over the time period inspected, we estimated models also 

for the sub-periods 1998-1999 and 2007-September 2008.  
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A. In-Sample Hedge Fund Risk Stratification 

The procedure outlined in section IV run over the period January 1998-December 2006 stratified 

the risk of having an extreme negative return in 10 clusters as depicted in Figure 2. The regression 

tree analysis selected 6 out 30 predictors, which are: 1) Contagion; 2) DCC Filter; 3) Credit Spread; 

4) Change in Beta; 5) DCC Beta; 6) AUM. This result seems empirically confirm and extend the 

arguments developed in Stein (2009), since crowded-trade (DCC Filter), liquidity concerns (Credit 

Spread changes)14 together with leverage dynamics (commonality, DCC Beta, and change in level, 

dβ), and hedge fund style dimension (AUM), would contribute to explain worst returns especially in 

times of contagion. 

An in-depth exploration of the partitions realized through our analysis leads to identify the 

following risk levels: 

� Extreme Risk, signaled when contagion effect ( 3≥tC ) are associated with high leverage 

commonality ( 6933.0BetaDCC > ) and the style dimension is alternatively high 

( 093.0AUM > ) or low ( 036.0AUM ≤ ). The risk is slightly higher for smaller funds for 

which we estimate ( ) 8557.0Pr =WR  against ( ) 7159.0Pr =WR  for larger ones. 

� High Risk, when substantial leverage commonality ( 6933.0BetaDCC > ) is connected, 

alternatively with (a) systematic risk reduction (de-leveraging) ( 26231.0−≤βd ), or (b) 

median dimension-based funds ( 093.0AUM036.0 ≤< ) during times of contagion effect 

( 3≥tC ). The probability estimates for (a) and (b) are ( ) 4443.0Pr =WR  and ( ) 3315.0Pr =WR , 

respectively. 

� Medium Risk, when crowded-trade is significantly negative, i.e. when proprietary trading 

strategies are, in some sense, opposite to other competitors ( 0.263FilterDCC −≤ ), which is 

                                                 
14 Credit Spread can be viewed also as a proxy for funding liquidity risk faced by hedge funds. Patton and Ramodarai 
(2010), for e.g., use the variable to capture variation in the availability of credit on account of changes in the probability 
of default.  
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the case for some Dedicated Short Bias funds15. For these funds, we define as Strong Short 

Bias, we estimate ( ) 2684.0Pr =WR . Moreover, a similar risk level is signaled for all other 

funds, i.e. those having ( 0.263FilterDCC −> ), whenever credit spread widens ( .5bp6CS > ) 

together with substantial de-leveraging ( 2086.0−≤βd ), which seems delineate a situation in 

which market illiquidity (implied in widened credit spreads) forces hedge funds to reduce their 

leverage level. In this case we have ( ) 2271.0Pr =WR . 

� Moderate Risk, for funds exhibiting low commonality in leverage dynamics 

( 6933.0BetaDCC ≤ ) and for funds showing substantial leverage commonality 

( 6933.0BetaDCC > ) with no extreme de-leveraging ( 26231.0−>βd ). The probability 

estimates are, in order, ( ) 1561.0Pr =WR  and ( ) 0831.0Pr =WR . 

� Low Risk, when Credit Spread does not widen significantly ( .5bp6CS ≤ ) and funds are not 

Strong Short Bias style ( 0.263FilterDCC −> ). In this case we have the lowest probability to 

suffer from a WR with ( ) 0388.0Pr =WR . Alternatively, the same risk level is when positive 

Credit Spread changes ( .5bp6CS > ), and again the style is not Strong Short Bias 

( 0.263FilterDCC −> ), the funds tend to increase their systematic risk exposure 

( 2086.0−>βd ). Here the probability estimate is ( ) 06757.0Pr =WR . The fact that Credit 

Spread is connected to changes in beta seems suggest that the predictor could indicate 

liquidity concerns when linked to fund de-leveraging. Indeed, the threshold for βd   

discriminates between moderate risk, when 2086.0−≤βd , and low risk for 2086.0−>βd .  

The main conclusion coming from this analysis is that contagion and leverage commonality play the 

role of leading indicators in signaling extreme risk situations. Having 3 or more fund styles 

experiencing an extreme negative return and following strategies which imply significant 

communality in beta dynamics, i.e. greater than ≅ 0.7, leads to exhibit the higher probability of 

                                                 
15 All funds clustered within this node were Dedicated Short Bias.  
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having a worst return. Interestingly, the time series which are located within the two higher risk 

clusters include the months August-October 1998, September 2001, April-May 2005, namely, the 

LTCM collapse, the terrorist attack of 09/11, and Ford and GM downgrade, respectively. Liquidity 

concerns seem to move in tandem with changes in leverage, since they lead to risky cluster when 

credit spread widens and funds tend to de-leverage. 

 

B. In-Sample and Out-Of-Sample Model Accuracy  

In order to assess the model accuracy of our EWS both in- and out-of-sample, we used common 

scoring- and signal-based diagnostic tests. The first is the Brier Score (BS), which is the average 

squared deviation between predicted probabilities and actual outcomes, assigning lower score for 

higher accuracy,  

 

(16) ( ) [ ]2,0ˆ2 21 ∈−⋅= ∑− BSyyNBS
i

ii . 

Secondly, we rely to signal-based diagnostic tests using the ROC curve. These includes: (1) the 

Youden Index, which is a summary measure of the model accuracy both considering type-I and 

type-II errors which is commonly used to find the optimal cut-off point in classification (predicting 

WR, 1, and no-WR, 0). The measure is computed as ( ) ( )[ ]111 −−+− βα  where α and β are type-I 

and type-II errors; (2) the optimal cut-off point, corresponding to that value of the probability 

estimate which maximizes the Youden Index; (3) Sensitivity, which is the ratio of WR correctly 

classified over the actual WR, namely ( )α−1 ; (4) Specificity, which is the ratio of no-WR correctly 

classified over the actual no-WR, namely ( )β−1 ; (5) the Area Under the ROC Curve (AUC), which 

is a measure of the model classification ability ranging from 0 (random model with no classification 

ability) to 1 (perfect model) and it is the area under the ROC curve which is a function mapping 

sensitivity onto type-II errors for each possible thresholds, then visualizing the trade-off between 

type-I and type-II errors. 
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The results reported in Table 5 show that the overall performance of the EWS as measured by the 

AUC is quite similar in- and out-of-sample, while sensitivity and specificity computed using the 

optimal cut-off points through the Youden Index denote significant changes in- and out-of-sample. 

Indeed, looking at type-I errors, we note that the model predicts 59 out 90 WRs in-sample hence 

having a sensitivity of 0.6556, and 33 out 36 WRs out-of-sample with a corresponding sensitivity of 

0.9167. On the other hand, specificity is 0.7340 in-sample and 0.6149 out-of-sample. In other terms, 

the EWS modulates the classification errors showing higher ability in predicting WRs (true positive) 

out-of-sample to the detriment of specificity, since false alarms increase from the first to the second 

time period. This is the reason why we obtain an AUC which is 0.7294 and 0.7115 in- and out-of-

sample, respectively. When instead focusing on Brier Score, the difference between in- and out-of-

sample is relatively significant since we have 0.1412 and 0.3004, then indicating a deterioration in 

the model accuracy assessed in the holdout period.  

The main conclusion from this analysis is that while the performance of the EWS in-sample is 

enough,  although  the number of missed WRs is substantial, out-of-sample the model is extremely 

good in predicting whether hedge funds will experience an extreme negative return, but false alarms 

are in this case considerable. However, this could be a reasonable compromise being more sensitive 

to type-I errors, which is the case for risk adverse investors.  

 

C. LTCM Vs. Sub-Prime Crises 

To better inspect the two major systemic events we carried out the regression trees analysis over the 

two sub-period January 1998-December 1999 and January 2007-September 2008. In so doing, we 

expect to detect what really happened in both crises, making clear which were the reasons why 

many funds experienced extreme negative returns.  

Figure 3 and 4 report the risk stratification for the two sub-periods and diagnostics of model 

accuracy are reported in Table 6.  
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The LTCM collapse appears as a pure contagion event since the higher risk is for cases in which the 

proxy was greater than 3 ( 3>tC ). Interestingly, the extreme risk cluster is for substantial leverage 

commonality ( 3008.0BetaDCC > ) and all cases clustered within such a node are observations 

over the months August 1998-October 1998. This suggests that the main reason underlying the 

LTCM collapse was mainly due to extreme commonality in leverage dynamics. In that period, the 

level in beta was substantial, thus high correlations were associated with high leverage level. This is 

one of the difference between the LTCM and the sub-prime crises. 

In fact, the sub-prime crisis seems instead strongly linked to commonality in (filtered) returns. The 

risk partition obtained over the period January 2007 – September 2008 and reported in Figure 4, 

shows that crowded-trade and contagion proxies lead to extreme risk cluster. In this cluster, 

where ( ) 8569.0Pr =WR , 8293.0FilterDCC >  and funds tend to crowd more and more as signaled 

by FilterDCCd required to be stable or positive ( 0012.0FilterDCC −>d ). Such a partition mainly 

selected the observations of July 2008 and September 2008, when indeed the number of WR was 6 

and 8, respectively. Similarly, for August 2007, when the number of WR was 5, the model clustered 

the corresponding observations within a node with ( ) 5296.0Pr =WR  and characterized by a slightly 

high crowded-trade, while less than 0.8293, together with substantial drop in leverage commonality 

( 0476.0BetaDCC −>d ) due to substantial de-leveraging occurred in the summer 2007 as we 

commented in previous section VI.1.  

As a whole, by observing Figure 4 contagion clearly play the role of leading indicator, since having 

more than 1 other fund styles experiencing a WR the probability estimates are for all clusters greater 

than 0.35, except for funds having a moderate commonality in returns ( 7797.0FilterDCC ≤ ) and 

no extreme contagion ( 4≤tC ) for which the probability estimate is ( ) 0708.0Pr =WR . These funds 

denote medium and high values of probability to get extreme negative returns. Moreover, in times 

of no contagion ( 1≤tC ), the risk arises for funds denoting negative return commonality, i.e. for 
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Strong Short Bias funds. For these funds we have indeed a moderate risk profile with 

( ) 2361.0Pr =WR .  

From a pure statistical viewpoint, for both the sub-periods the accuracy of the model is high as 

proven by the diagnostics reported in Table 6, which documents the ability in correctly classifying 

WR for 77.14% (1998-1999) and 80.56% (2007-09/2008) of total cases, as well as for no-WR with 

96.22%% (1998-1999) and 85.63% (2007-09/2008) of total tranquil time observations.   

 

VI.3. An EWS for Contagion 

The proxy for contagion has been previously used as a contemporaneous covariate relative to 

extreme negative returns. At first sight, this could sound as problematic when the objective is to 

realize an EWS, since all the predictors should be observed in t to make predictions for 1+t . As 

discussed above, the reason why we did not lagged contagion is because the objective was to 

endogenously detect switching regimes based on specific splitting values. And this is what we did 

by inspecting WR as our first dependent variable.  

Now our interest is on contagion itself, which is our second variable of interest that we try to predict 

using the same set of covariates used for WR with the following minor changes, due to the fact that 

the perspective is global and not style-specific, as for WR: 

• The DCC for filtered returns and time-varying betas were computed according to the equation 

(7), i.e. using the aggregate measure of commonality based on value-weighted average of 

cross-sectional median correlations of hedge fund indices.  

• Instead of using the time-varying betas of each index we included a measure for the “industry 

beta”, computed as the value-weighted average of the single betas, using the relative monthly 

AUM as weights:  

 

(17) ∑=Β
i

titit w ,, β ,   
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in which tiw ,  are the proportion of assets under management for index i at time t and ti ,β  are 

the betas for each index i at time t with 10,,1 K=i .  

According to what done for WR, level and monthly changes were used for both DCC and industry 

beta. 

 

A. Predicting Contagion Through EWS 

The tree structure realized over the period 1998-2006 and reported in Figure 5 shows that to predict 

Contagion we need 8 predictors: (1) hedge fund illiquidity (Lo_ill) (equation 15); (2) the aggregate 

DCC Filter ( FilterΩ ) (equation 7) and (3) its monthly change ( FilterdΩ ); (4) the Pastor and 

Stambaugh (2003) measure of aggregate liquidity (PS1); (5) Credit Spread; (6) the 10-year Treasury 

constant maturity yield month end-to-month end change (10yr); (7) the MSCI Emerging Market 

Index (MSCI EM); (8) the risk factors volatility (V) (equation 14). As discussed in the 

methodological section, since contagion is a counting variable ranging from 1 to 9 the predictions 

realized through the regression tree analysis can be used to assess the probability of having a 

contagion within the hedge fund industry using equation (12). The analysis of Figure 5 leads to 

identify two major risk clusters corresponding to two distinctive regimes. These clusters are 

classified as extremely risky on the basis of the previous findings, which identified a value for 

contagion greater than (or equal to) 3 as for the risk alarm threshold.  

The first regime is characterized by low hedge fund illiquidity ( 0906.0Lo_ill ≤ ) that was typical 

until October 1998, together with moderate crowded-trade ( 5372.0≤ΩFilter ), which is coherent 

with the behaviour of the DCC of filtered returns shown until the end of 1998 we commented in 

section VI.1. These two splitting rules lead to the higher level of systemic risk ( 102.5ˆ =C  and 

( ) 5669.0Pr =C ).  
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The second regime is instead characterized by high hedge fund illiquidity ( 0906.0Lo_ill > ), low 

Credit Spread ( .5bp6CS ≤ ), together with high changes in crowded-trade ( 068.0>Ω Filterd ) and 

positive changes in 10-yr government bond yield ( %315.0yr10 > ). Essentially, such a second 

regime seems to be characterized by increasing commonality in returns together with “inside” and 

“outside” liquidity problems. Hedge fund illiquidity (inside illiquidity) is in fact connected with 

changes in Treasury bond yield (outside illiquidity) which incorporate flight-to-liquidity element 

due to variation in the perceived safety of U.S. Treasury bonds thus reflecting variations in the 

liquidity component of sovereign credit spreads (Longstaff, et al., 2010). And indeed, associated 

with this path, emerged with Ford and GM downgrade of April 2005, we have high systemic risk 

level ( 466.3ˆ =C  and ( ) 3851.0Pr =C ).  

From a pure statistical perspective the risk stratification obtained through the tree seems to be quite 

robust in-sample, as indicated by the Accuracy Ratio reported in Table 7 which is 0.644316. 

However, the economic interpretation is difficult and possibly masked by some predictors that over 

the entire period 1998-2006 may obscured the contribution of other potential interesting variables in 

explaining the inner mechanism of contagion, in particular for the LTCM collapse. This is with all 

likelihood the case for hedge fund illiquidity which behaviour denotes strong autocorrelation with 

negative values until September 1998, next ranging from 0.1 to 0.4. Furthermore, the out-of-sample 

analysis carried out over the period 2007-September 2008 proved that the EWS realized in sample 

is a poor predictor in particular for high contagion: while the Accuracy Ratio is moderately low 

0.2095 the EWS fails to predict contagion greater than 3.  

 

B. The Changing Nature of Contagion Effects 

Previous results relative to in- and out-of-sample model accuracy is interesting not only from a pure 

statistical perspective but also because they seem suggest a changing nature of contagion over time. 

                                                 
16 This is simply obtained as the ratio of the number of correct over the total count, in our case computed for each value 
assumed by contagion. 
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Indeed, the fact that the splitting rules obtained by mining the data from 1998 to 2006 do not allow 

to predict severe contagion occurred with the sub-prime crisis can be due to the dynamics of 

systemic risk which could changed over time with the changing behaviour of hedge funds. To 

explore this possibility and to make more clear the economic interpretation of the inner causes of 

contagion, we then focused on the two sub-periods 1998-1999 and 2007-09/2008. The major 

findings are as follows. 

� LTCM Collapse. The analysis of the period 1998-1999 gave robust estimates of contagion as 

denoted by the Accuracy Ratio which is 0.7818 (Table 8). The tree partitions lead to conclude 

that leverage commonality  and shock in liquidity were the main drivers of contagion (Figure 

6). In more depth, the contagion triggered by the LTCM collapse is associated with, 

1. High correlations in betas ( 6892.0>ΩBeta ) with risk factors volatility (V) playing the 

discriminating role between extreme contagion ( 309.6ˆ =C  and ( ) 701.0Pr =C ), when 

the volatility is low ( 0279.0≤V ), and high contagion ( 5060.4ˆ =C  and 

( ) 5007.0Pr =C ), with high volatility ( 0279.0>V );  

2. Significant illiquidity ( 2381.1Inn > ) no matter about the leverage commonality 

( 6892.0≤ΩBeta )17. Also in this case the systemic risk level is high ( 494.4ˆ =C  and 

( ) 4993.0Pr =C ).  

� Sub-Prime Crisis. Also in this case the model is statistically robust as denoted by the 

Accuracy Ratio which is 0.8361 (Table 8). The transmission channels underlying the systemic 

risk over the period 2007-09/2008 seem to be different from those of the LTCM collapse. 

Indeed, looking at the risk partitions reported in Figure 7, we note what follows. 

1. Volatility of risk factors ( 03219.0>V ) is the main triggering factor of the higher 

contagion, which occurred in September 2008 when the volatility of all international 

                                                 
17 As outlined in the methodological section, the PRSs were all standardized in order to obtain scale-independent 
coefficient estimates. Hence, the value 1.2381 can be viewed as 0.8922 cdf. In other terms, whenever we observe values 
of the variable pertaining to the higher percentile (exceeding about 0.9), together with moderate leverage commonality,  
we expect significant contagion effects.  
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financial markets sparked by the Lehman default. The systemic risk level was the higher 

ever ( 21.7ˆ =C  and ( ) 8011.0Pr =C ).  

2. Contagion effect is also severe when changes in leverage commonality 

( 0661.0−>Ω Betad ) move with strong monthly negative returns in S&P’s 

( 0735.0P&S −≤ ). This was the case of July 2008, when severe market pressures forced 

a rescue of Fannie Mae and Freddie Mac, and the large mortgage specialist IndyMac 

bank was closed by federal regulators. And indeed, the systemic risk estimate is 

extremely high ( 377.5ˆ =C  and ( ) 5974.0Pr =C ). 

3. The third risk level is instead associated with strong corrections to the leverage 

dynamics with sharp reduction in leverage commonality ( 0661.0−≤Ω Betad ). As 

previously discussed, this reflects the severe de-leveraging occurred over the sub-prime 

period when crowded-trade became extremely high. This cluster, which exhibits high 

level of systemic risk ( 666.3ˆ =C  and ( ) 4073.0Pr =C ), gathers the quant crisis of 

August 2007 and March 2008, when market illiquidity forced Bear Stearns to be bought 

by the JP Morgan Chase with a 98% discount to its book value.   

These findings seem to prove that contagion changed over time as for its inner transmission 

mechanisms. The contagion effect occurred in August-October 1998 (LTCM collapse) was mainly 

due to extreme interconnectedness in leverage dynamics together with illiquidity shocks but no 

crowded-trade. Instead, in the sub-prime crisis  the transmission channels were, first, the dramatic 

de-leveraging and de-correlations in leverage dynamics due to liquidity concerns together with 

strong crowded-trade (August 2007), second, the huge systematic volatility of hedge fund risk 

factors which exploded with the Lehman crash (September 2008).  
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VII. Conclusion 

 This paper developed an early warning system for hedge funds based on specific red flags that help 

to stratify the risk of future extreme negative returns and contagion effect. To do this we relied on 

regression tree analysis through which the predictor space is partitioned by a series of splitting rules 

based on specific thresholds which act as risk signals. What we find as interesting and promising for 

future works is that such a technique is not vulnerable to common criticisms of parametric 

approaches and allows to uncover forms of nonlinearity and complexities as well as ‘regime shifts’. 

While contagion and clustered negative returns in hedge fund industry are now well understood 

thanks to Boyson et al. (2009), what is yet not clear is how to signal warnings to be used in 

preventing potential abnormalities that could propagate on a systemic level. If hedge fund 

interconnectedness and liquidity shocks are assumed to be responsible to the increase and the 

explosion of systemic risk, which values for such predictors should be considered as risk alarm 

thresholds? The methodology proposed in this paper tries to give an effective and pragmatic answer 

to this question, realizing an EWS based on a collection of binary rule of thumbs such as “ jji sx ≤ ” 

or jji sx >  for each predictor x thus realizing a risk stratification that can capture situations of 

extreme risk whenever the value of the selected variables x exceeds pre-specified thresholds s.  

Our empirical findings prove that contagion, leverage commonality, crowded-trade and liquidity 

concerns are the leading indicators to be used in monitoring the risk dynamics of hedge funds. We 

document that our EWS estimated using data from 1998 to 2006 would have been able to predict 

more than 90 per cent of the total worst returns occurred over the period 2007-2008, while false 

alarms have been significantly high. Again, a closer look at the mechanism underlying contagion 

effect revealed a changing nature of systemic risk. The LTCM collapse was mainly due to extreme 

interconnectedness in leverage dynamics together with illiquidity shocks but no crowded-trade. On 

the other hand, the sub-prime crisis was more complex to understand exhibiting changing 

transmission channels. Indeed, during the quant crisis (August 2007) dramatic de-leveraging and 

de-correlations in leverage dynamics due to liquidity concerns together with strong crowded-trade 
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were at the core of contagion. In September 2008 the triggering event was instead the huge 

volatility of hedge fund risk factors exploded with the Lehman crash. The changing nature of 

contagion reflected on poor predicting ability of our model. What is indeed clear from the empirical 

analysis is that using our EWS, the recent sub-prime crisis was not predictable even when having a 

clear understanding of the reasons underlying the LTCM collapse.        
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Table 1: Descriptive Statistics of CSFB/Tremont Indexes, 7+1 FH Risk Factors and PRSs – 
from January 1998 to September 2008 
   Mean (%)  Min (%)  Max (%)  StdDev (%) 
   
Panel A: Hedge Fund Index Returns   
Convertible Arbitrage 0.477 -12.256 3.568 1.889 

Dedicated Short Bias -0.053 -8.692 22.712 5.130 

Emerging Markets 0.609 -23.026 15.338 4.120 

Equity Market Neutral 0.757 -1.407 2.477 0.677 

Event Driven 0.723 -11.775 3.274 1.814 

Fixed Income Arbitrage 0.298 -6.965 2.069 1.401 

Global Macro 0.839 -12.455 3.907 1.873 

Long/Short Equity 0.820 -11.524 4.657 1.980 

Managed Futures 0.649 -6.155 3.810 1.325 
Multi-Strategy 0.605 -6.965 2.069 1.401 
    
Panel B: 7+1 FH Risk Factors    
S&P 0.246 -14.580 9.670 4.317 
Size Spread 0.275 -16.370 18.410 3.751 
10yr Treasury Yield -0.016 -0.530 0.650 0.219 
Credit Spread -0.016 -0.480 0.250 0.149 
PTFSBD -1.778 -25.356 68.856 14.263 
PTFSFX 0.905 -29.995 66.013 17.705 
PTFSCOM 0.167 -24.202 64.750 14.407 
MSCI EM Index 0.765 -29.285 13.550 7.120 
     
Panel C: PRSs      
VIX  20.861 10.420 44.280 6.676 
Change in 3m Tbill -0.031 -0.860 0.450 0.235 
Term Spread 1.422 -0.530 3.696 1.222 
Innovation in S&P Vol 0.863 -9.814 35.932 6.550 
The table reports summary statistics for CSFB/Tremont indexes, 7+1 FH Risk Factors and PRSs over the period 
01/1998-08/2008. Mean is the annualized mean return. Min and Max are the minimum and maximum monthly return 
respectively. StdDev is the annualized standard deviation. 
 
Table 2: Asset Pricing Model Estimates – from January 1998 to December 2006  
 HF Returns Time-Varying Betas 

 α Adj. R2 φ μ γ1 γ2 γ3 γ4 

Convertible Arbitrage -0.0469*** 0.1377 -0.0687 1.7696*** 0.041 -0.2378** -0.8161*** -0.0588 
Dedicated Short Bias -0.0048 0.5836 -0.2444 0.987*** -0.0985** -0.1036** 0.1982*** -0.0255 
Emerging Markets -0.0063 0.7733 0.1904 1.1321*** -0.0496 0.1009*** -0.0105 0.0687 
Equity Market Neutral -0.0294*** 0.3231 0.0928 1.2896*** 0.1191*** -0.0987** -0.3736*** -0.1868*** 
Event Driven 0.0257*** 0.6934 0.1344 0.7415*** -0.0399 -0.0569*** -0.2323*** -0.079** 
Fixed Income Arb 0.0022 0.568 0.8007*** 0.2822*** 0.0737 0.0325 -0.0595 -0.1468*** 
Global Macro -0.1277*** 0.1179 -0.0712 2.4736*** 0.0478 -0.1548 -0.8424*** -0.1801 
Long/Short Equity 0.0351 0.7245 0.6983 0.3029 0.0774*** 0.0052 -0.0382 -0.2365*** 
Managed Futures 0.003 0.3462 -0.4601 1.3121*** 0.5064*** -0.0139 0.2803*** -0.0029 
Multi-Strategy -0.0446*** 0.1086 -0.0677 1.5918*** 0.2223*** 0.017 -0.4426*** 0.0305 
The table reports estimates of the system (1)-(4) using the four PRSs VIX, TBILL, TERM and INN. The same Panel 
reports also the volatility of the time-varying betas generated by the system and corresponding explanatory power 
expressed as R-squared of betas regressed against the mean reverting term together with the PRSs. η is the unexplained 
beta variation (stochastic component). Panel B presents correlations among the PRSs computed over the period from 
01/1994 to 12/2006 and from 01/1998 to 12/2006. ***, **, * denote significance at 0.01, 0.05, and 0.1 level, 
respectively. 
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Table 3: Eigenvalue Analysis and Factor Weights  
 1 2 3 4 5 6 7 8 
         
Panel A: Filtered Returns         
Eigenvalue 3.7348 1.6886 1.0375 0.8866 0.7620 0.5479 0.5100 0.3508 
% Variance per Component 37.3478 16.8861 10.3752 8.8659 7.6205 5.4787 5.1000 3.5080 
Cumulative explained variance 37.3478 54.2339 64.6091 73.4750 81.0955 86.5742 91.6742 95.1822 
         
Factor weights         
Convertible Arbitrage 0.8595 0.0524 -0.2363 0.2003 -0.1243 -0.1270 -0.1460 0.1046 
Dedicated Short Bias -0.2342 0.7661 0.0162 0.4122 -0.0650 0.2528 -0.1889 -0.2171 
Emerging Markets 0.4849 0.5205 -0.1397 -0.5724 0.0433 -0.0891 -0.1941 -0.2497 
Equity Market Neutral 0.5493 0.1802 -0.2210 0.2384 0.6962 -0.0188 0.2669 -0.0503 
Event Driven 0.7806 -0.2672 -0.0584 0.0326 0.1571 -0.0312 -0.4513 0.1432 
Fixed Income Arbitrage 0.7477 0.0618 -0.0360 0.1252 -0.3726 -0.3639 0.2828 -0.1663 
Global Macro 0.5247 0.5923 0.1815 -0.3365 -0.0611 0.2236 0.2148 0.3261 
Long/Short Equity 0.5604 -0.5879 0.2056 -0.2365 0.0542 0.3378 0.0784 -0.2699 
Managed Futures 0.2317 0.1293 0.9107 0.1219 0.1564 -0.2157 -0.0805 -0.0215 
Multi-Strategy 0.7700 -0.0855 0.0612 0.3023 -0.2473 0.3398 0.0410 0.0074 
         
Panel B: Time-Varying Betas         
Eigenvalue 1.6805 0.5498 0.2916 0.1257 0.1096 0.0486   
% Variance per Component 58.2704 19.0624 10.1112 4.3582 3.7993 1.6857   
Cumulative explained variance 58.2704 77.3329 87.4441 91.8023 95.6016 97.2873   
         
Factor weights         
Convertible Arbitrage -0.5963 0.2942 -0.2360 0.2387 -0.2893 0.5843   
Dedicated Short Bias 0.0912 0.1478 -0.0009 -0.2143 -0.1620 0.1501   
Emerging Markets -0.0065 -0.1324 0.1785 0.2274 0.0670 0.0092   
Equity Market Neutral -0.3046 -0.0522 0.0970 -0.3557 0.1558 -0.1380   
Event Driven -0.2016 -0.0139 0.1539 -0.1930 -0.1342 0.0089   
Fixed Income Arbitrage -0.2067 -0.8344 -0.3484 0.0085 -0.3399 -0.0873   
Global Macro -0.5856 0.1181 0.1720 -0.3950 0.0585 -0.3790   
Long/Short Equity -0.1404 -0.3933 0.4184 -0.0062 0.5506 0.5360   
Managed Futures 0.1194 0.0357 -0.6762 -0.4768 0.4112 0.2247   
Multi-Strategy -0.2881 0.0707 -0.3099 0.5460 0.5021 -0.3576   
         
Panel C: 7+1 FH Risk Factors         
Eigenvalue 0.0389 0.0185 0.0157 0.0057     
% Variance per Component 48.2045 22.8929 19.4135 7.0121     
Cumulative explained variance 48.2045 71.0974 90.5108 97.5229     
         
Factor weights         
S&P 0.0661 -0.0377 0.0115 -0.4346     
Size Spread -0.0104 -0.0378 -0.0047 -0.1347     
C10yr  0.0019 0.0008 -0.0019 -0.0053     
Credit Spread 0.0017 -0.0004 -0.0004 -0.0055     
PTFSBD -0.3383 0.8893 0.2688 -0.1488     
PTFSFX -0.8074 -0.4330 0.3977 -0.0376     
PTFSCOM -0.4687 0.0758 -0.8772 -0.0684     
MSCI EM Index 0.0977 -0.1141 0.0008 -0.8745     
The table reports results from Principal Component Analysis computed for hedge fund returns (Panel A), hedge fund 
betas (Panel B), and 7+1 FH Risk Factor returns (Panel C). 
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Table 4: DCC – from January 1998 to September 2008  
  Min 10% 50% (Median) 90% Max StdDev 
      
Panel A: Median DCC - Filtered Returns      
Convertible Arbitrage 0.376 0.491 0.618 0.790 0.910 0.114 
Dedicated Short Bias -0.618 -0.391 -0.215 -0.101 -0.022 0.120 
Emerging Markets 0.217 0.326 0.483 0.659 0.865 0.136 
Equity Market Neutral 0.284 0.431 0.537 0.721 0.887 0.123 
Event Driven 0.413 0.548 0.657 0.842 0.931 0.107 
Fixed Income Arbitrage 0.340 0.492 0.604 0.790 0.909 0.115 
Global Macro 0.305 0.406 0.511 0.737 0.887 0.127 
Long/Short Equity 0.033 0.193 0.360 0.651 0.845 0.171 
Managed Futures 0.098 0.132 0.233 0.490 0.721 0.143 
Multi-Strategy 0.336 0.492 0.617 0.823 0.925 0.124 
VW Average 0.265 0.384 0.495 0.708 0.874 0.129 
      
Panel B: Median DCC - Time-Varying Betas      
Convertible Arbitrage 0.167 0.396 0.693 0.890 0.937 0.196 
Dedicated Short Bias -0.897 -0.859 -0.714 -0.454 -0.360 0.155 
Emerging Markets -0.187 -0.082 0.025 0.105 0.153 0.072 
Equity Market Neutral 0.172 0.425 0.660 0.844 0.917 0.165 
Event Driven 0.207 0.322 0.609 0.848 0.906 0.198 
Fixed Income Arbitrage 0.146 0.247 0.490 0.786 0.878 0.206 
Global Macro 0.245 0.416 0.620 0.856 0.924 0.173 
Long/Short Equity -0.121 0.263 0.507 0.740 0.837 0.182 
Managed Futures -0.730 -0.620 -0.411 -0.191 -0.122 0.162 
Multi-Strategy 0.172 0.267 0.561 0.809 0.878 0.204 
VW Average 0.108 0.295 0.510 0.697 0.744 0.156 
      
Panel C: Median DCC - 7+1 FH Risk Factors      
S&P 0.501 0.763 0.793 0.821 0.841 0.037 
Size Spread 0.324 0.370 0.438 0.495 0.567 0.051 
10yr  0.103 0.363 0.438 0.495 0.567 0.063 
Credit Spread 0.198 0.567 0.642 0.677 0.712 0.064 
PTFSBD -0.416 -0.239 -0.201 -0.171 -0.131 0.036 
PTFSFX -0.460 -0.219 -0.156 -0.108 -0.074 0.052 
PTFSCOM -0.399 -0.193 -0.054 0.056 0.073 0.097 
MSCI EM Index 0.627 0.731 0.758 0.791 0.810 0.025 
Overall Median 0.050 0.092 0.146 0.215 0.256 0.047 
Panel A and B of the table report summary statistics for cross-sectional median dynamic conditional correlations (DCC) 
for filtered returns and time-varying beta, as well as the corresponding value-weighted average using the monthly 
proportion of single AUM as weights.  In Panel C we report the same statistics for the cross-sectional median computed 
for the 7+1 FH risk factors. Min, 50% (Median) and Max are the minimum, the median and the maximum monthly 
DCC, respectively. 10% and 90% are the corresponding quantile distributions and StdDev is the standard deviation. 
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Table 5: In-Sample and Out-Of-Sample Model Accuracy – Worst Returns 
 

  
In-Sample  
1998-2006 

Out-Of-Sample 
2007-09/2008 

Brier Score 0.1412 0.3004 

Optimal Cut-off 6.70% 8.30% 

Youden Index 38.96% 53.16% 

AUC 0.7294 0.7115 

Numbers of WR 90 36 

WR correctly classified 59 33 

Sensitivity 65.56% 91.67% 

Specificity 73.40% 61.49% 
The table shows the diagnostics used to assess the models’ accuracy in-sample (1998-2006) and out-of-sample (2007-
09/2008), namely the Brier score computed using (16), the Optimal Cut-off which is the probability value used to 
maximize the Youden index, obtained as ( ) ( )[ ]111 −−+− βα  with α and β the type-I and type-II error, respectively. 
AUC is the area under the ROC curve. The table reports also the overall number of worst returns (WR) and the number 
of worst returns correctly classified. Sensitivity and Specificity are computed as 1 minus type I-error and 1 minus type 
II-error, respectively.  
 

 

Table 6: LTCM vs. Sub-Prime Crises Model Diagnostics – Worst Returns 

  
LTCM 

1998-1999 
Sub-Prime 

2007-09/2008 
Brier Score 0.1266 0.1796 

Optimal Cut-off 50.00% 35.00% 

Youden Index 73.36% 66.19% 

AUC 0.8792 0.8836 

Numbers of WR 35 36 

WR correctly classified 27 29 

Sensitivity 77.14% 80.56% 

Specificity 96.22% 85.63% 
The table reports the same diagnostics used in Table 5 computed for the two sub-periods, 1998-1999 and 2007-09/2008. 
 

Table 7: In-Sample and Out-Of-Sample Model Accuracy – Contagion 
Contagion 
 

In-Sample 
1998-2006 

Out-Of-Sample 
2007-09/2008 

 Expected Actual Expected Actual 

0 525 572 41 112 
1 71 312 0 20 
2 73 105 3 17 
3 4 29 0 25 
4 0 22 0 11 
5 10 10 0 11 
6 0 7 0 4 
7 0 3 0 8 
8 - - 0 2 
     
Total 683 1060 44 210 
Accuracy Ratio  0.6443  0.2095 
The table reports the expected and actual number of contagion splitted for each value from 0 (no contagion) to 8 (the 
maximum number of contagion empirically observed) for the two periods 1998-2006 and 2007-09/2008. The Accuracy 
Ratio gives a measure of the overall classification ability of the model and it is computed as the ratio of the total number 
of correct (Expected) over the total count (Actual). 
 



 45

Table 8: LTCM vs. Sub-Prime Crises Model Accuracy – Contagion 

LTCM Sub-Prime Contagion 
 
 1998-1999 2007-09/2008 

  Expected Actual Expected Actual 

0 41 52 111 112 
1 90 114 9 20 
2 24 24 8 17 
3 - - 14 25 
4 5 10 11 11 
5 5 10 6 11 
6 7 7 0 4 
7 0 3 8 8 
8 - - 0 2 

     
Total 172 220 153 183 

Accuracy Ratio   0.7818   0.8361 
The table reports the same diagnostics used in Table 7 computed for the two sub-periods, 1998-1999 and 2007-09/2008.
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Figure 1: DCC and Cycles – from January 1998 to September 2008 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Figure reports the DCCs computed for filtered returns, betas and the 7+1 FH Risk factors. Blue lines are the 
original time series while red lines are the corresponding kernel smoothing. For betas the graph reports also the value-
weighted average of time-varying betas depicted in green line.  
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Figure 2: EWS for Worst Returns – from January 1998 to December 2006 
 

 
The figure depicts the structure of the EWS for worst returns (WR) estimated over the period 1998-2006. For each split, 
we specify the variable and the corresponding threshold, also indicating the paths towards the terminal nodes. The 
values reported within each terminal node are the estimated probabilities of WR. The most risky node is indicated by the 
grey area also highlighting the paths towards the higher probability with the bold line. 
 
 
Figure 3: EWS for Worst Returns – LTCM crisis (1998-1999) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The figure depicts the structure of the EWS for WR estimated over the period 1998-1999 as in Figure 3. 
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Figure 4: EWS for Worst Returns – Sub-Prime crisis (2007-09/2008) 

 

The figure depicts the structure of the EWS for WR estimated over the period 2007-09/2008 as in Figure 3. 
 
 
Figure 5: EWS for Contagion – from January 1998 to December 2006 
 

 
 
The figure depicts the structure of the EWS for contagion estimated over the period 1998-2006. As for WR, For each 
split, we specify the variable and the corresponding threshold, also indicating the paths towards the terminal nodes. The 
values reported within each terminal node are the estimated number of contagion and the corresponding probability 
estimate in parenthesis, obtained as the ratio of the predicted value over the theoretical maximum which is 9. The most 
risky node is indicated by the grey area also highlighting the paths towards the higher value/probability with the bold 
line. 
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Figure 6: EWS for Contagion – LTCM crisis (1998-1999) 
 

 

 
The figure depicts the structure of the EWS for contagion estimated over the period 1998-1999 as in Figure 5. 
 
 
 
Figure 7: EWS for Contagion – Sub-Prime crisis (2007-09/2008) 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

The figure depicts the structure of the EWS for contagion estimated over the period 2007-09/2008 as in Figure 5. 


