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Strategic Asset Allocation and the Role of
Alternative Investments

ABSTRACT

In this paper, we provide a realistic frameworktthrvestors can use for their
strategic asset allocation with alternative invesita (buyouts, commodities,
hedge funds, REITs, and venture capital). Our aggdras not based on a utility
function, but on an easily quantifiable risk prefece parametek. We account

for higher moments of the return distributions witbur optimization framework

and approximate best-fit distributions. Thus, welaee the empirical return
distributions, which are often skewed and/or exhéicess kurtosis, with two
normal distributions. We then use the estimatedirmetdistributions in the

strategic asset allocation. Our results show inobgample analyses that our
framework yields superior results compared to thekdwitz framework. It also

features better abilities to manage regime switchegh tend to occur frequently
during crises. Lastly, to test our results for Biigh we use further robustness
tests, which allow for time-varying correlation wsttures in the return

distributions and weight restrictions for the asdasses.
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Alternative investments, which totalled U.S. $9dliom as of the end of 2009, have
become increasingly important in a portfolio contéar institutional investors such as
endowments and high net worth individuals and actdar approximately 12% of the
worldwide managed assets [Boston Consulting Gr@@®R These investors enjoy regulatory
freedom, have sufficient capital to invest in altdive investments like private equity or
hedge funds, and have sufficiently long investntemtzons to hold illiquid investments. The
share of alternative investments in the portfobb&igh net worth individuals reached a level
of about 10% in 2009 [for more details, see Worléalth Report 2009 of Capgemini and
Merrill Lynch]. The leading investors for alternagiinvestments in the US are endowments,
with an average share of alternative investmentanirendowment portfolio that increased
considerably from 3% in 1996 to 39% in 2007 (33%leding real estate). Endowments with
more than U.S. $1 billion, like Harvard and Yalayhl an allocation of about 61% [for more

details, see 2009 NACUBO Endowment Study and ameypalrts of the endowments].

But what factors are driving this rush to altermatinvestments? We argue that there are
two main reasons. First, investors are seekingrsifigation to avoid a repetition of the
substantial losses they experienced during thentesteck and bond market downturns (e.g.,
the Asian crisis of 1997, the Russian crisis of8,9%®e new economy bubble in 2000, the
World Trade Center attacks in 2001, and the curfier@ncial market crisis). Alternative
investments are practical during more volatile reanghases, because their return drivers

differ from those of the equity and bond marketshiSeeweis, Kazemi and Martin (2001)].

Second, the positive diversification properties afernative investments do not
necessarily have to reduce expected portfolio metubut instead may enhance risk-adjusted
performance. For example, the top U.S. universigogvments (e.g., Harvard, Princeton, and

Yale) reported realized annual returns of 10%-2%%r ¢the last three years, which highlights



that alternative investments can enhance exped#tbio returns, too. Lerner, Schoar and

Wang [2007] attribute part of this success to wghess to rely on alternative investments.

However, if investors want to build an exposureatternative investments, they must
determine which investments to include, as wellthas strategic asset allocation. Because
strategic asset allocation explains most of theaf@’s return variability, it is the major
determinant of investment performance and the neasital decision in the investment

process (Hoernemann, Junkans and Zarate [2005]

Investors must also consider the risk-return charestics, because they are the primary
influence on the strategic asset allocation modele model of choice must be flexible
enough to incorporate the risk-return charactesstif they are not captured properly, or if
the strategic asset allocation model is not flex#rhough, the obtained optimal portfolio may
include alternative investments only and therebyttomgy traditional asset classes (Terhaar,

Staub and Singer [2003]).

The majority of studies in the literature only fses on the effects of including one
alternative investment in a mixed-asset portfalianore than just one is included, the risk-
return profiles are often not captured adequatalythe chosen model is not flexible enough
(e.g. Schneeweis, Karavas and Georgiev [2002] aodn€r [2003]). Alternatively, the
alternative investments may not be representatitkeoentire universe. For example, Huang
and Zhong [2006] consider commodities, REITs, an@sT Hoecht, Ng, Wolf and Zagst
[2008] integrate only Asian hedge funds and Asi&iTR. These papers do not provide a

strategic asset allocation for a broad sampletefrative investments.

* The authors present an alternative to the oftedcstudies of Brinson, Hood and Beebower [1986] an
Brinson, Hood and Beebower [1991]. They use a #ligtlifferent framework and cover a longer time
horizon. They also include alternative assets aedsynthetic portfolios.
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To our knowledge, this paper is the first that Agorporates a variety of alternative
investments (e.g., commodities, private equity,geetlinds, and real estate) and traditional
investments (stocks and government bonds), 2) &djisk-return profiles to account for data
biases, 3) uses a strategic asset allocation nbdels flexible enough to capture the risk-

return profile adequately, and 4) incorporates ir@adstor preferences.

Before the optimization, the return time seriessoime alternative investments (private
equity and hedge funds) are corrected for dataebiasach as appraisal smoothing and stale
pricing. The optimization is thus flexible enoughincorporate any potential risk arising from
higher moments (skewness and kurtosis) that woolde covered by the standard deviation.
This is important, because the empirical returtrithstions of some alternative investments
are generally not normally distributed. Thus evaoytfolio optimization in the mean-variance

space will likely be suboptimal.

Consequently, we use the mixture of normal mettmdeplace the empirical return
distributions (which often exhibit skewness andifpgs excess kurtosis) with two normal
distributions to approximate a best fit distribatiorThis approach ensures that the best fit
return distributions exhibit the higher momentssel®o their empirical pendants. We then use
the best fit distributions in the optimization peoltire. To derive the strategic asset allocation,
we apply a goal function so that we can examineinvastor preferences for risk aversion.
Thereafter we apply four robustness checks in aiméest the validity of our strategic asset
allocation approach. The first robustness checks teansitivity of our results against the
background of the financial crisis, the second was the consequences resulting from
weight restrictions, the third tests our results fione-varying correlations, and the final
robustness check is an out-of-sample analysis &uate the performance of the presented

asset allocation procedure against the Markowaméwork.



Our general findings are that stocks of large UBidi as part of the traditional asset
classes, are considered only in defensive porgdiat bonds are of high importance and are
included up to the maximum weight restriction ihprtfolios and emerging markets gain in
relevance with a decrease in risk aversion. Fagrraditive investments the picture is as
follows: REITs play a major role in the portfoliasth a decrease in risk aversion. In contrast,
commodities have comparably stable medium allopation all portfolios. Hedge fund
allocations are comparable to bond allocationsesithey are integrated virtually into all
optimal portfolios with the maximum portfolio weigHn comparison, private equity plays a

very important role especially in defensive poitsl

The robustness check for the financial crisis resvé@at the importance of alternative
investments for risk diversification in defensiverfiolios was underestimated. In spite of the
financial crisis the results for alternative invashts are even stronger. The weight
restrictions also do not alter our results. The alative weights for alternative investments
remain stable for different values of the risk swem parameter. Furthermore, when allowing
for time-varying correlations, we end up with ngadentical allocations. Finally, the out-of-
sample analysis shows that our optimization promedno most cases generates superior
results compared to the Markowitz framework.

In conclusion, we find that alternative investmeats important for the strategic asset
allocation of institutional investors such as endwmts, family offices, pension funds, and
high net worth individuals who have sufficient tinterizons and investment capital.
However, not all alternative investment classes afeequal importance. Alternative
investments are not appropriate as substitutesrdalitional asset classes, and may better

serve as complements for achieving the desireereigkn profiles.



The rest of this paper proceeds as follows: Inisect, the data set and the correction of
data biases is described. Section 2 presents theipgtion procedure and the results. Section

3 concludes with a summary, discussion, and imipdina for future research.

1. Data Set Description

It has been well-known since Markowitz’'s [1952] seah paper on portfolio theory that
diversification can increase expected portfolicunes while reducing volatility. However,
investors should not blindly add another assetsclastheir portfolios without carefully
considering its properties in the context of thetfptio. A naively chosen allocation to the
newly added asset class may not improve the riskfreorofile or may even worsen it. This
raises the question of whether alternative investmeeally improve the (risk-adjusted)
performance of a (mixed-asset) portfolio, and wikethey should be included in the strategic

asset allocation.

For the further analysis we use two traditionaleassdasses (proxy indices are in
parentheses): stocks (S&P 500 TR Index and MSCIrgmg Markets TR Index) and
government bonds (JPM US Government Bonds - TRxhdend four alternative assets:
private equity, subdivided in buyout (US Buyoutparenture capital (US Venture Capital)
commodities (S&P GSCI Commodity TR Index), hedgeds (HFRI Fund of Funds
Composite), and real estate investment trusts (REIFTSE EPRA/NAREIT - TR IndeX).
All the time series in our investigation are on anthly basis (except private equity time
series which are based on quarterly data) withnaiaty 1999 inception date, because all the
indices report data from this date on. The end tat¢he time series is December 2009 (in
Appendix D we build a sub-sample to control for thiguence of the financial crisis and use

the time period from January 1999 to December 2006)

® Both indices are based on the Thomson Reutersux&fpert-data base. We followed the approach by
Cumming, Haf3 and Schweizer [2010] for the calcatabf the indices.

® Table A-1 in Appendix A gives detailed descriptoof the proxy indices.



Before we start introducing the descriptive stafssof the considered asset classes we
have to discuss several potential biases whichdoeug). for alternative investments distort the
inherent risk-return profile. Sources of distortiare manifold: For instance, appraisal based
private equity indices like the calculated onesebdasn Thomson Reuters VentureXpert-data
base show smoothed returns resulting from the oefbon, which could occur through
appraisal smoothing (estimated-value-method forerd@nation of NAVs of portfolio
companies), quarterly data availability and/orestaiicing (prices are distorted due to illiquid
and not daily evaluated positions) and statistycedluse a positive autocorrelation (see Table
1). These relations are common amongst illiquickgtments like private equity, individual
hedge funds strategies (see Avramov et al. [2008]Table 2). They arise typically due to 1)
irregular price determination 2) long time peridmtween price determination and 3) the use
of book value instead of market prices (see, fetance, Geltner [1991]; Gompers and Lerner
[1997]). The resulting positive autocorrelation sasia significant underestimation of risk due
to the smoothed returns when naively using thedata.

To adjust for appraisal-smoothing, stale pricingl &or illiquidity in order to obtain an
unbiased data set, we ,de-smoothe* the privatetggund hedge funds time series by using
the Getmansky, Lo, and Makarov [2004] method, whigitorporates the whole
autocorrelation structure of the return distribatighe intuition behind this method can be
found in Appendix CY. Thereafter, we obtain ,de-smoothed* hedge fund farichte equity
time series and re-scaled private equity returresdrom quarterly data into monthly (see
Cumming, Hal3 and Schweizer [2010] for further dg}ai

Furthermore, some researchers emphasized that ledddime series are subject to a
considerable survivorship bias. These studies umging sample periods, calculation

methods, and databases, and the resulting surliipobgas ranges from 0.16% (Ackermann,

" This method improves on Geltner's [1991] approdmtause the entire lag structure is considered
simultaneously. In addition, there is no need fateasmoothing parameter (see Byrne and Lee [1995] f
the problematic determination of the de-smoothiagameter).
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McEnally and Ravenscraft [1999]) to 6.22% (Liang§(2])2 Since we use an investable fund
of hedge funds index, the performance of this indeot affected by a survivor ship bias. For
that reason we do not conduct any adjustments.

After adjusting for the abovementioned distortiasfsthe risk-return profile, Table 3
gives the resulting descriptive statistics. Notat ttmerging markets have the highest mean
return (1.21%) but only the third highest standdesliation (6.69%), followed by REITs with

a mean return of 0.81% and the highest standaratit@v of 7.30%.

The higher moments (skewness and kurtosis) ardiaaiai potential sources of risk.
Hedge funds exhibit the lowest skewness of -0.&l@t¢sis 6.728) whereas REITs show the
highest kurtosis of 13.162 (skewness -0.300) anadingsset classes. Therefore, hedge funds
and REITs show the most unfavourable higher morpsesyterties since a negative skewness
and a positive excess kurtosis indicate that thiieosi are on the left side of the return
distribution and occur more often than expectedeurtide normal distribution (known as tail

risk). The excess kurtosis for most asset classel®se to zero (except for venture capital).

Analyzing the higher moments of the return disttido for the asset classes shows that
some return distributions do not follow a normatdbution (the Jarque-Bera test rejects the
null hypothesis of a normally distributed returistdbution for REITS and venture capital at
the 1% level. Thus, relying on a simple mean-vagaframework and ignoring the higher
moments will not adequately capture the risk-retprofile. Failure to consider higher
moments increases the probability of maintainiregséd and sub-optimal weight estimations

as well as underestimating tail losses.

Table 4 provides insight into the diversificatioot@ntial of each asset class. Hedge funds

have a high diversification potential, because t¢berelation to all other asset classes is

8 However, most researchers usually amount suniorsias to 2% to 3%. See, for example, Anson [2006
Brown, Goetzmann and Ibbotson [1999], and FungHsidh [2000].
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statistically not different form zero (except foriyate equity). Similar diversification
potential applies for government bonds which algeeha correlation to all other asset classes
statistically not different form zero (except foenture capital). Noteworthy, no significant

negative correlation between asset classes camovens

After reviewing the descriptive statistics of thegurn distributions, we cannot determine
a priori that one asset class is a substitute other. Therefore, we must consider all the
asset classes for the portfolio construction. bheoito create optimal investor portfolios, our
model must consider the characteristics of thetaslssses adequately. We present our

framework for optimal portfolio construction in thext section.

2. Methodology and Results

We have discussed the descriptive characteristitseadifferent alternative asset classes
as well as potential biases. We also concentratedoorecting these biases from the raw
return series and discussed their statistical ptigge Some of the resulting return
distributions are not normally distributed, and ibrhskewness and excess kurtosis. For that
reason, and assuming that investors do not hawdrapi@utility functions (therefore ignoring
higher moments of the return distribution), a sienpllarkowitz’s [1952] mean-variance
framework will likely end up with inefficient portfio composition and an underestimation of

tail risk.

To capture the higher moments, the literature sfeenumber of alternative distributions
to the normal distribution. The multivariate Stutdedistribution is well-suited for fat-tailed
data, but it does not allow for asymmetry. The mentral multivariate t-distribution also has
fat tails and is skewed. However, the skewnessked directly to the location parameter,
making it somewhat inflexible. The lognormal distriion has been used to model asset

returns, but its skewness is a function of the naahvariance, not a separate parameter.
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Thus, to capture higher moments of not normallytridsted returns, we need a
distribution that is flexible enough to fit the sk@ess and the kurtosis. We use a combination
of two different geometric Brownian motions to geate a mixture of normal diffusions. The
normal mixture distribution is an extension of thermal distribution, and has been
successfully applied in many fields of financertieire®

We choose the normal mixture distribution primarilgr its flexibility and its
tractability™® In particular, letf,(x, 4,0,) denote the probability density function of thesfir

normal distribution, with meap, and standard deviatian, and let f,(x, 1,,0,) denote the

probability density function of the second normastabution. We can then approximate the
empirical distribution of hedge fund returns by ewndistribution with the following

probability density function:

f(X,1,,0,,11,,0 ,)=0.20F (X 0,6 )+0.80F ,(X 1 ,6 )

A Ep(x-ul)zj 1 g n(X_HZ)Zj (1)

08
\ 2no? : ’ \/27rcs§ U ol

0
Our economic justification is as follows. Consideregime-switching model with two

economic states: the usual and the unusual. Thel agate exists 80% of the time, when the
hedge fund can achieve a return with the distrisugiven by the second normal density; the
unusual state exists 20% of the time, when thermeis given by the other normal
distribution*

Note that we do not specify whether the unusuairneis better than the usual return in
terms of having a higher mean and/or lower votstillndeed, the unusual return could be

better, worse, or even the same. The latter cades mack to the classic assumption that

® For example, Alexander and Scourse [2003] and ByckSaunders, and Seco [2004] have used this
distribution to model asset returns and study opgiocing problems in this setting. Venkatarama®9[i]
applied this concept to risk management. And Veaaka&nan [2005] as well as Kaiser, Schweizer and Wu
[2010] also used the normal mixture distributioramasset allocation problem.

19 Our approach is similar to that of Popova et200[7].

' The assumed breakdown of 80% and 20% may seerittigst but we tested different pairs for robustste
90% and 10%, 85% and 15%, and 75% and 25%. We fthendesults remained qualitatively stable and
were not driven by the assumed breakdown. Tablgdigures are available from the authors upon rejue
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returns are unconditionally normal. In general, eatting allows for conditionally normal
returns, but unconditional returns need not be mbrm

This specification offers many advantages. Firsg have four free parameters,
M,0,, l,,0,, so we can match the first through fourth momefithe empirical distribution
exactly. We can also capture the skewness andxitese kurtosis. Second, with the normal
density function, the new approximating distributics still tractable. And third, as noted
earlier, this specification treats the traditionatmal approximation as a special case. Table 1
provides a visualization of this method.

Because we cannot solve the approximating parasygter,, /,,0, analytically, we
must solve for them numerically. In particular, lwek for means and standard deviations for
the two normal distributions that can approximate cdosely as possible the first four
moments of the empirical distribution. Mean, vacanskewness, and kurtosis generally have
different dimensions, so we decide to minimizewsghted relative deviation rather than the
absolute deviation.

Let w = (w,Wo,W3,W,) be a vector of strictly positive constants, whegive as weights
for the four moments we want to match. Our objecfinction is then:

. theoretical mean-empirical mean theoretical variancpieoal varianc
min w, x W, X
Y empirical mean |2 empirical variance |

(2)

x|theoretical skewness-empirical skewd%\'ls ><| theoreticab&igrempirical kulosis|'

+W3 .. 4 .. .
| empirical skewness | | empirical kurtosis |

The objective function takes a value 0 if all feomoments can be matched exactly, with
positive values otherwise. In our investigation, use equal weights for all moments, i.e.
each moment has the same importance in the ohgedtimction’’ The approximating
parameters that we obtain for the hedge fund sfiegeare provided in Table 4. Table 5 shows

the first four moments of the empirical return disitions, and compares them with the

2 Hence, it is unlikely to obtain a perfect matahcsi the moment dependencies are not linear.
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moments obtained from the mixture of normal metl®@blviously, the moments are close and
thus the fit is very good.

Our next step is to construct a strategic assetation with the broad variety of asset
classes. Because the mean-variance approach doegorlg we must find an appropriate
objective function. We note that real-world investdooking to incorporate alternative
investments into their portfolios are typically fdyroffices, corporations, pension funds, high
net worth individuals, and large endowments. Thesgestors generally seek higher expected
returns than in a money market, but are risk-avarse therefore pay special attention to
downside risk.

We can thus specify the objective function of awrestor as follows: Let denote the
random return of our portfolio, ang and r, are some benchmark returns, which could be
constants or random variables. Our investor’'s diyeds to maximize the following function:

max Pr(r >r,)-APr( <r,) (3)

In other words, our investor wants to maximize pinebability of outperforming some
benchmark return, while minimizing the probabildfy underperforming another benchmark.
Thus the first benchmark could be some constagt, #0% p.a., or a random return of some
other indices such as the S&P 500 as the marketnreThe second benchmark is usually
chosen as 0%, the risk-free rate, or a governmemd lyield. For our analysis, we define the

first benchmark as a constant 8% p.a., and thensea® 096>

The termA is a positive constant and represents the traddetiveen these two
objectives. It is obvious that depends on investors’ risk aversion. The higherthe less

aggressive the investors (higher risk aversion)thay weight the second objective more

highly and are more concerned about losses thars.g&imilar to the relative risk aversion

13 For reasons of robustness, we assumed two stacheastchmarks instead: the T-bill rate and the Bgsc
Capital Aggregate Bond Index for the second benchni¥he results remained qualitatively stable. €abl
and figures are available from the authors uponesty
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coefficient in canonical utility functions, plautgbvalues ofA lie between 1 and 10. We also
consider two constraints when optimizing our pdit® numerically: We do not allow short-
selling, and we restrict the maximum asset clasgwgCAP) to 20% (in appendix E we
discuss the influence on the optimal portfolios wiaising the CAP to 25%%. Using these
constraints and the objective function stated apewe numerically calculate the optimal
hedge fund portfolio for different parameters dorThe scenario in which the entire sample
period is covered and a CAP of 20% is considerdidowireferred to as the base case.

For different A s, all asset classes are at least incorporatedommtooptimal portfolio,
but of course the weights vary by strategy and #reynot of equal importance (see Figure 2,
D-1, E-I, and E-Il). For reasons of robustness,amalyze the optimal weights for the entire
sample period January 1999-December 2009, anddache impact from the financial crisis
and compare the results to the shorter sub-pertudhaalso starts in January 1999, but ends
in December 2006 (see appendix D). Furthermorerelax the strict CAP restriction to 25%
instead of 20% and discuss the effects for theradteve investment classes (see appendix E).

The first interesting result in the base case lierttaditional asset classes and stocks of
large US firms (S&P 500 as proxy) is that it is swolered in the optimal portfolios only for
defensive respectively risk concerned investor fplios (A=1). In comparison, stock
investments in emerging markets gain in importamite a decrease in risk aversion up to the
CAP of 20% forAs greater than 3.5. Remarkably, bonds are of highortance and are
included up to the CAP of 20% in all portfolios.rHREITS, the first analyzed alternative
investment, the weight in the optimal portfoliogsri@ases with decrease in risk aversion up to
20%. It is not surprising that allocations to RE@re not very large in defensive portfolios

since REITs showed the highest historical standbrdation and the most unfavourable

% This maximum weight restriction aims to avoid maythe portfolio dominated by a single asset cld#isen
imposing the minimum diversification restrictioretihesults are not as prone as for optimizationbowit
such a restriction, since optimal portfolio weights not comparably rely on the past performancéhef
respective assets.
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higher moment properties among all considered atsg$es. In contrast, commodities have a
comparably stable allocation between 6% and 15%lliportfolios. Hedge fund allocations
are comparable to bond allocations since theyraegiated into all optimal portfolios with
20% (exceptA=1). Private equity plays a very important role exsplly in defensive
portfolios and is allocated with the maximal poliioweight of 40% (buyout and venture
capital) until aA equal to 4.5. From this point on, the weight dases and for a risk
parameter value of 2.5, venture capital drops duthe portfolio. When summing up the
weights for alternative investments we find thaytthave a cumulative weight of about 60%
in offensive and performance orientated portfolidssl) and about 77% in defensive
portfolios A=6).

However, to show the dominance of our approach dber standard Markowitz
approach we need to examine the out-of-sample ipeaioce. Therefore we conduct an out-
of-sample Monte Carlo analysis according to Jokesmh Korkie [1981] and Ledoit and Wolf
[2008]. More specifically we use historical retufinem January 1999 through June 2004 to
construct Markowitz’s efficient portfolios and edusxpected return portfolios using our
method forA = 1, 3, and 6, respectively. Subsequently we uswrical returns from July
2004 through December 2009 to construct 1,000 siemies of future returns using a bootstrap
approach according to Efron and Tibshirani [L9%§ then use the future returns time series
to calculate portfolio returns.

To assess how beneficial our optimization technidggecompared to the standard
Markowitz approach, we calculate risk-adjusted qenfince for every risk measure
separately as follows: the Sharpe ratio (SR) fangard deviation, the Sortino ratio (SoR) for
LPM, the return on conditional value-at-risk (RoRj)dor CVaR, and the Sterling ratio (StR)

for MaxDD.
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We note from Table 7 that our optimization techeigoutperforms the Markowitz
approach significantly for the Sharpe Rétiand for the other risk-adjusted performance
measures. It performs especially well when the m&asures capture the downside risk (e.g.,
MaxDD, CVaR) and for the lower levels of risk avers For the out-of-sample analysis, we
find that Markowitz is outperformed by all the riakljusted performance measures we study
here, regardless of the level of risk aversion {&sge 7).

To approve our above mentioned results we condwctsgties of robustness checks. In
our first robustness check we analyze the influenicéhe financial crisis on the optimal
portfolio weights for alternative investments (s@gpendix D). Firstly, we find that the
importance of alternative investments for the mskersification in defensive portfolio was
underestimated before the financial crisis sinae damulative weight was about 54% only
which is clearly below 77% for the entire sampleiqu This can mainly be attributed to
private equity which was underrepresented in déferngortfolios und did not suffer as much
as other asset classes like equity markets fronkehasverreactions during the financial
crisis, since the interim changes in private eqpitytfolio values are driven by appraisal
changes (see e.g. de Bond and Thaler [1985] angr@&hbakonishok and Ritter [1992]). In
contrast, the cumulative portfolio weights for ofétve portfolios are about 20% higher when
ignoring the financial crisis.

When conducting the second robustness check toy shel effect of the maximum
weight restriction, we find that the cumulative fholio weights for alternative investments do
not differ substantially for the less restrictivdE of 25% compared to the stricter one (see
appendix E). In detail, allocations to private e¢gus an asset class are reduced even when

for some portfolios the weight of buyout reaches tigher CAP. Furthermore, hedge funds

!5 The test for statistical significance is applied fhe Sharpe Ratio following Korkie [1981] and bétdand
Wolf [2008] only since for the other risk adjusteelformance measures no test statistic can be fioutie
literature. Admittedly, we would expect that it msost difficult to outperform, given our optimizatio
procedure, the Sharpe Ratio, because it is dirdotked to the Markowitz approach. Given that we
outperform the Sharpe Ratio significantly and fimbre favorable risk adjusted performance measures
compared to the Markowitz approach, we are confitleat the results hold for the other risk measuies
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have larger allocations (25%) in defensive porti®liand slightly lower ones in offensive
portfolios when considering the entire sample pkerothe weight is constantly at 25%,
regardless of the risk aversion parameter, whefirtaacial crisis is ignored.

Our approach so far has been based on the assuntp#ib the correlation structures
between all these assets remain constant over kimreality, however, correlations are time-
varying and stochastic. They are difficult to induwhen planning portfolios, because their
dynamic nature can render the numerical optiminatieery complicated. Therefore, instead
of integrating a correlation directly into our goito selection problem, we conduct a third
robustness check to test whether our portfolio resaobust against time-varying
correlations.

In order to do this, we draw from the Wishart disition ten times® and simulate the
new correlation matrix. Then, we run the same ojg@tion procedure as before to determine
the new optimal portfolio for three risk aversidasses:A =1, 3, and 6. If the new portfolio
does not deviate greatly from the initial portfoliwe can conclude that our initial portfolio
will remain stable and robust against time-varydogelations.

As the results in Table 6 show, our initial porifel are quite stable and are only slightly
affected by changes in the correlation matrix, ey the high risk aversion portfolio. The
principal components remain the same for all fiiteew portfolios. In some cases, the new
portfolio is exactly the same; in others, some fagggEights undergo minor changes. For
investors with high risk aversiom(= 6), four of the ten portfolios are identicalthe initial
one. For investors with low risk aversioA (= 1), three of the ten portfolios are identical.

The fourth and last robustness check is an outofgge analysis according to Jobson
and Korkie [1981] and Ledoit and Wolf [2008] whemetfinancial crisis is not included.

Therefore we use historical returns from Januar§91through December 2003 to construct

18 For further details, see for instance, Zhang [2006
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the benchmark portfolios and historical returnsrfrdanuary 2004 through December 2006 to
generate future return time series.

We find that Markowitz is outperformed by all thek-adjusted performance measures
we study here, regardless of the level of risk sieer, also when the financial crisis is not
included (see Table 7). Hence, our approach is reoitable for capturing regime switches,

which were particularly prevalent during the finexcrisis (see Tables D - 1l1).

3. Conclusion

Markowitz’s [1952] classic mean-variance approashwidely used for tactical asset
allocation. But it fails to include further riskdrs such as skewness and kurtosis, which
occur because the return distributions of differeetige fund strategies are usually not
normally distributed. This can lead to non-optirs@ihtegic weight suggestions.

This paper introduces a more flexible method, thi@ture of normal method, to
incorporate the higher moments of different hedgedf strategy return distributions
individually. We use the obtained distributionsofatimize hedge fund strategy allocations for
investors with different degrees of risk aversiamd goreferences. We are also able to
incorporate stochastic and static benchmarks.

In our method, investors choose one benchmark thish to outperform while
simultaneously choosing a second benchmark forrmini acceptable performance. After
defining the goal function, we solve the optimiratproblem for a set of risk parameters, and
obtain very stable portfolio weights, regardlesstaf level of A. Finally, we perform four
robustness checks on our obtained portfolios vagipect to the financial crisis, the maximum
weight restriction, time-varying correlations aslivaes out-of-sample tests, and found robust

results.
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In conclusion, our approach incorporates the hgtmeity of different asset classes and
individual investor preferences to deliver robussults for institutional investors’ strategic
asset allocation. Our results are in most casesrgugo Markowitz’s [1952] classic mean-
variance approach during times that markets fageme switches, such as during the recent
financial crisis. At these times, a robust andatdk strategic asset allocation gains in

importance.
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Appendix A

This table reports the proxy indices for each aglsss. The frequency, inception dates, end datkadditional information sources are given forghexy time series.

Table A-l
Data Descriptions

Asset Class Proxy Index Frequency Inception Date End Date Add#l Information
U.S. Stocks S&P 500 Composite - Total Return Index Monthly 98n Dec 09 http://www?2.standardandpoors.com
Emerging Markets MSCI Emerging Markets - Total Retindex Monthly Jan 99 Dec 09 http://www.datastream.com
U.S. Government Bonds JPM United States Govt. Boratal Return Index Monthly Jan 99 Dec 09 http://www.datastream.com
Real Estate Investment Trusts FTSE EPRA NAREITtallReturn Index Monthly Jan 99 Dec 09 http://www.nareit.com
Commodities S&P GSCI Commodity - Total Return Index Monthly Jan 99 Dec 09 http://www.datastream.com
Hedge Funds HFRI Fund of Hedge Fund Composite Index Monthly Jan 99 Dec 09 http://www.hedgefundresearch.com
Buyout Thomson ReutersVentureXpert Quarterly Jan 99 Dec 09 http://www.thomsonreuters.com
Venture Capital Thomson ReutersVentureXpert Qulgirter Jan 99 Dec 09 http://www.thomsonreuters.com
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Appendix B: Re-Scaling of Moments

The moments of a monthly return distribution can rescaled to an annual return

distribution as follows. Let. denote the monthly return,and R denote the annual return.

It is obvious that
12
R= Z r.
i=1

Assumer;s are iid. LetE[r,] =T, Var (1) =0?, E[R] =R, andVar (R) =0%. Itis well

known that
R=12r
o, =~/120,.
The skewness of the annual return is defined as

Scen(R) :E(F;—;ﬁf

CE(XE )
T 121w

E :Zil:l(ri _r_)T
12/12°

3D 3 D (| s (5]

12J12°

— z.ljlzilzilE[(ﬂ _T)(rj —T)(I‘k _T): .

12/1x°

Now since

e[(5 =) ~r)(s-r)]={ L) | Semte)or i =k

0 if i, j,k are not the sar
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The equation above can be written as

(>0 skew(r) o7
12J12°
_12ew(r,)c?
12J1%5°
Skew(r, )

V12

The kurtosis of the annual return is defined as

Skew(R) =

E(R-R)’

Tr

4
E (zll=21 f _T)
1440?'

e[ > -0

1440*

E:z.lflzilzkl:z|l=21(rl _r_)(ri _r_)(rk —I’_)(r| _T)

1440°

D3 i 3= e e s (]

1440*

Kurt(R) =

Now since

0, otherwise.
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The above equation can be rewritten as

r

Kurt(R) =

(5 ko)« 22

1440!

_12Kurt(r) o} + 396}
1440!

_ Kurt(r,) L1

12 4
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Appendix C: Getmansky, Lo and Makarov’s [2004] Mettod

The basis of the procedure of Getmansky, Lo anddwak[2004] is the idea that the
observable return does not equal the real retuna.dbservable returR? is rather composed

of the real return®; of the previous period3herefore:
R¢ = 0yR; + 0;R¢_; + -+ + Ok Ry_.
0 €[0.1]. j=0....k and
1=0y+0; + -+ 6y

The observable return is therefore the weighted sfimeal returns of the previous
periods. It follows that the mean of the observaklerrns is equal to the mean of the real
returns. However, the volatility of the observald¢urns is smaller than the volatility of the
actual returns. More precisely, the following islidafor the volatility of the observable

returns:

1

———0 < 0,
/eg+e§+...+e§

with ¢ being the volatility of the real returns.

Std[R¢] =

In order to calculate the real returns, it is regdiat first to determine the weighting
factors. Thereby we take advantage of the fact ttiatobservable return can be written as
Moving-Average Process, whereas the weighting facttay the same. The weighting factors
for this Moving-Average Process can be estimatadéximum-Likelihood. Finally, the real

returns can be calculated with the estimated weigh#actors.
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Appendix D: Robustness Check — Influence of the Fancial Crisis

Table D-I
Descriptive Statistics of the Monthly Return Distrbutions of all Asset Classes

This table shows the mean, monthly standard dewiaskewness, kurtosis, minimum, maximum, medi&&p 2
percentile, 75% percentile, square root of lowetipamoment 2 with threshold 0 (LPM), Conditionahlue at
Risk (CVaR) at 95% confidence coefficient and MaximDrawdown of the monthly return distributions of
S&P 500, MSCI Emerging Markets, JPM US Governmemnds, FTSE EPRA/NAREIT, S&P GSCI
Commodity, HFRI Fund of Funds, US Buyout, US Veat@apital, for the period from January 1999 to
December 2006. Return time series with signifi@utbcorrelation are considered after an autocdiveldAC)
adjustment (using Getmansky, Lo, and Makarov's f80Method). All indices are total return indices or
earnings are retained. All discrete returns wereveded into logarithmical returns. Finally, thesasption of a
normal return distribution is proved via Jarque-@&tsts (see Jarque and Bera [1980]).

MSCI JPMUS  cror Epra/  S&P GSCI HFRI Fund of US Venture

S&P 500 EJairkg;tnsg Gol\éirnndn;ent NAREIT Commodity Funds US Buyout Capital
Mean 0.28% 1.47% 0.33% 1.36% 1.20% 0.59% 0.62% 99.79
Standard
Deviation 4.91% 6.61% 2.69% 4.46% 6.65% 3.03% 361% 6.11%
Kurtosis 2.928 2.723 3.779 4.848 2,504 6.237 2582 5621
Skewness -0.248 -0.172 -0.641 -0.757 -0.032 0930 0.328 1.183
Minimum -11.45% -15.70% -5.33% -11.80% -14.36% 398 -7.89% -12.42%
Maximum 10.62% 15.08% 6.58% 14.11% 18.03% 9.22% 283  23.01%
Median 0.59% 1.91% 0.48% 1.29% 1.47% 0.41% 0.96%  23%.
Percentile 25% -2.76% -3.60% -1.80% -1.31% 3.16%  1.41% -2.18% -2.25%
Percentile 75% 3.19% 5.86% 2.19% 4.14% 6.02% 256% 3.47% 3.39%
LPM 1.80% 2.03% 0.96% 1.12% 2.10% 0.92% 1.18% 1.70%
CVaR -9.95% -12.60% -4.58% -7.37% -11.85% 5.11%  .16% -9.33%
MaxDD 52.76% 48.68% 24.51% 23.19% 32.96% 2412%  83W.  69.85%
Jarque-Bera 1,004 0,782 9,006  22,814%% 0,675 B 2418  49,861%

** ** and * indicate statistical significance ahe 1%, 5%, and 10% levels, respectively, basesiamthly returns.

Table D-lI
Correlation Matrix
This table shows the correlations between the adastes from Table D-l. We use the S&P 500, MSCI
Emerging Markets, JPM US Government Bonds, FTSEARNRREIT, S&P GSCI Commodity, HFRI Fund of
Funds, US Buyout, and US Venture Capital for theggefrom January 1999 to December 2006. Values in
boldface are significantly different from zero la¢ 5% level.

MSCI JPM US FTSE
S&P 500 Emerging Government EPRA/ gggﬁ;ﬁ; HF'T:IU';lg;d of B:Jyf)ut USCZ;?;LIJre
Markets Bonds NAREIT
S&P 500 1.000
MSCI
Emerging
Markets 0.173 1.000
JPM US
Government
Bonds -0.175 -0.092 1.000
FTSE EPRA/
NAREIT 0.262 0.014 0.051 1.000
S&P GSCI
Commodity 0.060 -0.142 0.004 -0.155 1.000
HFRI Fund of
Funds 0.003 0.051 -0.149 -0.027 -0.062 1.000
US Buyout 0.291 0.471 -0.343 0.029 0.012 0.188 1.000
US Venture
Capital 0.242 0.507 -0.211 -0.132 0.059 0.131 0.715 1.000
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Table D-III

Robustness Check — Out-of-Sample Analyses
This table shows the difference in risk-adjustedfptio performance and expected return of thecatmns for
investor objective function maximizatioa1, 3, 6) compared to benchmark allocations (deétexdhby the
Markowitz portfolio selection process where ana@éfint frontier portfolio with an equal return idesgted) for a
one year holding period. Calculations are based @tandard block bootstrap Monte Carlo simulatiath w
1,000 runs following Efron and Tibshirani [1994]JorFthe out-of-sample analysis, we use the Janu@®@-1
December 2002 period to construct the benchmarttghior and January 2003-December 2006 to consthect
time series of future returns. We calculate a ampoading risk-adjusted performance measure for eskh
measure. For the standard deviation, we calculaeSharpe ratio (SR), for LPM 2 with threshold G w
calculate the Sortino ratio (SoR), for VaR with %8 confidence level, we calculate the return omesdt-risk
(RovaR), for CVaR with a 95% confidence level, walcalate the return on conditional value-at-risk
(RoCVaR), and for MaxDD, we calculate the Sterlmagio (StR). All risk-adjusted performance measuass
calculated using the same arithmetic equation:tiglar return — risk-free return)/risk measure. Fais analysis,
the risk-free return is set to 3%. Results remaible when using 0% or the historical risk-freairet™ , ™, and
" denote that the assumption of an equal risk-agfjuperformance measure is rejected at the 1%, B8l61@%
significance levels for the Sharpe Ratio. Equivatest statistics for other risk measures are wnailable.

A Eézflfrtr?d Sharpe Ratio SoR RoVaR RoCVaR StR

1 1.67% 0.117 0.302 0.437 0.610 0.271

3 1.86% 0.117 0.286 0.366 0.507 0.310

6 0.87% 0.077 0.190 0.247 0.327 0.175
Figure D-I

Optimal Portfolio Weights
This figure shows the relationship between the &ag&rsion factorA and the corresponding optimal portfolio
weights for the asset classes with a maximum weiggiriction per asset class of 20%. The sampl®geas
January 1999-December 2006.
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28



Appendix E: Robustness Check — Influence of WeigtRestrictions

Table E-I

Robustness Check — Out-of-Sample Analyses
This table shows the difference in risk-adjustedfptio performance and expected return of thecaltmns for
investor objective function maximization{1, 3, 6) compared to benchmark allocations (detedby the
Markowitz portfolio selection process where ana@éfint frontier portfolio with an equal return idesgted) for a
one year holding period. Calculations are based @tandard block bootstrap Monte Carlo simulatidth w
1,000 runs following Efron and Tibshirani [1994brRhe out-of-sample analysis, we use the Janu@®9-Iune
2004 period to construct the benchmark portfoliod duly 2004-December 2009 to construct the timesef
future returns for the entire sample period. Ferghb-period excluding the financial crisis, we tiee January
1999-December 2002 period to construct the bendhmpartfolio, and January 2003-December 2006 to
construct the time series of future returns. Weuwate a corresponding risk-adjusted performancasome for
each risk measure. For the standard deviation,al®ilate the Sharpe ratio (SR), for LPM 2 with #ield 0,
we calculate the Sortino ratio (SoR), for VaR watl®5% confidence level, we calculate the returvalne-at-
risk (RoVaR), for CVaR with a 95% confidence levele calculate the return on conditional value-gk-ri
(RoCVaR), and for MaxDD, we calculate the Sterlmatjo (StR). All risk-adjusted performance measuass
calculated using the same arithmetic equation:tiglar return — risk-free return)/risk measure. Fais analysis,
the risk-free return is set to 3%. Results remaible when using 0% or the historical risk-freairet™, ™, and
" denote that the assumption of an equal risk-agfjuserformance measure is rejected at the 1%, B661@%
significance levels. Equivalent test statisticsdtirer risk measures are not available.

a) Entire Sample Period / CAP 25%

A Eé‘;?jf,?d Sharpe Ratio SoR RoVaR RoCVaR StR
1 0.36% 0.03% 0.091 0.059 0.077 0.033
3 0.00% 0.001 0.003 0.007 0.013 0.002
6 0.26% 0.030° 0.077 0.065 0.078 0.028

a) Sub-Period excluding the Financial Crisis / CAP 25%

A Eé‘;'ftfrtﬁd Sharpe Ratio SoR RoVaR RoCVaR StR
1 1.57% 0.100° 0.230 0.340 0.325 0.173
3 2.44% 0.210 0.526 0.698 0.866 0.462
6 0.14% 0.010 0.026 0.027 0.039 0.016
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Figure E-I
Optimal Portfolio Weights
This figure shows the relationship between the &agkrsion factorA and the corresponding optimal portfolio
weights for the asset classes with a maximum weiggiriction per asset class of 25%. The sampl®géas
January 1999-December 2009.
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B US Buyout [IUS Venture Capital
Figure E-lI

Optimal Portfolio Weights
This figure shows the relationship between the &ag&rsion factorA and the corresponding optimal portfolio
weights for the asset classes with a maximum weigsiriction per asset class of 20%. The sampl®géas
January 1999-December 2006.
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Table 1
Autocorrelation Structure of the Appraisal Value Based Private Equity Indices

This table shows the autocorrelation coefficienthaf quarterly distribution of returns for the Apjzal Value
Based Private Equity Indices (US Buyout and US UWenCapital) based on Thomson ReutersVentureXg¢at d

base from January 1999 to December 2009 for thellimgd. The bold formatting represents the sigaifce at
the level of 95%.

Lag1 Lag 2 Lag 3 Lag 4
US Buyout 0.3561 0.2945 0.2178 0.1903
US Venture Capital| 0.6153 0.4988 0.3897 0.0559
Table 2

Autocorrelation Structure of the Monthly Return Distribution of all Asset Classes

This table shows the autocorrelation co-efficiefittioe monthly return distributions of S&P 500, MSCI
Emerging Markets, JPM US Government Bonds, FTSEANRREIT, S&P GSCI Commodity, HFRI Fund of

Funds, US Buyout, US Venture Capital, for the pérfimm January 1999 to December 2009 for the mgnthl
Lag 1 to 12. The bold formatting represents thaifgance at the level of 95%.

MSCI JPM US FTSE
Emerging Government EPRA/ S&P GSCI HFRI Fund
S&P 500 Market: Bond: NAREIT Commodity of Funds

Lag 1 0.1008 0.2096 0.1236 0.0039 0.1762 0.0854
Lag 2 -0.0160 0.1845 0.0567 -0.3224 0.0963 0.1219
Lag 3 0.0195 0.0489 0.0858 0.1381 0.1258 0.0997
Lag 4 0.0260 -0.0176 -0.1206  0.3031 0.0171 -0.1228
Lag 6 0.0241 -0.0603 0.0542 -0.0707 0.0239 0.0451
Lag 7 -0.1282 -0.1060 -0.0681 -0.2712 -0.0079 0.0791
Lag 8 0.0900 0.0513 -0.0067 0.0636 -0.0608 0.0813
Lag 9 0.1304 0.0125 -0.1007 0.1748 -0.0189 0.1839
Lag 10 0.1732 0.0950 -0.0395 0.0012 -0.0385 0.2078
Lag 11 0.0184 0.0160 0.0989 -0.2226 0.0374 0.1185
Lag 12 -0.0435 -0.0097 0.0517 0.1047 0.1719 0.0352
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Table 3
Descriptive Statistics of the Monthly Return Distribution of all Asset Classes

This table shows the mean, monthly standard dewiaskewness, kurtosis, minimum, maximum, medi&&p 2
percentile, 75% percentile, square root of lowetipamoment 2 with threshold 0 (LPM), Conditionahlue at
Risk (CVaR) at 95% confidence coefficient and MaximDrawdown of the monthly return distributions of
S&P 500, MSCI Emerging Markets, JPM US Governmemnds, FTSE EPRA/NAREIT, S&P GSCI
Commodity, HFRI Fund of Funds, US Buyout, US Veat@apital, for the period from January 1999 to
December 2009. Hedge fund and private equity (U$oBtiand US Venture Capital) return time serieshwit
significant autocorrelation are considered aftermatocorrelation (AC) adjustment (using Getmanslg;, and
Makarov’'s [2004] method). All indices are totaluet indices or earnings are retained. All discretarns were
converted into logarithmical returns. Finally, tiesumption of a normal return distribution is prbwvé Jarque-
Bera-tests (see Jarque and Bera [1980]).

MSCI JPM US
S&P 500 Emerging Government FTSE EPRA/  S&P GS(?I HFRI Fund of US Buyout us Ve_nture
Markets Bonds NAREIT Commodity Funds Capital

Mean 0.05% 1.21% 0.33% 0.81% 0.73% 0.33% 0.32% 90.43
Standard
Deviation 5.11% 6.96% 2.99% 7.30% 7.07% 3.14% 3.27% 5.37%
Kurtosis 4.478 2.976 4.791 13.162 4.252 6.728 2.834 7.183
Skewness -0.462 -0.315 -0.001 -0.300 -0.510 -0.519 -0.135 1.441
Minimum -14.14% -19.53% -8.24% -32.87% -22.66% 7400 -7.89% -12.42%
Maximum 10.62% 16.88% 9.46% 28.93% 18.03% 9.32% 29%8.3 23.01%
Median 0.48% 1.83% 0.35% 1.37% 1.29% 0.28% 0.35%  .169%
Percentile 25% -2.94% -3.26% -1.76% -2.81% -3.63% 1.74% -1.92% -2.25%
Percentile 75% 3.15% 6.07% 2.10% 4.69% 5.79% 1.96% 2.49% 2.37%
LPM 1.96% 2.24% 1.01% 2.08% 2.44% 1.04% 1.14% 1.58%
CVaR -11.03% -14.06% -5.48% -17.96% -14.94% -6.02% -6.77% -8.78%
MaxDD 61.58% 56.08% 24.51% 69.36% 62.39% 24.18% 8313. 69.85%
Jarque-Bera 16,707*** 2,189 17,646*** 569,887*+* BB7*+* 82,390*** 0,556 141,932***

** ** and * indicate statistical significance ahe 1%, 5%, and 10% levels, respectively, basesamthly returns.

Table 3

Correlation Matrix
This table shows the correlations between the atsetes from Table 2. We use the S&P 500, MSCIrgimg
Markets, JPM US Government Bonds, FTSE EPRA/NARB&P GSCI Commodity, HFRI Fund of Funds,
US Buyout, US Venture Capital for the period froemdary 1999 to December 2009. Values in boldfaee ar
significantly different from zero at the 5% level.

MSCI JPM US FTSE
S&P 500 Emerging Government EPRA/ Csifn?n?osdciil HF'T:Iuilégd of BLLJJSOUI U%Zei?:ljre
Markets Bonds  NAREIT y y p
S&P 500 1.000
MSCI
Emerging 0.275 1.000
Markets
JPM US
Government -0.183 -0.044 1.000
Bonds
FTSE EPRA/
NAREIT 0.648 0.153 -0.067 1.000
S&P GSCI
Commodity 0.305 -0.020 -0.102 0.189 1.000
HFRI Fund of
Funds 0.157 0.172 -0.176 0.161 0.184 1.000
US Buyout 0.103 0.292 -0.241 -0.061 -0.082 0.088 1.000
gi’p\ég‘t“re 0.077 0.337 -0.144 -0.127 -0.043 0049 0720 1.000
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Table 4

Moments of the Normally Distributed Auxiliary Distr ibutions
This table shows the mean and the standard dewviafithe two auxiliary distributions, as well ag tlveighting
factor for S&P 500, MSCI Emerging Markets, JPM UBv&nment Bonds, FTSE EPRA/NAREIT, S&P GSCI
Commodity, HFRI Fund of Funds, US Buyout, and UStdes Capital for the period from January 1999 to
December 2009. The values in the w-vector arecalbkto 1.

Distribution 1

Distribution 2

Weighting Factor

0.2

0.8

Mean

Standard Deviation

Mean

Standard Deviation

S&P 500

MSCI Emerging Markets
JPM US Government Bonds
FTSE EPRA/NAREIT

S&P GSCI Commodity
HFRI Fund of Funds

US Buyout

US Venture Capital

0%

1%
0%

5%
0%
3%

1%
0%

10%
16%
9%
16%
14%
10%
12%
1%

1%
18%
5%
11%
11%
5%
5%
7%

6%

16%
11%

11%
13%
11%

11%
16%

Table 5

Comparison of the Moments of Empirical and Approximated Distributions
This table shows the first four moments (annualizefdthe empirical and approximated distributions the
asset classes from Table 2 (see appendix B foretisealing from monthly to annual return distriloats). The
number on the left is the theoretical moment indapproximated distribution; the number in parentglses the

empirical moment.

Mean Standard Deviation Skewness Kurtosis

S&P 500 0.80% (0.62%) 7.00% (17.70%) -0.14 (-0.13) 3.4473.
MSCI Emerging Markets 14.60% (14.53%) 17.39% (24.12%) -0.09 (-0.09) 3.01 (3.00)
JPM US Government Bonds 4.00% (4.02%) 10.81% (10.36%) 0.00 (0.00) 3.0058.1
FTSE EPRA/

NAREIT 9.80% (9.74%) 12.40% (25.27%) -0.09 (-0.09) 338%)
S&P GSCI Commodity 8.80% (8.82%) 13.92% (24.50%) -0.15 (-0.15) 3.133
HFRI Fund of Funds 4.60% (4.00%) 10.84% (10.86%) -0.16 (-0.15) 3.1313

US Buyout 4.20% (3.82%) 11.32% (11.31%) -0.03 (-0.04) 3.08@3

US Venture Capital 5.60% (5.16%) 14.59% (18.61%) 0.27 (0.42) 3.535B.3
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Table 6

Robustness Check — Time-Varying Correlation Matrix
This table shows the optimal portfolio weights whitse variance of covariance is drawn from a Wishart
distribution ten times. The number on the left he faverage portfolio weight for our random samflee
number in parentheses is the portfolio weight far original correlation matrix for the construciedices for
the January 1999-December 2009 period and a maxiwright restriction of 20%.

A=1 A=3 =6
S&P 500 0.0 %(0.0%) 0.0 % (0.0%) 2.9% (3.0%)
MSCI Emerging Markets 20.0% (20.0%) 20.0% (20.0%) .0 B (0.0%)
JPM US Government Bonds 20.0% (20.0%) 20.0% (20.0%) 20.0% (20.0%)
FTSE EPRA/NAREIT 20.0% (20.0%) 6.9% (6.8%) 10.9%.7%0)
S&P GSCI Commodity 16.7% (16.4%) 6.5% (6.3%) 6.878%)
HFRI Fund of Funds 3.3% (3.6%) 20.0% (20.0%) 20(2%60%)
US Buyout 0.0 % (0.0%) 20.0% (20.0%) 20.0% (20.0%)
US Venture Capital 20.0% (20.0%) 6.6% (7.0%) 20(@%0%)

Table 7

Robustness Check — Out-of-Sample Analyses
This table shows the difference in risk-adjustedfptio performance and expected return of thecaltmns for
investor objective function maximization{1, 3, 6) compared to benchmark allocations (detedby the
Markowitz portfolio selection process where ana@éfint frontier portfolio with an equal return idesgted) for a
one year holding period. Calculations are based @tandard block bootstrap Monte Carlo simulatidth w
1,000 runs following Efron and Tibshirani [1994brRhe out-of-sample analysis, we use the Janu@®9-Iune
2004 period to construct the benchmark portfoliod duly 2004-December 2009 to construct the timesef
future returns. We calculate a corresponding ridikisted performance measure for each risk meaBorethe
standard deviation, we calculate the Sharpe r&®),(for LPM 2 with threshold 0, we calculate tratfho ratio
(SoR), for VaR with a 95% confidence level, we c#dte the return on value-at-risk (RoVaR), for C\afh a
95% confidence level, we calculate the return ondi@@nal value-at-risk (RoCVaR), and for MaxDD, we
calculate the Sterling ratio (StR). All risk-adjedt performance measures are calculated using tme sa
arithmetic equation: (portfolio return — risk-fregturn)/risk measure. For this analysis, the riglefreturn is set
to 3%. Results remain stable when using 0% or ikwftical risk-free return.”, ”, and” denote that the
assumption of an equal risk-adjusted performancasore is rejected at the 1%, 5%, and 10% signifiean
levels. Equivalent test statistics for other riskasures are not available.

Expected

A Return Sharpe Ratio SoR RoVvaR RoCVaR StR
1 0.68% 0.095 0.246 0.220 0.265 0.089
3 0.56% 0.063 0.164 0.151 0.194 0.068
6 -0.08% -0.006 -0.016 -0.015 -0.020 -0.007
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Figure 1

Histograms and Fitted Distributions for all Asset Gasses
The figure shows the monthly return histogramshef ¢ight asset classes and the corresponding fitteidn
distribution for each strategy for the period frdamuary 1999 to December 2009. The fitted retustridution
is composed of two auxiliary distributions — distrfions 1 and 2 — that are weighted with factoBsahd 0.8,

respectively.

S&P 500
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Figure 2
Optimal Portfolio Weights
This figure shows the relationship between the &agkrsion factorA and the corresponding optimal portfolio
weights for the asset classes with a maximum weiggiriction per asset class of 20%. The sampl®géas
January 1999-December 2009.

Entire Sample Period (CAP 20%)
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