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ABSTRACT 

 

In this paper, we provide a realistic framework that investors can use for their 
strategic asset allocation with alternative investments (buyouts, commodities, 
hedge funds, REITs, and venture capital). Our approach is not based on a utility 
function, but on an easily quantifiable risk preference parameter, λ. We account 
for higher moments of the return distributions within our optimization framework 
and approximate best-fit distributions. Thus, we replace the empirical return 
distributions, which are often skewed and/or exhibit excess kurtosis, with two 
normal distributions. We then use the estimated return distributions in the 
strategic asset allocation. Our results show in out-of-sample analyses that our 
framework yields superior results compared to the Markowitz framework. It also 
features better abilities to manage regime switches, which tend to occur frequently 
during crises. Lastly, to test our results for stability, we use further robustness 
tests, which allow for time-varying correlation structures in the return 
distributions and weight restrictions for the asset classes. 
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Alternative investments, which totalled U.S. $9 trillion as of the end of 2009, have 

become increasingly important in a portfolio context for institutional investors such as 

endowments and high net worth individuals and account for approximately 12% of the 

worldwide managed assets [Boston Consulting Group 2009]. These investors enjoy regulatory 

freedom, have sufficient capital to invest in alternative investments like private equity or 

hedge funds, and have sufficiently long investment horizons to hold illiquid investments. The 

share of alternative investments in the portfolios of high net worth individuals reached a level 

of about 10% in 2009 [for more details, see World Wealth Report 2009 of Capgemini and 

Merrill Lynch]. The leading investors for alternative investments in the US are endowments, 

with an average share of alternative investments in an endowment portfolio that increased 

considerably from 3% in 1996 to 39% in 2007 (33% excluding real estate). Endowments with 

more than U.S. $1 billion, like Harvard and Yale, have an allocation of about 61% [for more 

details, see 2009 NACUBO Endowment Study and annual reports of the endowments].  

But what factors are driving this rush to alternative investments? We argue that there are 

two main reasons. First, investors are seeking diversification to avoid a repetition of the 

substantial losses they experienced during the recent stock and bond market downturns (e.g., 

the Asian crisis of 1997, the Russian crisis of 1998, the new economy bubble in 2000, the 

World Trade Center attacks in 2001, and the current financial market crisis). Alternative 

investments are practical during more volatile market phases, because their return drivers 

differ from those of the equity and bond markets [Schneeweis, Kazemi and Martin (2001)].  

Second, the positive diversification properties of alternative investments do not 

necessarily have to reduce expected portfolio returns, but instead may enhance risk-adjusted 

performance. For example, the top U.S. university endowments (e.g., Harvard, Princeton, and 

Yale) reported realized annual returns of 10%-25% over the last three years, which highlights 
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that alternative investments can enhance expected portfolio returns, too. Lerner, Schoar and 

Wang [2007] attribute part of this success to willingness to rely on alternative investments. 

However, if investors want to build an exposure to alternative investments, they must 

determine which investments to include, as well as the strategic asset allocation. Because 

strategic asset allocation explains most of the portfolio’s return variability, it is the major 

determinant of investment performance and the most critical decision in the investment 

process (Hoernemann, Junkans and Zarate [2005]4).  

Investors must also consider the risk-return characteristics, because they are the primary 

influence on the strategic asset allocation models. The model of choice must be flexible 

enough to incorporate the risk-return characteristics. If they are not captured properly, or if 

the strategic asset allocation model is not flexible enough, the obtained optimal portfolio may 

include alternative investments only and thereby omitting traditional asset classes (Terhaar, 

Staub and Singer [2003]).  

The majority of studies in the literature only focuses on the effects of including one 

alternative investment in a mixed-asset portfolio. If more than just one is included, the risk-

return profiles are often not captured adequately, or the chosen model is not flexible enough 

(e.g. Schneeweis, Karavas and Georgiev [2002] and Conner [2003]). Alternatively, the 

alternative investments may not be representative of the entire universe. For example, Huang 

and Zhong [2006] consider commodities, REITs, and TIPs; Hoecht, Ng, Wolf and Zagst 

[2008] integrate only Asian hedge funds and Asian REITs. These papers do not provide a 

strategic asset allocation for a broad sample of alternative investments. 

                                                 
4 The authors present an alternative to the often-cited studies of Brinson, Hood and Beebower [1986] and 

Brinson, Hood and Beebower [1991]. They use a slightly different framework and cover a longer time 
horizon. They also include alternative assets and use synthetic portfolios. 
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To our knowledge, this paper is the first that 1) incorporates a variety of alternative 

investments (e.g., commodities, private equity, hedge funds, and real estate) and traditional 

investments (stocks and government bonds), 2) adjusts risk-return profiles to account for data 

biases, 3) uses a strategic asset allocation model that is flexible enough to capture the risk-

return profile adequately, and 4) incorporates real investor preferences.  

Before the optimization, the return time series of some alternative investments (private 

equity and hedge funds) are corrected for data biases such as appraisal smoothing and stale 

pricing. The optimization is thus flexible enough to incorporate any potential risk arising from 

higher moments (skewness and kurtosis) that would not be covered by the standard deviation. 

This is important, because the empirical return distributions of some alternative investments 

are generally not normally distributed. Thus every portfolio optimization in the mean-variance 

space will likely be suboptimal. 

Consequently, we use the mixture of normal method to replace the empirical return 

distributions (which often exhibit skewness and positive excess kurtosis) with two normal 

distributions to approximate a best fit distribution. This approach ensures that the best fit 

return distributions exhibit the higher moments close to their empirical pendants. We then use 

the best fit distributions in the optimization procedure. To derive the strategic asset allocation, 

we apply a goal function so that we can examine real investor preferences for risk aversion. 

Thereafter we apply four robustness checks in order to test the validity of our strategic asset 

allocation approach. The first robustness check tests sensitivity of our results against the 

background of the financial crisis, the second captures the consequences resulting from 

weight restrictions, the third tests our results for time-varying correlations, and the final 

robustness check is an out-of-sample analysis to evaluate the performance of the presented 

asset allocation procedure against the Markowitz framework.  
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Our general findings are that stocks of large US firms, as part of the traditional asset 

classes, are considered only in defensive portfolios but bonds are of high importance and are 

included up to the maximum weight restriction in all portfolios and emerging markets gain in 

relevance with a decrease in risk aversion. For alternative investments the picture is as 

follows: REITs play a major role in the portfolios with a decrease in risk aversion. In contrast, 

commodities have comparably stable medium allocations in all portfolios. Hedge fund 

allocations are comparable to bond allocations since they are integrated virtually into all 

optimal portfolios with the maximum portfolio weight. In comparison, private equity plays a 

very important role especially in defensive portfolios.  

The robustness check for the financial crisis reveals that the importance of alternative 

investments for risk diversification in defensive portfolios was underestimated. In spite of the 

financial crisis the results for alternative investments are even stronger. The weight 

restrictions also do not alter our results. The cumulative weights for alternative investments 

remain stable for different values of the risk aversion parameter. Furthermore, when allowing 

for time-varying correlations, we end up with nearly identical allocations. Finally, the out-of-

sample analysis shows that our optimization procedure in most cases generates superior 

results compared to the Markowitz framework.  

In conclusion, we find that alternative investments are important for the strategic asset 

allocation of institutional investors such as endowments, family offices, pension funds, and 

high net worth individuals who have sufficient time horizons and investment capital. 

However, not all alternative investment classes are of equal importance. Alternative 

investments are not appropriate as substitutes for traditional asset classes, and may  better 

serve as complements for achieving the desired risk-return profiles.  
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The rest of this paper proceeds as follows: In section 1, the data set and the correction of 

data biases is described. Section 2 presents the optimization procedure and the results. Section 

3 concludes with a summary, discussion, and implications for future research. 

1. Data Set Description 

It has been well-known since Markowitz’s [1952] seminal paper on portfolio theory that 

diversification can increase expected portfolio returns while reducing volatility. However, 

investors should not blindly add another asset class to their portfolios without carefully 

considering its properties in the context of the portfolio. A naively chosen allocation to the 

newly added asset class may not improve the risk-return profile or may even worsen it. This 

raises the question of whether alternative investments really improve the (risk-adjusted) 

performance of a (mixed-asset) portfolio, and whether they should be included in the strategic 

asset allocation.  

For the further analysis we use two traditional asset classes (proxy indices are in 

parentheses): stocks (S&P 500 TR Index and MSCI Emerging Markets TR Index) and 

government bonds (JPM US Government Bonds - TR Index), and four alternative assets: 

private equity, subdivided in buyout (US Buyout) and venture capital (US Venture Capital)5, 

commodities (S&P GSCI Commodity TR Index), hedge funds (HFRI Fund of Funds 

Composite), and real estate investment trusts (REITs) (FTSE EPRA/NAREIT - TR Index).6 

All the time series in our investigation are on a monthly basis (except private equity time 

series which are based on quarterly data) with a January 1999 inception date, because all the 

indices report data from this date on. The end date for the time series is December 2009 (in 

Appendix D we build a sub-sample to control for the influence of the financial crisis and use 

the time period from January 1999 to December 2006). 

                                                 
5 Both indices are based on the Thomson Reuters VentureXpert-data base. We followed the approach by 

Cumming, Haß and Schweizer [2010] for the calculation of the indices.  
6 Table A-I in Appendix A gives detailed descriptions of the proxy indices.  
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Before we start introducing the descriptive statistics of the considered asset classes we 

have to discuss several potential biases which could e.g. for alternative investments distort the 

inherent risk-return profile. Sources of distortion are manifold: For instance, appraisal based 

private equity indices like the calculated ones based on Thomson Reuters VentureXpert-data 

base show smoothed returns resulting from the deformation, which could occur through 

appraisal smoothing (estimated-value-method for determination of NAVs of portfolio 

companies), quarterly data availability and/or stale pricing (prices are distorted due to illiquid 

and not daily evaluated positions) and statistically cause a positive autocorrelation (see Table 

1). These relations are common amongst illiquid investments like private equity, individual 

hedge funds strategies (see Avramov et al. [2009] and Table 2). They arise typically due to 1) 

irregular price determination 2) long time periods between price determination and 3) the use 

of book value instead of market prices (see, for instance, Geltner [1991]; Gompers and Lerner 

[1997]). The resulting positive autocorrelation causes a significant underestimation of risk due 

to the smoothed returns when naively using the raw data.  

To adjust for appraisal-smoothing, stale pricing and for illiquidity in order to obtain an 

unbiased data set, we „de-smoothe“ the private equity and hedge funds time series by using 

the Getmansky, Lo, and Makarov [2004] method, which incorporates the whole 

autocorrelation structure of the return distribution (the intuition behind this method can be 

found in Appendix C).7 Thereafter, we obtain „de-smoothed“ hedge fund and private equity 

time series and re-scaled private equity return series from quarterly data into monthly (see 

Cumming, Haß and Schweizer [2010] for further details).  

Furthermore, some researchers emphasized that hedge fund time series are subject to a 

considerable survivorship bias. These studies use varying sample periods, calculation 

methods, and databases, and the resulting survivorship bias ranges from 0.16% (Ackermann, 

                                                 
7 This method improves on Geltner’s [1991] approach because the entire lag structure is considered 

simultaneously. In addition, there is no need for a de-smoothing parameter (see Byrne and Lee [1995] for 
the problematic determination of the de-smoothing parameter). 
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McEnally and Ravenscraft [1999]) to 6.22% (Liang [2002]).8 Since we use an investable fund 

of hedge funds index, the performance of this index is not affected by a survivor ship bias. For 

that reason we do not conduct any adjustments.  

After adjusting for the abovementioned distortions of the risk-return profile, Table 3 

gives the resulting descriptive statistics. Note that emerging markets have the highest mean 

return (1.21%) but only the third highest standard deviation (6.69%), followed by REITs with 

a mean return of 0.81% and the highest standard deviation of 7.30%.  

The higher moments (skewness and kurtosis) are additional potential sources of risk. 

Hedge funds exhibit the lowest skewness of -0.519 (kurtosis 6.728) whereas REITs show the 

highest kurtosis of 13.162 (skewness -0.300) among all asset classes. Therefore, hedge funds 

and REITs show the most unfavourable higher moment properties since a negative skewness 

and a positive excess kurtosis indicate that the outliers are on the left side of the return 

distribution and occur more often than expected under the normal distribution (known as tail 

risk). The excess kurtosis for most asset classes is close to zero (except for venture capital).  

Analyzing the higher moments of the return distribution for the asset classes shows that 

some return distributions do not follow a normal distribution (the Jarque-Bera test rejects the 

null hypothesis of a normally distributed return distribution for REITs and venture capital at 

the 1% level. Thus, relying on a simple mean-variance framework and ignoring the higher 

moments will not adequately capture the risk-return profile. Failure to consider higher 

moments increases the probability of maintaining biased and sub-optimal weight estimations 

as well as underestimating tail losses. 

Table 4 provides insight into the diversification potential of each asset class. Hedge funds 

have a high diversification potential, because the correlation to all other asset classes is 

                                                 
8 However, most researchers usually amount survivorship bias to 2% to 3%. See, for example, Anson [2006], 

Brown, Goetzmann and Ibbotson [1999], and Fung and Hsieh [2000]. 
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statistically not different form zero (except for private equity). Similar diversification 

potential applies for government bonds which also have a correlation to all other asset classes 

statistically not different form zero (except for venture capital). Noteworthy, no significant 

negative correlation between asset classes can be shown.  

After reviewing the descriptive statistics of the return distributions, we cannot determine 

a priori that one asset class is a substitute for another. Therefore, we must consider all the 

asset classes for the portfolio construction. In order to create optimal investor portfolios, our 

model must consider the characteristics of the asset classes adequately. We present our 

framework for optimal portfolio construction in the next section.  

2. Methodology and Results 

We have discussed the descriptive characteristics of the different alternative asset classes 

as well as potential biases. We also concentrated on correcting these biases from the raw 

return series and discussed their statistical properties. Some of the resulting return 

distributions are not normally distributed, and exhibit skewness and excess kurtosis. For that 

reason, and assuming that investors do not have quadratic utility functions (therefore ignoring 

higher moments of the return distribution), a simple Markowitz’s [1952] mean-variance 

framework will likely end up with inefficient portfolio composition and an underestimation of 

tail risk.  

To capture the higher moments, the literature offers a number of alternative distributions 

to the normal distribution. The multivariate Student t-distribution is well-suited for fat-tailed 

data, but it does not allow for asymmetry. The non-central multivariate t-distribution also has 

fat tails and is skewed. However, the skewness is linked directly to the location parameter, 

making it somewhat inflexible. The lognormal distribution has been used to model asset 

returns, but its skewness is a function of the mean and variance, not a separate parameter.  
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Thus, to capture higher moments of not normally distributed returns, we need a 

distribution that is flexible enough to fit the skewness and the kurtosis. We use a combination 

of two different geometric Brownian motions to generate a mixture of normal diffusions. The 

normal mixture distribution is an extension of the normal distribution, and has been 

successfully applied in many fields of finance literature.9 

We choose the normal mixture distribution primarily for its flexibility and its 

tractability.10 In particular, let ),,( 111 σµxf  denote the probability density function of the first 

normal distribution, with mean 1µ  and standard deviation1σ , and let ),,( 222 σµxf  denote the 

probability density function of the second normal distribution. We can then approximate the 

empirical distribution of hedge fund returns by a new distribution with the following 

probability density function: 

 

1 1 2 2 1 1 1 2 2 2

2 2
1 2

2 22 2
1 21 2

f(x,µ ,σ ,µ ,σ )=0.2 f (x,µ ,σ )+0.8 f (x,µ ,σ )

(x-µ ) (x-µ )1 1
                          =0.2 exp - +0.8 exp -

σ σ2πσ 2πσ

⋅ ⋅

   
⋅ ⋅   

   

         (1) 

 

Our economic justification is as follows. Consider a regime-switching model with two 

economic states: the usual and the unusual. The usual state exists 80% of the time, when the 

hedge fund can achieve a return with the distribution given by the second normal density; the 

unusual state exists 20% of the time, when the return is given by the other normal 

distribution.11 

Note that we do not specify whether the unusual return is better than the usual return in 

terms of having a higher mean and/or lower volatility. Indeed, the unusual return could be 

better, worse, or even the same. The latter case harks back to the classic assumption that 
                                                 
9 For example, Alexander and Scourse [2003] and Buckley, Saunders, and Seco [2004] have used this 

distribution to model asset returns and study option pricing problems in this setting. Venkataraman [1997] 
applied this concept to risk management. And Venkatramanan [2005] as well as Kaiser, Schweizer and Wu 
[2010] also used the normal mixture distribution in an asset allocation problem. 

10 Our approach is similar to that of Popova et al. [2007]. 
11 The assumed breakdown of 80% and 20% may seem restrictive, but we tested different pairs for robustness: 

90% and 10%, 85% and 15%, and 75% and 25%. We found the results remained qualitatively stable and 
were not driven by the assumed breakdown. Tables and figures are available from the authors upon request. 
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returns are unconditionally normal. In general, our setting allows for conditionally normal 

returns, but unconditional returns need not be normal. 

This specification offers many advantages. First, we have four free parameters, 

2211 ,,, σµσµ , so we can match the first through fourth moments of the empirical distribution 

exactly. We can also capture the skewness and the excess kurtosis. Second, with the normal 

density function, the new approximating distribution is still tractable. And third, as noted 

earlier, this specification treats the traditional normal approximation as a special case. Table 1 

provides a visualization of this method. 

Because we cannot solve the approximating parameters 2211 ,,, σµσµ  analytically, we 

must solve for them numerically. In particular, we look for means and standard deviations for 

the two normal distributions that can approximate as closely as possible the first four 

moments of the empirical distribution. Mean, variance, skewness, and kurtosis generally have 

different dimensions, so we decide to minimize the weighted relative deviation rather than the 

absolute deviation.  

Let w = (w1,w2,w3,w4) be a vector of strictly positive constants, which serve as weights 

for the four moments we want to match. Our objective function is then: 

1 2

3 4

theoretical mean-empirical mean theoretical variance-empirical variance
min w × +w ×

empirical mean empirical variance

theoretical skewness-empirical skewness theoretical kurtosis-empirical kur
+w × +w ×

empirical skewness

tosis

empirical kurtosis

.       (2) 

The objective function takes a value 0 if all four moments can be matched exactly, with 

positive values otherwise. In our investigation, we use equal weights for all moments, i.e. 

each moment has the same importance in the objective function.12 The approximating 

parameters that we obtain for the hedge fund strategies are provided in Table 4. Table 5 shows 

the first four moments of the empirical return distributions, and compares them with the 

                                                 
12 Hence, it is unlikely to obtain a perfect match since the moment dependencies are not linear.  
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moments obtained from the mixture of normal method. Obviously, the moments are close and 

thus the fit is very good. 

Our next step is to construct a strategic asset allocation with the broad variety of asset 

classes. Because the mean-variance approach does not work, we must find an appropriate 

objective function. We note that real-world investors looking to incorporate alternative 

investments into their portfolios are typically family offices, corporations, pension funds, high 

net worth individuals, and large endowments. These investors generally seek higher expected 

returns than in a money market, but are risk-averse and therefore pay special attention to 

downside risk.  

We can thus specify the objective function of our investor as follows: Let r denote the 

random return of our portfolio, and 1r  and 2r  are some benchmark returns, which could be 

constants or random variables. Our investor’s objective is to maximize the following function: 

)Pr()Pr(max 21 rrrr <−> λ           (3) 

In other words, our investor wants to maximize the probability of outperforming some 

benchmark return, while minimizing the probability of underperforming another benchmark. 

Thus the first benchmark could be some constant, e.g., 10% p.a., or a random return of some 

other indices such as the S&P 500 as the market return. The second benchmark is usually 

chosen as 0%, the risk-free rate, or a government bond yield. For our analysis, we define the 

first benchmark as a constant 8% p.a., and the second as 0%.13 

The term λ is a positive constant and represents the trade-off between these two 

objectives. It is obvious that λ depends on investors’ risk aversion. The higher λ , the less 

aggressive the investors (higher risk aversion), as they weight the second objective more 

highly and are more concerned about losses than gains. Similar to the relative risk aversion 

                                                 
13 For reasons of robustness, we assumed two stochastic benchmarks instead: the T-bill rate and the Barclays 

Capital Aggregate Bond Index for the second benchmark. The results remained qualitatively stable. Tables 
and figures are available from the authors upon request. 
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coefficient in canonical utility functions, plausible values of λ lie between 1 and 10. We also 

consider two constraints when optimizing our portfolios numerically: We do not allow short-

selling, and we restrict the maximum asset class weight (CAP) to 20% (in appendix E we 

discuss the influence on the optimal portfolios when raising the CAP to 25%).14 Using these 

constraints and the objective function stated above, we numerically calculate the optimal 

hedge fund portfolio for different parameters for λ. The scenario in which the entire sample 

period is covered and a CAP of 20% is considered will be referred to as the base case.  

For different λ s, all asset classes are at least incorporated into one optimal portfolio, 

but of course the weights vary by strategy and they are not of equal importance (see Figure 2, 

D-I, E-I, and E-II). For reasons of robustness, we analyze the optimal weights for the entire 

sample period January 1999-December 2009, and include the impact from the financial crisis 

and compare the results to the shorter sub-period which also starts in January 1999, but ends 

in December 2006 (see appendix D). Furthermore, we relax the strict CAP restriction to 25% 

instead of 20% and discuss the effects for the alternative investment classes (see appendix E).  

The first interesting result in the base case for the traditional asset classes and stocks of 

large US firms (S&P 500 as proxy) is that it is considered in the optimal portfolios only for 

defensive respectively risk concerned investor portfolios (λ=1). In comparison, stock 

investments in emerging markets gain in importance with a decrease in risk aversion up to the 

CAP of 20% for λs greater than 3.5. Remarkably, bonds are of high importance and are 

included up to the CAP of 20% in all portfolios. For REITs, the first analyzed alternative 

investment, the weight in the optimal portfolios increases with decrease in risk aversion up to 

20%. It is not surprising that allocations to REITs are not very large in defensive portfolios 

since REITs showed the highest historical standard deviation and the most unfavourable 

                                                 
14 This maximum weight restriction aims to avoid having the portfolio dominated by a single asset class. When 

imposing the minimum diversification restriction the results are not as prone as for optimizations without 
such a restriction, since optimal portfolio weights do not comparably rely on the past performance of the 
respective assets. 
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higher moment properties among all considered asset classes. In contrast, commodities have a 

comparably stable allocation between 6% and 15% in all portfolios. Hedge fund allocations 

are comparable to bond allocations since they are integrated into all optimal portfolios with 

20% (except λ=1). Private equity plays a very important role especially in defensive 

portfolios and is allocated with the maximal portfolio weight of 40% (buyout and venture 

capital) until a λ equal to 4.5. From this point on, the weight decreases and for a risk 

parameter value of 2.5, venture capital drops out of the portfolio. When summing up the 

weights for alternative investments we find that they have a cumulative weight of about 60% 

in offensive and performance orientated portfolios (λ=1) and about 77% in defensive 

portfolios (λ=6). 

However, to show the dominance of our approach over the standard Markowitz 

approach we need to examine the out-of-sample performance. Therefore we conduct an out-

of-sample Monte Carlo analysis according to Jobson and Korkie [1981] and Ledoit and Wolf 

[2008]. More specifically we use historical returns from January 1999 through June 2004 to 

construct Markowitz’s efficient portfolios and equal expected return portfolios using our 

method for λ = 1, 3, and 6, respectively. Subsequently we use historical returns from July 

2004 through December 2009 to construct 1,000 time series of future returns using a bootstrap 

approach according to Efron and Tibshirani [1994]. We then use the future returns time series 

to calculate portfolio returns. 

To assess how beneficial our optimization technique is compared to the standard 

Markowitz approach, we calculate risk-adjusted performance for every risk measure 

separately as follows: the Sharpe ratio (SR) for standard deviation, the Sortino ratio (SoR) for 

LPM, the return on conditional value-at-risk (RoCVaR) for CVaR, and the Sterling ratio (StR) 

for MaxDD.  
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We note from Table 7 that our optimization technique outperforms the Markowitz 

approach significantly for the Sharpe Ratio15 and for the other risk-adjusted performance 

measures. It performs especially well when the risk measures capture the downside risk (e.g., 

MaxDD, CVaR) and for the lower levels of risk aversion. For the out-of-sample analysis, we 

find that Markowitz is outperformed by all the risk-adjusted performance measures we study 

here, regardless of the level of risk aversion (see Table 7).  

To approve our above mentioned results we conducted a series of robustness checks. In 

our first robustness check we analyze the influence of the financial crisis on the optimal 

portfolio weights for alternative investments (see appendix D). Firstly, we find that the 

importance of alternative investments for the risk diversification in defensive portfolio was 

underestimated before the financial crisis since the cumulative weight was about 54% only 

which is clearly below 77% for the entire sample period. This can mainly be attributed to 

private equity which was underrepresented in defensive portfolios und did not suffer as much 

as other asset classes like equity markets from market overreactions during the financial 

crisis, since the interim changes in private equity portfolio values are driven by appraisal 

changes (see e.g. de Bond and Thaler [1985] and Chopra, Lakonishok and Ritter [1992]). In 

contrast, the cumulative portfolio weights for offensive portfolios are about 20% higher when 

ignoring the financial crisis.  

When conducting the second robustness check to study the effect of the maximum 

weight restriction, we find that the cumulative portfolio weights for alternative investments do 

not differ substantially for the less restrictive CAP of 25% compared to the stricter one (see 

appendix E). In detail, allocations to private equity as an asset class are reduced even when 

for some portfolios the weight of buyout reaches the higher CAP. Furthermore, hedge funds 
                                                 
15 The test for statistical significance is applied for the Sharpe Ratio following Korkie [1981] and Ledoit and 

Wolf [2008] only since for the other risk adjusted performance measures no test statistic can be found in the 
literature. Admittedly, we would expect that it is most difficult to outperform, given our optimization 
procedure, the Sharpe Ratio, because it is directly linked to the Markowitz approach. Given that we 
outperform the Sharpe Ratio significantly and find more favorable risk adjusted performance measures 
compared to the Markowitz approach, we are confident that the results hold for the other risk measures, too.  
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have larger allocations (25%) in defensive portfolios and slightly lower ones in offensive 

portfolios when considering the entire sample period – the weight is constantly at 25%, 

regardless of the risk aversion parameter, when the financial crisis is ignored.  

Our approach so far has been based on the assumption that the correlation structures 

between all these assets remain constant over time. In reality, however, correlations are time-

varying and stochastic. They are difficult to include when planning portfolios, because their 

dynamic nature can render the numerical optimizations very complicated. Therefore, instead 

of integrating a correlation directly into our portfolio selection problem, we conduct a third 

robustness check to test whether our portfolio remains robust against time-varying 

correlations. 

In order to do this, we draw from the Wishart distribution ten times,16 and simulate the 

new correlation matrix. Then, we run the same optimization procedure as before to determine 

the new optimal portfolio for three risk aversion classes: λ  = 1, 3, and 6. If the new portfolio 

does not deviate greatly from the initial portfolio, we can conclude that our initial portfolio 

will remain stable and robust against time-varying correlations. 

As the results in Table 6 show, our initial portfolios are quite stable and are only slightly 

affected by changes in the correlation matrix, especially the high risk aversion portfolio. The 

principal components remain the same for all fifteen new portfolios. In some cases, the new 

portfolio is exactly the same; in others, some asset weights undergo minor changes. For 

investors with high risk aversion (λ  = 6), four of the ten portfolios are identical to the initial 

one. For investors with low risk aversion (λ  = 1), three of the ten portfolios are identical.  

The fourth and last robustness check is an out-of-sample analysis according to Jobson 

and Korkie [1981] and Ledoit and Wolf [2008] when the financial crisis is not included. 

Therefore we use historical returns from January 1999 through December 2003 to construct 

                                                 
16 For further details, see for instance, Zhang [2006]. 
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the benchmark portfolios and historical returns from January 2004 through December 2006 to 

generate future return time series. 

We find that Markowitz is outperformed by all the risk-adjusted performance measures 

we study here, regardless of the level of risk aversion, also when the financial crisis is not 

included (see Table 7). Hence, our approach is more suitable for capturing regime switches, 

which were particularly prevalent during the financial crisis (see Tables D - III).  

 

3. Conclusion 

Markowitz’s [1952] classic mean-variance approach is widely used for tactical asset 

allocation. But it fails to include further risk factors such as skewness and kurtosis, which 

occur because the return distributions of different hedge fund strategies are usually not 

normally distributed. This can lead to non-optimal strategic weight suggestions.  

This paper introduces a more flexible method, the mixture of normal method, to 

incorporate the higher moments of different hedge fund strategy return distributions 

individually. We use the obtained distributions to optimize hedge fund strategy allocations for 

investors with different degrees of risk aversion and preferences. We are also able to 

incorporate stochastic and static benchmarks.  

In our method, investors choose one benchmark they wish to outperform while 

simultaneously choosing a second benchmark for minimum acceptable performance. After 

defining the goal function, we solve the optimization problem for a set of risk parameters, and 

obtain very stable portfolio weights, regardless of the level of λ . Finally, we perform four 

robustness checks on our obtained portfolios with respect to the financial crisis, the maximum 

weight restriction, time-varying correlations as well as out-of-sample tests, and found robust 

results.  
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In conclusion, our approach incorporates the heterogeneity of different asset classes and 

individual investor preferences to deliver robust results for institutional investors’ strategic 

asset allocation. Our results are in most cases superior to Markowitz’s [1952] classic mean-

variance approach during times that markets face regime switches, such as during the recent 

financial crisis. At these times, a robust and reliable strategic asset allocation gains in 

importance.   
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Appendix A 

Table A-I 
Data Descriptions 

This table reports the proxy indices for each asset class. The frequency, inception dates, end date, and additional information sources are given for the proxy time series. 
 

Asset Class Proxy Index Frequency Inception Date End Date Additional Information 

U.S. Stocks S&P 500 Composite - Total Return Index Monthly Jan 99 Dec 09 http://www2.standardandpoors.com 

Emerging Markets MSCI Emerging Markets - Total Return Index Monthly Jan 99 Dec 09 http://www.datastream.com 

U.S. Government Bonds JPM United States Govt. Bond - Total Return Index Monthly Jan 99 Dec 09 http://www.datastream.com 

Real Estate Investment Trusts FTSE EPRA NAREIT - Total Return Index Monthly Jan 99 Dec 09 http://www.nareit.com 

Commodities S&P GSCI Commodity - Total Return Index Monthly Jan 99 Dec 09 http://www.datastream.com 

Hedge Funds HFRI Fund of Hedge Fund Composite Index Monthly Jan 99 Dec 09 http://www.hedgefundresearch.com 

Buyout Thomson ReutersVentureXpert Quarterly Jan 99 Dec 09 http://www.thomsonreuters.com 

Venture Capital Thomson ReutersVentureXpert Quarterly Jan 99 Dec 09 http://www.thomsonreuters.com 
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Appendix B: Re-Scaling of Moments  

The moments of a monthly return distribution can be rescaled to an annual return 

distribution as follows. Let ir  denote the monthly return, i  and R  denote the annual return. 

It is obvious that  
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The equation above can be written as  
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The kurtosis of the annual return is defined as  
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The above equation can be rewritten as  
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Appendix C: Getmansky, Lo and Makarov’s [2004] Method 

The basis of the procedure of Getmansky, Lo and Makarov [2004] is the idea that the 

observable return does not equal the real return. The observable return R�� is rather composed 

of the real returns R� of the previous periods. Therefore: 

R�� = θ�R� + θ�R�	� +⋯+ θ�R�	�. 

 θ� ∈ �0.1�.	 j = 0.… . k and  

 1 = θ� + θ� +⋯+ θ�. 

The observable return is therefore the weighted sum of real returns of the previous 

periods. It follows that the mean of the observable returns is equal to the mean of the real 

returns. However, the volatility of the observable returns is smaller than the volatility of the 

actual returns. More precisely, the following is valid for the volatility of the observable 

returns: 

 Std�R��� = �
���������…����

σ ≤ σ, 

with σ being the volatility of the real returns. 

In order to calculate the real returns, it is required at first to determine the weighting 

factors. Thereby we take advantage of the fact that the observable return can be written as 

Moving-Average Process, whereas the weighting factors stay the same. The weighting factors 

for this Moving-Average Process can be estimated via Maximum-Likelihood. Finally, the real 

returns can be calculated with the estimated weighting factors. 
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Appendix D: Robustness Check – Influence of the Financial Crisis 

 
Table D-I 

Descriptive Statistics of the Monthly Return Distributions of all Asset Classes  

This table shows the mean, monthly standard deviation, skewness, kurtosis, minimum, maximum, median, 25% 
percentile, 75% percentile, square root of lower partial moment 2 with threshold 0 (LPM), Conditional Value at 
Risk (CVaR) at 95% confidence coefficient and Maximum Drawdown of the monthly return distributions of 
S&P 500, MSCI Emerging Markets, JPM US Government Bonds, FTSE EPRA/NAREIT, S&P GSCI 
Commodity, HFRI Fund of Funds, US Buyout, US Venture Capital, for the period from January 1999 to 
December 2006. Return time series with significant autocorrelation are considered after an autocorrelation (AC) 
adjustment (using Getmansky, Lo, and Makarov’s [2004] method). All indices are total return indices or 
earnings are retained. All discrete returns were converted into logarithmical returns. Finally, the assumption of a 
normal return distribution is proved via Jarque-Bera-tests (see Jarque and Bera [1980]). 
 

 S&P 500 
MSCI 

Emerging 
Markets 

JPM US 
Government 

Bonds 

FTSE EPRA/ 
NAREIT 

S&P GSCI 
Commodity 

HFRI Fund of 
Funds 

US Buyout 
US Venture 

Capital 

Mean 0.28% 1.47% 0.33% 1.36% 1.20% 0.59% 0.62% 0.79% 
Standard 
Deviation 4.91% 6.61% 2.69% 4.46% 6.65% 3.03% 3.61% 6.11% 

Kurtosis 2.928 2.723 3.779 4.848 2.594 6.237 2.582 5.621 

Skewness -0.248 -0.172 -0.641 -0.757 -0.032 0.930 -0.328 1.183 

Minimum -11.45% -15.70% -5.33% -11.80% -14.36% -5.83% -7.89% -12.42% 

Maximum 10.62% 15.08% 6.58% 14.11% 18.03% 9.22% 8.32% 23.01% 

Median 0.59% 1.91% 0.48% 1.29% 1.47% 0.41% 0.96% 0.23% 

Percentile 25% -2.76% -3.60% -1.80% -1.31% -3.16% -1.41% -2.18% -2.25% 

Percentile 75% 3.19% 5.86% 2.19% 4.14% 6.02% 2.56% 3.47% 3.39% 

LPM 1.80% 2.03% 0.96% 1.12% 2.10% 0.92% 1.18% 1.70% 

CVaR -9.95% -12.60% -4.58% -7.37% -11.85% -5.11% -7.16% -9.33% 

MaxDD 52.76% 48.68% 24.51% 23.19% 32.96% 24.12% 43.83% 69.85% 

         

Jarque-Bera 1,004 0,782 9,006*** 22,814*** 0,675 55,760*** 2,418 49,861*** 
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively, based on monthly returns. 

 
Table D-II 

Correlation Matrix 
This table shows the correlations between the asset classes from Table D-I. We use the S&P 500, MSCI 
Emerging Markets, JPM US Government Bonds, FTSE EPRA/NAREIT, S&P GSCI Commodity, HFRI Fund of 
Funds, US Buyout, and US Venture Capital for the period from January 1999 to December 2006. Values in 
boldface are significantly different from zero at the 5% level. 
 

 S&P 500 
MSCI 

Emerging 
Markets 

JPM US 
Government 

Bonds 

FTSE 
EPRA/ 

NAREIT 

S&P GSCI 
Commodity 

HFRI Fund of 
Funds 

US 
Buyout 

US Venture 
Capital 

S&P 500 1.000        
MSCI 
Emerging 
Markets 0.173 1.000       
JPM US 
Government 
Bonds -0.175 -0.092 1.000      
FTSE EPRA/ 
NAREIT 0.262 0.014 0.051 1.000     
S&P GSCI 
Commodity 0.060 -0.142 0.004 -0.155 1.000    
HFRI Fund of 
Funds 0.003 0.051 -0.149 -0.027 -0.062 1.000   

US Buyout 0.291 0.471 -0.343 0.029 0.012 0.188 1.000  
US Venture 
Capital 0.242 0.507 -0.211 -0.132 0.059 0.131 0.715 1.000 
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Table D-III 
Robustness Check – Out-of-Sample Analyses  

This table shows the difference in risk-adjusted portfolio performance and expected return of the allocations for 
investor objective function maximization (λ=1, 3, 6) compared to benchmark allocations (determined by the 
Markowitz portfolio selection process where an efficient frontier portfolio with an equal return is selected) for a 
one year holding period. Calculations are based on a standard block bootstrap Monte Carlo simulation with 
1,000 runs following Efron and Tibshirani [1994]. For the out-of-sample analysis, we use the January 1999-
December 2002 period to construct the benchmark portfolio, and January 2003-December 2006 to construct the 
time series of future returns. We calculate a corresponding risk-adjusted performance measure for each risk 
measure. For the standard deviation, we calculate the Sharpe ratio (SR), for LPM 2 with threshold 0, we 
calculate the Sortino ratio (SoR), for VaR with a 95% confidence level, we calculate the return on value-at-risk 
(RoVaR), for CVaR with a 95% confidence level, we calculate the return on conditional value-at-risk 
(RoCVaR), and for MaxDD, we calculate the Sterling ratio (StR). All risk-adjusted performance measures are 
calculated using the same arithmetic equation: (portfolio return – risk-free return)/risk measure. For this analysis, 
the risk-free return is set to 3%. Results remain stable when using 0% or the historical risk-free return. *** , ** , and 
* denote that the assumption of an equal risk-adjusted performance measure is rejected at the 1%, 5%, and 10% 
significance levels for the Sharpe Ratio. Equivalent test statistics for other risk measures are not available. 
 

λ 
Expected 
Return 

Sharpe Ratio SoR RoVaR RoCVaR StR 

1 1.67% 0.117***  0.302 0.437 0.610 0.271 

3 1.86% 0.117***  0.286 0.366 0.507 0.310 

6 0.87% 0.077***  0.190 0.247 0.327 0.175 

 
 

Figure D-I 
Optimal Portfolio Weights 

This figure shows the relationship between the risk aversion factor λ  and the corresponding optimal portfolio 
weights for the asset classes with a maximum weight restriction per asset class of 20%. The sample period is 
January 1999-December 2006.  
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Appendix E: Robustness Check – Influence of Weight Restrictions  

Table E-I 
Robustness Check – Out-of-Sample Analyses  

This table shows the difference in risk-adjusted portfolio performance and expected return of the allocations for 
investor objective function maximization (λ=1, 3, 6) compared to benchmark allocations (determined by the 
Markowitz portfolio selection process where an efficient frontier portfolio with an equal return is selected) for a 
one year holding period. Calculations are based on a standard block bootstrap Monte Carlo simulation with 
1,000 runs following Efron and Tibshirani [1994]. For the out-of-sample analysis, we use the January 1999-June 
2004 period to construct the benchmark portfolio, and July 2004-December 2009 to construct the time series of 
future returns for the entire sample period. For the sub-period excluding the financial crisis, we use the January 
1999-December 2002 period to construct the benchmark portfolio, and January 2003-December 2006 to 
construct the time series of future returns. We calculate a corresponding risk-adjusted performance measure for 
each risk measure. For the standard deviation, we calculate the Sharpe ratio (SR), for LPM 2 with threshold 0, 
we calculate the Sortino ratio (SoR), for VaR with a 95% confidence level, we calculate the return on value-at-
risk (RoVaR), for CVaR with a 95% confidence level, we calculate the return on conditional value-at-risk 
(RoCVaR), and for MaxDD, we calculate the Sterling ratio (StR). All risk-adjusted performance measures are 
calculated using the same arithmetic equation: (portfolio return – risk-free return)/risk measure. For this analysis, 
the risk-free return is set to 3%. Results remain stable when using 0% or the historical risk-free return. *** , ** , and 
* denote that the assumption of an equal risk-adjusted performance measure is rejected at the 1%, 5%, and 10% 
significance levels. Equivalent test statistics for other risk measures are not available. 
 

a) Entire Sample Period / CAP 25% 
 

λ 
Expected 
Return 

Sharpe Ratio SoR RoVaR RoCVaR StR 

1 0.36% 0.034***  0.091 0.059 0.077 0.033 

3 0.00% 0.001 0.003 0.007 0.013 0.002 

6 0.26% 0.030***  0.077 0.065 0.078 0.028 

 
a) Sub-Period excluding the Financial Crisis / CAP 25% 

 
λ 

Expected 
Return 

Sharpe Ratio SoR RoVaR RoCVaR StR 

1 1.57% 0.100***  0.230 0.340 0.325 0.173 

3 2.44% 0.210***  0.526 0.698 0.866 0.462 

6 0.14% 0.010 0.026 0.027 0.039 0.016 
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Figure E-I 
Optimal Portfolio Weights 

This figure shows the relationship between the risk aversion factor λ  and the corresponding optimal portfolio 
weights for the asset classes with a maximum weight restriction per asset class of 25%. The sample period is 
January 1999-December 2009.  

 
 

 
Figure E-II 

Optimal Portfolio Weights 
This figure shows the relationship between the risk aversion factor λ  and the corresponding optimal portfolio 
weights for the asset classes with a maximum weight restriction per asset class of 20%. The sample period is 
January 1999-December 2006.  
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Table 1 
Autocorrelation Structure of the Appraisal Value Based Private Equity Indices 

This table shows the autocorrelation coefficient of the quarterly distribution of returns for the Appraisal Value 
Based Private Equity Indices (US Buyout and US Venture Capital) based on Thomson ReutersVentureXpert data 
base from January 1999 to December 2009 for the Lag 1 to 4. The bold formatting represents the significance at 
the level of 95%. 
 

 Lag 1 Lag 2 Lag 3 Lag 4 

US Buyout 0.3561 0.2945 0.2178 0.1903 

US Venture Capital 0.6153 0.4988 0.3897 0.0559 

 
 

Table 2 
Autocorrelation Structure of the Monthly Return Distribution of all Asset Classes  

This table shows the autocorrelation co-efficient of the monthly return distributions of S&P 500, MSCI 
Emerging Markets, JPM US Government Bonds, FTSE EPRA/NAREIT, S&P GSCI Commodity, HFRI Fund of 
Funds, US Buyout, US Venture Capital, for the period from January 1999 to December 2009 for the monthly 
Lag 1 to 12. The bold formatting represents the significance at the level of 95%. 

 
S&P 500 

MSCI 
Emerging 
Markets 

JPM US 
Government 
Bonds 

FTSE 
EPRA/ 
NAREIT 

S&P GSCI 
Commodity 

HFRI Fund 
of Funds 

Lag 1 0.1008 0.2096 0.1236 0.0039 0.1762 0.0854 

Lag 2 -0.0160 0.1845 0.0567 -0.3224 0.0963 0.1219 

Lag 3 0.0195 0.0489 0.0858 0.1381 0.1258 0.0997 

Lag 4 0.0260 -0.0176 -0.1206 0.3031 0.0171 -0.1228 

Lag 6 0.0241 -0.0603 0.0542 -0.0707 0.0239 0.0451 

Lag 7 -0.1282 -0.1060 -0.0681 -0.2712 -0.0079 0.0791 

Lag 8 0.0900 0.0513 -0.0067 0.0636 -0.0608 0.0813 

Lag 9 0.1304 0.0125 -0.1007 0.1748 -0.0189 0.1839 

Lag 10 0.1732 0.0950 -0.0395 0.0012 -0.0385 0.2078 

Lag 11 0.0184 0.0160 0.0989 -0.2226 0.0374 0.1185 

Lag 12 -0.0435 -0.0097 0.0517 0.1047 0.1719 0.0352 
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Table 3 
Descriptive Statistics of the Monthly Return Distribution of all Asset Classes  

This table shows the mean, monthly standard deviation, skewness, kurtosis, minimum, maximum, median, 25% 
percentile, 75% percentile, square root of lower partial moment 2 with threshold 0 (LPM), Conditional Value at 
Risk (CVaR) at 95% confidence coefficient and Maximum Drawdown of the monthly return distributions of 
S&P 500, MSCI Emerging Markets, JPM US Government Bonds, FTSE EPRA/NAREIT, S&P GSCI 
Commodity, HFRI Fund of Funds, US Buyout, US Venture Capital, for the period from January 1999 to 
December 2009. Hedge fund and private equity (US Buyout and US Venture Capital) return time series with 
significant autocorrelation are considered after an autocorrelation (AC) adjustment (using Getmansky, Lo, and 
Makarov’s [2004] method). All indices are total return indices or earnings are retained. All discrete returns were 
converted into logarithmical returns. Finally, the assumption of a normal return distribution is proved via Jarque-
Bera-tests (see Jarque and Bera [1980]). 
 

 S&P 500 
MSCI 

Emerging 
Markets 

JPM US 
Government 

Bonds 

FTSE EPRA/ 
NAREIT 

S&P GSCI 
Commodity 

HFRI Fund of 
Funds 

US Buyout 
US Venture 

Capital 

Mean 0.05% 1.21% 0.33% 0.81% 0.73% 0.33% 0.32% 0.43% 
Standard 
Deviation 5.11% 6.96% 2.99% 7.30% 7.07% 3.14% 3.27% 5.37% 

Kurtosis 4.478 2.976 4.791 13.162 4.252 6.728 2.834 7.183 

Skewness -0.462 -0.315 -0.001 -0.300 -0.510 -0.519 -0.135 1.441 

Minimum -14.14% -19.53% -8.24% -32.87% -22.66% -10.74% -7.89% -12.42% 

Maximum 10.62% 16.88% 9.46% 28.93% 18.03% 9.32% 8.32% 23.01% 

Median 0.48% 1.83% 0.35% 1.37% 1.29% 0.28% 0.35% -0.16% 

Percentile 25% -2.94% -3.26% -1.76% -2.81% -3.63% -1.74% -1.92% -2.25% 

Percentile 75% 3.15% 6.07% 2.10% 4.69% 5.79% 1.96% 2.49% 2.37% 

LPM 1.96% 2.24% 1.01% 2.08% 2.44% 1.04% 1.14% 1.58% 

CVaR -11.03% -14.06% -5.48% -17.96% -14.94% -6.02% -6.77% -8.78% 

MaxDD 61.58% 56.08% 24.51% 69.36% 62.39% 24.18% 43.83% 69.85% 

         

Jarque-Bera 16,707*** 2,189 17,646*** 569,887*** 14,337*** 82,390*** 0,556 141,932*** 
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively, based on monthly returns. 

 
Table 3 

Correlation Matrix 
This table shows the correlations between the asset classes from Table 2. We use the S&P 500, MSCI Emerging 
Markets, JPM US Government Bonds, FTSE EPRA/NAREIT, S&P GSCI Commodity, HFRI Fund of Funds, 
US Buyout, US Venture Capital for the period from January 1999 to December 2009. Values in boldface are 
significantly different from zero at the 5% level. 
 

 S&P 500 
MSCI 

Emerging 
Markets 

JPM US 
Government 

Bonds 

FTSE 
EPRA/ 

NAREIT 

S&P GSCI 
Commodity 

HFRI Fund of 
Funds 

US 
Buyout 

US Venture 
Capital 

S&P 500 1.000        
MSCI 
Emerging 
Markets 

0.275 1.000       

JPM US 
Government 
Bonds 

-0.183 -0.044 1.000      

FTSE EPRA/ 
NAREIT 0.648 0.153 -0.067 1.000     

S&P GSCI 
Commodity 

0.305 -0.020 -0.102 0.189 1.000    

HFRI Fund of 
Funds 

0.157 0.172 -0.176 0.161 0.184 1.000   

US Buyout 0.103 0.292 -0.241 -0.061 -0.082 0.088 1.000  
US Venture 
Capital 

0.077 0.337 -0.144 -0.127 -0.043 0.049 0.720 1.000 
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Table 4 
Moments of the Normally Distributed Auxiliary Distr ibutions 

This table shows the mean and the standard deviation of the two auxiliary distributions, as well as the weighting 
factor for S&P 500, MSCI Emerging Markets, JPM US Government Bonds, FTSE EPRA/NAREIT, S&P GSCI 
Commodity, HFRI Fund of Funds, US Buyout, and US Venture Capital for the period from January 1999 to 
December 2009. The values in the w-vector are all equal to 1. 

 

 Distribution 1 Distribution 2 

Weighting Factor 0.2 0.8 

 Mean Standard Deviation Mean Standard Deviation 

S&P 500 0% 10% 1% 6% 

MSCI Emerging Markets 1% 16% 18% 16% 

JPM US Government Bonds 0% 9% 5% 11% 

FTSE EPRA/NAREIT 5% 16% 11% 11% 

S&P GSCI Commodity 0% 14% 11% 13% 

HFRI Fund of Funds 3% 10% 5% 11% 

US Buyout 1% 12% 5% 11% 

US Venture Capital 0% 1% 7% 16% 

 
 

Table 5 
Comparison of the Moments of Empirical and Approximated Distributions 

This table shows the first four moments (annualized) of the empirical and approximated distributions for the 
asset classes from Table 2 (see appendix B for the re-scaling from monthly to annual return distributions). The 
number on the left is the theoretical moment in the approximated distribution; the number in parentheses is the 
empirical moment.  
 

 Mean Standard Deviation Skewness Kurtosis 

S&P 500 0.80% (0.62%) 7.00% (17.70%) -0.14 (-0.13) 3.44 (3.12) 
MSCI Emerging Markets 14.60% (14.53%) 17.39% (24.12%) -0.09 (-0.09) 3.01 (3.00) 
JPM US Government Bonds 4.00% (4.02%) 10.81% (10.36%) 0.00 (0.00) 3.00 (3.15) 
FTSE EPRA/ 
NAREIT 9.80% (9.74%) 12.40% (25.27%) -0.09 (-0.09) 3.05 (3.85) 
S&P GSCI Commodity 8.80% (8.82%) 13.92% (24.50%) -0.15 (-0.15) 3.13 (3.10) 
HFRI Fund of Funds 4.60% (4.00%) 10.84% (10.86%) -0.16 (-0.15) 3.15 (3.31) 
US Buyout 4.20% (3.82%) 11.32% (11.31%) -0.03 (-0.04) 3.03 (3.00) 
US Venture Capital 5.60% (5.16%) 14.59% (18.61%) 0.27 (0.42) 3.53 (3.35) 
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Table 6 

Robustness Check – Time-Varying Correlation Matrix 
This table shows the optimal portfolio weights when the variance of covariance is drawn from a Wishart 
distribution ten times. The number on the left is the average portfolio weight for our random sample. The 
number in parentheses is the portfolio weight for the original correlation matrix for the constructed indices for 
the January 1999-December 2009 period and a maximum weight restriction of 20%.  
 

 λ=1 λ=3 λ=6 

S&P 500 0.0 %(0.0%) 0.0 % (0.0%) 2.9% (3.0%) 

MSCI Emerging Markets 20.0% (20.0%) 20.0% (20.0%) 0.0 % (0.0%) 

JPM US Government Bonds 20.0% (20.0%) 20.0% (20.0%) 20.0% (20.0%) 

FTSE EPRA/NAREIT 20.0% (20.0%) 6.9% (6.8%) 10.9% (10.7%) 

S&P GSCI Commodity 16.7% (16.4%) 6.5% (6.3%) 6.2% (6.3%) 

HFRI Fund of Funds 3.3% (3.6%) 20.0% (20.0%) 20.0% (20.0%) 

US Buyout 0.0 % (0.0%) 20.0% (20.0%) 20.0% (20.0%) 

US Venture Capital 20.0% (20.0%) 6.6% (7.0%) 20.0% (20.0%) 

 
 

Table 7 
Robustness Check – Out-of-Sample Analyses 

This table shows the difference in risk-adjusted portfolio performance and expected return of the allocations for 
investor objective function maximization (λ=1, 3, 6) compared to benchmark allocations (determined by the 
Markowitz portfolio selection process where an efficient frontier portfolio with an equal return is selected) for a 
one year holding period. Calculations are based on a standard block bootstrap Monte Carlo simulation with 
1,000 runs following Efron and Tibshirani [1994]. For the out-of-sample analysis, we use the January 1999-June 
2004 period to construct the benchmark portfolio, and July 2004-December 2009 to construct the time series of 
future returns. We calculate a corresponding risk-adjusted performance measure for each risk measure. For the 
standard deviation, we calculate the Sharpe ratio (SR), for LPM 2 with threshold 0, we calculate the Sortino ratio 
(SoR), for VaR with a 95% confidence level, we calculate the return on value-at-risk (RoVaR), for CVaR with a 
95% confidence level, we calculate the return on conditional value-at-risk (RoCVaR), and for MaxDD, we 
calculate the Sterling ratio (StR). All risk-adjusted performance measures are calculated using the same 
arithmetic equation: (portfolio return – risk-free return)/risk measure. For this analysis, the risk-free return is set 
to 3%. Results remain stable when using 0% or the historical risk-free return. *** , ** , and * denote that the 
assumption of an equal risk-adjusted performance measure is rejected at the 1%, 5%, and 10% significance 
levels. Equivalent test statistics for other risk measures are not available. 
 

λ 
Expected 
Return 

Sharpe Ratio SoR RoVaR RoCVaR StR 

1 0.68% 0.095***  0.246 0.220 0.265 0.089 

3 0.56% 0.063***  0.164 0.151 0.194 0.068 

6 -0.08% -0.006 -0.016 -0.015 -0.020 -0.007 
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Figure 1 
Histograms and Fitted Distributions for all Asset Classes 

The figure shows the monthly return histograms of the eight asset classes and the corresponding fitted return 
distribution for each strategy for the period from January 1999 to December 2009. The fitted return distribution 
is composed of two auxiliary distributions – distributions 1 and 2 – that are weighted with factors 0.2 and 0.8, 
respectively.  
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Figure 2 
Optimal Portfolio Weights 

This figure shows the relationship between the risk aversion factor λ  and the corresponding optimal portfolio 
weights for the asset classes with a maximum weight restriction per asset class of 20%. The sample period is 
January 1999-December 2009.  
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