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Abstract

While the theoretical literature strongly argues in favor of ratchets (anti-dilution protections)
and liquidation rights, recent empirical studies documented limits in their use. This paper stud-
ies firms’ financing constraints in a model of staged venture capital financing where new-money
raised and post-money values evolve randomly over time. Our analysis reveals that ventures
fail if new money raised is “too small” or “too large”; in the latter case this is despite posi-
tive pre-money value. We analyze the conditions under which a venture capitalist will accept
modifications of her contract provisions and document quantitatively the relevance of our results.
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1 Introduction

Ratchets (anti-dilution protections) and liquidation rights are common preference rights in US

venture capital contracts, but neither are they used in all US financings, nor are they a popular

feature internationally, see, e.g. Cumming and Johan (2006) and de Bettignies (2008). Despite

this empirical evidence, a large body of the theoretical VC literature studies agency problems

and concludes that preference rights are optimal contracting provisions1. Our paper studies the

feasibility of contracting for an entrepreneur and compares the financing constraints she faces

with ratchets and liquidation rights.

We introduce a model of staged venture capital, where two different venture capitalists (VCs)

provide financing at two subsequent dates. To capture the uncertain prospects of the company

across time, both new money raised and the post-money (venture) value evolve randomly over

time. Liquidation rights give VCs a minimum return (called multiple) on their invested capital;

ratchets protect a VC from dilution when the value of their share decreases from one round to the

next. These preference rights are common to most venture contracts, see Kaplan and Strömberg

(2003)2. Throughout we compare different multiples and study two extreme situations: one

where the VC holds no ratchet and one where she holds a full ratchet. In line with the literature,

see, e.g., Amit et al. (1989), and Admati and Pfleiderer (1994), we assume that VCs invest at

zero net present value and use this to derive their stakes. For pricing we use the real-options

approach, see, e.g. Dixit and Pindyck (1996), Duffie (2001), Trigeorgis (1996).

We prove that, at both dates, either with or without ratchet, a VC can contract only within

some interval for new money raised in relation to current post-money value. When the liquidation

multiple is larger than the bond return, we show that “small” financings are not be feasible with a

multiple; the reason for the failure is that the multiple then pays “too much,” i.e. the multiple is

“too large”. Furthermore we prove that, if the financing gets “too large,” contracting also fails.

1References include, among others, Gompers (1995), Bergemann and Hege (1998), Cornelli and Yosha (2003),
and Schmidt (2003).

2Sahlman (1990) describes in detail preference rights as control mechanism in Venture Capital: cash-flow
rights, staging of capital and syndication. Our focus is on the allocation of risk and return; in addition to the
cash-flow rights that we study, dividend preferences are common. However, dividend preferences play a role
similar to liquidation preferences; therefore, for simplicity, we only study liquidation preferences.
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Clearly, new money raised cannot be larger than the post-money value; however our analysis

shows that financing also fails when it is strictly smaller than post-money value. This destruction

of positive pre-money value seems counterintuitive, but in staged financings the multiple of either

venture capitalist (VC) impacts the other VC in such a way that she cannot recover her invested

money if the amount is “too large.” Furthermore, we characterize the situations under which

the ratchet applies and when it has to be waived. Finally we discuss the interplay between

excessive multiple, dilution, ratchet waiver and venture liquidation despite positive pre-money

value. We document, among others, when second round post-money value is small compared to

the post-money value in the previous round, there is no way to evade liquidation. Also, while

multiples are a financing constraint for small financings, for intermediate sizes of financings they

help to evade share price dilution and the need to waive ratchets.

One may counter that this failure and the financing constraints they impose are qualitative

observations that are quantitatively not relevant. To address this, we illustrate our results in

numerical examples using parameters taken from the empirical literature. We then document

that the intervals within which VCs contract are fairly small: The company will be liquidated

despite positive pre-money value if the new money raised is at roughly 2/3 of post-money value,

i.e. if new money is more than twice pre-money value. With a multiple of 3 the minimum

financing amount is at 20% of post-money value. We also find up to 90% probability that the

company is either liquidated or the multiple reduced, and about 40% conditional probability that

the ratchet will be waived when the share price decreases. Finally, we see that the liquidation

multiple affects the company stake considerably, but that the ratchet makes no big difference for

the first VC.

Our paper is related to the literature that looks at the use of preference rights in VC. While

a large body of the literature focused on US venture capital, recent empirical evidence added an

international perspective: Lerner and Schoar (2005), Cumming (2005), Kaplan et al. (2007), and

Cumming (2008) all found that outside the US preferred equity with ratchets and liquidation

rights is not the predominant form of venture capital financing. Addition to this, Gilson and

Schizer (2003) have forcefully argued that tax rationales explain the prevalent use of preference
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rights in US. Despite this, the theoretical literature is dominated by the view that ratchets and

liquidation rights are optimal contracting provisions between the entrepreneur and VCs: they

come to this conclusion in analysis of the principal agent relationship between entrepreneur and

VC (Amit et al. (1989), Admati and Pfleiderer (1994), Gompers (1995), Bergemann and Hege

(1998), and Schmidt (2003)), of the double moral hazard problem when VC and entrepreneur

to provide effort (Hellmann (2006)), and in analysis of window-dressing by the entrepreneur

(Cornelli and Yosha (2003)).

To our knowledge, financings constraints that stem from these rights have not been studied

so far3. The advantages of cash-flow rights as incentivization devices have been studied and

stressed extensively in the literature so far; however, our paper points out that these preference

rights impose severe financing constraints on the venture. First of all, we show that ventures may

fail despite positive pre-money value. This matches the concern often voiced that ventures fail

despite promising business prospects. While Boyle and Guthrie (2003) attribute this failure to

informational asymmetries, we relate it to financing constraints. Venture capital is an important

source of financing for entrepreneurs; indirectly, our paper thereby also relates to the literature

on the availability of financing for new businesses, see Kerr and Nanda (2009). Second, our

paper shows that new financings need to involve considerable amounts of money relative to

post-money value; this restricts the amount of money to be raised. While it is often said that

small amounts of money are too costly to be raised from VCs we point out, that this is due to

the liquidation preferences in venture capital contracts and not necessarily a feature of venture

financings itself. Finally, we stress the importance of adjusting contract provisions, i.e. waiving

ratchets or reducing multiples.

The remainder is organized as follows: the next section presents our three-date setup. Section

3 looks at date 2 events, including the decision problem of a new VC coming in and the effect

of any ratchet on contracting; section 4 then looks at the date 1 decision problem of the initial

VC. Section 5 concludes the paper. All proofs are postponed to the appendix.

3Our paper is related to the valuation of ratchets and liquidation rights, but this problem has been ignored in
the literature with the exception of the continuous-time analysis of Cossin et al. (2002).
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2 Model

Detailed overviews of the VC Market are available, e.g., in Fenn et al. (1995), Gompers and

Lerner (1999), Sahlman et al. (1999) and Metrick (2007). Ratchets and liquidation preferences

are discussed in detail, e.g., in chapter 9 of Metrick (2007) and in chapter 13 of Bagley and Dauchy

(2002). This section introduces our model of VC financings over two rounds with ratchets and

liquidation rights.

2.1 Events

A new venture typically requires many financing rounds, but for simplicity we assume that there

are exactly two. We look at a new venture company that has been founded by an entrepreneur

at date 0; the founder holds all its equity until date 1. At dates 1 and 2 the venture requires

new financing from a VC; at the final date 3 the company is liquidated either through a sale, an

IPO or a liquidation of assets. To keep notation simple, we assume that in each financing round

exactly one VC enters and that the VC in the second round is different from the VC of the first

round.

At date 1 the entrepreneur raises capital in the amount N1 > 0 from the first VC by issuing

new shares to the VC; we denote the stake4 of the entrepreneur (first VC) after the financing

by α0 (α1). At date 2 the company requires additional financing in the amount N2 > 0. If

the second VC provides financing, we denote α2 the company stake she contracts; the company

stakes of the entrepreneur (VC) will be adjusted to αa
0 (αa

1).

We derive a notion of fair contracting from fair pricing: at date 2, conditional on P2, N2, we

first determine the value V2(α2) as a function of the second VC’s stake α2; we then choose α2

as the one for which the investment is priced fairly, i.e. V2(α2) = N2. Similarly, we determine

the date 1 value V1(α1) of the first VC’s ownership; fair contracting means that we look for α1

with N1 = V1(α1). Note that the date 1 value function will have to take account of the date 2

dilution in ownership, any ratchets and any liquidation preference of the second VC.

4Throughout this paper we do not study the numbers of shares that a party holds, because only relative share
holdings matter. We focus instead on the fraction of a company a party holds, the so-called company stake.
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Figure 1: The timeline of events.

If a VC requires a stake larger than 100%, the financing fails and the company will be

liquidated. If the ownership required is negative, we assume that contract specifications will be

adjusted by the VC. If the company has not been liquidated before date 3, it will be liquidated

at this date and all remaining values paid out to the parties according to their liquidation

preferences. Figure 1 depicts the timeline of events.

2.2 Preference Rights

Liquidation preferences are expressed as a multiple of invested money with a typical multiple of

1, 2 or 3, see, e.g., the quarterly Fenwick and West (2010) market surveys. We denote M1 ≥ 1

and M2 ≥ 1 the multiples of the first and second VC, respectively. For simplicity of exposition we

only look at participating liquidation preferences, i.e. after holders of preferred stock receive their

full liquidation preference, they then also share with the other shareholders (in particular with

the entrepreneur holding common stock) in the remaining amounts. Furthermore, we assume

that the second VC gets senior liquidation preference over the first VC, i.e. she receives her

liquidation preference before the other VC. Finally we assume, unless stated otherwise, that the

first and the second VC contract the same multiple M1 = M2 = M ≥ 1. (In some situations the

second VC will reduce M2; this will be discussed later.)

Ratchets (partially) protect a VC against value losses in financing rounds when the price per

share decreases, a so-called down-round; the so-called full ratchet is an extreme case. The idea

is to grant old VCs a sufficient number of new shares so that their cost per share equals that of
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the new VC coming in5. (When there is not a down-round the anti-dilution protection does not

impact old VCs’ share holdings.) In our three date model, there is no financing after the second

VC gets in and so it makes only sense that the first VC holds a ratchet; it applies only when the

price per share decreases between dates 1 and 2.

To analyze the ratchet we need to study the number of shares issued and, only for this

purpose, we assume throughout the remainder of this subsection that the entrepreneur holds one

share (before date 1 and thereafter); this assumption will neither affect the relative share price

changes over time, nor any party’s stakes. We denote S1 and S2 the number of shares the first

and second VC contract at date 1, respectively. (Note that α1 = S1/(1 + S1) gives the stake the

first VC contracts at date 1.) Share prices are based on new money raised and new shares issued

in any financing round, i.e. they are p1 = N1/S1 and p2 = N2/S2.

Let us look at date 2 and assume that the post-money value is P2 and new money raised is N2.

The fair contracting stake for the second VC from date 2 forward fulfills α2 = S2/(1 + S1 + S2)

under the assumption that the ratchet will not take effect. This translates into

S2 =
(1 + S1)α2

1− α2

and p2 = N2/S2. (1)

When this share price is not lower than the date 1 share price (p2 ≥ p1), the second VC will

know that the ratchet does not take effect and accept S2 shares in exchange for N2. Because

the second VC wants to contract α2, the first VC’s stake will be reduced by issuing new shares.

The stake was α1 between dates 1 and 2; after the financing, the first VC’s stake is α1 of the

“remaining” company, i.e.

αa
1 = α1(1− α2). (2)

If the share price p2 is lower than p1, and the first VC holds a full ratchet, then the ratchet

applies. She receives as many additional shares that she holds Sa
1 in total afterwards6, where

5There are other ways to adjust the number of shares, including the so-called weighted-average ratchet. In this
paper we only study the two extremes, either that the second VC has no ratchet or that shes has a full ratchet.

6In practice a conversion ratio is introduced that determines the ratio by which preferred shares convert into
common shares. This ratio is adjusted by the anti-dilution protection. However, to simplify our presentation
throughout this paper we think of all shares on a so-called “fully converted basis,”such that the effect of the
anti-dilution protection is to issue additional shares to old VCs. Note that the liquidation preference of a VC is
based on the total capital invested and will not be affected by adjustments in the number of shares.
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this new number of shares of the first VC is set in such a way that the (fictitious) date 1 price

of her shares N1/S
a
1 equals p2, i.e. Sa

1 = N1/p2 = p1/p2S1. However, there is a “second round

effect” to this: the second VC will anticipate that the first VC will hold more shares and that

her company stake reduced below α2 if she contracts S2 shares. To counter this from the start,

she will ask for as many shares Sa
2 such that, taking account of the ratchet, she holds exactly

the company share α2 afterwards, i.e.

α2 =
Sa
2

1 + Sa
1 + Sa

2

.

Then the first VC will hold the stake

αa
1 =

Sa
1

1 + Sa
1 + Sa

2

=
Sa
1

Sa
2

α2 =
N1

N2

α2. (3)

2.3 Values

We denote the (physical) time between dates 1 and 3 by T ; for simplicity of exposition we assume

that the second financing date 2 is halfway between the first financing date 1 and the final date 3,

i.e. at (physical) time T/2 from each. Over time, the so-called post-money value of the company

and the new money raised are bivariate lognormal distributed7, i.e. for dates i = 1, 2:

Pi+1 = Pi exp

{(
μP − σ2

P

2

)
T

2
+ σP

√
T

2
ZP

i

}
, (4)

Ni+1 = Ni exp

{(
μN − σ2

N

2

)
T

2
+ σN

√
T

2
ZN

i

}
. (5)

Each of the pairs (ZP
1 , Z

N
1 ) and (ZP

2 , Z
N
2 ) are bivariate standard normal random variables; we

assume the correlation of ZP
i and ZN

i is constant over time and denote it by κPN . Note that

the so-called post-money value in venture capital financings includes new money raised in a new

financing round. To simplify exposition, for the remainder of this paper we think of all values as

fractions of date 1 post-money value and set P1 = 1.

7Cochrane (2005) reports that the distribution of post-money values is close to a lognormal. To our knowledge
the distribution of post-money values and new money raised has not been analyzed, yet. Our choice is made for
convenience.
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At any date, when the company is liquidated, the liquidation value will be distributed to

all shareholders according to their cash flow (liquidation preference) rights. (The entrepreneur

receives the entire date 1 liquidation value; we will neither model nor discuss it, because we are

interested in the impact of the VC’s contracting terms on the feasibility of financing.) We assume

that the date 2 liquidation value L(P2, N2) is a (typically fairly small) fraction λ of the date 1

post-money value P1, i.e. L(P2, N2) = λP1. The idea is that, in case of liquidation, investors

will recover some fraction of the initial value. At date 3 we assume that the liquidation value is

given by the date 3 post-money value P3.

Both value functions V1, V2 require the valuation of future contingent payoffs. For this we use

the risk-neutral (real options) approach, i.e. we denote the constant (continuously-compounded)

interest rate by r and redefine the instantaneous mean of P and N to be equal to the risk-free

bond return for the time-horizon of interest8, μP = μN = r. At date 2 we can simplify our

calculations: Because the distribution of post-money values is (conditional) lognormal, the value

of date 2 call options on (terminal, date 3) post-money values is given by the well-known Black-

Scholes formula BS(r, σP , P2, K, T/2); here P2 denotes the (conditional) date 2 post-money value

and K the strike price of the option. The parameters r, σP , T/2 refer to the interest rate, the

volatility of post-money values and the physical time between the valuation date and maturity of

the option. They are fixed; therefore we write BS(P2, K) for simplicity throughout this paper.

3 The Investment Problem for the Second VC

This section studies how the second VC contracts at date 2. She observes the post-money value

P2 and is asked to provide financing in the amount N2; throughout this section, our analysis is

conditional on these values, but to keep notation simple we usually drop dependence.

If the second VC refuses financing at date 2, the company is liquidated and all assets dis-

tributed according to the liquidation preference of the first VC. The resulting payouts to the

entrepreneur and the first VC will be studied later in subsection 4.1 when we look at the date 1

investment problem of the first VC. If the second VC provides financing, the company stakes of

8For a detailed discussion we refer the interested reader to Dixit and Pindyck (1996), and Trigeorgis (1996).
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Figure 2: The date 3 payoff profiles.

the entrepreneur and the first VC will be adjusted to αa
0, α

a
1.

3.1 The Second VC’s Stake

If the second VC invests she has seniority over the first VC at date 3, i.e. she will be paid before

any other party until she received a multiple M2N2 of her date 2 investment N2. (The value to

be paid out is the date 3 liquidation value P3.) After the second VC has received her multiple,

the first VC will be next in line and be paid up to a multiple M1N1 of her date 1 investment N1.

Finally, after the two VCs received their multiples, any remainder is distributed pro-rata among

the two VCs and the entrepreneur. Figure 2 depicts the payout profiles as a function of date 3

post-money value.

The payout of the second VC can be interpreted as a portfolio of call options (with maturity

at date 3) and the (so-called) “underlying security,” her the date 3 venture value: one unit in

the venture, −1 unit in the call option with strike M2N2 and α2(P2, N2) units in the call option

with strike M1N1 +M2N2. Then the value V2 of the second VC’s claim can be calculated and

expressed using the Black-Scholes formula:

V2(α2) = P2 −BS(P2,MN2) + α2 ·BS(P2,M1N1 +M2N2).

Fair contracting requires that the value of the second VC’s stake of the company equals N2;
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Figure 3: The shape of the second VC’s stake as a function of N2.

it gives us her stake:

α2(P2, N2) =
N2 − P2 +BS(P2,M2N2)

BS(P2,M1N1 +M2N2)
. (6)

Proposition 1 For given P2 > 0 we study the second VC’s stake as a function of 0 ≤ N2 ≤ P2.

The function is 0 at N2 = 0. If M2 is smaller than or equal to exp(rT/2), then the function

increases monotonically on the interval 0 to P2. If M2 is larger than exp(rT/2), then the interval

0 to P2 splits into two intervals and the function decreases (increases) monotonically for smaller

(larger) values of N2. For all multiples M2 ≥ 1, the stake α2 gets larger than 100% for some N2

strictly smaller than P2.

Note that zero financings are not economically meaningful; here we study them only as

limiting cases. Proposition 1 implies that for M2 ≤ exp(rT/2) the stake α2 is always positive

while for M2 > exp(rT/2) it gets negative initially. For given post-money value P2 figure 3

illustrates the shape of α2 as a function of 0 ≤ N2 ≤ P2 for both cases M2 > exp(rT/2) (dashed
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line) and M2 ≤ exp(rT/2) (solid line). (The different cutoffs and intervals will be introduced in

the next subsection.) For later reference we note that proposition 1 directly implies:

Proposition 2 Assume P2 > 0. For a multiple M2 ≥ exp(rT/2) there exists a single value

N̄m
2 > 0, called the multiple cutoff, such that the stake α2 is strictly for 0 < N2 < N̄m

2 and

positive for N2 ≥ N̄m
2 . For a multiple M2 ≥ 1 there exists a single value N̄ l

2 < P2, called the

liquidation cutoff, such that the function is larger than 100% for all N2 > N̄ l
2.

Although we do not make this explicit, note that cutoffs depend on date 2 post-money value P2

and multiple M2. For M2 > exp(rT/2) and given date 2 post-money value P2, figure 3 illustrates

both cutoffs: If new money N2 is below the multiple cutoff N̄m
2 , stakes α2 are negative; the

liquidation cutoff N̄ l
2 is smaller than the post-money value P2 and for asset values in between

the stake is larger than 100%. Note that when M2 is smaller than or equal to exp(rT/2) the

function is always positive and so there is only a liquidation but no multiple reduction cutoff.

The next subsection analyzes separately stakes α2 that are negative and those larger than 1.

3.2 Destructive Liquidation and Multiple Reduction

When new money N2 is larger than the post-money value P2 (which includes the new money), the

pre-money value is negative; no investor will provide financing and the company be liquidated.

Therefore, proposition 1 looks only at new financings that do not exceed P2. It states that the

company will be liquidated for all financings between the liquidation cutoff and the post-money

value: for these the company stake α2 is larger than 100% even when N2 is less than P2, i.e.

even if pre-money value P2 −N2 is strictly positive. This destroys the positive pre-money value

and therefore we refer to this as destructive liquidation.

At first, destructive liquidation may seem counterintuitive. To see it makes sense, let us look

at figure 2 and assume that N2 is close to P2. We know that the date 3 venture liquidation payoff

profile is linear with slope 1, intercept 0 and that this payoff profile has value P2. However, the

payoff profile for the second agent initially has slope 1 and intercept 0, but from M2N2 onwards

it remains flat and only picks up with the participation. For fair contracting, the payout profile
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of the second agent needs to have a value equal to N2. Therefore, the participation needs to have

slope larger than 100% to make up for the flat payout profile between M2N2 and M2N2+M1N1.

The underlying economic reason for destructive liquidation is therefore the preferential treat-

ment that the previous VC receives through her multiple: before any other party, in particular

before the entrepreneur, she receives (a multiple of) her invested money. Here, the payout profile

for the second VC is flat between M2N2 and M1N1 + M2N2, and so she needs to recover the

remainder from her participation, asking for more than 100% company stake. We want to stress

that seniority of the second VC is not the source of destructive liquidation: if the first VC would

have seniority over the second, the payoff profile would also be flat over some interval.

Figure 3 illustrates the destructive liquidation cutoff for multiples M2 > exp(rT/2): for

smaller (larger) financings the stake α2 is smaller (larger) than 100%. (The cutoff depends on

the multiple; we do not depict it for multiple M2 ≤ exp(rT/2).)

Proposition 3 Assume P2 > 0. We have ∂α2

∂M2
< 0 for 0 < N2 ≤ N̄ l

2 and
∂N̄ l

2

∂M2
> 0.

Proposition 3 states that outside destructive liquidation the stake α2 decreases as we increase

the multiple M2. Figure 3 illustrates that below the horizontal 100% line the solid line for

multiples M2 ≤ exp(rT/2) is always above the dashed line for multiples M2 > exp(rT/2), i.e.

that the liquidation cutoff increases with the multiple M2. In consequence, proposition 3 states

also that the first derivative of destructive liquidation cutoff w.r.t. the multiple is positive.

If a new financing is so large that destructive liquidation is inevitable, a larger multiple moves

the liquidation cutoff to the right (proposition 3). However, the liquidation cutoff is always below

the post-money value (proposition 2) and it remains unclear if this can always remedy liquidation.

We do not pursue this avenue further here.

So far we studied in this subsection stakes larger than 100% and discussed destructive liqui-

dation. Next we want to study negative stakes α2. The economic reason for this is the following:

When N2 is “small” compared to P2, it is likely that the date 3 value P3 is large enough to

pay the multiple M2N2 in full and on top the participation α2 ·max{(P3 − (M1N1 +M2N2)), 0}.
Intuitively, the multiple ensures a return that is too large when new money raised is small. To
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price the value of the second VC’s claim fairly at value N2, the participation needs to reduce her

payout, i.e. α2 must be negative. Proposition 1 states that this situation comes up whenever

M2 > exp(rT/2).

When new money raised is then less than the cutoff value, the second VC requires a negative

stake α2 and the financing fails. Based on proposition 1 we know that negative stakes do not

show up when M2 = 1. To remedy the situation so that the second VC can invest and the

company is not liquidated, we assume the second VC then reduces her multiple to M2 = 1.

Therefore we refer to this situation as multiple reduction.

Proposition 4 If M2 < exp(rT/2), there exists γ̄ > 0 such that for all 0 < γ < γ̄ exists P̄2(γ)

with the property that for all 0 < P2 < P̄2(γ): α2(P2, γP2) > 1.

If M2 > exp(rT/2), there exists γ̄ > 0 such that for all 0 < γ < γ̄ exists P̄2(γ) with the

property that for all 0 < P2 < P̄2(γ): α2(P2, γP2) < 0.

Note that γ̄ and P̄2 depend on N1,M1,M2, but we do not make this dependence explicit to

simplify our presentation. Previously our analysis fixed post-money value P2 and varied new

money raised between 0 and P2. Here we take a different look: we vary P2 and study N2 = γP2

for all γ and P2 below suitably chosen values γ̄ and P̄2. This proposition permits us to get further

insights into destructive liquidation and multiple reduction for “small” date 2 post-money values

P2 in relation to the date 1 post-money value P1 = 1.

For M2 < exp(rT/2) and all sufficiently small γ, proposition 4 (together with propositions

1, 2) states that for P2 → 0 destructive liquidation occurs for N2/P2 ≥ γ, i.e. destructive

liquidation makes up an increasing fraction of the interval 0 to P2. It also means that the cutoff

0 ≤ N̄ l
2 ≤ γP2; therefore N̄

l
2/P2 → 0. Recall that we set P1 = 1; therefore P2 → 0 means that date

2 post-money value in relation to date 1 post-money value P1 tends to 0. Our interpretation of the

previous result is therefore that, it gets harder to evade destructive liquidation, if the venture’s

date 2 post-money value P2 gets smaller in comparison to the previous date 1 post-money value

P1 = 1.

Similarly, for M2 > exp(rT/2), proposition 4 implies that N̄m
2 /P2 → 0 as P2 → 0. This

means that as the date 2 post-money value P2 (in relation to date 1 post-money value P1) gets
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smaller it gets harder to evade negative stakes α2. This proposition will play a role below when

we look at negative stakes and in particular in subsection 3.4 when we study combinations of

post-money value and new money.

Proposition 4 points to an interesting interplay of multiple reduction with destructive liqui-

dation. When M2 > exp(rT/2) the proposition states that for sufficiently small P2 (in relation

to date 1 post-money value P1 = 1) multiple reduction leads to liquidation: if both γ and P2

are sufficiently small then reducing the multiple M2 to one, the stake α2 gets larger than 100%

and consequently the company will be liquidated. (Put loosely, this situation comes up when

N2 < P2 and both values are close to 0.) In this situation there is no way to chose a multiple that

permits financing and the company has to be liquidated. We will illustrate this in subsection

3.4.

3.3 Share Price Dilution

When the date 2 share price is lower than the date 1 share price we have a so-called down round,

see our discussion in subsection 2.2. This subsection discusses what amounts of new money

raised lead to dilution and ratchet waivers.

Proposition 5 Assume a fixed P2 > 0. If the share price is diluted for some N2 with 0 <

α2(P2, N2) < 1, then there exists a cutoff N̄d
2 such that the share price is diluted for all N̄d

2 <

N2 < N̄ l
2 but not diluted for 0 < N2 < N̄d

2 . The cutoff N̄d
2 increases with increasing M2.

This proposition tells us, when the share price is diluted for some N2, it will also be for all

larger financings. To characterize it in further analysis, we use the cutoff N̄d
2 . A consequence of

the proposition is also that there can be a down-round only for sufficiently large N2. Because

the dilution cutoff increases, there are intermediate sizes of financings, where a smaller multiple

would lead to share price dilution but larger multiples evade dilution.

We described in subsection 2.2 the company stake αa
1 the first VC holds after the second

VC provided money. With ratchet, when the required total company stake αa
1 + α2 of both

VCs together is larger than 100%, contracting is impossible. To remedy the situation we then
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assume that the first VC waives his ratchet; otherwise the second VC would not invest and the

company would have to be liquidated. Without ratchet, the company will be financed unless

destructive liquidation and/or multiple reduction make it impossible, see our earlier discussion.

The following provides further insights when the ratchet will be waived:

Proposition 6 Assume a fixed P2 > 0. If the share price is diluted and the ratchet waived for

some N2 with 0 < α2(P2, N2) < 1, then there exists a cutoff N̄w
2 such that the share price price

is diluted and the ratchet waived for all N̄w
2 < N2 < N̄ l

2, but not waived despite dilution for all

N̄d
2 < N2 ≤ N̄w

2 . The cutoff N̄w
2 decreases with increasing M2.

This proposition tells us that the dilution interval N̄d
2 ≤ N2 < N̄ l

2 that we noted in proposition

5 is subdivided into two intervals, one where the ratchet is waived and one where it is not.

Furthermore, it tells us that the ratchet is waived only for sufficiently large new financings.

Finally note that proposition 5 tells us that the dilution cutoff increases with increasing multiple,

while proposition 6 tells us that the ratchet waiver cutoff decreases. We conclude that increasing

the multiple, the interval where the ratchet is waived takes up an ever larger portion of the

dilution interval, because N̄d
2 < N̄w

2 < N̄ l
2. We will illustrate and discuss this further in the next

subsection.

3.4 Interplay of Destructive Liquidation, Multiple Reduction, Dilu-
tion and Ratchet Waived

Our analysis of the previous subsections showed that, at date 2, four special events can happen:

the multiple of the second agent may be reduced, the company may be liquidated, the share price

may decrease such that the ratchet would apply (price “dilution”) and the first VC may waive

her ratchet if applicable. This subsection discusses how these four events interplay; for this we

study combinations of post-money value P2 and new money raised N . Our analysis looks first

at the situation where the second VC’s multiple M2 < exp(rT/2), i.e. when the multiple never

has to be reduced; we then study in a second step how the insights carry over to the situation

where the multiple may have to be reduced, i.e. when M2 > exp(rT/2).
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Figure 4: Date 2 combinations of post-money value and new money in which the company is
liquidated, the multiple reduced, the share price decreased (“dilution”) and the ratchet waived;
multiple M2 < exp(rT/2).

When the multiple M2 < exp(rT/2), it never has to be reduced; so only three events can hap-

pen: the company may be liquidated, the share price may decrease such that the ratchet would

apply (price “dilution”) and the first VC may waive her ratchet if applicable. For combinations

of post-money value P2 and new money raised N2 figure 4 shows the different areas where these

events interplay. For completeness we show there the area above the 45 degree line where we

have N2 > P2, i.e. negative pre-money and the company will be liquidated. However, this area

has not been and will not be the object of our study: Below the 45 degree line pre-money is

positive and this is the area we are interested in.

With the exception of proposition 4 we always looked at fixed post-money value P2 and
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varied N2; graphically within figure 4, this means that we previously looked at vertical lines for

every possible date 2 post-money value P2. All the cutoffs that we introduced before appear

as points on these vertical lines. Varying P2, the cutoffs define the areas that we see in figure

4: on any vertical line we see that directly below the 45 degree line is destructive liquidation,

where the company is liquidated despite positive pre-money (proposition 2); propositions 5 and

6 state that area with dilution but ratchet waiver is directly below the destructive liquidation

and above an area with dilution but without ratchet waiver; below all other areas is where we

contract α2 without share price dilution. Further analysis in proposition 4 looks at tilted lines

through the lower left corner of figure 4, i.e. it looked at lines with intercept 0 but different slopes

γ; this analysis shows that the line separating the destructive liquidation region approximates

the P2 axis smoothly, as depicted. (This will be relevant when we look at the interplay of our

four different contracting events with a multiple M2 > exp(rT/2).) Overall, figure 4 illustrates

the location of the three different special events (destructive liquidation, dilution with/without

waiver).

Finally, we study the situation when the second VC’s multiple M2 > exp(rT/2). We know

from propositions 1 and 2 that for any given post-money value P2, there is a multiple cutoff and

we need to reduce the multiple for smaller financings. The dotted area in figure 5 refers to those

combinations of post-money value and new money where the multiple must be reduced; here we

reduce it to one and inside the dotted area we are back to figure 4. Inside, the events are ordered

exactly as there: we see an area where the share price decreases (“dilution”) which is further

subdivided into one where the ratchet has to be waived by the first VC to permit contracting.

There is also the region of figure 4 where the company needs to be liquidated, according to

proposition 4 and our discussion thereafter.

Outside the dotted area but below the 45 degree line the mutiple is larger than inside the

dotted area. There, the areas are ordered in the same way as in figure 4, in general. However,

the lines that separate destructive liquidation, dilution and ratchet waiver do not have smooth

continuations between the dotted and the non-dotted area. The origin of this is that for any

P2 value, we know from propositions 3, 5 and 6 that the liquidation and dilution cutoffs show
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Figure 5: Date 2 combinations of post-money value and new money in which company is liq-
uidated, the multiple reduced, the share price decreased (“dilution”) and the ratchet waived;
multiple M2 > exp(rT/2).

up at higher N2 values as the multiple increases, i.e. in comparison to figure 4 they all move

upward as far as they are outside the dotted area. (Put differently: if new money raised N2

is “too small” compared to post-money value to support a given multiple M2 > exp(rT/2), we

need to reduce it but then destructive liquidation, dilution and ratchet waived will all apply at

much lower values N2.)

In the lower left part we depict an odd situation which we pointed out after proposition 5: if

the size of date 2 post-money value P2 in relation to date 1 post-money value P1 is “small,” then

there is no financing at all. If the multiple M2 > exp(rT/2) then the company will be either
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liquidated because of destructive liquidation with the given multiple, or the multiple will have

to reduced and then there is destructive liquidation. (This follows from proposition 4: the line

separating the multiple reduction area approximates the destructive liquidation line smoothly, as

depicted. We noted earlier with multipleM2 < exp(rT/2) that the line separating the destructive

liquidation region approximates the P2 axis smoothly, also as depicted.)

If the size of post-money value P2 is intermediate, the following interesting interplay between

our four events arises as we vary the amount of new financing N1 from zero to P2. Near zero,

the multiple needs to be reduced; as we increase it we encounter dilution without ratchet waiver,

then dilution with ratchet waiver; once N2 is sufficiently large that the multiple does not have

to be reduced any more, the second VC contracts as is ; however, as we further increase N2 we

encounter again dilution, first without ratchet waiver and then with waiver; ultimately we run

into destructive liquidation.

4 The Investment Problem for the First VC

At date 1, the first VC will contract the company stake α1 for her investment N1, to be held

between dates 1 and 2. She needs to take account of the optimal date 2 actions of the second

VC, i.e. either the company will be liquidated or her fractional ownership will be adjusted to

αa
1 at date 2. We look separately at the case where the first VC has no ratchet (anti-dilution

protection) and the case where she holds the so-called full ratchet.

4.1 Date 2 Values of the First VC’s Claims

If the second VC refuses financing at date 2, the company is liquidated and the liquidation

value L(P2, N2) = λP1 distributed among the entrepreneur and the first VC according to the

liquidation preference. The first VC will then receive a multiple M1 of her initial investment N1,

i.e. before anything goes to the entrepreneur, the first VC receives all distributions until she has

received M1N1; any remaining values are distributed pro-rata according to their company stakes

α0, α1 that have been contracted at date 0. Figure 6 plots the resulting payoff profile. In our

later analysis, the first VC’s payout plays an important role; for later reference we denote her
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date 2 liquidation payout by LVC(P2, N2) .

If the company is not liquidated at date 2, the second VC invests N2 in exchange for a stake

α2 in the company according to equation (6). (The multiple will be M2 = M1, but may be

reduced to M2 = 1, see our earlier discussion in subsection 3.1.) The stake αa
1 that the first VC

holds between dates 2 and 3 is then given by equations (2, 3) depending on whether the ratchet

applies or not. The date 2 claim of the first VC is then a portfolio of calls, see figure 2, with

value

BS(P2,M2N2) + (αa
1 − 1) ·BS(P2,M1N1 +M2N2).

4.2 The First VC’s Date 1 Stake Without Ratchet

This subsection assumes the first VC does not hold a ratchet (anti-dilution protection). According

to equation (2), the first VC’s stake αa
1 between dates 2 and 3 will be the fraction α1 of the

remainder of the second VC’s stake, i.e. αa
1 = α1(1 − α2). She anticipates this reduction when

setting her date 1 stake in the venture; we will now analyze how she contracts.

Further analysis in this subsection needs to distinguish the events when the second VC does

and when she does not provide financing; for this we introduce two indicator variables on mutually

exclusive events: Ifin (Iliq) takes the value 1 (0) when the company is financed, and 0 (1) otherwise,
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i.e. when it is liquidated. Based on our analysis in the previous subsection the date 1 value of

the first VC’s investment as a function of the stake α1 is:

V1(α1) = e−r T
2 E

[
LVC(P2, N2)Iliq

]
+ e−r T

2 E
[
BS(P2,M2N2)Ifin

]
+e−r T

2 E
[(
α1(1− α2)− 1

) ·BS(P2,M1N1 +M2N2)Ifin

]
.

For fair contracting we require N1 = V1(α1), which gives

α1 =
N1 − e−r T

2 E
[
LVC(P2, N2)Iliq +

{
BS(P2,M2N2)−BS(P2,M1N1 +M2N2)

}
Ifin

]
e−r T

2 E
[
(1− α2)BS(P2,M1N1 +M2N2)Ifin

] . (7)

Here the discounted expectation in the numerator is the date 1 value of the payouts to the first

VC without the date 3 participation: the term LVC(P2, N2) describes the payoff for the first VC

if it is liquidated at date 2; when the company is financed (not liquidated), {BS(P2,M2N2) −
BS(P2,M1N1 +M2N2)} describes the date 2 value of the second VC’s multiple taking account

of the first VC’s seniority. This discounted expectation is then subtracted from the initial in-

vestment. Therefore, the numerator captures what value the first VC needs to recover from the

participation. The denominator describes what value would be available from the participation

after the two VCs received their multiples. Overall, the ratio of numerator to denominator

determines her stake in the company.

Proposition 7 For given P1 > 0 we study the first VC’s stake α1 as a function of 0 ≤ N1 ≤
P1 = 1. The function is 0 at N1 = 0. If M1 is smaller than exp(rT/2)

Prob[financing]
, then the function is

always positive. If M1 is larger than that, there exists a value N̄m
1 > 0, called multiple cutoff,

such that the stake α1 is negative for 0 < N1 < N̄m
1 and positive for all N1 > N̄m

1 . For all

multiples M1 ≥ 1 there exists a value N̄ l
1 < P1, called liquidation cutoff, such that the first VC’s

stake is larger than 100% for all N1 > N̄ l
1.

As before, we study zero financings only as limiting cases. Note that the multiple and

liquidation cutoffs depend on M1. Proposition 7 gives date 1 results for the first VC that are

similar to those about the date 2 multiple and liquidation cutoffs in propositions 1 and 2 for

the second VC; the difference is that before the shape depended on the distinction of multiples
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Figure 7: The first VC’s company stake as a function of N1.

being larger/smaller than exp(rT/2) while here it depends on the distinction of multiples being

larger/smaller than the ratio of exp(rT/2) to the probability of date 2 financing, Prob[financing].

Figure 7 illustrates the shape of α1 as stated in proposition 7; qualitatively it is similar to figure

3.

We recall the date 2 problem with the multiple: it gave a very good chance for a payment

M2N2 in exchange for an investment of N2; the negative company stake was necessary to ensure

a fair contract. Here something similar happens. For illustration, we focus on the situation

where N1 = N2 close to zero as well as P1 = P2 = P3, and ignore any distribution. Then, if N1

is small (close to 0), N2 will also be small, the multiple will pay in full and contribute M1N1 to

the value of the first VC’s stake; to price this fairly at N1 the value needs to be decreased using

the participation; hence the stake should be negative if M1 > 1. As before at date 2 the remedy

to this is to reduce the multiple.

In addition, proposition 7 the company will be liquidated when new money raised gets too

large despite positive pre-money value (destructive liquidation). To provide intuition for this, we

focus on the situation where N1, P2 and P3 are close to P1. Then, at date 2, if the company is

liquidated, the liquidation value λP1 is small compared to N1 and will pay only a small amount;
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if the company is financed (not liquidated) at date 2, then the senior liquidation preference

attributes any remaining value P3 to the second VC’s multiple M2N2 and virtually nothing to

the first VC. Taking account of the distribution of values, we note that, on top, the first VC

still has a (small) chance of a payout from participation; a large payout from the participation

is then needed so that the date 1 value equals the invested money N1, i.e. α1 needs to get large.

Our results imply that the VC does not have the freedom to invest any amount of new money

N1. If N1 is too small and M too large, then α1 is less than than 0%; but in this situation a

smaller multiple (M = 1) will always work. If N1 is large, but still smaller than P1 we may not

be able to contract at all; this is surprising as there is a positive pre-money value P1 − N1, i.e.

after subtracting new money coming in there is a positive value to the company but it will still

be liquidated, because the first VC has no chance of recovering her initial investment.

4.3 The First VC’s Date 1 Stake With Full Ratchet

This subsection assumes the first VC holds a full ratchet (anti-dilution protection). When the

ratchet does not apply or is waived, her stake is adjusted to αa
1 = α1(1 − α2) as in the case

without ratchet; otherwise it is adjusted to αa
1 = N1/N2α2, see equation (3) of subsection 2.2.

The first VC anticipates this when setting her date 1 stake in the venture; we will now analyze

how she contracts.

In the previous subsection we only had to distinguish between two date 2 events: liquidation

versus financing. In addition we need to distinguish here if the ratchet applies or not when the

company is financed. For this, we introduce the indicator variable I(fin, rat) which takes the value

1 when the company is financed and the ratchet applies; in all other cases it takes the value 0.

Similarly I(fin, no rat) takes the value 1 when the company is financed and the ratchet does not

apply; in all other cases it takes the value 0. (The ratchet applies when the share price decreases

and it is not waived. The ratchet does not apply either when the share price does not decrease

or when it does but the ratchet is waived.) The indicator variables Iliq and Ifin remain as in the

previous subsection. Note that for a company that is financed the ratchet either applies or not,

so that I(fin, rat) + I(fin, no rat) = Ifin.
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Based on our analysis in subsection 4.1 we then determine the date 1 value of the first VC’s

investment as a function of the stake α1:

V1(α1) = e−r T
2 E[LVC(P2, N2)Iliq] + e−rT/2E[BS(P2,M2N2)Ifin]

+e−r T
2 E

[(
N1

N2

α2 − 1

)
BS(P2,M1N1 +M2N2)I(fin, rat)

]
+e−r T

2 E
[
(α1(1− α2)− 1)BS(P2,M1N1 +M2N2)I(fin, no rat)

]
.

Fair contracting requires N1 = V1(α1), which gives

α1 =
N1 − e−r T

2 E
[
LVC(P2, N2)Iliq + {BS(P2,M2N2)− BS(P2,M1N1 +M2N2)}Ifin

]
e−r T

2 E
[
(1− α2)BS(P2,M1N1 +M2N2)I(fin, no rat)

] (8)

−
E
[
N1

N2
α2BS(P2,M1N1 +M2N2)I(fin, rat)

]
e−r T

2 E
[
(1− α2)BS(P2,M1N1 +M2N2)I(fin, no rat)

] . (9)

In the event that the ratchet applies at date 2, the stake α1 that the first VC contracts at

date 1 does not impact the payout from participation: it is then αa
1 = N1/N2α2. Therefore it

will not determine what the VC needs to recover from participation. This is exactly what the

denominator in equations (8, 9) gives us: it is conditioned on the joint event that the company

is financed and that the ratchet does not apply.

The terms in equations (8, 9) have interpretations similar to our earlier analysis without

ratchet: together, both numerators capture what value the first VC needs to recover from the

participation and the (identical) denominator describes what is available from participation after

the two VCs received their multiples. (In comparison to the stake without ratchet, the term in

equation (9) is added; it captures the additional money the first VC recovers from her ratchet.)

Proposition 8 For given P1 > 0 we study the first VC’s stake α1 as a function of 0 ≤ N1 ≤
P1 = 1. The function is 0 at N1 = 0. If M1 is larger than exp(rT/2)

Prob[financing]
, there exists a value

N̄m
1 > 0, called multiple cutoff, such that the stake α1 is negative for 0 < N1 < N̄m

1 and positive

for all N1 > N̄m
1 . For all multiples M1 ≥ 1 there exists a value N̄ l

1 < P1, called liquidation

cutoff, such that the first VC’s stake is larger than 100% for all N1 > N̄ l
1.
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The proof of this proposition, see the appendix, shows that for M1 smaller (larger) than

exp(rT/2)
Prob[financing]

the term on the right-hand side in equation (8) is positive (negative) for small

financings. The term in equation (9) captures the impact of the full ratchet and always makes

a positive contribution to the stake so that, overall, for M1 larger than exp(rT/2)
Prob[financing]

the stake

is negative. We expect that only for multiples M1 up to a value smaller than exp(rT/2)
Prob[financing]

the

stake is positive for small financings; however there is no expression to this. Other than that,

proposition 8 is similar to proposition 7 and has similar interpretations.

5 Numerical Examples

Table 1 provides a summary of the literature on VC characteristics of new ventures. Peng (2001)

does not report risk-parameters from which the volatility σP could be inferred; Quigley and

Woodward (2003) are the only ones that provide pre- and post-money values from which the

fraction of new money N can be inferred. Given that venture capital is a high risk environment

where many ventures fail, the standard deviation reported by Quigley and Woodward (2003)

strikes us as surprisingly low in comparison to broad stock market indexes, e.g. to the S&P500;

therefore we adopt the value reported by Cochrane (2005). To our knowledge the literature

has not studied the volatility of new moneys raised and the correlation with post-money values;

we take the volatility of new money raised equal to that of the post-money value; a successful

venture increases in value and requires new financing, so that we expect post-money value and

new money raised to be positively correlated and simply take the correlation equal one-half.

Furthermore we adopt a value of λ = 0.1 for fractional recovery of initial post-money value.

Overall, our baseline parameters throughout this section are

T = 5;N1 = 0.27; σP = σN = 0.89;κPN = 0.5; r = 5%;λ = 0.1.
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M2 P2 = 0.25 P2 = 0.5 P2 = 0.75 P2 = 1 P2 = 1.25 P2 = 1.5 P2 = 1.75 P2 = 2.0

Panel A: multiple cutoff
1 NA NA NA NA NA NA NA NA
2 0.100 0.200 0.299 0.399 0.499 0.599 0.699 0.798
3 0.147 0.295 0.442 0.589 0.737 0.884 1.031 1.179

Panel B: destructive liquidation cutoff
1 0.199 0.443 0.691 0.940 1.189 1.438 1.688 1.938
2 0.202 0.445 0.693 0.941 1.190 1.439 1.689 1.939
3 0.209 0.452 0.699 0.947 1.196 1.446 1.695 1.945

Panel C: distance cutoff from post-money value
1 0.051 0.057 0.059 0.060 0.061 0.062 0.062 0.062
2 0.048 0.055 0.058 0.059 0.060 0.061 0.061 0.061
3 0.041 0.048 0.051 0.053 0.054 0.055 0.055 0.055

Table 2: Multiple cutoff (Panel A), destructive liquidation cutoff for N2 (Panel B) and its distance
to date 2 post-money value (Panel C) for different combinations of date 2 post-money value and
multiple M2.

5.1 The Second VC’s Investment Problem

Table 2 uses baseline parameters and presents for different choices of date 2 post-money value

P2 the multiple cutoff (Panel A), the destructive liquidation cutoff (Panel B) and how far that

cutoff is from the post-money value, i.e. the difference P2 − N̄ l
2 (Panel C). Each panel looks at

date 2 post-money values P2 ranging from 1/4 to 2; rows one to 3 look separately at multiples 1

to 3.

For M2 = 1 there is no multiple cutoff in Panel A because the stake is always non-negative.

For M2 = 2, 3, whatever the value P2, the cutoff is always strictly positive and increases as we

increase P2; also, the cutoff increases as we increase M2 from 2 to 3. Note that the cutoff is

sizeable; e.g. for P2 = 1 it is 0.399 (0.589) for multiples M2 = 2 (M2 = 3). We do not report

the numbers here, but an easy calculation based on Panel A shows that, the quotient of multiple

cutoff to post-money value P2 is fairly constant, quantitatively, but that the multiple impacts

results considerably.
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no ratchet full ratchet

M1 multiple liquidation multiple liquidation

1 NA 0.657 NA 0.657
2 0.064 0.657 0.103 0.657
3 0.141 0.655 0.194 0.655

Table 3: Date 1 multiple (reduction) and (destructive) liquidation cutoffs without ratchet and
with full ratchet.

We see in Panel B that the liquidation cutoff is a sizeable number that will likely affect the

second VC’s contracting. Furthermore, as P2 or the multiple increases, the cutoff increases; with

respect to the multiple this result is in line with proposition 3. Surprisingly, the cutoff does

not change much for fixed P2 as we increase the multiple. Similarly, we see in Panel C that

the difference between the post-money value and the cutoff value does not change much as we

increase the post-money value or the multiple. (It seems to decrease (increase) slightly as we

increase the multiple (the post-money value).) This means that relative to post-money value

destructive liquidation gets more and more relevant, in line with proposition 4.

5.2 The First VC’s Investment Problem

Table 3 presents the date 1 multiple (reduction) and (destructive) liquidation cutoffs; we dis-

tinguish “no ratchet” from “(full) ratchet.” When the multiple M1 = 1 we calculate that it

never has to be reduced. As we increase the multiple, there is a cutoff for multiple reduction

and it increases with the multiple. Comparing the cutoff for multiple reduction without ratchet

and the one with (full) ratchet we see that the latter is always larger. Intuitively this makes

sense: for the same stake the date 1 value of the first VC is always larger with than without

ratchet; under fair contracting, the participation needs to compensate this with an even larger

negative stake; consequently the multiple needs to be reduced with ratchet in more situations

than without ratchet.

Table 3 suggests that there is (almost) no impact on the (destructive) liquidation cutoffs

whether the first VC has or does not have a ratchet: for the same multiple the numbers without
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ratchet and with full ratchet are the same. Getting back to our discussion in subsection 3.4, in

particular to figure 5, we recall that, for any date 2 post-money value P2, varying the amount

N2 both dilution and ratchet waiver are directly below destructive liquidation. This means that

when new money raised is so large that the company will be liquidated despite having positive

pre-money value, then for slightly smaller financings there is dilution but the ratchet will be

waived. So, it does not make a big difference if the VC has a ratchet or not.

As we increase the multiple, it appears in table 3 that the liquidation cutoff decreases. It

is surprising, however, that the liquidation cutoff does not depend quantitatively much on the

multiple.

Finally it is important to note the size of the cutoffs. The liquidation cutoffs are roughly at

two-third, which means that even if pre-money value is roughly one-third of post-money value,

the venture will not be financed. The multiple reduction cutoffs can also be fairly large; with

a multiple of M = 3 and full ratchet its is approximately 20%. Overall, with some contracting

constellations (large multiple, full ratchet) the interval in which VCs can contract can become

fairly small.

In subsection 3.4 we noted that four date 2 events are relevant for the first VC: multiple

reduction, destructive liquidation, dilution and ratchet waiver. (These events may occur jointly.)

In subsection 3.4 we studied in figures 4 and 5 the date 2 combinations of post-money value with

new money and presented the areas in which the mentioned events occur. Here we are interested

in date 1 and want to assess the (joint) probability of the four events. The assessment depends

on the company stake contracted at date 1; we use the date 1 fair contract of subsection 4.2

(without ratchet) and 4.3 (full ratchet) for the first VC for baseline paramters

Table 4 presents in Panel A the date 1 probabilities of the four date 2 events and in Panel

B the probability of multiple reduction joint together with liquidation, share price decrease and

ratchet waiver, respectively. We distinguish three different multiples M1 = 1, 2, 3 (rows one to

three in both tables). When the multiple is one, we calculate that the multiple does not have to

be reduced.

Each of the probabilities in Panel A of table 4 increases as we increase the multiple, but the
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Panel A: Single events
M1 multiple red. liquidation price decrease ratchet waived

1 NA 0.24 0.36 0.18
2 0.61 0.24 0.39 0.17
3 0.71 0.27 0.47 0.19

Panel B: Events joint with multiple reduction
M1 liquidation price decrease ratchet waived

1 NA NA NA
2 0.01 0.29 0.12
3 0.06 0.41 0.16

Table 4: Date 1 probabilities of events joint with multiple reduction; based on date 1 fair contract
for first VC.

sensitivity varies: the increase is very strong for the event “multiple reduction” and any joint

events with this but basically does not depend on the event “liquidation.”

Note that the probabilities are sizeable: the probability that the company is liquidated is

about 1/4; the probability that the multiple is reduced goes to more than 70% with a multiple of

3. The probabilities that relate to the ratchet are also of considerable size: the probability that

the share price decreases is in the range 35% to 45%, and that the ratchet is waived is about 18%.

Furthermore, in Panel B, the events “multiple reduction” and “liquidation” intersect partially,

but only on a small set of conditional date 2 events with small probability; with a multiple of

M = 3 this is less than 6%; therefore the sum of the probabilities of both events indicates that,

with a multiple of 3, the probability is about 90% that the multiple will have to be reduced or

the company liquidated. Finally, we calculate based on Panels A and B that the conditional

probability that the ratchet is waived if the share price decreases is 40% to 50%. Furthermore,

note that even when the multiple is reduced the joint probability of a share price decrease is

40%.
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Panel A: Varying T

no ratchet full ratchet

M -15% -5% 0% +5% +15% -15% -5% 0% +5% +15%

1 0.232 0.236 0.238 0.240 0.243 0.221 0.226 0.227 0.229 0.232
2 0.165 0.179 0.185 0.190 0.200 0.154 0.169 0.175 0.181 0.191
3 0.095 0.119 0.129 0.139 0.155 0.077 0.103 0.114 0.125 0.142

Panel B: Varying N1

no ratchet full ratchet

M -15% -5% 0% +5% +15% -15% -5% 0% +5% +15%

1 0.186 0.220 0.238 0.257 0.296 0.175 0.209 0.227 0.246 0.285
2 0.133 0.167 0.185 0.204 0.244 0.123 0.157 0.175 0.194 0.234
3 0.079 0.112 0.129 0.148 0.188 0.062 0.096 0.114 0.134 0.174

Panel C: Varying σP

no ratchet full ratchet

M -15% -5% 0% +5% +15% -15% -5% 0% +5% +15%
1 0.224 0.235 0.238 0.241 0.245 0.215 0.224 0.227 0.230 0.233
2 0.141 0.173 0.185 0.195 0.210 0.129 0.162 0.175 0.186 0.202
3 0.058 0.109 0.129 0.146 0.174 0.030 0.092 0.114 0.133 0.163

Panel D: Varying σN

no ratchet full ratchet

M -15% -5% 0% +5% +15% -15% -5% 0% +5% +15%

1 0.242 0.240 0.238 0.237 0.234 0.230 0.228 0.227 0.226 0.224
2 0.192 0.187 0.185 0.182 0.177 0.183 0.178 0.175 0.173 0.167
3 0.138 0.132 0.129 0.126 0.119 0.123 0.117 0.114 0.111 0.104

Panel E: Varying κPN

no ratchet full ratchet

M -15% -5% 0% +5% +15% -15% -5% 0% +5% +15%

1 0.233 0.237 0.238 0.240 0.245 0.222 0.226 0.227 0.229 0.233
2 0.179 0.183 0.185 0.187 0.191 0.170 0.173 0.175 0.177 0.181
3 0.123 0.127 0.129 0.131 0.135 0.109 0.112 0.114 0.116 0.120

Table 5: Comparative statics for the first VC’s company stake α1: each panel varies exactly one
parameter by ±15%,±5% to baseline parameters (0%).
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5.3 Comparative Statics of the First VC’s Stake

The previous subsections studied qualitatively and quantitatively when the multiple is reduced

and when there is destructive liquidation. This subsection carries out comparative statics of the

first VC’s stake with respect to the input parameters.

Table 5 presents the size of the first VC’s stake. It is divided into five Panels and each of

them is divided further into two sub-panels, left-hand without ratchet and right-hand with full

ratchet. Each sub-panel starts with the baseline parameters (0%) and varies exactly one of them

by ±5% and by ±15%; Panel A varies only time T between dates 1 and 3, Panel B only date

1 new financing N1 (which is in relation to date 1 post-money value P1), Panel C only the log

standard deviation of post-money value, Panel D only the log standard deviation of new money

and finally Panel E only varies the correlation κPN between new money raised and post-money

value. (We do not vary the interest rate here.)

Some observations can made for all choices. First, as we increase the multiple, the stake

decreases. Second, the company stake with full ratchet is always lower than without ratchet.

(These two observations have been noted before and come at no surprise.)

The sign of the sensitivity varies. It is positive for time remaining to liquidation (T ), new

money required (N1), post-money risk (σP ) and correlation between post-money risk and new

money required (κPN), but negative for the risk of new money required over time (σN). This

is as expected from the literature on call options and spread options: the option value of the

multiple contributes most to the claim value and increases, e.g. with time T ; only the remainder

needs to be made up by the participation which comes from the company stake and, therefore,

decreases as we increase time T .

In general, the sensitivity to changes in the parameters is fairly small when the multiple

is one. (The exception here is new money N1 which almost doubles as we go from −15% of

the baseline value for N1 to +15%.) The sensitivity increases (remains almost unchanged) for

T,N1, σP (σN , κPN) as we increase the multiple.

Interestingly, overall, the difference between no ratchet and full ratchet is not very large;

with a multiple of one it is about 10% and even with a multiple of three it is typically less than
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20%. (The exception here is the situation where σP is reduced by 15%). Furthermore, some of

the parameter choices do not appear very critical: varying σN and κPN does not impact much

the company stake. This is good news as these parameters have not been studied directly in

the literature and we could only infer rough estimates of them in subsection 2.3. The parameter

choices time T , new money N1 and log post-money standard deviation, however, are either known

(N1) or we have previously been studied in the literature. This implies that remaining time to

IPO, new money raised and post-money risk are critical model parameters, quantitatively, while

risk (volatility) of new money raised and correlation are less important.

6 Conclusion

This paper introduced a model of venture capital, in which the post-money value and new

money raised are random and two VCs could provide staged financing at different dates. We

determined their zero net present-value stakes, analyzed their optimal investment policies over

time both qualitatively and quantitatively, and discussed the resulting financings constraints.

Appendix

Throughout this appendix, we study stakes α at both dates for small and large moneys raised in

asymptotic expansions. As it is common in such expansions, we use the symbol O(·) to denote

higher-order expansion terms. For our analysis we need a first-order series expansion of the

well-known Black-Scholes call option pricing formula and note that the first derivative w.r.t. to

the strike K is over a time-interval of length T/2:

∂BS

∂K
(K) = − exp(−rT/2)N (d2) with d2 =

ln(P2/K) + (r − σ2/2)T/2

σ
√
T/2

. (10)

(To simplify notation we usually only write out the strike.)

Proof of proposition 1. For N2 = 0 we have BS(P2,M2N2) = BS(P2, 0) = P2, and

BS(P2,M1N1 +M2N2) = BS(P2,M1N1) > 0. So, according to equation (6): α2(P2, 0) = 0.

Next we study the behavior of α2 when N2 is close to zero. Note that at N2 = 0 we have

∂BS
∂K

= − exp(−rT/2). We then expand BS(P2, K) in a series around K = 0, evaluate it at
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K = M2N2 and get from equation (6)

α2(P2, N2) =
N2 − exp(−rT/2)M2N2 +O(N2

2 )

BS(P2,M1N1 +M2N2)
= N2

1− exp(−rT/2)M2

BS(P2,M1N1 +M2N2)
+O(N2

2 ).

Note that an option always has positive value, BS(P2,M1N1+M2N2) > 0. IfM2 > exp(rT/2)

this implies that, as N1 tends to zero, α2 will take negative values; however, if M2 < exp(rT/2)

it will be positive.

If M2 = exp(rT/2) we use the probabilistic representation of the Black-Scholes value, i.e.

BS(P2, exp(rT/2)N2) = exp(−rT/2)E[(P3 − exp(rT/2)N2)
+] = E[(exp(−rT/2)P3 −N2)

+], see,

e.g. Duffie (2001). The positive part defines a convex function and so Jensen’s inequality implies

that this is larger than E[exp(−rT/2)P3] − N2)
+] = P2 − N2. Together with equation (6) this

implies α2(P2, N2) ≥ 0 for all 0 ≤ N2 ≤ P2.

Next we prove the stated monotonicity properties. The denominator of α2 in equation (6) is

strictly decreasing in N2 and therefore its inverse is strictly increasing. For further analysis we

define the numerator of α2 in equation (6) as a function f(N2) = N2−P2+BS(P2,M2, N2). The

first and second derivative of this function are

df

dN2

= 1 +M2
dBS

dK
(P2,M2N2),

d2f

dN2
2

= M2
2

d2BS

dK2
(P2,M2N2).

The sign of the first derivative near 0 has been determined above in this proof: it is positive

(negative) if M2 is smaller (larger) than exp(rT/2). The second derivative is always positive.

This implies that with increasing N2, the function f is decreasing initially and then increasing.

Because the inverse of the denominator is strictly increasing this implies the stated monotonicity

of α2.

It remains to study the stake α2 when N2 is close to P2. We rewrite equation (6) as

α2(P2, N2) = 1 +
N2 − P2 +BS(P2,M2N2)−BS(P2,M1N1 +M2N2)

BS(P2,M1N1 +M2N2)
. (11)

The sign of the numerator then determines whether α2(P2, N2) is larger or smaller than one.

Because BS(P2,M2N2) > BS(P2,M1N1+M2N2), the numerator is strictly positive and we have

α2(P2, N2) ≥ 1 for N2 ≥ P2. Note that the function α2(P2, N2) is continuous in N2; we showed
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above that for N2 = 0, α2(P2, N2) = 0. Therefore, it will be larger than one on some interval

before P2 and there is a cutoff for N2 beyond which the stake is larger than 100%.

Proof of proposition 3. Taking derivatives of the stake α2 in equation (6) shows:

∂α2

∂M2

=
∂BS
∂K

(P2,M2N2)M2BS(P2,M1N1 +M2N2)

BS(P2,M1N1 +M2N2)2

−(N2 − P2 +BS(P2,M2N2))
∂BS
∂K

(P2,M1N1 +M2N2)M2

BS(P2,M1N1 +M2N2)2
.

Using equation (10) we find:

∂α2

∂M2

= −e−rT/2 N (d2(M2N2))M2

BS(P2,M1N1 +M2N2)

+e−rT/2N (d2(M1N1 +M2N2))M2
(N2 − P2 +BS(P2,M2N2))

BS(P2,M1N1 +M2N2)2
.

The second term can be expressed using the stake α2, see equation (6). Under our assumption

α2 ≤ 1 it is smaller than 1/BS(P2,M1N1 +M2N2). Therefore we have

∂α2

∂M2

≤ e−rT/2M2
N (d2(M1N1 +M2N2))−N (d2(M2N2))

BS(P2,M1N1 +M2N2)

Because M1N1 +M2N2 is greater than M2N2 and d2 is a decreasing function, the numerator is

strictly negative. This proves that ∂α2

∂M2
< 0, which in turn implies

∂N̄ l
2

∂M2
> 0.

Proof of proposition 4. A first-order approximation of the Black-Scholes formula around

strike 0 gives

γ − 1 +BS (1,M2γ) = γ − 1 + 1− e−rT/2M2γ +O(M2
2γ

2) = γ
(
1− e−rT/2M2

)
+O(M2

2γ
2).

IfM2 < exp(rT/2), this implies existence of γ̄ such that γ−1+BS (1,M2γ) > 0 for all 0 < γ < γ̄.

In the following we assume γ with this property. It is well known that numeraire invariance of

the Black-Scholes formula implies BS(P2,M2N2) = P2BS (1,M2γ) and BS(P2,M1N1+M2N2) =

P2BS (1,M1N1/P2 +M2γ). Therefore,

α2(P2, γP2) =
γ − 1 +BS (1,M2γ)

BS
(
1,M1

N1

P2
+M2γ

) . (12)

As P2 tends to zero, M1N1/P2 tends to infinity and so the denominator tends to zero. Because

the numerator is strictly positive, α2(P2, γP2) tends to plus infinity. This implies the existence

of P̄2 with the stated property.
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If M2 < exp(rT/2), we proceed similarly: then exists γ̄ such that γ−1+BS (1,M2γ) < 0 for

all 0 < γ < γ̄; so, the numerator in equation (12) is negative, α2(P2, γP2) tends to minus infinity

and there exists P̄2 with the stated property.

Proof of proposition 5. First, we study the statement about dilution and existence of

the cutoff. We recall that the share price is diluted, if p2 < p1, where the date 1 share price is

p1 = N1/S1 and the date 2 share price is given by equation (1). Because α1 = S1/(1 + S1), this

condition translates into
N1

α1

> N2
1− α2

α2

=
N2

α2

−N2. (13)

For further analysis we define f(N2) = (N2 − P2 +BS(P2,M2N2))/N2 and calculate

∂f

∂N2

=

(
1 + ∂BS

∂K
(M2N2)M2

)
N2 − (N2 − P2 +BS(P2,M2N2))

N2
2

=
P2 −BS(P2,M2N2) +

∂BS
∂K

(M2N2)M2N2

N2
2

.

We have that the numerator

P2 −BS(P2,M2N2) +
∂BS

∂K
(M2N2)M2N2

= P2 −
(
P2N (d1(M2N2))−M2N2e

−rT/2N (d2(M2N2))
)− e−rT/2N (d2(M2N2))M2N2

= P2 (1−N (d1(M2N2))) > 0.

This implies that f is strictly increasing in N2. Because BS(P2,M1N1 + M2N2) is strictly

decreasing in N2, we find that

N2

α2

=
BS(P2,M1N1 +M2N2)

f(N2)
. (14)

is strictly decreasing in N2. Obviously, −N2 is strictly decreasing as we increase N2. We conclude

that the right-hand side in equation (13) is strictly decreasing as N2 increases. This implies the

stated property about dilution. The cutoff N̄d
2 is then defined as the value of N2 for which the

right-hand side in equation (13) is equal to its left-hand side.

It remains to prove that the cutoff N̄d
2 increases as we increase the multiple M2. According
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to equation (13) it is enough to prove that ∂
(

N2

α2

)
/∂M2 ≥ 0. Using equation (14) we find

∂
(

N2

α2

)
∂M2

=
∂BS
∂K

(M1N1 +M2N2)N2f −BS(P2,M1N1 +M2N2)
∂f
∂M2

f 2

=
∂BS
∂K

(M1N1 +M2N2)α2BS(P2,M1N1 +M2N2)− BS(P2,M1N1 +M2N2)
∂f
∂M2

f 2
.

Because α2 ≤ 1 and ∂BS
∂K

is negative this is larger than

∂BS
∂K

(M1N1 +M2N2)BS(P2,M1N1 +M2N2)−BS(P2,M1N1 +M2N2)
∂f
∂M2

f 2
.

Equation (10) describes ∂BS
∂K

; using this representation and ∂f
∂M2

= ∂BS
∂K

(M2N2) we know that

∂
(

N2

α2

)
∂M2

≥ BS(P2,M1N1 +M2N2)

f 2
e−rT/2(N (d2(M2N2))−N (d2(M1N1 +M2N2)).

The difference in brackets on the right-hand side is strictly positive because d2 is decreasing in

the strike. This implies the statement.

Proof of proposition 6. If the share price decreases, the ratchet is waived when 1 < α2+αa
2

where αa
2 is given in equation (3); this happens if

α2
N1 +N2

N2

> 1, (15)

i.e. if N2 gets sufficiently large. Proposition 3 states that ∂α2

∂M2
< 0; this means that if we increase

M2 we need to decrease N2 to get to the same level on the left-hand side in equation (15) and

so N̄w
2 must decrease.

Proof of proposition 7. Using equation (6) together with equation (7) we rewrite the

first VC’s stake as

α1 =
N1 − e−r T

2 E
[
LVC(P2, N2)Iliq + {BS(P2,M2N2)−BS(P2,M1N1 +M2N2)}Ifin

]
e−r T

2 E
[
{BS(P2,M1N1 +M2N2)−BS(P2,M2N2) + P2 −N2}Ifin

] . (16)

This will be used throughout this proof.

First we study the statement about the multiple cutoff and new financings N1 close to zero.

A series expansion gives

BS(P2,M1N1 +M2N2)−BS(P2,M2N2) =
∂BS

∂K
(M2N2)M1N1 +O(N2

1 ),

38



where the O(N2
1 ) term is uniformly bounded across N2. Therefore,

E[{BS(P2,M1N1 +M2N2)−BS(P2,M2N2)}Ifin] = E

[
∂BS

∂K
(M2N2)Ifin

]
M1N1 +O(N2

1 ).

We have Prob[financing] = 1−O(N2
1 ) from the properties of the lognormal distribution, because

the company will be financed at date 2 as long as its future new money N2 is below the cutoff N̄ l
2.

Therefore, we have e−r T
2 E[{P2 −N2}Ifin] = P1 −N1 +O(N2

1 ) and E[LVC(P2, N2)Iliq] = O(N2
1 ).

So, we can write (16) as:

α1 =
N1 + E

[
∂BS
∂K

(M2N2)Ifin
]
M1N1 +O(N2

1 )

E
[
∂BS
∂K

(M2N2)Ifin
]
M1N1 + P1 −N1 +O(N2

1 )
. (17)

Finally, we note that ∂BS
∂K

(M2N2) = − exp(−rT/2)N (d2(M2N2)), that this is bounded, and that

N (d2(M2N2)) tends to 1 as N2 tends to 0. Therefore,

E

[
∂BS

∂K
(M2N2)Ifin

]
= − exp(−rT/2)Prob[financing] +O(N2

1 ).

As N1 tends to 0, the denominator tends to P1 = 1. We can therefore write this using the

numerator as

α1 = N1

(
1− exp(−rT/2)Prob[financing]M1

)
+O(N2

1 ). (18)

This tends to zero as N1 tends to zero; asymptotically we see negative stakes α1 if

M1 >
exp(rT/2)

Prob[financing]
.

However, if this M1 is smaller than the right-hand side, then stakes α1 are positive near 0.

We now study the first VC’s stake for new financings N1 close to P1. Using equation (16) we

get

α1 = 1 +
N1 − e−r T

2 E
[
LVC(P2, N2)Iliq + {P2 −N2}Ifin

]
e−r T

2 E
[
{BS(P2,M1N1 +M2N2)−BS(P2,M2N2) + P2 −N2}Ifin

] .
The denominator in this equation is equal to the denominator in equation (7), i.e. equal to

e−r T
2 E

[
(1 − α2)BS(P2,M1N1 + M2N2)Ifin

]
; this term is strictly positive, because the date 1
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probability of date 2 liquidation is not 100%. Therefore, α1 will be larger than one, when the

numerator N1 − e−r T
2 E[LVC(P2, N2)Iliq + {P2 −N2}Ifin] > 0.

Recall that the company will be liquidated at date 2 for N̄ l
2 < N2, in particular for all P2 < N2.

Therefore, E[LVC(P2, N2)Iliq] = λP1Prob[liquidation] < λProb[P2 < N2] and E[{P2 −N2}Ifin] ≤
E[max{P2 −N2, 0}]. Overall, we find

N1 − e−r T
2 E[LVC(P2, N2)Iliq + {P2 −N2}Ifin]

> N1 − λP1Prob[P2 < N2]− e−r T
2 E[max{P2 −N2, 0}].

The last term can be interpreted as an exchange option (a.k.a. outperformance option) and Mar-

grabe’s formula gives e−r T
2 E[max{P2−N2, 0}] = P1N (d1)−N1N (d2) where d1/2 = (ln(P1/N1)±

σ2
PNT )/(σPN

√
T/2) with σPN = σ2

P + σ2
N − 2σPσNκPN . We also know that Prob[P2 < N2] =

N (d2) and so

N1 − e−r T
2 E[LVC(P2, N2)Iliq + {P2 −N2}Ifin] > N1 − λP1N (d2)− P1N (d1) +N1N (d2).

When N1 = P1 = 1 then d1/2 = ±σ
√

T/2 and the right-hand side becomes 1 − N (d1) + (1 −
λ)N (d2) = N (−d1) + (1 − λ)N (d2) = (2 − λ)N (d2) > 0. Because the right-hand side is a

continuous function in N1 it will be larger than zero also for some interval of N1 before P1 and

consequently on that interval α1(P1, N1) > 1. This proves the statement about the liquidation

cutoff.

Proof of proposition 8. First, we study the first VC’s stake with full ratchet for N1 close

to zero. Using equation (6) we get

α1 =
N1 − e−r T

2 E
[
LVC(P2, N2)Iliq + {BS(P2,M2N2)− BS(P2,M1N1 +M2N2)}Ifin

]
e−r T

2 E
[
{BS(P2,M1N1 +M2N2)−BS(P2,M2N2) + P2 −N2}I(fin, no rat)

]

−
E
[
N1

N2
α2BS(P2,M1N1 +M2N2)I(fin, rat)

]
e−r T

2 E
[
{BS(P2,M1N1 +M2N2)− BS(P2,M2N2) + P2 −N2}I(fin, no rat)

] .

When the company is financed, it must be that N2 < P2; then BS(P2,M1N1 + M2N2) −
BS(P2,M2N2) > 0 and so also BS(P2,M1N1 + M2N2) − BS(P2,M2N2) + P2 − N2 > 0. The
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probability of the joint event that the company is not liquidated and the ratchet does not apply

is positive. This implies that the denominator in both fractions is strictly positive. Next we note

that α2 ≥ 0 when the second VC contracts. Therefore, the numerator in the second fraction and

therefore the entire fraction is positive. Finally, we noted also in the proof of proposition 7 that

the numerator N1 − e−r T
2 E

[
LVC(P2, N2)Iliq + {BS(P2,M2N2)−BS(P2,M1N1 +M2N2)}Ifin

]
in

the first fraction gets negative for N1 close to 0, when M1 > exp(−rT/2)/Prob[financing]. The

contribution from the second fraction is always negative; overall, we can then conclude that α1

gets negative for N1 close to 0, if

M1 >
exp(rT/2)

Prob[financing]
.

Finally, it remains to study the limiting behavior of α1 for N1 near P1. Using equation (6)

we get

α1 =
N1 − e−r T

2 E
[
LVC(P2, N2)Iliq + {BS(P2,M2N2)− BS(P2,M1N1 +M2N2)}Ifin

]
e−r T

2 E
[
{BS(P2,M1N1 +M2N2)−BS(P2,M2N2) + P2 −N2}I(fin, no rat)

]

−
E
[
N1

N2
α2BS(P2,M1N1 +M2N2)I(fin, rat)

]
e−r T

2 E
[
{BS(P2,M1N1 +M2N2)− BS(P2,M2N2) + P2 −N2}I(fin, no rat)

] .

which can be rewritten as

α1 = 1 +
N1 − e−r T

2 E
[
LVC(P2, N2)Iliq + (P2 −N2)Ifin

]
e−r T

2 E
[
{BS(P2,M1N1 +M2N2)− BS(P2,M2N2) + P2 −N2}I(fin, no rat)

]

+
−E

[
{BS(P2,M2N2) +

(
N1

N2
α2 − 1

)
BS(P2,M1N1 +M2N2)}I(fin, rat)

]
e−r T

2 E
[
{BS(P2,M1N1 +M2N2)−BS(P2,M2N2) + P2 −N2}I(fin, no rat)

] .

As before, the denominator in both fractions is strictly positive. Therefore α1 > 1 when the sum

of the numerators in the two fractions is positive.

We make use of αa
1 = N1/N2α2, see equation (3), and note that αa

1+α2 must be less than 100%;

otherwise the ratchet will have to be waived. Therefore, αa
1 ≤ 1−α2; Using equation (6) we then

find that −(αa
1−1)BS(P2,M1N1+M2N2) ≥ α2BS(P2,M1N1+M2N2) = N2−P2+BS(P2,M2N2).

41



This implies

−E

[
{BS(P2,M2N2) +

(
N1

N2

α2 − 1

)
BS(P2,M1N1 +M2N2)}I(fin, rat)

]
≥ E

[
(N2 − P2)I(fin, rat)

]
,

i.e.

α1 ≥ 1 +
N1 − e−r T

2 E
[
LVC(P2, N2)Iliq + (P2 −N2)Ifin + (N2 − P2)I(fin, rat)

]
e−r T

2 E
[
{BS(P2,M1N1 +M2N2)− BS(P2,M2N2) + P2 −N2}I(fin, no rat)

]

= 1 +
N1 − e−r T

2 E
[
LVC(P2, N2)Iliq + (P2 −N2)I(fin, no rat)

]
e−r T

2 E
[
{BS(P2,M1N1 +M2N2)− BS(P2,M2N2) + P2 −N2}I(fin, no rat)

] .
Exactly as in the proof of proposition 7 we can now show that for N1 near P1 the numerator is

larger than N1−λP1Prob[P2 < N2]− e−rT/2E[max{P2−N2, 0}], and that this is strictly positive

on some interval for N1 near P1.
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