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Abstract

This paper examines how preferencing practice affects the quote-setting behavior of dealers
who differ in their inventory. In dealership market, retail trades are generally placed with
brokers, who often direct them to a specific dealer regardless of his quotes. In return to this
preferenced and captive order flow, this dealer has agreed in advance to match the inside
spread. Depending on the market structure (centralized vs. fragmented market), this paper
shows how preferencing alters dealers’ incentives to narrow market spreads. In a centralized
market, preferencing impedes price-competition between dealers. Typically, preferencing leads
to wider market spreads and generates higher profits for dealers. In a fragmented market, the
impact of preferencing is more ambiguous since it may cause preferred dealers to earn profits,
but also to lose money. Actually, preferencing creates risks for the designated dealer in terms of
inventory imbalance and price impact. However this market practice generally generates rents
for dealers and surprisingly also for the unpreferred dealer, who competes less aggressively given

his greater chance to post the best price at equilibrium.

Keywords : Dealership market, preferencing, inventory. EFM Classification codes: 360.



1 Introduction

Many securities! are traded in more than one markets: for instance, New York-and American
Stock-Exchange-listed stocks are frequently traded on regional stock exchanges such as the
Cincinnati Stock-Exchange. In the Nasdaq Stock Market, multiple dealers are in competition
for the same security. On average, twelve dealers trade the same stock. In this competing
environment, as the 1991 report of the NASD Board of Governors underline, “order flow is a
valuable commodity and the competition to attract retail order flow is intense”. In order to en-
courage brokers to send them aggregated retail orders, dealers use inducements of various kinds
known as preferencing arrangements, allowing them to capture order flow. Under preferencing
arrangements, brokers send their retail order flow to a preferred dealer who has guaranteed in
advance to execute orders at the best price, even when that dealer is not quoting it. Orders are
actually not exposed to the market. This price matching-like practice is widely used on equity
markets (e.g. around 71% of total trades is preferenced in London?, 30% in Germany, ete.) and
it is suspected to sustain anticompetitive prices. For this reason, preferencing receives much

attention from regulators.

Opponents argue that preferencing constitutes a captive order flow that impairs dealers’
incentives to narrow market spreads on Nasdaq, leading to inferior executions for retail in-
vestors. However, in London, Hansh, Naik and Viswanathan (1998, 1999) find that preferenced
order receive worse execution than public orders. They also find that the trading profits of
preferred dealers are not significantly different from zero. Moreover the authors show that the
best-quoting dealers in London still accommodate a significative greater share of public trades
volume. Incentives to quote the best price still exist despite pervasive preferencing agreements.
Klock and McCormick (2002) obtain similar results on Nasdaq where 75% of the total trades
is preferenced. Consequently, it is still an open question whether preferencing impedes compe-

tition between dealers and whether it has some deleterious effects on the market performance.

To our knowledge, there exists no theoretical paper that explores systematically the link
between preferencing, inventory costs and the quoting behavior of dealers. This paper consti-
tutes a first attempt to model what impact preferencing has on the quote placement strategy

of risk-averse dealers. More explicitely, we seek to answer the following questions:

IThis paper focuses on preferencing in equity markets. But preferencing is also found in options markets.
2Figures originate from Hansh, Naik and Viswanathan (1998).



e How does preferencing alter dealers’ incentives to compete for public (i.e. unpreferenced)

orders?

e How does preferencing impact the formation of bid/ask spreads?

Dealers have an obligation to supply liquidity on their own inventory, regardless of their
position which may be far away from the desired level. Each inventory imbalance represents a
cost for a dealer, which is reflected in his spread as a compensation for the liquidity service. The
effect of inventory on quotes is the main consideration of ‘inventory’ models (see Stoll (1978)
or Ho and Stoll (1981, 1983)). The pure inventory ‘paradigm’ predicts that (i) dealers with
extreme inventory position should post the best quotes ; (ii) an increase in the inventory after a
buy trade leads to a decrease in the selling quote to attract trades in the opposite direction (the
so called ‘inventory’ control effect). While numerous empirical studies have proved the relevance
of the inventory control effect®, the empirical significance of the link between inventories and
dealers’ quoting behavior is less obvious. Hansh et al. (1998) suggest that inventory models
should reflect some additional market features such as preferencing to test more accurately the
link between quotes and inventories. Our paper tries to fill this gap by proposing a new relation

between quotes, inventories and preferencing.

To answer the previous questions, we consider two dealers with different inventory positions.
We assume that the incoming order flow is partly pre-assignated to one of the dealers, regardless
of his quotes. However, dealers still compete to accommodate the public part of the order flow.
Preferenced trades clear at the best price in accordance with best execution standards. We
model price-competition among preferred and unpreferred dealers in two settings: a centralized
market and a fragmented one. In both settings we characterize how dealers alter their quote
placement strategies and how the market spreads are affected by the existence of preferencing

arrangements. Whether the market is transparent or not, we find that:

e Preferencing has an impact on the reservation price of the preferred dealer, which may

impede dealers’ incentives to narrow quoted spreads.

e Preferencing leads to wider market spreads in average.

3See Lyons (1995), Hansh et al. (1998).



The intuition for the alteration of the reservation price is a reminiscence of the dilemma
faced by a monopolist between the cost of providing more liquidity and the profit to execute
more shares. For instance, on the sell side, under a certain price, it is more profitable to
execute only preferenced orders rather than the total order flow. Since preferencing changes
the reservation price of the preferred dealer, it changes his possibility to narrow quoted spreads,
which is fully anticipated by his opponent. As a result, it may finally soften price competition

between both dealers

If the market is supposed to be transparent, we cast our analysis in the Ho and Stoll (1983)’s
framework where dealers are supposed to observe each other inventory position. In this setup
we show that under preferencing, it is not necessarily dealers with extreme inventory position
that post the best quote. In other words, the link between inventories and quotes predicted by
Ho and Stoll (1983) may sometimes be invalidated under preferencing. It may explain the lack
of significance of the empirical findings by Hansh et al. (1998) mentionned above.

Then, we study the effects of preferencing on quotes in a market where dealers cannot observe
each other’s inventory position, as in a fragmented market such as the Nasdaq or the LSE. This
alternative analysis is based on Biais (1993) model. Dealers do not know opponents inventory
position neither the best price but observe which agent receives a preferenced demand and
the scale of this demand. Despite the simplicity of the economic problem, the prices posted by
dealers at equilibrium are quite complex. Actually the selling quotes correspond to those arising
in a first price auction where bidders are asymmetric. The main problem of asymmetries is
the lack of analytical solutions. First, this paper completely characterizes the Pareto-dominant
equilibrium for dealers. Then, we adopt a numerical approach and we find that, for some levels
of his initial inventory, the preferred dealer may incur losses in accommodating his captive
preferenced orders. He faces indeed a risk in price execution whenever the market price he
matches is below (resp. upper) his selling (resp. buying) reservation price.

This surprising result? could explain the zero profit of the preferred dealers on the LSE (see
Hansh et al (1998)).

Our paper contributes to a growing literature on the effects of preferencing. Some early

41 0sses are indeed quite counter-intuitive since (1) the preferred dealer is a monopolist on his captive demand,
which generates rents, (ii) his quotations correspond to prices arising in a private-value first price auction where

bidders do not post prices under their reservation price, in order to avoid losses.



papers (Chordia and Subrahmanyam, 1995 or Kandel and Marx, 1999) focus on the link between
the development of preferencing and price discreteness. They argue that preferencing would
disappear as price grids went finer. However, consistent with the prediction of Battalio and
Holden (2001a), preferencing has not been eliminated despite decimalization (see the empirical
findings of Chung, Chuwonganant and McCormick (2002)). Our results too do not depend on

price discreteness.

Our paper analyzes order preferencing as a price matching-like practice. Such practices
are suspected to reduce incentive to compete in price and to facilitate coordination between
competitors (see Salop (1986)). This intuition is corroborated by several theoretical papers
in market microstructure including Godek (1996), Dutta and Madhavan (1997), Kandel and
Marx (1997) or Parlour and Rajan (2002). Bloomfield and O’Hara (1998) demonstrate that
the negative effect of preferencing can also be found in laboratory financial markets. The
framework of our paper differs from the standard assumptions of these models. We consider
indeed the inventory position of competing dealers. We also suppose that dealers face two
kinds of orders: preferenced orders already pre-assigned to a specific dealer and public orders for
which all dealers compete. In this context, our model shows that the unpreferred dealer has less
incentives to post aggressive quotes, but the reason comes from his greater chance at equilibrium
to execute public orders. The unpreferred dealer anticipates indeed the less favorable position
of the preferred dealer who faces an inventory imbalance caused by preferenced orders. Finally,
we show that order preferencing enlarges market spreads and may increase dealers’ rents as

suspected.

Our paper complements also the model of Rhodes-Kropf (1999) who studies the impact on
spreads of price improvement in a similar framework. Price improvement is a market practice
which consists of filling the order inside the spreads. Rhodes-Kropft shows that dealers offer
price improvement to mid-size and large trades because of the negociation power of these
customers (generally institutional traders). Whereas his works deals with a market practice
concerning institutional trading, we focus on preferencing which is dedicated to small orders
from retail investors. Our conclusion is similar to his: preferencing too is a market practice
that widens market spreads. However we are not able to conclude anything concerning the
overall brokerage service since price-matching also allows retail traders to benefit from speed

execution and price guarantee (almost no price disimprovement under such a practice).



This paper is organized as follows. Section 2 describes the institutional framework and
the model. Section 3 shows which impact preferencing has on the link between quotes and
inventories in a centralized market, whereas section 4 is dedicated to the analysis in a fragmented
market. Section 5 explores some possible extensions and section 5 concludes. Proofs are in the

Appendix.

2 Framework

2.1 Preferencing Practice and Institutional Concerns

Preferencing principally concerns retail orders and happens through three business arrange-
ments: internalization, payment for order flow and payments in services (clearing, execution or

research services, for instance).

Internalization - allowed in United States or in United Kingdom - is considered as self-
preferencing. It leads to similar orders’ execution: a firm (doing brokerage and market-making
within a single entity) can ‘internalize’ its trades by executing them in-house against its own
dealer inventory, provided that trades are executed at a price no worse than the consolidated
best bid and offer (the NBBO®) in accordance with regulatory best execution standards. Inter-
nalization is cost-effective since it allows integrated firms to save costs related to transaction

fees and clearing charges.

Concerning ‘external’ forms of preferencing, they vary according to the market. On the
London Stock Exchange, cash payment to purchase order flow is not allowed. London prefer-
encing agreements are ‘soft-dollar’ (i.e. noncash) arrangements, whereas, on Nasdaq, external
preferencing principally happens through payment for order flow. Quantitatively preferencing
represents 79% of the trading volume on Nasdaq [Chung et al. (2004)] and 71 % on the London
Stock-Exchange [Hansh et al. (1998)]

Preferencing raises institutional and academics concerns. This practice indeed violates the
principle of time priority which stipulates that orders have to be executed by the first dealer
quoting the best price. Then, such arrangements forgo the opportunity of orders to interact and

transact between the best bid and the best ask (to benefit from any price-improvement). As a

5The best market prices are also known as the National Best Bid or Offer: the so-called NBBO.



result, preferencing is argued to increase market spreads and to lead to higher execution costs
for investors (see, for instance, Huang and Stoll (1996)¢). Our model focuses on the impact of

preferencing on the formation of bid/ask spread.

2.2 The Basic Setting

Consider the market for a risky asset, whose final cash flow is a normal random variable ©

characterized by an expected value p and a variance o2. There are two types of agents: (i)
investors who demand liquidity (|@Q|)” and (ii) dealers who supply liquidity by standing ready

to execute incoming market orders (+@)) at their bid or ask quote against their own inventory.

Dealers’ reservation price and inventory cost

For ease of exposition, we focus on the sell side of the market and on the behavior of two
strategic dealers who compete to post the lowest selling price (or ask price) so as to execute
the incoming buy order (+@). Dealers, denoted by Dy and Ds, are identically risk-averse but
differ in their inventory position. In other words, the divergence in dealers’ reservation prices is
caused by the risk aversion of dealers facing each a more or less unbalanced position, as shown
in a seminal paper of Stoll (1978). Adding inventory increases risks in moving the position
away from the dealer’s preferred level and alters his reservation price.

The reservation price to sell () shares when a dealer holds an inventory position /; is denoted
by a, (I;, @), i = 1,2. We use the result of Ho and Stoll (1983) to give a simple expression of
Qr <]i7 Q)87

2
v

o .
ar (1,Q) = n+ 732 (Q - 28) i = 1,2
where p is the coefficient of risk aversion of dealer D; (i = 1,2), 4@ is the incoming buy order
to accommodate and [; is dealer D;’s initial inventory. It is common knowledge that [; is a
realization of the random variable I; uniformly distributed on [Iy,1,]. We will, equivalently,

consider that the reservation prices a, (I;,Q)) are random variable that is distributed according

to a uniform distribution on [a, (I,,Q) ,a, (I, Q)]

6We believe that preferencing has increased over time consistent with the increase in spreads, although we
do not have direct evidence on this’, Huang and Stoll (1996).

"“liquidity traders’

8This expression can be obtained in a mean-variance framework, as in Biais (1993).



The reservation price may also be interpreted as the average cost of the dealer to produce
liquidity. Specifically, a dealer supplies liquidity against his own inventory, bearing risks that

entail costs from which that dealer has to be compensated.

Preferenced vs. nonpreferenced Order flows and Best Prices

We make a distinction between two types of order flows: (i) the preferenced order (+k)
which is pre-assigned to dealer Ds, and (ii) the public (i.e. unpreferenced) order (4+@)) which is
not assigned to any dealer. While the preferenced order is routed exclusively to dealer D, the
public order is attributed to the dealer who quotes the best price (dealer Dy or Dj). Besides,

we define the best offer by @ = min (a1, as) where a; (resp. as) is the ask price posted by dealer

Dy (resp. D).

Obligation of execution by a preferred dealer

When the preferred dealer faces an unwanted inventory position, she might send her pref-
erenced order flow to the best-quoting dealer to control her inventory risk. In practice, she
must still pay her retail broker for receiving this order flow. Moreover, with fast-moving, nar-
rower spreads due to decimalization, re-routing preferenced orders increases the risk of price-
disimprovement and, then, the risk to lose the business relationship with the affiliated broker.
Consequently, as the 2001 Nasdaq report underlines, preferred dealers “rarely act in an agency
capacity”. In this model, we do not model the business relationship between the discount bro-
ker and his preferred dealer, we simply assume that the potential costs to act as an agent are
higher than the costs to act as principal. Consequently, the preferred dealer will not decline

the order in re-routing it to the best-quoting dealer (D), but she will execute it instead.

The Best Offer

According to the usual standards of the Best Execution duty for retail order flow, the
preferred dealer has to execute preferenced orders at the best available price (i.e. the lowest
ask price in our model) even when she does not quote it.
The timing of the game and the payoffs of the dealers

At t=1, dealer D; is endowed with an initial inventory position [;. At t = 2 we suppose
that an investor arrives and expresses his desire to buy () shares. At the same time a broker
sends a preferenced order flow (k > 0) to dealer D,. Dealer Dy knows that Dy is committed to

accommodate a preferenced order flow k. At ¢ = 3 dealers post simultaneously their ask quotes



in order to execute the public order flow (). The dealer with the lowest ask price executes ().

Besides Dy executes k at the lowest ask price whatever her own quote.

Dealers are supposed to have linear preferences over the surplus from trade. Doing so, we
limit the impact of risk aversion to the determination of reservation prices?. Given that dealer

Dy does not execute any preferenced trade, his trading profit is given by:

(a1 —a,([1,Q)) xQ ifa; <ay

5! <a17a27]1) — f N
1I a4 a9

Dealer Dy’s trading profit differs from dealer )| since Dy executes for sure at least the

preferenced order flow k. Then, her trading profit is given by:

(ag —a, (I,Q + k) X (Q+ k) fay<ay

o <a27a17]2) =
(min(ay, as) — ar (I2, k) x & fas>a;

When dealer Dy posts the lowest ask price (as < aq), she accommodates the total order flow
(Q + k) at that price, given that it is the best offer (a = as). In the opposite case (ay > ay),
dealer Dy executes only the preferenced trade x at the best offer which is the quote posted by
her opponent ;. Because dealer 1)y does not execute the same volume whether she posts the
best price or not, it is natural to consider two reservation prices, corresponding each to the
quantity to supply: the reservation price to accommodate only the preferenced order flow is

a, (12, k) whereas a, (I3, + k) is the reservation price to execute the total order flow.

Note also that, because dealer Dy is compelled to execute the preferenced order x, she might
face losses (as soon as a = a1 < a, (I3, k)) which is consistent with the remark by Kandel and
Marx (1999):

“under preferenced arrangements, a dealer has less control over the trades she has to ac-

commodate because she cannot withdraw from the market by adjusting quotes”.

Let us introduce a specific price termed as the cutoff price which leaves the preferred dealer
indifferent between the trading profit earned from the execution of the total order flow (Q + k)

and the one earned in executing only the preferenced order flow k.

9Dealers’ reservation prices depend on the risk-aversion coefficient, which would affect their quoting behavior
in the auction models that are analyzed below. For simplicity, however, we ignore the effect of risk aversion on
preferences by using the first order linear approximation proposed by Biais (1993) and used by Rhodes-Kropft
(1999).



Definition 1 Let a7, be the value of the posted price al which the preferred dealer is indifferent
between trading v shares or (QQ + k) shares. That cutoff price ay, is defined as the solution of

the following equation:
(af’Q —a, (Iy, /{)) X K= (af’Q —a, (I,Q + /{)) X (@ + k)

Suppose that dealer DDy posts a price below the cutoff price a;, and quotes the best price.
Then she executes the total order flow. However, straightforward algebra shows that D, obtains
a lower profit in doing so than in executing only her preferenced order flow at that price. Thus

we can state the following result
Result 1 The preferred dealer has no incentive to quote below the cutoff price.

Since k is a captive order flow, the preferred dealer faces the classic monopolist dilemma
between cost and volume: accommodating only k shares at a small cost (a, (Is, k)) or supplying
more () + k) at a greater cost a, (I3, Q + k). Below the cutoff price s, the cost to accom-
modate the total order flow is not offset by the increase in the revenue. Actually the cutoff
price is the ‘natural’ reservation price of the preferred dealer. Consistently, we can re-write

Dy’s trading profit function:

(g—afg)x;i—l—%?x;ix(@—l—/{) sl ag > aq

Uy <a27a17]2) —
(ag —afy) ¥ (Q—I—/{)—I—%Q X KX (Q+K) slay<ay

with affy = a, (I, Q + k) + poir/2.
Note that
Upy > Gy (Iy,Q + k) > a, (I2, k), Vk.

The ranking is consistent with the monopolistic situation of the preferred dealer on the
preferenced order. The cutoff price is strictly greater than the average costs to produce liquidity
in both cases whether she supplies liquidity for the preferenced order flow k or for the total

order flow (@ + k).

A benchmark: the competitive case



10 ) in which no

We next introduce the ‘competitive’ case (or the No Preferencing case
orders cannot be preferenced. Consequently, the order flow x is now executed by the best-
quoting dealer. Then, the total quantity to accommodate is (Q + k), and dealers’ trading profit
is such that:

(@7~ 0 (1Q ) < Q4 w) P <a¥F
0 if a¥? > aF o

—1

7.[_£VP (aiu a_;, ]z) —

The best price (or the best offer) is ™ = min (ajlvp, aJQVP>.

For the ease of the exposition of the results, we adopt the same notation as Biais (1993)

and we note:

Note also that numerical results illustrated below are computed under the following values

for parameters: p = 1, p = 99.75$, 02 = —L_: () = 2,500 shares; I; = 0 and I, = 20,000

10,000°

shares. Hence, a,, = 98% and a,4 = 1008.

Let us discuss these basic assumptions.

2.3 Discussion
2.3.1 Preferencing and Dealers’ competition

This section gives some intuitions on the positioning of prices under preferencing and regards

to economic concerns on price matching-like practice.

(i) Risk aversion, inventory and preferencing

The positioning of dealers’ quotes will depend on the relative ranking of their reservation
prices since dealers do not quote under their reservation price. Because of risk aversion, dealers’
reservation prices are increasing in the size of the transaction (for a given inventory). The
reservation price is consequently higher in average for the preferred dealer who may execute
(Q + k) shares and at least x shares than the reservation price of the unpreferred dealer who
trades at most () shares. Thus, preferencing creates asymmetric average reservation prices

between both dealers.

10We use the subscript NP to identify this ‘competitive’ case.

10



(ii) Preferencing as a price-matching practice: advantages and disadvantages
Preferencing is a price matching-like practice. Opponents argue that such practices facilitate
cartel pricing by removing the incentive to undercut (see Salop (1986) for industrial organization
or Dutta and Madhavan (1998) concerning dealer markets). In our setting, only a part of the
total order flow is preferenced. Dealers have still incentives to narrow market spreads to attract
the public part of the order flow!!. Besides preferencing creates inventory risks for the preferred
dealer. In case the best offer posted by the opponent is lower than one’s own reservation price,
matching the best price to execute the preferenced trade may cause the dealer to lose money.

We refer to this risk as a risk in price execution.

However, preferencing does not free from the main concern of price-matching practice. The
preferenced order flow is a captive demand!?. There are some cases when it is more profitable
for the preferred dealer to execute only x preferenced shares at a smaller cost than a larger order
flow (Q + k) at a greater cost. As a result, this monopolistic situation lowers her incentives to
compete for the public order flow, which should lead to higher market prices.

Thus the questions raised are the following: may the competitive disadvantage of facing
a risk in price-execution be more than offset by the effects of preferencing in favoring higher
prices 7 May dealers’ incentives to execute the unpreferenced order flow be more than offset
by the disincentives to face a preferenced demand 7 The following paragraph exposes a way to

study the impact of preferencing on the positioning of dealers’ quotes.

2.3.2 How to capture the impact of preferencing on the bidding behavior of deal-

ers?

In order to gain some intuitions on how preferencing affects the quote-setting behavior of
dealers, we use two measures: (i) the probability to execute public orders and (ii) the relative
surplus. The relative surplus relates to how close, on average, the ask price posted by dealer 7
is to his own reservation price. For instance let us denote #; a coefficient which measures the
relative distance between the ask price posted by dealer D; (i = 1,2) to his reservation price,

le. b;(a.;) = (a; (ar;) — ar;) /a,;. The interpretation of this coefficient is straightforward: the

"This assumption is corroborated by the empirical findings of Hansh et al. (1998) that we mentionned in

introduction.
2This feature clearly changes from usual economics model where the agreggate demand is still exposed to

the whole market and to all competitors.
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lower is the coeflicient, the more competitive are dealers.

3 Inventory Paradigm and Preferenced Order Flow

In the following sections we analyze how preferencing interacts with dealers’ quoting strategy in
two different market settings: (i) the canonical one-period model of Ho and Stoll (1983) where
dealers are assumed to perfectly observe each other’s inventory ; (ii) a fragmented market where

dealer do noy observe competitors’ inventory position.

3.1 Preferencing and Equilibrium Quoting Strategy in a Transpar-
ent Market

We consider a fully transparent market (e.g. a centralized structure) where dealers are able
to observe perfectly the inventory positions of their competitors. Without preferencing, Ho
and Stoll (1983) show that the dealer with the most extreme inventory posts the best price in
equilibrium and the (Nash) equilibrium strategy results in setting the best offer to the second

best reservation price. Now, we analyze how preferencing affects this standard result.

In our setting dealer Dy receives a preferenced order flow x before trading. Regardless of
the competitiveness of her quotes, she executes at least that order flow and her inventory I
necessarily shortens of a volume k. In sum, the preferenced trade acts as an inventory shock
arising at date 2 that changes her reservation price to reflect her effective position (I, — k):
ar (12 — k), Q) = a, (see Lemma 1). Since dealer D, is assumed to observe the magnitude of
the preferenced trade, he anticipates correctly how dealer Dy will modify her reservation price

and her bidding strategy under preferencing agreement.

Theorem 1 At equilibrium, when both dealers have a chance to post the best price (af’u < a,q),
then the dealer with the lowest reservation price (min (am, afﬂ)) posts a sell quote just below

the second lowest reservation price. In other words, the Nash equilibrium consists of each dealer

12



using the following pure strategy':

y K
apg— € if a1 <ag,

ar1 otherwise.

- K
arq —¢< if Upy < Gr1

Qo otherwise.

where £ > 0 but £ s arbilrarily small.
At equilibrium, when the preferred dealer has no chance to post the best price (a,q < af’u), then

y y y [C— K c __ Kk _
she quotes her reservation price, i.e. ay = a;,. Dealer Dy quotes aj = a;y — <.

Observe that if preferencing was not allowed, dealer 1Dy would accomodate the total order
flow (Q + k) if and only if his initial position is the longest!? as in Ho and Stoll (1983). Under
preferencing, dealer 1y executes the public trade even if he is not initially the longest (I3 < Iy).
Actually for a certain positioning of reservation prices (a,; € [ar (I15,Q + k), af’ﬂ ), dealer Dy is
not induced to undercut dealer D, letting him quoting the best price. Thus, we conclude that
preferencing softens price competition between dealers by modifying their capacity to supply

liquidity.

Preferenced order flow and dealers’ quoting behavior

Preferencing alters the reservation price of the preferred dealer and thus her quoting behav-
ior. Under preferencing, dealer Dj is less likely to post the best price at equilibrium. Moreover
as the volume of preferenced shares rises, she is induced to post quotes closer to her reservation
price a;, than in the competitive case, i.e. she competes in average ‘more’ aggressively due
to the impact of preferencing on her reservation price'®. This result could be rather counter-
intuitive compared with the arguments of Kandel and Marx (1997) or Dutta and Madhavan
(1997) previously mentionned but it has to be moderated by the initial rising of her reservation
price.

Preferencing alters also the bidding behavior of the unpreferred dealer: dealer D posts

higher selling prices. In other words, dealer D1 quotes in average less aggressively which is

3We use the subscript ¢ to identify dealers’ quotes arising in a fully transparent market, in reference to Biais

(1993)’s model that qualifies this transparent market structure as ‘centralized’.
WUrr = max (I, Iy) < a, (If,Q + k) = min (a, (I, Q + &), a, (I2,Q + K))
15 All the proofs are in the Appendix in the section dedicated to ‘Bidding strategy characterization’.
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associated with his greater chance to accommodate the unpreferenced order flow. In sum,

preferencing is a disincentive to improve the quoted prices for the unpreferred dealer.

To sum up, in a centralized market, preferencing alters definitely the incentives of dealers
to narrow quoted spreads because of the alteration of the reservation price of the preferred
dealer. However the following questions are still open: what is the impact of such a practice on
the expected market spreads, does preferencing necessarily lead to higher profits for dealer Dy
(remind that she faces a price-execution risk in matching the price of her opponent) 7 Does it
impair or not the expected profit of dealer D who loses the opportunity to accommodate the

preferenced trade compared with a ‘competitive’ situation 7

3.2 Market Performance and Preferencing

In order to analyze the impact of preferenced trade on the overall market performance, we use

the competitive case, in which no preferencing is allowed, as a benchmark.

Best offer and preferenced order flow
In equilibrium, the Best Offer is: a° = max (am, afg). In order to measure the impact of

preferencing agreement on execution costs, we turn to the analysis of the expected Best Offer.

Lemma 1 The expected best offer denoted by F (a°) worsens as preferencing is increasing
(OF (a®) JOk > 0). Moreover, the expected best offer is larger than the one which would prevail

in the competitive case (No Preferencing allowed): F (o) > E (a®NF).

Increasing the scale of preferenced order flow increases the best ask price. In a symmetric
way, it will decrease the best bid price. Hence, preferencing widens the expected bid-ask spreads.
Thus, preferencing in a fully transparent market leads to an increase in transaction costs for
investors. This supports the point of view of Huang and Stoll (1997) who argue that the larger

execution costs on Nasdaq relative to NYSE are at least partially due to preferencing.

Dealers’ expected Profit and Preferencing

To gain some intuitions, preferencing may be decomposed into three effects in this model:
(1) the price effect, (ii) the chance effect and (iii) the volume effect. The price effect is obviously
linked to the previous lemma: preferencing increases the expected trading profit since it enlarges

expected bid/ask spreads. Then, under preferencing the ex ante probability to execute the
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public order flow increases for the unpreferred dealer and decreases for the preferred dealer,
what we called the ‘chance’ effect. Finally, since the unpreferred dealer cannot compete on
the captive order flow, he suffers from a loss in the total expected volume compared with the

competitive case (the ‘volume’ effect).

Lemma 2 (a) The preferred dealer’ s expected profit is always larger under preferencing ar-
rangements, , i.e. F (II3) > B (IIY'7).

(b) Depending on the value of the parameters, there exist cases in which the unpreferred
dealer surprisingly expects higher profits when his opponent is preferenced: E (II5) > E (H]lvp)
when (i) Q > (I, — 1) /3 and (ii) when Q < (I, — 1) /3 and k > £ (Q) where k is detailed in
the Appendiz.

Preferenced Order Flow
K K(Q)

Dealer Q' s expected profit Dealer @' s expected profit is higher
is higher whemo whenprefer encing is allowed.
preferencing is allowed.

Q=(lu-la)/6 Q=(lu-1d)/3

Unpreferenced Order Flow

FIGURE 2: A comparison of dealer D,’s expected profit

Preferencing increases the expected profit of the preferred dealer even if she has less control
on the price execution of preferenced trades. In this transparent two-dealer market, there is no
price-execution risk since the best offer is equal to the second best reservation price and cannot
be lower than the cutoff price of the preferred dealer'®. Dealer D, takes fully advantage of the
price-matching rule as a source of rents.

Surprisingly, the expected profit of the unpreferred dealer may also be larger in the prefer-
encing case than in the competitive case (see Figure 2). Even if he is suffering from a truncated
competition and a loss in trading volume, dealer DD may benefit from the increase in spreads
(the price effect) and from a larger chance to execute the unpreferenced order flow (the chance

effect). So, preferencing may create rents for all dealers.

16 Analytically, the preferred dealer matches a® = a§ = ayg —e > ay (I2, k). Q.ED.
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These results show that preferencing can significantly affect (i) the market performance since
it enlarges market spreads at investors’ expense, (ii) dealer’s profit that may be larger. These
results provide a theoretical support to the experimental findings of Bloomfield and O’Hara
(1998). Using laboratory financial markets, their research demonstrates that in a two-dealer
market, increasing preferencing increases dramatically market spreads and enriches dealers at
the expense of investors. However, they find also that these deleterious effects may be avoided
when more than one dealer does not receive preferenced orders. We study whether this is the
case in our framework in the next subsection. We first generalize the previous theorem to N
dealers. Then we compute the best offer when one unpreferred dealer enters the two-dealer

market (N = 3). Finally we turn to a study of the empirical implications of this model.

3.3 Extension

The previous setting at two dealers can easily be extended to /N dealers.

Suppose that N dealers compete to execute a public (i.e. unpreferenced) order flow. Among
the N dealers, M dealers have preferencing arrangements where M < N. It means that each

of the M dealers receives a preferenced order flow large of k; shares where k; € [0, +00[,i =

1 M.

Following Lemma 1, each preferred dealer will not quote below one’s cutoff price. The
reservation price of a preferred dealer is given by a;, = ptpo2(Q—2(L; — k) /2,i=1,... M.
The remaining (M — N) dealers who do not get any preferenced order flow are characterized
by the Ho and Stoll (1983)’s reservation price: a,; = pu + po2(Q —21;) /2, i = M +1,...,N.
Observe that the reservation price of an unpreferred dealer is simply equal to the reservation

price of a preferred dealer whose preferenced order flow is zero since a,; = af;, when k; = 0
?

7

fori =M +1,...,N. Consequently, to ease the exposition of the results, we denote by af, the

Ty

reservation price of any dealer D, fori =1,..., N7,

Corollary 1 In a transparent market where a part of the total order flow is preferenced to

M < N dealers, the dealer with the lowest reservation price | min ar, |, denoted by Dy, posts
se[1;N]
the best price and executes the public part of the order flow. At equilibrium, the best-quoting

"Tmplicitly, when dealer D; is not preferred, his reservation price is equal to the Ho & Stoll’s one, i.e.

afﬂ. = O for 7 = M+ 1, 7]\f
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dealer undercuts the second-lowest reservation price and the (N — 1) other dealers quote their

own reservation price, i.e.

ar= min a}, —¢
E[LVIN{T}

K
Ay = Gy ;

fori e [1; N|\{T}.

The ranking of the effective inventory position (I; — k;), 5 of the dealers determines the

K
7,8

ranking of dealers’ reservation prices (a )Z,E  Which yields the outcome of the quote-competition
between dealers at date 3. Notice that the best-quoting dealer is the dealer with the following
inventory position (I — kr) = rlrg@( (I; — k;) which is not necessarily the dealer with the most
extreme inventory at date 1.

Even if this Corollary is a straightforward generalization of Theorem 1, it allows us to
examine how preferencing affects the market competitiveness when more than one dealer is
unpreferred. Secondly, this theorem is useful to make a prediction about the relationship

between inventories, quotes and preferenced order flow.

3.3.1 The Expected Best Offer in a Three-dealer Market

In this section, we assume that the number of dealers in the market is N = 3. In this setting,
dealer D, receives a preferenced trade (ky > 0) whereas the two remaining dealers have no

preferenced trades (k1 = k3 = 0).

Lemma 3 When the number of unpreferred dealers goes from one to two, expected bid/ask

spreads narrow but remain wider than the competitive spreads:
E @) >FE (QC’NP) for N=3.

In a three-dealer market, the additionnal dealer without preferenced order flow reinforces
competition for the public order flow () among unpreferred dealers. This competition effect
decreases the best ask price on average. Symmetrically, it would increase the best bid price on
average. Thus, expected market spreads narrow. Actually, the additional unpreferred dealer
D3 provides a competitive force that restores unpreferred dealers’ incentives to narrow market
spreads in order to attract the unpreferenced order flow. This result is consistent with the

experimental finding of Bloomfield and O’Hara (1998) described above.
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Figure 3 displays how the expected best offer is improved (lowered) when the number of

unpreferred dealers goes from one to two.

The expected best offer when the number
of non-preferenced dealers is varying from 1 to 2

102

—— 1 non-preferenced dealer
fffff 2 non-preferenced dealers

101

100

99

0 5000 10000 15000 20000 25000 30000
Preferenced order flow k

FIGURE 3: Expected best offers, k varying.

3.3.2 Empirical Implications

Theorem 1 predicts that under preferencing, it is not necessarily the longest dealer who posts
the best quote. This result invalidates partially the literal prediction of Ho and Stoll (1983)’s
model. The aim of this paragraph is to propose a revised version of the link between quoted

prices, inventories and preferenced order flow.

The link between inventories and best quotes

As we mention at the beginning of this section, Ho and Stoll (1983) show that the dealer
with the most extreme inventory posts the best price and should consequently execute the public
trades. In Ho and Stoll (1983), dealers’ quotes can be expressed as a monotone function of their
initial inventory positions. Hansh et al. (1998) deduce that there exists a simple relationship
between the relative positionning of dealers’ quotes and their relative inventory level. They

express this link as follows
a; —a’ Zf(]i—]T) (El)

where the position of the quote a; posted by dealer D; relative to the best market price (af)
quoted by the longest dealer Dy depends monotonically (though the decreasing function F) on
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the difference between the level of his inventory I; relative to that of the best-quoting dealer
Iy .

Testing the previous equation on a dataset from the London Stock Exchange, Hansh et al.
found that the dealers with extreme inventory position execute only 59% of the incoming public
orders and not 100% as predicted by Ho and Stoll (1983). They argue that preferencing may

cause this invalidation since Equation 1 does not take it into account.

Is there a link between preferenced order flows, quotes and inventories ?

Given Theorem 1, a testable link between inventories, best quotes and preferencing could

be expressed as follows:
a; —a" = F((L; = k;) = (Ir — k7)) (£2)

where k; and kp are respectively the preferenced trades executed by dealer D; and by the
best-quoting dealer Dp. Our model suggests that inventories should be shortened by the scale
of preferenced trades in order to test a relation between the positioning of quotes, the level of

dealers’ inventories and the preferencing practice.

4 Preferencing in a Fragmented Market

In a fragmented market as the Nasdaq or the London Stock Exchange, dealers’ bidding behavior
will differ from the quoting behavior they would adopt in a centralized market since they cannot
observe the inventory positions of their opponents. Actually, the preferred dealer only forms
an expectation on the best price at which she could be constrained to execute the preferenced
trade in case she does not post the best price. Does the preferred dealer take advantage of this

lack of transparency ? What is the impact on the bidding behavior of her opponent 7

Dealer D; does not know the reservation price of the opponent and forms an expectation
on the positioning of quotes. Let the probability that the ask price posted by D; is the lowest
Pr(a; < a_1) where a; is the price posted by dealer D; and a_; is that of the opponent D_;.
More explicetly, Before trading, the expected profit of dealer D who posts a; is:

Hl (al,am) =Pr (a1 < CLQ) X (a1 — a’r,l) X Q (1)
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Similarly, dealer D sets her price ay given (i) her probability to sell (ii) the volume of prefer-
enced trades. She expects the following profit:

I, (aQ,af’Q) = Pr(ay <ay) X <a2 — af’Q) X (Q+ k) +Pr(az >ay) x (E (ay | ag > ay) — af’Q)

po,
2

2% % (Q+ r)

We begin by characterizing the general case where the equilibrium bidding strategies are nu-
merically investigated, then we turn to the determination of the analytical equilibrium solutions

obtained when preferencing is large and when it is not allowed.

4.1 Preferencing and Equilibrium Quotes

We now turn to the detailed analysis of the Bayes-Nash equilibrium that consists of a pair
of selling quote functions: a; : [@ry,arq] — R, ay : [af’u,af’d} — IR. We assume that a;
are strictly increasing functions (see Lebrun (1999) for formal proofs). Then we can define
the inverse bidding functions, which are more convenient to analyze. Consequently, we denote
v1(y) and v5(y) the reservation prices drawn respectively by dealer D; and dealer Dy, that lead
them to quote y. Note that v; = (a;) " and vy = (ag) .

Using the inverse functions, the dealers’ profit expressions given by equations (1) and (2)

write also:
(i) vfl) (ar1) € aLg max I (y,ar1)
with
I (y,ar,1) = Fi (v2 (1) % (y — ar1) X Q (3)
where F, is the survivor function: F), =1 — F, ; and

(i) oY (ak,) € argmaxIl, (y,al,)
: y :

with

X K

I (y,a75) = Fvi() x (y—afy) x (Q+8)+ (1= F (v () x (B(ar|y>a) —afy) x s

2
po,

2

_I_

20

kx(Q+ k). (4)



where ['=1— F.

Technically, prices arising in this context correspond to those arising in a Dutch auction or,
equivalently, in a first-price auction (FPA) (see also Biais (1993) or Rhodes-Kropf (2004)). In
our set up (unknown reservation prices and preferencing), the equilibrium quotation strategies
are quite complex because dealers expected profits from trade are different and because the
supports of dealers reservation prices are not identical. Indeed, the distribution support for the
reservation price of the preferred dealer is ‘shifted’ to the right compared with the distribu-
tion’support for dealer Dq’s reservation price. That is, the reservation price of the unpreferred
dealer D, is distributed uniformly on [a,,,a,4] whereas the preferred dealer’s cutoff price is

koaf } = [apu + po2k, .4+ pok]. Consequently, we distinguish

distributed uniformly on [ar,u’ d

F' the uniform cumulative distribution function (c.d.f.) of dealer D;’ s reservation price on
[@ru, arq) from P, the uniform c.d.f. of dealer Dy’ s cutoff price on [af’u, af’d}. To sum up, pref-
erencing creates a double asymmetry: (i) reservation prices are asymmetrically distributed ;
(i1) expected profit functions are also asymmetric (see Equations (1) and (2)). It is well-known
that these asymmetries preclude analytical solutions for FPA (see Lebrun (1999), Castillon
(2000) and Maskin and Riley (2000)). Thus we use a numerical approach to derive equilibrium
bidding strategies. In our setting, it is, however, possible to characterize analytical equilib-
rium strategies in two cases: (i) when the preferenced order flow is so large that the preferred
dealer cannot post the best price at equilibrium (k > 2(, — I;)) and (ii) in the competitive

benchmark where no preferencing is allowed (NP).

4.1.1 Case 1: the Equilibrium when Preferencing is Small x < 2 ([, — 1)

Dealers’ bidding strategies have the same support [ainf,asup}. Notice that, on this support,
both dealers have a strictly positive probability to execute public orders.
inf

is the lowest possible ask price quoted by a dealer and it is defined
such that Fj <U2 (ainf>> X F <U1 (ainf>> = 1. Intuitively, if dealer D; should post a lower price

The lower bound a
than dealer Dy (@ < aiff), then he could quote any price a; € [ailnf, a;nf[ and be sure to post
the best price. However, this strategy is strictly dominated by <a1 + ai2nf> /2. Hence, it cannot
be an equilibrium by elimination of iterated dominated strategy (the same holds in case when
a™ > aif). As a result, dealers’ best reply must have the same lower bound a™'.

The upper bound a®" is the largest possible ask price quoted by a dealer who has a strictly
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positive probability to execute the public order flow. This upper bound is defined such that
Fy, (vg (a®®)) x F (v1 (¢°™)) = 0. Using the same argument as before, we conclude that dealers

must quote no more than the largest possible ask price to get a chance to execute public orders.

Theorem 2 Assume that both dealers have a chance to post the best price (k < 2 (L, — 14)).
(i) The equilibrium inverse bidding functions vy and vy are solutions to the following pair of

differential equations:

R,

Fy (v (1) X% (9) y— v (y) ©)
P ) |,y (0 s/Q)

Fow) YT L ©

(i) If apg < 0™ <

Gy qtafy . .
—=—=4, there evists an equilibrium.

Observe that when ay, > a™ dealer Dy can never post the best price and she quotes her
cutoff price: a; = ay,. Note also that the equilibrium is not necessarily unique and that the
lower bound a™™ is endogenously determined by the upper bound a**

Among the multiplicity of equilibria, we use the Pareto-dominance criterion to select one
of them. This criterion is defined as follows: the equilibrium denoted by the subscript ) is
Pareto-dominant under the initial conditions® if for each equilibrium (V) under other initial

conditions™"), both following inequalities hold:

Hgl) (ar,a.1) < HgQ) (a1, a,1) for each a,1 € [aru, ard,

Hgl) (ag,af,) < HgQ) (as,al,) for each af, € [al,,af,].

Proposition 1 The unique Pareto-Dominant equilibrium is obtained when the initial condition

is such that a™® = (a,q + ay )/2.

(The proof of this Proposition has been omitted but is available upon request or in Lescourret

and Robert (2002).)
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An illustration of quotes at equilibrium
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FIGURE 4: An illustration of quotes at equilibrium

It is worth stressing two facts about the equilibrium described by the system of the ordinary
differential equations (4) and (5) and by the initial condition of Proposition 1. It is impossible
to get an analytical solution to this asymmetric equilibrium (at least we have not been able to
find one). Second, given that preferencing makes dealers asymmetric, they will in general have
different bidding strategies. We will further analyze numerical solutions of the ODE system.
However, there are two cases in which we can dispense from numerical solutions (i) when
preferencing is so large that the preferred dealer cannot post the best price (k > 2 (1, — 1))

(i) when no preferenced order flow is allowed as in a competitive situation.

4.1.2 Case 2: the Equilibrium when Preferencing is Large (k > 2(I, — 1))

When x > 2 (1, — 1;), Theorem 2 does not apply. However, we can characterize the equilibrium

in closed form.

Proposition 2 Assume that dealer Dy can never post the best price at equilibrium (af’u > a’"P
or k > 2(1,—1;)). In this case, she quotes a selling price equal to her reservation price:

as = ay,, and dealer Dy posts a1 = ay,,.

In this case, the portion of the captive order flow is so large that it precludes any price

competition between dealers. When the unpreferred dealer does not quote more than the
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lowest price posted by the preferred dealer, he is sure to post the best price and to execute

public trades.

Link between the quote selling behavior of dealers equilibrium when preferencing
is small (Case 1: k <2 ([, — I;)) and when it is large (Case 2: k > 2 ([, — 1))

This paragraph aims at giving some insights on the . As it may be proved, the initial

condition on the upper bound a™® determines the equilibrium (the lower bound a™ is indeed

endogenously determined by a*"). Given that the upper bound a®"® increases when preferencing

increases, a'™ is also varying with preferencing as Figure 5 depicts. When & = 2 ([, — 1)
K

r.) and are now characterized
?

equilibria defined in Theorem 2 degenerate (a™ = @™ = a

analytically by Proposition 2.

a" and a*®, k varying
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FIGURE 5: Evolution of the quotes’ support [ainf, asup}, K varying.

4.1.3 The Competitive Case (Biais, 1993)

Now, we turn to the characterization of the competitive equilibrium (our benchmark) where the
total order flow (@ + k) is public. In this case dealers draw their reservation price a, (1;, Q + k)
from the same probability distribution I on a common support [a, (I, @ + k), ar (14, @ + K)].

Consequently, dealers are symmetric when there is no preferencing, that is v; = v = v and

a1 = A9 = ayp.
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Then, the system of ODE described in Theorem 2 (equations (5) and (6)) simply writes:
—I" (v (y 1
FOw)
Fv(y)) y—v(y)

subject to the following boundary conditions:

. a, ]u, + K +ar]7 + K su
gt — (1w, @ >2 (10, Q + k) and ay} =a,(y,Q+ k). (8)

, (7)

It is easy to verify that the symmetric equilibrium characterized by the ordinary differ-
ential equation (7) and by the initial condition (8) is unique. Furthermore, there exists an
analytical solution, which is identical to the equilibrium described in Biais (1993, Corollary
1). Dealers post sell quotes which are equal to the sum of their reservation price and a mark-
up: anp (ar(1;;Q+ k) = ar (1;;Q+ k) + v(a,(L;, @+ k)), ¢ = 1,2. This quoting strat-
egy shows that dealers post an ask price strictly above their reservation price. The mark-up
v (a, (I;,Q + k)) allows them to make non zero profit.

In this symmetric case, the sell quotes and the mark-up are linear in the reservation price,

as follows:

aNP<a7’<]Z‘,Q—|—/{)) _ a”’(]i’Q_l_K;)_ga’T(]d;Q‘l‘Ii)’

ar (1g,Q + k) — a, (1;,Q + k)

7(61’7’ (IMQ_I_K)) = 9 > 0.

This mark up also writes:

v(a, (Li;Q+ k) =Fla,({-;,Q+ k) —a, (L;;Q+ k) |a, (I;,Q + k) —a, (I;, @+ r) >0].

Actually, dealer D; estimates how far upper his own reservation price the opponent’s reservation
price is on average and he submits a selling price equal to this amount. In this competitive
case the dealer who executes the incoming order flow is the agent with the most extreme
inventory. This result is consistent with the prediction of Ho and Stoll (1983)’s model: without

preferencing, the dealer with the longest inventory position posts the best price at equilibrium.

4.2 The Impact of Preferencing on the Quotes Placement

In order to analyze how order preferencing alters the way to bid of dealers, we present first a
numerical investigation on (1) the probability to post the best price and (ii) the relative surplus.

Then, we explain qualitatively the numerical results obtained.
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4.2.1 Preferencing and Bidding Strategy of the Unpreferred Dealer

This section details the quote-setting behavior of dealers in both market structures (centralized

and fragmented).

As numerical results illustrate on Figure 6, the probability that the unpreferred dealer
executes the unpreferenced order flow increases when the magnitude of the preferenced order
flow rises (it grows from 1/2 to 1). Given that he has more chance to execute public orders as

preferencing rises, dealer Dy competes less aggressively and earns a larger surplus (see Figure

7).
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4.2.2 Preferencing and Bidding Strategy of the Preferred Dealer

Now, we turn to the analysis of the bidding behavior of the preferred dealer. When order
preferencing becomes larger, dealer Dy is less likely to draw a low reservation price and she
has less and less chance to post the best price (it declines from 1/2 to zero when preferencing
is large). In other words her quoting aggressiveness decreases since she is less in average on
the best ask price (see Figure 8). Intuitively, because of her weaker probability to execute the
unpreferenced trade, dealer Dy is expected to post prices with a lower markup. Surprisingly,
the relative surplus of dealer Dy is not monotonous with the probability to post the best price.
For instance, let us suppose that her inventory position is 15,000 shares, then her relative

surplus is 0y (afg) = 0.75 when k = 0, 0, (afg) = 0.79 when xk = 500 and 05 (afg) = 0.83 when
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k = 2,500. However, 0, decreases to 0.72 when x = 7,000 (see an illustration on Figure 9).
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Actually, the preferenced order flow creates two types of asymmetry which generate opposite
bidding behavior for the preferred dealer:

(1) on one side, it forces her to post lower ask price due to her lower probability to execute
the public trade. With preferenced orders she is indeed less likely to draw a low reservation
price;

(i) on the other side, the private order flow creates a rent for the preferred dealer that
destroys her incentive to compete in prices.

In other words preferencing changes (i) the supports of dealers reservation prices and (ii) the
distribution of the probability function which changes the degree of price-competition between
dealers. Unlike the previous works related to asymmetric auctions, this paper mixes two kinds of
asymmetry which generate ambiguous bidding behavior for the preferred dealer. Specifically the
combination of both asymmetries invalidates any condition related to the Conditional Stochastic
Dominance. Then it is not easy to compare analytically dealers’ bidding behavior as in Maskin
and Riley (2000). It explains however the puzzling quoting behavior of dealer Dy, whose
quoting-setting is not monotonous with the probability to post the best price. In conclusion,
numerical examples indicate that even if the preferenced order flow has no clear impact on
dealers Dy ’s incentive to compete on the quoted prices, it deletes however her competitor’s

incentive to set narrower spreads (actually, we do not find numerical examples that invalidate
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this result).

4.3 Comparisons with a Centralized Market

Now, we analyze how the quote transparency alters market spreads and dealers profit regarding

preferencing.

4.3.1 The Expected Best Offer

Result 2 Under preferencing, the expected best offer in a centralized market differs from the
best offer arising in a fragmented market. When preferencing is large (k > 2(1, — 14)), a
fragmented market offers better market prices than a centralized market, i.e.

g + Qpy
B (0) < 5 = (o)

- 2
where F (a) = E (a1) = af

"

When no preferencing is allowed (our competitive benchmark), the expected best offer
in a centralized market and in a fragmented market are shown to be the same'®. However
preferencing creates asymmetries that invalidates this result (see an illustration in Figure 10).
It is also a well-known that asymmetries prevent the ‘revenue-equivalence theorem’ to prevail

in the theory of auctions.

—— the competitive benchmark i
——— preferencing in centralized market _
——————— preferencing in fragmented market /
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BThis result comes from the well-known ‘revenue-equivalence theorem’ obtained in the theory of auction as

Biais (1993) explains in the Proposition 4 of his model.
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FIGURE 10: Expected best offers with and without preferencing, quote transparency varying'®

Remind that preferencing deteriorates the best offer in a centralized market. This result
is also verified numerically in a fragmented market. Numerically, we find that wheareas the
impact of small preferenced order flow is ambiguous, large preferenced order flow harms more

centralized market than fragmented market, which is consistent with the experimental finding

of Kluger and Wyatt (2002).

4.3.2 Preferencing, Market Structure and Dealers’ expected profit

A. The unpreferred dealer’s expected profit

Result 3 In a two-dealer market where preferencing is large (k > 2(1, — 1)), the expected
profit of the unpreferred dealer is higher in a centralized structure than in a fragmented market,

(1) = (pote = 1)) s < gt x @ = ).

When preferencing is small (k < 2(1, — 13)), it is still numerically validated.

When preferencing is large, the expected profit of the unpreferred dealer is lower in a
fragmented market than in a centralized market since market spreads are smaller. For example,
when k > 2(1, — I;) (Case 2), the unpreferred dealer is sure to post the best price regardless of
the market structure but behaves differently. In a transparent market, he quotes a best offer a“
that is such that a;, < a® < ay,, whereas in the fragmented market, dealer D; quotes a = ay,,
(Proposition 2) that is always lower than his price a° in the centralized market.

However, even if the expected profit of dealer D1 are lower in a fragmented market with
preferencing, there exist some parameters values for which it is still higher than in a competitive
market: F(II;) > F (H]lvp> for k > k™ (Q) where it is numerically showed that &% (Q) >
& (Q) .(Lemma 2 and Figure 2).

9Whether the ‘competitive’ market is centralized or fragmented, remind that the expected best offers are

equal : £ (ayp) = E(a%p) (Revenue-equivalence theorem).
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FIGURE 11: The unpreferred dealer’s expected profit under preferencing vs. no preferencing

allowed.

B. The preferred dealer

As discussed in Section 2, under preferencing agreements, the preferred dealer faces two
risks. First, there is an inventory risk since the preferenced trade must be executed whatever
her inventory position is. For that risk, she is compensated by an additional risk premium
since her effective reservation price is higher under preferencing than under no preferencing
(competitive benchmark): Upy > Gy (I5,@Q + k). Second, there is also a risk in price execution.
When she does not post the best price, dealer Dy matches the best price which may be lower

than her reservation price for clearing x shares (a, (I, k) < a € [ainf, aS“p} ).

Result 4 In a fragmented market, the preferred dealer may incur losses in executing her captive

order flow.
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A comparison of Dealer D2's profits
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FIGURE 12: Dealer Dy profit and loss, for Iy varying

This result is consistent with the empirical evidence of Hansh, Naik and Viswanathan (1999)
who find that preferred dealers on the LSE make zero profits over all trades. Losses could even
be bigger if we now assume that the unpreferred dealer cannot observe whether a preferenced
order flow is received or not by her opponent. Then, the best price to match is more competitive

which makes the price execution risk rising for the preferred dealer (see Lescourret and Robert

(2003)).

In which market structure is order preferencing the more profitable for the preferred dealer

Result 5 In a two-dealer market, when preferencing is large (k > 2 (1, — 1)), the preferred

dealer expects higher profits in a centralized market than in a fragmented market:

2 _ _
B() > B (1) = 22 i+ Q) : (rn=ara) g,

Observe that we numerically find that even if the preferred dealer may incur losses, she expects
a higher profit when preferencing is allowed than when it is not allowed (competitive benchmark)
as in a centralized market: E (Ily) > F (HJQVP>. We also numerically find that there exist some
cases where the expected profit of preferred dealer is higher in a fragmented market than in a

centralized market even if she may face some losses.
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Note that when preferencing is large (k > 2 ([, — I;)), even if the preferred dealer has no
chance to accommodate the unpreferenced order flow due to a too large preferenced order,
she secures however a positive expected profit due to the lack of competition that leads her

opponent to post the highest quote.

5 Internalization

This section examines how internalization influences dealers’ incentives to compete and finally
how it impacts market spreads.

We consider that dealers compete for the public order flow (), and that dealer Dy may
internalize order flow denoted k. Under internalization, the dealer decides whether to match
the best price or pass the order to the dealer with the best quote. Hence, dealer Dy’ trading
profit is such that:

o () = max (0, (min (ay,a9,a, (I, k) — a, (Is,k)) X &) if ay > a4
o (ag —a, (I, (Q + K))) X (Q + k) ifay<a;

whereas dealer D’ expected profit is such that:

0 if a; > a9
7 (1) = (ay, —a, (1,,Q)) x Q if a, (Iy, k) < ay < ay
(ay —a, (1, (Q + k) x (Q + k) if a; < a, (I, k)

We can easily verify that in a two-dealer market, dealer Dy always internalizes order flow k.
However, in a three dealer market where only one dealer Dy can internalize, dealer Dy passes
k to the best quoting dealer with a strictly positive probability.

Work under progress

6 Conclusion

This paper investigates how preferencing alters the quoting behavior of two dealers with differ-
ent inventory position. Dealers are supposed to undercut each other’s quote to accommodate
an incoming order flow. However, we assume that part of this order flow is already pre-assigned

to one of the two dealers, regardless of his posted quotes. In accordance with best execution
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standards, that preferred dealer has guaranteed in advance to match the best price in executing
the preferenced order flow. The best price to match results however from the price-competition
with his opponent to attract the unpreferenced part of the order flow. In our framework,
preferencing is analyzed as a price-matching practice which generates inventory risks for the
preferred dealer. We find that these risk may entail some losses for that agent. However, con-
sistent with institutional concerns on price-matching like practices, we show that preferencing
generates negative effects on the market performance since it widens market spreads despite
dealers’ incentives to undercut to attract the unpreferenced order flow. Preferencing softens
indeed price-competition among dealers. Moreover, under preferencing, the market mechanism
fails to allocate efficiently the order flow: the longest dealer is not necessarily the dealer who
posts the best price, which partially invalidates the literal prediction of Ho an Stoll (1983)’

model.

Finally, we mention that to determine whether preferencing is good or not for markets is
much more complex. Preferencing results from long-term relationships between brokers and
dealers (or specialists) from whose investors may benefit, especially because of the guarantee
to be executed at the best price. Indeed brokers could direct their orders to another place
but incur the risk to be price-disimproved when the time of execution is taken into account.
Preferencing yields to supra-competitive prices, which could also represent the remuneration of
this execution guarantee. However, it remains that the unpreferenced order flow suffers then

from the widening of market spreads without benefiting from any guarantee.
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7 Appendix

Let F' be the uniform distribution function of the r.v. a,y, in the interval [a,, 4] and let F},

be the uniform distribution function of the r.v. af,, in the interval [af,, azd}.

7.1 Proof of Theorem 1

In Corollary 2, we show that dealer Iy has no incentive to post a selling price below her cutoff
price. It may be interesting to see why dealer Dy modifies her reservation price. The natural
reservation price would indeed be the reservation price that prevails in a competitive situation
where the k shares would not be executed by a preferred dealer but by the best-quoting dealer.
This competitive reservation is defined in introduction by a, (I2,@Q + k). To show that under
preferencing, at equilibrium a preferred dealer raises one’s reservation price from a competitive
level to a preferenced level, we allow in the following proof dealer Dy to quote as a function of

her cutoff price or her competitive reservation price.

(1) Suppose that the ranking of reservation prices is such that a,; > Upy > Ay (I5,Q + k).

Then dealer Dy posts the best price a5 = a,; — £ with probability 1. It is never optimal to
quote lower than this price, given that the probability is still equal to 1, and the trading profit
could only be lower.

Then, dealer D quotes aj = a,; since he cannot post the best price anyway.

(i1) Suppose that the ranking of reservation prices is such that Upo > Qr1 > Gy (I5,Q + k).

We suppose that dealer Dy quotes a5 = a;,. Then, the best reply of dealer D is to af =
ayo — €, which is the best price. If he quotes this price, it is indeed not optimal for dealer D,
to undercut him, in posting aj — ¢, till the competition yields to reach the reservation price of
dealer D). Dealer Dy would earn lower profit in this case than in not deviating from the quote

equal to her cutoff price, since (a1 — a, (I2,Q + K)) X (Q + k) < (a%y — a (I3, K)) X k.

(iii) Suppose that the ranking of reservation prices is such that Qpy > Qr (I5,Q + k) > a1.
Same than before. Dealer )y posts the best price a® = af = af, — ¢ and dealer D, quotes
ay = a; 5. However since the competitive reservation price is bigger than the reservation price
of her opponent, does dealer 1Dy have any incentive to deviate from her strategy in undercutting

her opponent 7 Given that af = a7, —¢ > a, (Iy,Q + k), if dealer Dy decides to undercut her
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opponent, she posts the best price equal to a® = a; = af —£ = a7, — 22. In this case she has to
execute the total order flow at this price. However, the trading profit is lower in undercutting

her opponent since, (aj — a, (I2,Q + k) X (Q + k) < (a° — a, ({2, K)) X k.

Consequently, at equilibrium it is not optimal for dealer Dy to post a price below her cutoff
price. This price plays the role of the reservation price of a prefrenced dealer. It combines
indeed the value of two different order flows : () unpreferenced shares and x preferenced shares.
It follows that at equilibrium the dealer executing the total order flow has the lowest reservation
price : min (am, afﬂ).

7.2 Bidding strategy characterization

STEP 1 : Dealer D;’s probability to post the best price (ex ante)

I3

a"r,u Qr.d a,ﬁ —
Pr (Dy posts the best price) = / I1x f(x)dz+ / T (x)dx
Qr .,y a’;u ar,d - ar,u

1 K K2

S+
2 <]u - ]d) 2 (]u — ]d)2

STEP 1Bis : Dealer D;’s ex ante aggressiveness

E(a%,) — a,
01(a,1) = ( <ar’§>1 a’1>]1ar,1<a§7u+

K K
<E <a’7’,2 ’ Qp1 < a’r,2> - a7’11>
ar,l

2

K K K

. Ap oy, + Ap g 1)1 + 1 % <a’7’,d - aT,l) 1

N 2% a A< T T g — Apy) X Qpy T
7,1 r,d U r,1

K
X Pr <a7’71 < aT,2> ]]'a'r,lza"riu

and

"rQu+ ": ";u 2 i
af 2a 4 In (—ZM) — polk (azd) x In (ij) + 2ar (azu — ar’d) + % (ar’d)Q _ % (af’
E (1) = +

Qrd — Qruy 2 (ar,d - ar,u)2

STEP 2 : Dealer D,’s probability to post the best price (ex ante)
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K I{2

- +

1
Pr (D, posts the best price) = 1 — Pr (D posts the best price) = 2 TR )2
u u — 4d

STEP 2Bis : Dealer D,’s ex ante aggressiveness

K K
E <a’7’11 ’ ) < aT,l) — Qpo

82 <af’2>

K
- Pr (a5 < ar) T et
r,2

k \2
1 % <a’7’yd - a’r,2>

5 K T ,d>“'€,2
2 (@rg = aru) X Qry T

and

2 “ 2
(and)Q % 1I1 (ar,d) + (aréd) _ (aréu) + 2a7’,d <a’f,u _ ar,d)

I3
a”r,u

B (0,) =

7.3 Proof of Lemma 1

Before proceeding to the computation of the expected best offer, it is worth noticing than when
the preferenced order flow is large, then at equilibrium the preferred dealer is not able to post

the best price anyway. Specifically, when k > (I, — 1), then Ay > Arg.

Lemma 4 When the preferenced order flow k is so large that k > (1, — 1;), then the preferred
dealer can never post the best price at equilibrium. Dealer D1 quotes aj = a;y — €, and then
the expression of the expected Best Offer simply writes :
E (ac) — af,d + a’f,u
- 2
Proof : When k > (I, — 1), at equilibrium, dealer 1)y posts the best price with proba-
bility 1 and quotes af = a;, —&. Then, it is optimal for dealer Dy to quote her cutoft price
a5 = ay,. She would indeed earn lower profit in undercutting her opponent by aj —¢ since
(af —e—a,(l,Q+ K)) X (Q+ k) < (a§ —a, (I5,Kk)) X K. Moreover, in this case, the expected
best offer is simply equal to

K K
. a’r,d + a’r,u
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Now we have to consider the case where k < ([, — I;).

STEP 1 : Determination of the expected Best Offer when x < (I, — 1)
By definition, the best offer writes : a° = min (af, a3). In this two-dealer transparent market,
the best offer is simply equal to max (am, afg) .

Let us denote Fy; = F'F, the c.d.f. of max (am, afg). Then

“+o0

®
a"r,d

E(a®) = E(max(ani,af,)) = / Fy (x)dz=al, + [ Fy(z)dx (9)
A 0
G+ ary  (ara — aru) posK
a T O, A~ ru) (4 _ o 1. <,
2 + 6 < (g — Qry) FuSr.d
a’f,d + a’f,u
— 5 g

STEP 2 : Determination of the expected Best Offer prevailing in the benchmark
(the ‘competitive’ case).
Remind that in a situation where No Preferencing is allowed, dealers are symmetric. In this

case, the best offer is defined by oV = max (a,1,a,2) and

B <QC’NP> _ 2ar,d;‘ Qr,y

STEP 3 : Comparison of the expected best offers (competitive vs preferenced

case)

e When k > ([, — I;), it is easy to show that

K [
a’r,d + a’r,u

>~ F <QC’NP> _ 2ar,d + Qr oy
2

E(a%) = 7

e When k < (I, — I;), we denote ¢ (k) the following expression : ¢ (k) = F (a°) — F (a%p)-

After straightforward calculations,

v = 2 <<I“§Id) <<1‘Tim>3_1> M)
ot = 2 (1 ()

w0 - it (i)
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Since k < (I, — 1) , then ¥ (k) > 0, ' (0) = 0, ¥' (I, — ;) = po?/2, then ¢/ (k) > 0
for each k < (I, — 1) . Notice that ¢ (0) = 0 and ¢ (I, — I4) = M > 0 , then we can
conclude that ¢ (k) > 0 for each k < (1, — I;). It follows that F (a) > E (a%p).

[ |

7.4 Proof of Lemma 2
STEP 1 : The expected payoff of dealer D,

e When k > (I, — 1), then dealer Dy posts the best price with probability 1, and his payoff
is

K K
a’r,d + a’r,u

I (ar) = (E (afg) - ar,l) X Q= <T - ar,1> X Q)

Hence, at date 1 (ex ante), dealer Dy expects the following profit :

Qr

e When k < (I, — I;), then
II5 (ar1) = Pr (af’2 > a,) X [E (af’Q | apy > ar1) — ar1] X Q
The uniform distribution Fy (.) of the r.v. af, is in the interval [af’u, af’d}, then

K
- If ay, < a1

I3

- Jorraf, () de 1 (afy—a, 1)2
¢ (a,1) = F. (a,1) x | == | x Q=2 x>t T o
! <a ’1) <a ’1) Fﬁ (ar,1> ¢ & Q 2 (ar,d - ar,u) Q
—ifa,, <a < Ao
c a,:’d a’fd + a’fu
5 (ar1) = / rfe(x)dr —a,n | X Q = T — ;1 | X Q
and,
B () /“le (afy — x) O f()d +/am ar,+ar, < Qx f(x)
1) = 2 (Gri — @) x)dx - 5 T )¢
_ Ard — Qru (p(j%/{) 012) (@ra — aru + pO‘%K;) ¥ K| xQ
6 6 (ard (079 u) 2 (ard aru)



STEP 2 : The expected payoff of dealer D,.

o If a4 < ay,, dealer Dy posts the best price with probability 1 and he quotes af = ay, —«.

Since it is optimal that dealer Dy quotes her cutoff price, her payoff is :
2

115 (afg) = (af’2 —a, (I, /{)) X K = % (Q+ k)X K

e If a7, < a,4, we get (see Theorem 1) :

I (aky) = Pr(an > aly) x (E(an | an > aly) —a, (I5,Q + K)) x (k+ Q)

+Pr(a, <aly) x (afy—a, (I3,K)) X K

2
= F(aly) X (B (an1 ] an1 > aly) —ary) X (Q+ k) + pg“ X (Q+K)XEK

This expression is quite natural since we argue in Lemma 1 that dealer Dy will not post

selling prices below her cutoff price. The latter expression rewrites,

) St f () da
115 (af,) ZfWﬁ9X<—%i;5———ﬁa>%Q+@+ L Q) Xk

_ (Eﬁ:ﬁ&i+pgxﬂ>x<Q+@

Qpd — Qry 2

Then, at date 1, when k < (I, — I;), dealer Dy expects the following profit :

Gr,d — )2 aly
E(I) = / (M—I—pdeI{) X <Q+K)f,i(a:)da:—|—/ 7 pg% (Q+ k) X Kkfy (z)dx

ar,d - ar,u 2 r,d

I
T, U

3
_ @45) | (g maru = pgzl{) + po? x k
2 3 (ar,d - ar,u)
Finally,
2 3
c pO_UX<Q+K;) (IU_Id_K)
E(IL) = Lo<ir, -
( 2) 2 3 (]u . ]d)Q + K S(Iu Id)
2
()
—I—p “(Q + k) X kles @, 1,)-

2

STEP 3 : Comparison with the competitive case

If the preferenced order flow was directed to the first dealer who quotes the best price then

dealers’expected profits would be :

B(I) = B () = (455 x (40
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then,

STEP 3.1 : Comparison of dealer D,’s expected profit

B (1) - B (") = (3 L ) < CE oty 0

3 (ar,d - ar,u)2 2

STEP 3.2 : Comparison of dealer D;’s expected profit

e When k < (I, — 1), after straightforward manipulation, we get

2, 1\2 9
1 a.g—a
B — B (TIVP) = potrQ) x | —— 0K pouk L =
( 1) < 1 ) p v Q ( 6 (ar’d _ ar’u)Q 2 (a»,s’d _ aryu) 2 GPU%Q

e When k > (I, — 1), then

r.d — UWry 1
B(I) ~ B (1) = pos (1 (e <1 . _)>

Let us now define the following function :

YA K )
g<K7Q) - 6 < (IU _ Id)2 + 3<]u _ ]d) + 3 Q > ]lHS(Iu*Id)

L, — 1, 1
+ (1 - <67Qd) (1 + g)) ]ln>(Iu7[d)

000 =5 (3-L51) g-10.0 =5 (5-B5%) . g =1 Bt

g (k,Q) 1 <_ 2K (I, — 1)
Ok 6 <]u - ]d) (

= ] _ Id) + 3> ]]'HS(Iu*Id) + W]lﬁ>([u*1d)
¢ is an increasing function, the sign of this function depends on the initial condition. Then,
o Q= B3l B(I) = B (TIY7)

0Q<@and

- i) < Q < G B(I) < B(IYP), if & < #*(Q), B(I1) > B (TIY), other-

wise
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— B dd) g < B dd pyIrs) < B(TINP), if 6 < w7 (Q), B (IT5) > F (IIVF), other-

wise

- Q < Ll B (IIG) < B (IIVP)

. (L, — 1q) (L, — 14)
Q) = (3— \/21_4T>

<]u - ]d) Q
(6Q — (Lu = 14))

where

Now, we define k such that

£(Q) = £ (Q) ](I“;Id)gQ<(I“;Id) FrQ) ]I(Iugld)§Q<(I“;Id)

7.5 Proof of Lemma 3

In a three-dealer market, we suppose that only dealer Dy is preferred. The reservation prices

of dealers are respectively a1, a;, and a,3. Then, the exepcted best offer writes :

c _ K
D) (Q ) = I (ar,3]lar,1<a,r,3<af72) + E (GT’Q]laT,1<af72<a,r73) + E (ar,l]laf72<ar,1<ar73)
K
‘I‘E (ar,3]laf72<ar73<ar71) + E (GT’Q]laT73<af72<ar71) + b (ar,l]la,r73<ar71<a’;2)

_ K
= 2 (E (ar,3]lar71<ar73<a’;72) +F (ar,Q]lar71<af72<ar73) +F (ar,ljlaf72<ar71<ar73))

Let us denote x = a1, y = P and 2 = a,3

Gr d _ aH’ — 2 afu —
B (a 1 = : S rd dz+ [ : =
r3tar1<ar3<aly | —
" ar (ar,d - ar,u) Qpd — Qry Qpd — Qry (ar,d - ar,u) Qp g —
U arr,u

Gp d
B N . ™ Yy Y — Qru Qrd — Y d
Apola, 1 <al y<ars | = Y
’ ax (ar,d - ar,u) Qr.d — Qppy, Qr.d — Qppy,
U
rid X T — a’f,u Qrg — &
b ar,ljla’:2<ar71<ang = dx
’ ag ., (ar,d - ar,u) Qprg — Qry Qprg — Qry

’




After straightforward manipulations, we get

4 3
(ar,dfa"riu) (ar,dfa"riu) K K 2
1 N 4 + 3 (ar,d —2ar, — pgv&)
2
— !a A= Gy
E (ar,3]la,,71<ar73<a’;72) 3 + - == <<p0_12)K + a’fu) <a’fd - a’fu) - pU%Kafu>
(ar,d — ar,u) 2 ) i ) )

—I—pO’%KZCLf’u <a’f’,d - a’f,u) <a’7’,d - a’f,u)
(pU%K)Q (3aru + 2po3K)
6 (ar,d - ar,u)2

4 3
1 _ (and;af’u) —I— (am,d;af,u) <a7’,d _ 20/?’“ — pU%K)

A _ _
E (CLT’Q]la,,J <a’:72<ar,3) - 3 o —ar )2
(ar,d - ar,u) +£—Lr’d il

7 ((af + polk) (ara — a,) +af poyr)

and
K 4 —ak 3
B 1 . (a"r,d 4(1@,71,) —I— (a"r,d - 'r,u) <a,7,’d o 201?’“)
E ar,l]la’:72<ar71<ar73 - (a a )3 4 g—at 3
r,d — Wray + > ALY
2 U
Finally,
E(a®) = (@ra — @ru) <1 _ pOLK >4 _ pOLE <1 _ poLE >3
2 (ar,d - ar,u) 3 (ar,d - ar,u)
2 2 2002 Kka 2
+ (2[)012)/{ + am) <1 — PO > + PIuRAru <1 _ %)
(ar,d - ar,u) (ar,d - ar,u) (ar,d - ar,u)
L p72)" (B -+ 2p0%)
3 (ar,d - ar,u)2
|

7.6 Proof of Theorem 2

STEP 1 : Determination of the ordinary differential equations system

Given the best reply of dealer Dy, dealer Dy chooses y so as to maximize his profit,

IT; (y, ar1) = I (vo (y)) x (y — ar1) X Q.

Then the first order condition (FOC) yields

oIl <y7 ar,l)
Oy

At equilibrium, if @, is the optimal strategy (a; (a.1) = y), then v; (y) must verify the FOC

=0or Iy, (v2 (y)) + 25 () < I (v2 () X (y — ar,n) = 0.

such that for each vy :

Fi (02 () + 05 (y) < F (v2 () % (y — 01 () = 0. (10)
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Now, given that dealer )y quotes a1 = (Ul)fl, then dealer Dy chooses y so as to maximize

her profit Ily, where

s (y,a75) = F(vi(y)) x (y—afa) (@ +r)

+ ( — F(v1(y) x (E (a1 (ar) |y > a1 (ar1)) — aly) X &

po?
+2 X (Q+ k).

Then the first order condition yields :

8]:[2 <y7 a’f,Q)

oy = 0or P () (14 1/Q) + 04 () X ' (01 (1) x (y = afa) =0

Now, at equilibrium, if a, is the optimal strategy, then vy (y) must verify the first order
condition of dealer Dy such that for each ¥ :

F (o1 () (14 r/Q) 4+ v} (y) x F' (01 (y)) x (y —v2 (y)) =0 (11)

At last, the equations (10) and (11) give the following system :

—F 1
Ly (v2 (y)) < (y) = 7
Fﬁ (UQ (y)) y—u (y)
—F 1
- (Ul (y)) % U/l <y) ( + K/Q)
F (v (y)) y =2 (y)
STEP 2 : Existence of an equilibrium
Given that [ (z) = aa;fj and F (z) = aaiij , the system writes also :
, (ara —v1 (y)) x (1 +K/Q)
(y) = - 7 (12)
y—2(y)
arg — vz ()
vy (y) = L 13
W ) 1
Following Theorem 3 of Griesmer et al. (1967), since ar’d;a’:d > ay,, we can prove that

sup

there exists a multiplicity of 2° equilibria parameterized by a®® . In such an equilibrium :

(1) max <a’7’d7 ru) < a*'? < %7

(ii) va (a™P) = @™, vy (™) = g

(iii) a™ is such that v, (ainf) = a,, and vy (ainf) =ay,.
|

20Both dealers have a positive probability to accommodate the unpreferenced order flow +Q.
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7.7 Proof of Proposition 1

(The proof of the Theorem has been ommitted but is available upon request or in Lescourret

and Robert (2002).

7.8 Proof of Proposition 2

The captive order flow k is such that Ay > (ar,d + af’d> /21e. k> 2(I, —1). Then,

K
a’ﬁd + a’r,d

K K
Qpy, S Qp g S 9 - S a’r,u S a’r,d

Now, we suppose that the preferred dealer Dy quotes an ask price equal to her reservation
price : as (afg) = Qg (we will prove ultimately that this reply is the best one). When a; > A

dealer Dy chooses a selling quote that maximizes his profit,
1L (am) = Pr (a1 < CLQ) X (a1 — CLTJ) X Q

= Pr(a; <aly) X (a1 —an) XQ

= FH (al) X (a1 — ar,l) X Q

The first order condition yields to

Fo(ar) = fi(ar) x (a1 —a,1) = 0

K
(ar’d — al) — (a1 —as1) = 0
Then, we deduce that
K
a’r,d + a’ﬁl
ay = —————
2
.. . . . ar s tarq .
ay is increasing in a,; < a,4. Setting a1 = Td2 == = @™ < af, gives dealer D; an

equal probability to post the best price. However dealer Dy maximizes his profit when he
quotes a; = ay,. Given the dealer Dy’ s best reply, dealer Dy has no chance to execute the
unpreferenced order flow and quotes indeed as (afg) = ay, (since dealer Dy never quotes a

price under her cutoff price).
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7.9 Proofs related to the characterization of the way to quote

STEP 1 : The benchmark case

1. Aggressiveness

[Nl

Qr.d ar,d 1 . aT’,d arad

2. Probability to post the best price
Given that Pr(D; posts the best price | a,;) = F (v (a;)) = I equilibrium, we

Gpr d—Qr 4
must have v (a;) = a,;, then
brd Qg — X 1
Pr (D; posts the best price) = / —rd (x)dz = —
A gy a’r,d - ar,u 2
STEP 2 : The preferencing case when x > 2 (1, — 1)
1. Aggressiveness
a¥ —apq
0(a D)= U B
( T! ) aryl
Hence,
a®, In =4

Qr.d a
E (0 :/ < ’u—1> z)dr = ——2% 1.
( 1) Qry x f ( ) Ard — Qpy
Note also that £ (6,) = 0.

2. Dealers’ expected profits

4 q 2 2
E(Ily) = (/ <af’u + ngK + pg”@ — a:> I (z) da:) X K.

I3
U

It is straightforward to show that E (Ily) = (a4 — @ + po2 (k + Q)) /2 X k. Concerning the

unpreferred dealer, he expects the following profit :

E(L) = [/d (af, — ) f (z) da:] % Q= 200k = (Gra = Gru) 0.

2

7.10 Proofs included in the section ‘Internalization’
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