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ABSTRACT 

 
This study intends to investigate the (dynamic) behavior of mutual fund managers 

regarding the variability of the conditional market volatility (analyzed with the support of 

EGARCH models) in the Brazilian market. The results seem to reveal that managers are 

able to implement strategies that allow them to respond efficiently to increases of market 

volatility, by adjusting their exposure to systematic risk. 
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1. Introduction 

The investment process involves a vast number of variables and uncertainty, turning it 

into an extremely complex task, in special, when the portfolio management is considered. 

Since the seminal papers of Sharpe (1966) and Jensen (1968), which seek to 

condense in one single measure the global contribution of active management to the 

portfolio, many authors have tried to decompose the global performance in specific skills. 

The ability to anticipate the macromovements of the market, market timing, can contribute 

to add value to actively managed portfolios. 

Traditionally the time concept focus on the market returns; however, the recent 

development of techniques of volatility modeling brings a new perspective up, once 

volatility is one of most important concept of modern financial theory, which has been 

taken as time constant, termed unconditional. In such a manner, the historical volatility, 

computed as standard deviation of one period, keeps the same in the next period. 

Nevertheless, the stylized characteristics for the empirical probability distributions for 

financial asset returns, such as excess kurtosis and clusters, indicate that the volatility is 

time conditional and nonlinear related to returns.  

This study evaluates the ability of fund managers to anticipate the market volatility, 

the so-called volatility timing. It can be justified, first, because there are still few studies 

about the extend to which profession management is able to add value to the portfolio in 

the Brazilian market context and, second, because of the new horizons of this new 

approach applied in a reality in which predicting the beginning large oscillations moments 

is a important factor for risk management. 

 
2.  Literature Review 

The first to analyze empirically the market timing ability of funds managers were 

Treynor and Mazuy (1966). According to them, funds managers tend, or try, to anticipate 

the market conditions variations. In consequence of this activity, the characteristic line, 

which represents the relationship between the excess return on portfolio and the excess 

market return, is curved. Its inclination changes constantly, indicating that managers 

answer constantly to the market conditions changes, as described the following equation1: 

ptmtpmtpppt RRR εψβα +++= 2     (1) 

                                                 
1 Some authors qualify this regression as quadratic; however, according to Gujarati (2000), a regression is 
linear if its parameters are linear, independently of the variables, and that’s the case. So in this text, the 
adjective quadratic is avoided to the Traynor and Mazuy regression. 
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where Rpt is the excess portfolio return on period t, Rmt  is the excess market return 

on period t, αp is the selectivity measure, βp is the coefficient estimated for a manager 

without timing, ψp is the timing measure, and εpt is the regression, supposed to be 

independent, identically distributed (iid). If ψp > 0, it can be inferred that the portfolio 

exposition increases as the market risk premium increases. That is what is expected of a 

manager with timing ability. After examining 57 mutual funds, from 1953 to 1962, the 

authors concluded that there is no timing evidence, once only one fund showed some 

timing ability. 

Fama (1972) is the first to propose formally a methodology to decompose the 

observed portfolio return into selectivity and timing; even though, it is hard to implement 

empirically. Jensen (1972) departs from the correlation between the market expected return 

and realized return to get a measure of timing. Since expected returns are usually not 

known, Jensen concludes that is not possible to decompose the global performance. 

Arguments that would come to be contested by Grant (1977; 1978); by Pfleiderer and 

Bhattacharya (1983); by Admati and Ross (1985); and by Dybvig and Ross (1985), who 

demonstrate that the measure of performance could result in inferior performance if the 

timing activities were ignored. 

Merton (1981) defines timing simply as the ability to anticipate if the market return will 

be greater or smaller than the risk-free return, so that the portfolio return can be taken as the 

sum of the standard one factor model plus put options on market portfolio with strike price set 

to risk-free rate. Based on this report, Henriksson and Merton (1981) developed statistical 

procedures that allow detecting timing activities effects, as shows the following equation: 

ptptpmtpptp RMaxRR εφβα +++= )(,     (2) 

where φp > 0 means market timing ability and remaining variables as last definition . 

This measure presumes managers select different levels of systematic risk according to 

their expectations, increasing the portfolio risk exposition when predicting 0>mtR  and 

decreasing it when predicting 0≤mtR . 

Most studies find little evidence that fund managers possess market timing ability. 

Henriksson and Merton (1981) find that only 3 funds out of 116 exhibit significant positive 

market timing. Henriksson (1984) and Chang and Lewllen (1984) observed that the 

average timing coefficient is negative. Phenomena also observed by Shukla and Trzcinka 

(1992) and by Lakonishok, Schleifer and Vishny (1992). In the South-African market, 

Meyer (1998) verifies that, on average, fund managers are not capable of anticipating the 
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market macromovements. In the Italian market, Casarin, Pelizzon and Piva (2002) do not 

find timing indication. In Brazil, Varga (2001) does not verify statistically significant 

timing coefficients either. 

Another fund performance evaluation approach involves information asymmetry and the 

portfolio composition information proposed by Cornell (1979) and Grinblatt and Titman 

(1989; 1993). Regarding the asymmetric information, credit goes to Elton e Gruber (1991) 

with the development of a set of measures supposed to identify performance, either global or 

decomposed in timing and selectivity. However, as far as we know, up to the moment, there 

are only two empirical applications of Elton e Gruber (1991) technique: Hwang (1988) and 

Machado-Santos (1997). Hwang (1988) analyses five mutual funds and observes significant 

and positive timing estimates. Machado-Santos (1997), in the Portuguese market, analyses six 

mutual funds, of which four become evident market timers. 

 
3. Volatility timing 

In general, the studies about portfolio managers’ timing ability focus exclusively on the 

market returns, in the attempt to verifying whether the portfolio risk exposition increases 

before the market is up or whether it decreases before the market drops, in other word, 

determine the ability of predict the macromovements of markets and act in the proper manner. 

Nevertheless, Busse (1999) proposes a new evaluation approach. Introducing the conditional 

volatility concept, he focuses on the manager’s ability to anticipate the market volatility, the 

so-called volatility timing. In contrast to Treynor and Mazuy (1966), Henriksson and Merton 

(1981), Fama (1972) and Elton e Gruber (1991), Busse investigates if the funds risk exposition 

is changed properly as the market volatility changes. 

The Busse approach is similar, in some aspects, to Brown, Harlow and Starks (1996) 

and Koski and Pontiff (1999), who also analyze the funds volatility management, but not in 

relation to the market volatility. Since Busse analyses the managers’ response to expected 

future market conditions, his analyses fits into the conditional literature started by Chen 

and Knez (1996), Ferson and Schadt (1996) and followed by Ferson and Warther (1996), 

Chrstopherson, Ferson and Glassman (1998) and Becker et al. who use publicly available 

economic instruments in the context of the conditional market returns. 

There are two reasons to focus on volatility: first, because, even though it is difficult 

to predict market returns, market volatility is predictable (Bollerslev et al., 1992); second, 

because the majority of performance measures are risk-adjusted. 
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The empirical model is initially based on the one factor model, to which Busse adds 

terms to detect the volatility timing effects and adjusts it to daily frequency. The factor 

model is bellow: 

ptmtmpppt RR εβα ++= ,       (3) 

where, Rpt is the excess portfolio return in the day t; Rmt is the excess benchmark 

return in t; βmt is the beta parameter; αp is the portfolio abnormal return; and εpt is the 

residual component. 

In order to deal with potential difficulties due to daily data, described by Scholes and 

Williams (1977) and Dimson (1979), namely the nonsynchronous trading problem that 

hampers regression estimates for individual securities, Busse adds a lagged excess market 

return term Rm,t-1 to the model, as follows: 

pttmmpmtmpppt RRR εββα +++= −1,10     (4) 

So to account for the volatility timing, market beta is expressed as a linear function2 

of the difference between market volatility and its mean )( mmt σσ − : 

)(0 mmtmpmtmpmpt R σσγββ −+=           (5) 

Therefore, whether the portfolio manager is capable of predicting the market 

volatility, he must adjust his systematic risk exposition correctly, decreasing it when 

expecting volatility elevation in order to avoiding possible losses. In such a manner, the γmp 

sign is supposed to be negative, reflecting the fact that, in moments the volatility is higher 

than usual, the portfolio systematic risk exposition level is lower, what can be observed in 

equation 5. Thus the proposed empirical model is 

pttmmpmtmmtpcmtmpppt RRRR εβσσγβα ++−++= −1,10 )(    (6) 

 mpγ   can be interpreted as the timing market volatility estimator, computed as the 

product between volatility difference in t, (σmt–σm)Rmt. 

 
4. Data and Methodology 

Sample data consists on daily log returns of 60 open-end mutual funds, in the period 

from January 2, 2001 to December 31, 2002, in a total of 502 observations for each fund. 

The database was gently provided by Associação Nacional dos Bancos de Investimentos e 

Desenvolvimento (ANBID). Three classes are analyzed: Active Bovespa funds, Balanced 

funds and Other Stocks funds. Active Ibovespa are stock funds that try explicitly to beat 

                                                 
2 The author uses simplified Taylor series expansion. 



6 

the Bovespa Index; Balanced are funds that invest in different classes of assets (stocks, 

bonds and exchange markets, for instance); and Other Stocks are stock funds that do not fit 

on the special ANBID classes. The São Paulo stock index is used as the benchmark. 

Excess returns are defined as 

fttt rrR −=      (7) 

where, tR  denotes the excess return on portfolio in day  t; tr  is the log return and ftr  

is the Brazilian government bonds rate, Selic interest rate, used as proxy for the riskfree 

return, obtained in Central Brazilian Bank, daily discounted as follows: 

1
100

1
252
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, −

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
 += ao

tf

i
r     (8) 

where iao is the Selic interest rate per year3 in day t. 

 
The time horizon was determined, mainly, by the various law revisions in the recent 

years, which has caused mutual funds and funds classes to extinct, to divide or to merge. 

Besides, the relatively stable economic scenario, started with the Real Economic Plan, in 

1994, has led frequently the local authorities to modernize the fund industry rules4. 

Difficulties in studying long-term in the Brazilian financial market are also found by 

Martins (2001), when studying mutual funds; by Corrêa et al. (2002), studying the stock 

market; and Cavalcant (2003), on the macroeconomic level. 

The motivation for using daily frequency data is due to quantity of additional 

information about the strategies employed by agents, when actively transacting compared 

to monthly data, because, as Bollen and Busse (2001) verifies, tests using daily data are 

more powerful than the monthly tests and funds exhibit timing skills more often. 

The empirical model employed considers the conditional volatility is based on 

equation (6) proposed by Busse (1999). The market conditional volatility (σmt) is estimated 

using autoregressive conditional heteroskedasticity models introduced by Engle (1982), 

more specifically, the Exponential Generalized Autoregressive Conditional 

Heteroskedasticity (EGARCH) model by Nelson (1991), which allows volatility to 

response non-symetricly to shocks, accounting to a important stylized fact for financial 

series, the leverage effect. The leverage effect was first observed by Mandelbrold (1963) 

                                                 
3 The Selic interest rate is the interest rate on the overnight inter-bank loans collateralized by government 
bonds and it is publicized compounded per 252 working days a year. 
4 Andrezzo and Lima (1999) and Fortuna (2002) describe in detail the rule changes in Brazilian Fund 
Industry. 
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and Black (1976) and describes the fact that negative innovations to returns tend to 

increase volatility more than positive innovations of the same magnitude. EGARCH model 

defines the conditional is estimated as follows: 
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where the first line is a auxiliary regression, p is the number autoregressive lags and 

d is the number of values of standard residuals;  cm, cp, ω, β e η are parameters can take 

any value, η captures the asymmetry in the returns response to positive and negative 

chocks, and conditional variance, σ2
mt, is a asymmetric function of residuals, εm,t . This 

logarithmic formulation accommodates negative residuals, assuring positive variance. 

Many reports corroborate the idea the EGARCH describes financial time series better than 

the GARCH model (Taylor, 1994; Heynen et al., 1994). 

The EGARCH specification selection refers to choosing the p and q orders and the 

decision about inclusion or not the autoregressive term on the auxiliary regression. The 

information criteria are commonly employed to ARCH models specification (Valls Pereira 

et al., 1999; Busse, 1999). 

The information theory establishes criteria that tradeoff a reduction in the residual 

sum of squares for a more parsimonious model. Then two most commonly used selection 

criteria are Akaike Information Criterion (AIC) and Bayesien Information Criterion (BIC). 

Additionally, if the data is properly modeled, the standardized residuals must be iid.. This 

is checked by using Ljung-Box Q statistic. 

In short, the employed empirical procedure follows four steps: 

• To specify the conditional volatility model for Ibovespa returns; 

• To generate market volatility series,  (σmt–σm)Rmt; 

• To employ regression (6) to each sample mutual fund; 

• To infer the statistical significance of volatility timing coefficient, mpγ . 
 
In order to overcome the effects of potential heteroskedasticity and autocorrelation 

on the regression coefficients, it was constructed bootstrap standard errors, following the 

procedure described by Freedman e Peters (1984a, 1984b) and used by Bollen e Busse 

(2001). The bootstrap standard errors and t statistics were computed as follows: 
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i.  To estimate parameters using OLS, according equation (6), over the sample 

period: 

eèXY += ˆ      (10) 

where X is a (t x k) matrix of exogenous variables, è̂  is a (k x 1) vector of 

regression estimated coefficients,  Y is a (t x 1) vector of response variables, and ê 

is a (t x 1) vector of regression residual term, computed as follows: 

  YYe ˆˆ −=      (11) 

   where     èXY ˆˆ =               (12) 

ii.  The resample of residuals is then drawn randomly with replacement in each t 

moment in order to generate a bootstrapped residuals vector êb
*. 

iii.  Next, a vector of bootstrapped response variable, by adding the resampled vector 

of residuals to the vector of fitted response values Y: 

** ˆˆ
bb eYY +=      (13) 

iv.  These bootstrapped responses, Yb
*, are then regressed casewise on the exogenous 

variables X in order to estimate a bootstrapped vector of estimated coefficients b 

for this resample: 

eèXY ˆˆ ** += bb      (14) 

v.  Steps ii to iv are repeated 1000 times, generating (1000 x k) matrix of 

bootstrapped coefficients *ˆ
bè . Each column in this matrix can then be converted 

into an estimate of the sampling distribution of kè̂ , by placing probability of 

1/1000 on each value of *ˆ
bè  for a given parameter. 

vi.  The standard error of each fund’s volatility timing coefficient is the bootstrap 

standard error of the original volatility timing coefficient, which is used to 

compute empirical t-statistics of the form: 

)ˆ(

ˆ

,

,

bootstrapp

originalpt
θσ
θ

=     (15) 

Additionally, and for confirmation of the values obtained through the bootstrap method 

in the regressions that exhibited autocorrelation and/or heteroscedasticity, the Generalized 

Model of Linear Regression was implemented with the correction for standard errors 

suggested by Newey and West (1987). The authors proposed an estimate of the matrix of total 

variance for the parameters of the regression that it is so much consistent in the presence of 
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heteroscedasticity as in the one of unknown autocorrelation. The standard-errors estimated by 

that method are said heteroscedastic and autocorrelation consistent (HAC). 

On the other hand, the model of Busse evaluates the timing through a different 

perspective, that is to say, presumes that the managers are able to anticipate the market 

volatility based on its own predictability, once, according to the author, the market 

volatility tends to persist, while the returns alone are not easily predictable and reliable.   

   

5. The Results 

The study was preceded firstly to the analysis of the Ibovespa’s returns 

characteristics, in order to determine the most appropriate method to be used in 

implementing the conditional volatility model. 

Figure 1 shows the histograms of the daily raw returns and excess returns, 

respectively, of Ibovespa together with the curve of the normal distribution. The chart 

analysis allows us to verify that, in both situations, a lot of observations are placed out of 

the area expected for the standardized (theoretical) normal distribution. In general, the 

empiric distributions are narrower, longer and with higher concentration of observations in 

the extremities. A distribution with these characteristics is said leptokurtic, displaying 

more density in the extremities, which denotes that the probability of extreme events is 

larger than the expected for a normal density function. 

 
Figure 1 

Empirical distribution of the Ibovespa excess returns 
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It is also possible to observe deviations of the normality from Figure 2a (Normal 

Quantile-Quantile plot). In case the distribution was normal, the dots should locate 

randomly around the ascending line, which is not verified. The phenomena of the heavy 

tails is exhibited by the negative deviations of the inferior dots, which denote the smallest 

quartiles of the distribution, and for the positive deviations of the superior dots, that denote 
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the largest quartiles of the distribution, indicating the existence of negative and positive 

extreme values, respectively. 

   
Figure 2 

Q-Q plot and Detrended Q-Q plot of the empiric Ibovespa excess returns distribution 
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A better idea of the intensity with that the observed points deviate from normality is 

given by Figure 2b (Detrend Normal Quantile-Quantile plot), in which the difference 

among the values standardized for each observation and the corresponding normalized 

values is represented in the vertical axis, against the values observed in the horizontal axis. 

For a normal distribution, the points would locate randomly around the horizontal line 

(zero). However, it is not the observed behavior and the probability of extreme values 

becomes still more evident. 

Table 1 exhibits the values for asymmetry and the statistics tests for normality of 

Jarque-Bera and Kolmogorov-Smirnov. The asymmetry is considered to be the third 

standardized moment of a distribution and the Kurtosis the fourth standardized moment.   

   
Table 1 

Distribution Statistics and test for normality of the empiric distribution of Ibovespa 

 Excess Return (R) 
Mean -0.1292  

Maximum 7.2771  

Minimum -9.7035  

Standard Deviation 2.0885  

Skewness -0.2254  

Kurtosis  4.3495 ** 

Jarque-Bera 42.34 ** 

D 0.0506 ** 
Statistical JB tests the null hypothesis for normality of the sample distribution. The non-parametric 
statistics D tests the null hypothesis for normality of the sample distribution with significance 
according to the Lilliefors’ correction. The asymmetry of a standardized normal distribution is 0 and 
the kurtosis is 3. 
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The Ibovespa excess return presents a slight negative asymmetry and large kurtosis, 

significant at 1% level. The negative asymmetry is associated to the fact that extreme negatives 

values might reflect autocorrelation of the squared returns. It is also important to mention that 

leptokurtic distributions are related with non-linear time series. The non-linearity may be 

defined as the tendency of the series in reacting more intensively to positive or negative 

values5, what will be verified further on. Finally, the formal Jarque-Bera and Kolmogorov-

Smirnov tests confirm, categorically, the deviation from the normality. 

Figure 3 exhibits the daily excess returns of Ibovespa and Figure 4 the Ibovespa against 

the square of its excess returns (also known as instantaneous volatility), which allow to observe 

volatility conglomerates (denominated as persistence) and that the volatility shocks occur in 

the moments that precede the market falls, pursued by strong fluctuations that arise in moments 

of crisis, with the simultaneous fall of the index. Black (1976) and Nelson (1991) denominate 

this asymmetric behavior as leverage effect, where such oscillations last long for some time 

until that market comes back to its previous behavior. 

   
Figure 3 

Daily excess returns of Ibovespa 
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From the figures above we can observe that some special and specific events resulted 

in moments of high volatility. Firstly, in September 11, as a consequence of the terrorist 

attack to the twin towers in the USA. Later, in June 2002, Ibovespa (and the Brasilian 

Market) was strongly influenced by the investors’ risk perception in face of the electoral 

campaign (with the possibility of a victory of a historical leftist candidate) and for the 

pressures of the American stock markets, influenced negatively by Iraq and for the 

negative performance of the American companies. The Brazilian market stabilized in 

                                                 
5 For a more detailed discussion see Campbel, Lo and MacKinlay (1997, ch.12). 
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August 2002 when the elected President Lula reaffirmed the commitment in keeping the 

fiscal discipline and the prices stability. 

 
Figure 4 

Ibovespa index and the square of its excess returns 
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Table 2 
Autocorrelation tests for the excess returns and for the square of the excess returns of Ibovespa 

 R  R2 
P  Q  P(Q)   Q  P(Q) 
1 0.1480 0.700  0.1176 0.732 
2 0.4816 0.786  20.492 0.000 
3 0.7846 0.853  22.884 0.000 
4 1.1456 0.887  30.515 0.000 
5 1.1688 0.948  30.730 0.000 
6 1.2332 0.975  30.736 0.000 
7 1.9758 0.961  30.825 0.000 
8 2.0552 0.979  31.367 0.000 
9 2.7648 0.973  31.509 0.000 
10 3.9053 0.952  32.873 0.000 
11 3.9092 0.972  33.385 0.000 
12 4.0312 0.983  33.521 0.001 
13 4.1876 0.989  34.598 0.001 
14 10.477 0.727  35.539 0.001 
15 12.679 0.627  38.291 0.001 
16 13.267 0.653  38.298 0.001 
17 13.453 0.705  38.322 0.002 
18 19.873 0.340  38.361 0.003 
19 19.989 0.395  38.392 0.005 
20 20.792 0.409  38.432 0.008 

Q is the statistic Ljung-Box for the series autocorrelation with p lags and P(Q) is the P value for the Q 
statistic. 

 
However, concentrating our attention on the presence of such volatility conglomerates, 

and according to Campbel, Lo and Macinlay (1997), we pursue with the analysis of the 

autocorrelation of the time series of excess returns and the square of excess returns. Serial 

autocorrelation was not detected in the Ibovespa returns alone, though, tests for the square of 

the excess returns reveal the presence of strong serial autocorrelation starting from the second 
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to the twentieth lag. In the second lag, the Q statistic for the square of returns (20.492) it is 43 

times higher than the one estimated for the excess returns (0.1480), confirming that the market 

volatility tends to form conglomerates, in which relatively calm periods of low returns are cut 

out by volatile periods with high returns, such as those observed by Mandelbrot (1963) and 

Engle (1982). This way, and as revealed by Busse (1999), given that the volatility is not 

homocedastic, its values can be accurately predicted.   

Thus, we identify two more characteristics in the time series of returns and excess 

returns of Ibovespa - volatility conglomerates and asymmetric behavior - already revealed by 

the heavy tails of its distribution. Bollerslev et al. (1992) affirm that the asymmetry and heavy 

tails are some of the main characteristics of the financial series. Herencia et al. (1995) confirm 

the presence of such characteristics in the Brazilian series. 

Finally, with the purpose of confirming the existence of conditional heteroscedasticity, 

the Lagrange’s Multiplier test (LM ARCH) of Engle (1982) is implemented for the order 10, 

15 and 20 in the Ibovespa series of the excess returns (see Table 3), which allows verifying 

strong evidence of heteroscedasticity, or ARCH effect, in the series. 

 
Table 3 

Tests for heteroscedasticity in the series of the excess returns of Ibovespa 

Ordem LM ARCH Valor crítico Valor P 
10 32.8725 18.3070 0.0003 
15 38.2912 24.9958 0.0008 
20 38.4325 31.4104 0.0078 

The statistic LM ARCH tests the null hypothesis that the series is homocedastic. 

 
As we may verify, the series present the characteristics stylized by the literature: 

leptokurtosis, persistence and asymmetry. These way, the most appropriate models seem to 

be those that replicate such characteristics. In fact, the ARCH models, said conditional 

heteroscedastics models, are broadly used when modeling the volatility of financial series 

for which they take into account that the return’s variance in a given moment of time 

depends on the past returns and of other available information in that instant (Morettin, 

2004). As emphasized by Patterson (2000, p. 712), these models consider the 

characteristics of the financial series, such as the persistence, and the non-conditional 

distribution of the returns is leptokurtic when compared with the normal distribution. 

Additionally, Alexander (2002) suggests that the asymmetry should be included in the 

model, in way to capture any eventual leverage effect. 

The time series of the volatility, measured by the conditional variance of the market 

returns, was calculated through the application of the EGARCH model of Nelson (1991) 
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for allowing the asymmetry of the volatility. Among the several model specifications that 

didn’t present serial autocorrelation in the residues, we select that with better information 

criteria according to AIC and BIC. 

   
Table 4 

Comparison among the specifications of the model EGARCH (p, d) AR(p) 

 EGARCH(11) EGARCH(11) EGARCH(21) EGARCH(21) EGARCH(12) EGARCH(12) 
AR (p) 0 1 0 1 0 1
       
AIC 4.2702 4.2350 4.2652 4.2531 4.2595 4.2400
BIC 4.3122 4.2855 4.3240 4.3205 4.3099 4.2989
       
Q(1) 0.492  0.351 0.511  
Q(5) 0.979 0.497 0.956 0.995 0.989 0.701
Q(10) 0.985 0.554 0.954 0.982 0.975 0.788
Q(20) 0.551 0.099 0.590 0.667 0.683 0.202

AR(p) is the autoregressive term of order p for the auxiliary regression, p is the number of lags of the autoregressive terms, and d 
is the number of the variance lags. AIC is the Akaike’s Information Criteria, BIC is the Bayesian Information Criteria of Schwartz 
and Q(p) is the significant value of the statistic Ljung-Box with p lags. 

 
Table 4 presents the results from the specifications of the EGARCH model for the 

Ibovespa volatility. The last four rows display the P values for the Q statistic of Ljung-

Box, which examines the serial autocorrelation in the residues. It is interesting to note the 

lack of serial autocorrelation in all of the specifications6, suggesting that they are random 

and the volatility is appropriately modeled. Among the different specifications, that with 

better information criteria (AIC and BIC) is the EGARCH (1,1) with a autoregressive term 

in the auxiliary regression, indicating to be the most parsimonious model. The estimates 

are exhibited below, with the respective Z values inside brackets: 
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The term that captures the leverage effect (η = -0,0793) is negative and statistically 

different from zero, indicating the existence of such leverage effect in the excess returns of 

Ibovespa, allowing sustaining that the choice of a model able to detect the asymmetry of 

the market shocks reveals adequacy to model the series. 

  Based in the EGARCH (1,1) AR(1) model, we generate the series of conditional 

volatility of differences between the Ibovespa excess returns conditional volatility and its 

                                                 
6 Up to 36 lag periods, we did not observe serial correlation both on the standardized residues or the square of 
the residues, in none of the EGARCH specifications. 
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mean )( , mtm σσ − , designated as Dvol, and the product of the difference of the volatility 

for Ibovespa excess returns tmmtm R ,, )( σσ − , designated as DvolR.  As we can see in Figure 

5, which exhibits the Ibovespa and Dvol for the period under analysis, it is possible to 

observe that volatility rises coincide with market falls. 

   
Figure 5 

Excess returns conditional volatility of Ibovespa modeled by EGARCH (1,1) AR(1) 
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Figure 6 

Ibovespa and the product of the difference of the conditional volatility for its excess returns 
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Figure 6 shows the series of DvolR and Ibovespa. The series of variable DvolR is the 

main explanatory variable in the Busses’s model, once it intends to describe the 

asymmetric sequence of the conditional volatility, whose larger intensity arises in moments 

of the market fall. We can observe clearly moments of shock, persistence and asymmetry 

of the modeled series, whose behavior justifies the evaluation model proposed by Busse, 

given that, as the risk perception influences directly the assets value (Pattersson, 2000) and 

as it is possible to foresee the volatility, the manager should react dynamically to avoid 
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potential losses. When the manager of a active managed portfolio is able to identify the 

moments that precede the crisis periods and try to minimize potential losses, he should act 

in way to decrease its risk exposition. 

The summary of the estimates of timing coefficients, γγc, for the 60 funds, is shown in 

Table 5 below (full results are available in the appendix 2). 

   
Table 5 

Summary of Timing estimates according to the model of Busse 

Mean γ -0,0106  
t stat (-0,3989)**  

 Positive Negative 
γc significant 5% 0 6 

γc non significant 5% 20 34 
** Significant at 1%. 

 
  It is expected that a mutual fund manager exhibiting ability of volatility timing to 

present the mcγ  coefficient with negative sign, once it would reflect the manager's 

managing to decrease the exposure to the systematic risk in moments of high volatility. 

The results suggest that mutual funds are able to anticipate volatility changes. In fact, the 

mean sample coefficient displays the expected negative signal, besides being highly 

significant. It is observed that most of the gamma estimates present negative signs, more 

specifically, 67% of the mutual funds in the sample present volatility timing ( mcγ <0), of 

which six statistically significant at 5%, namely, OU04 (-0,0655), OU13 (-0,0700), BA03 

(-0.0094), BA06 (-0.0437), BA07 (-0.0192) and BA15 (-0,0647). While some of the funds 

present positive timing coefficients, none is significant. 

Analyzing the mutual fund categories separately, and in spite of funds BT do not 

display statically significant coefficients as those evidenced in the categories OR and BT, 

the ANOVA, shown in Table 6, confirmed by Krukal-Wallis (Figure 7 and Appendix 3), 

does not reveal significant differences among the three categories. Examining simply the 

distribution of negative coefficients among the categories, it is observed, once more, some 

equilibrium, so it may allow us to conclude that the fact of avoiding strong exposure to the 

systematic risk in moments of higher volatility is a common practice among the categories. 

 
Table 6 

ANOVA for the volatility timing on the categories of mutual funds 

 SS DF MS F Sig 
Between 0.0004 2 0.0002 0.2703 0.7641 
Within 0.0414 57 0.0007   
Total 0.0418 59    
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Figure 7 
Gammas for category of mutual funds 

   
 

 

 

 

 

 

 

 
As far as we know, this is the first time in Brazil, that the mutual fund manager’s 

skills in identifying market turbulence and act properly in order to limit (or reduce) 

potential losses, are documented. In spite of such behavior to be expected in a context of 

professional managers, the most used evaluation models for measuring the capacity of 

timing in this market do not focus on the conditional volatility. Therefore, and once again, 

the results of the empiric tests of volatility timing implemented in the sample of Brazilian 

mutual funds, through the model of Busse (1999), clearly reject the null hypothesis, for 

that it may be conclude that the managers reveal timing abilities. 

   
6. Concluding Remarks 

The first evidence that stands out from this study is that mutual fund managers are 

able to implement strategies that allow them to answer properly to the eminent rise of the 

market volatility, and that are capable to stay persistently above its competitors. The tests 

to forecast the capacity of anticipate periods of high market volatility, were implemented 

according to the model of Busse, with very expressive and promising results (highly 

statistical significant). It was observed that 67% of the managers decrease the systematic 

risk exposition face to moments of higher volatility, and a more detailed exam revealed 

that such capacity is similar among the three different studied categories, denoting the 

timing abilities of the managers. 

Undoubtedly that to predict the market oscillations it is an important factor for risk 

managers, specially in unstable economies such as the Brazilian economy. Thus, it should 

be emphasized that it was observed that a conditional model that rely on the assumption 

that the manager acts based on publicly available information and adopts dynamic 

strategies, revealing capacities not observed in the traditional performance methodologies 
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that, in turn, assume that the investors' expectations are formed without using the 

information concerning the economy fundamental variables. Another way towards the 

accuracy of the evaluation process should be the use of the information provided by the 

portfolio holdings. However, the major handicap of this alternative relies on the lack of 

available information to the public (or the evaluator) in databases with regular time 

frequency, for most of the financial markets.  
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Appendix 1: The model of Busse (1999) 

Theoretically, Busse assumes a generating process of k-factors and sensibility to the 
factors that change over time, and defines the return of the fund on period t+1 through the 
following equation:   
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1
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where, Rc,t+1 is the excess return of portfolio c on period t+1; Rj,t+1 is the excess return of the 
factor j on period t+1; βjct is the sensibility of the portfolio c to the factor j chosen by the 
manager on period t; αct is the portfolio abnormal return on period t; εc,t+1 is the residual term 
of portfolio c on period t+1. The returns are considered as being distributed normal and 
conditionally, Et(εc,t+1) = 0 and Et(Rj,t+1 εc,t+1) = 0, in which E(.) is the expectation conditioned 
to the available information in t. This way the expected return is:   
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Supposing although that the factors are orthogonal, the conditional variance in t is defined as:   
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In a temporal perspective, the maximization problem is the following:   
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Differentiating [ ])( 1,1 ++ tctt RUE  in relation to βjct for j = 1 … k and equaling the result to 
zero, Busse obtains:   
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where the second line follows the lemma of Stein (1973). Solving the equation in order to 
βjct, it becomes: 
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where a is the measure of risk aversion of Rubinstein (1973), 
[ ] [ ])()( 1,11,1 ++++ ′′′− tctttctt RUERUE , which is supposed to be an assumed parameter. Calculating 

the partial derivate of the optimal beta factor with respect to the standard deviation, obtains:   
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Then, the portfolio sensibility to the factor j should be reducing when the volatility of that 
factor increases. It is expected, therefore, a negative relationship between βmc and σm. 
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Appendix 2 
Performance parameters for the model of Busse 

I αα   t(αα ) P( αα )   ββ c   t(ββ ) P( ββ ) γγ c t(γγ ) P( γγ )   ββ t-1 t(ββ t-1) P( ββ t-1) R2  
OU01 0,0727 2,4081 0,0164 * 0,2573 16,1108 0,0000 0,0332 1,3623 0,1737  0,1402 9,6856 0,0000 0,47
OU02 -0,0007 -0,0180 0,9856  0,6205 28,8022 0,0000 -0,0437 -1,3798 0,1683  0,3459 17,4711 0,0000 0,72
OU03 0,0333 0,9739 0,3306  0,3216 17,8087 0,0000 -0,0354 -1,3059 0,1922  0,1731 10,5788 0,0000 0,49
OU04 0,0501 1,2900 0,1976  0,4714 22,2070 0,0000 -0,0655 -2,0821 0,0378 * 0,2806 15,0302 0,0000 0,61
OU05 0,0055 0,1344 0,8932  0,6514 31,0040 0,0000 0,0092 0,2957 0,7676  0,3563 18,6019 0,0000 0,74
OU06 0,0061 0,1354 0,8923  0,6874 28,5662 0,0000 -0,0428 -1,1738 0,2410  0,3839 17,7469 0,0000 0,71
OU07 0,0881 2,2767 0,0232 * 0,3694 18,8060 0,0000 0,0292 0,9480 0,3436  0,1841 10,0242 0,0000 0,51
OU08 0,1042 2,9563 0,0033 ** 0,3535 18,9433 0,0000 0,0241 0,9161 0,3601  0,2195 13,2163 0,0000 0,56
OU09 0,0123 0,3219 0,7477  0,5287 26,5527 0,0000 -0,0186 -0,6172 0,5374  0,3067 16,8946 0,0000 0,68
OU10 0,0821 2,9291 0,0036 ** 0,2616 18,0635 0,0000 -0,0339 -1,5220 0,1286  0,1579 11,1823 0,0000 0,47
OU11 0,0709 1,9345 0,0536  0,3749 19,7918 0,0000 0,0493 1,7391 0,0826  0,2125 12,4873 0,0000 0,57
OU12 0,0593 1,8638 0,0629  0,3395 20,9532 0,0000 -0,0157 -0,6514 0,5151  0,1398 9,1475 0,0000 0,54
OU13 -0,1077 -2,8673 0,0043 ** 0,1935 9,9750 0,0000 -0,0700 -2,3779 0,0178 * 0,1426 8,1825 0,0000 0,25
OU14 0,0138 0,3426 0,7320  0,6160 29,0856 0,0000 -0,0228 -0,7436 0,4575  0,3363 17,6024 0,0000 0,72
OU15 0,0366 1,0783 0,2814  0,3164 18,9377 0,0000 -0,0313 -1,1958 0,2324  0,1708 10,9785 0,0000 0,50
OU16 0,0228 0,3954 0,6927  0,6453 21,3617 0,0000 0,0111 0,2307 0,8176  0,3531 12,6030 0,0000 0,58
OU17 -0,0278 -0,8383 0,4023  0,4671 27,1526 0,0000 -0,0371 -1,4681 0,1427  0,2736 17,2164 0,0000 0,69
OU18 0,0155 0,4464 0,6555  0,5561 31,1057 0,0000 -0,0115 -0,4187 0,6756  0,2713 17,0138 0,0000 0,73
OU19 0,0855 2,3627 0,0185 * 0,1826 9,8043 0,0000 -0,0304 -1,0725 0,2840  0,1151 6,5715 0,0000 0,23
OU20 0,1255 3,8237 0,0001 ** 0,3476 20,6457 0,0000 0,0202 0,7826 0,4342  0,2214 14,7745 0,0000 0,59
BA01 0,0013 0,0424 0,9662  0,3941 25,7777 0,0000 -0,0395 -1,7258 0,0850  0,2731 20,0646 0,0000 0,70
BA02 -0,0060 -1,5180 0,1296  0,0138 6,6873 0,0000 -0,0002 -0,0771 0,9386  0,0135 7,2921 0,0000 0,18
BA03 -0,0027 -0,6599 0,5096  0,0504 23,9740 0,0000 -0,0094 -2,8861 0,0041 ** 0,0287 14,4062 0,0000 0,62
BA04 0,0029 0,1678 0,8668  0,0776 8,8052 0,0000 0,0218 1,6026 0,1097  0,0588 7,4817 0,0000 0,23
BA05 0,0106 0,3650 0,7152  0,4063 28,0497 0,0000 0,0036 0,1636 0,8701  0,2289 16,7769 0,0000 0,70
BA06 0,0024 0,1346 0,8930  0,1663 18,1111 0,0000 -0,0437 -3,0826 0,0022 ** 0,0955 11,4022 0,0000 0,48
BA07 -0,0024 -0,3194 0,7496  0,0683 16,9598 0,0000 -0,0192 -3,1904 0,0015 ** 0,0413 11,2326 0,0000 0,46
BA08 -0,0046 -0,9751 0,3300  0,0022 0,8963 0,3705 0,0006 0,1667 0,8677  0,1116 51,0170 0,0000 0,83
BA09 -0,0086 -2,2113 0,0275 * 0,0011 0,5824 0,5606 -0,0002 -0,0694 0,9447  0,0010 0,5359 0,5923 0,00
BA10 -0,0278 -1,5788 0,1150  0,0031 0,3177 0,7508 -0,0049 -0,3370 0,7362  0,2015 21,9436 0,0000 0,51
BA11 -0,0031 -0,3881 0,6981  0,0036 0,9079 0,3644 0,0021 0,3527 0,7244  0,2111 54,8853 0,0000 0,86
BA12 0,0104 0,6078 0,5436  0,0075 0,8037 0,4220 0,0072 0,5393 0,5899  0,4980 59,4197 0,0000 0,88
BA13 -0,0040 -1,0653 0,2873  0,0138 6,9374 0,0000 -0,0003 -0,1112 0,9115  0,0135 7,6398 0,0000 0,18
BA14 -0,0151 -7,1854 0,0000 ** 0,0005 0,4082 0,6833 -0,0003 -0,2043 0,8382  0,0007 0,7016 0,4832 0,00
BA15 0,0055 0,1992 0,8422  0,2630 17,3558 0,0000 -0,0647 -2,8701 0,0043 ** 0,1572 11,5471 0,0000 0,48
BA16 0,0128 1,4258 0,1546  -0,0042 -0,8574 0,3916 -0,0026 -0,3440 0,7310  0,1038 23,9128 0,0000 0,52
BA17 -0,0009 -0,0288 0,9770  0,4542 29,0691 0,0000 -0,0107 -0,4515 0,6518  0,2670 18,3210 0,0000 0,72
BA18 -0,0064 -0,6379 0,5238  0,0004 0,0758 0,9396 -0,0014 -0,1773 0,8593  0,0501 9,9128 0,0000 0,16
BA19 -0,0237 -1,8847 0,0601  0,0018 0,2775 0,7815 -0,0034 -0,3515 0,7253  0,1272 21,9744 0,0000 0,48
BA20 -0,0013 -0,1125 0,9105  0,0051 0,8633 0,3884 0,0036 0,4241 0,6717  0,3108 57,9654 0,0000 0,87
BT01 0,0249 0,6190 0,5362  0,6786 32,1271 0,0000 0,0263 0,8515 0,3949  0,3630 18,0305 0,0000 0,75
BT02 0,0038 0,0877 0,9301  0,6497 29,0669 0,0000 -0,0034 -0,1015 0,9192  0,3740 18,3978 0,0000 0,73
BT03 0,0209 0,5945 0,5525  0,4551 25,2542 0,0000 0,0369 1,3853 0,1666  0,2621 16,1738 0,0000 0,67
BT04 0,0182 0,4461 0,6557  0,6054 27,4128 0,0000 -0,0262 -0,8149 0,4155  0,3525 17,8893 0,0000 0,71
BT05 0,0296 0,6913 0,4897  0,6346 27,5274 0,0000 0,0082 0,2483 0,8040  0,3675 18,0028 0,0000 0,72
BT06 0,0179 0,4044 0,6861  0,6670 29,0725 0,0000 -0,0276 -0,8132 0,4165  0,3480 16,9014 0,0000 0,71
BT07 0,0353 0,7922 0,4286  0,6611 27,7245 0,0000 0,0121 0,3281 0,7430  0,3426 15,5682 0,0000 0,69
BT08 0,0053 0,1203 0,9043  0,6346 28,0662 0,0000 0,0081 0,2354 0,8140  0,3676 18,3156 0,0000 0,72
BT09 0,0181 0,4341 0,6644  0,6718 30,1422 0,0000 -0,0103 -0,3032 0,7619  0,3549 17,2945 0,0000 0,74
BT10 0,0132 0,3104 0,7564  0,6346 27,7121 0,0000 0,0083 0,2518 0,8013  0,3674 18,6708 0,0000 0,72
BT11 0,0246 0,5803 0,5620  0,6526 29,7153 0,0000 -0,0081 -0,2456 0,8061  0,3695 17,8788 0,0000 0,73
BT12 0,0134 0,2976 0,7662  0,6883 29,9176 0,0000 -0,0430 -1,2735 0,2034  0,3219 15,4305 0,0000 0,72
BT13 0,0161 0,3762 0,7069  0,6493 28,6808 0,0000 -0,0449 -1,3551 0,1760  0,3703 17,5891 0,0000 0,72
BT14 0,0315 0,7591 0,4482  0,6645 29,8974 0,0000 0,0320 0,9922 0,3216  0,3411 16,8714 0,0000 0,74
BT15 0,0367 0,8618 0,3892  0,6811 31,9835 0,0000 -0,0478 -1,4331 0,1524  0,3614 17,8968 0,0000 0,74
BT16 0,0033 0,0817 0,9349  0,5961 29,4370 0,0000 -0,0111 -0,3576 0,7208  0,3471 18,2505 0,0000 0,72
BT17 0,0220 0,5087 0,6112  0,6299 27,9960 0,0000 -0,0242 -0,6900 0,4905  0,3464 17,5678 0,0000 0,71
BT18 0,0345 0,8476 0,3971  0,6389 29,7056 0,0000 -0,0261 -0,8162 0,4148  0,3548 18,3857 0,0000 0,73
BT19 -0,0118 -0,2771 0,7818  0,6616 29,8535 0,0000 -0,0132 -0,3931 0,6944  0,3549 17,3190 0,0000 0,72
BT20 -0,0009 -0,0239 0,9810   0,5558 28,1992 0,0000 -0,0391 -1,2825 0,2003   0,3145 18,2172 0,0000 0,71

ctmmcmtmmtmcmtmcctc RRRR εβσσγβα ++−++= −1,104, )( , in which Rc,t and Rm,t are respectively the daily excess returns of 

the fund and the market in relation to the risk -free rate (Selic) on period t, αc is the intercept, β0 is the coefficient of the portfolio 
systematic risk, γc is the estimator of the market volatility timing Rm of the fund, measured by the product of the difference between 
the conditional volatility on period t and its mean and the market excess return (σmt –σm)Rmt; and εc is the regression residual term. 
The parameter estimators are obtained by the OLS method and the statistical significance is achieved with the parametric t-test, in 
which the errors are adjusted by the bootstrap method.  
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Appendix 3 
Tests for distributions and mean equality of the gammas of the categories 

OU, BA and BT computed with the model of Busse. 
 

 

Distribution statistics and normality test 

 OU BA BT 
Mean -0.0141 -0.0081 -0.0097 
Maximum 0.0493 0.0218 0.0369 
Minimum -0.0700 -0.0647 -0.0478 
Std Deviation 0.0336 0.0199 0.0256 
Skewness 0.2392 -1.5175 0.2177 
Kurtosis  2.0813 4.8756 2.0505 
Jarque-Bera 0.89 10.61 0.91 
P(JB) 0.64 0.00 0.63 
The statistic JB tests the null hypothesis of normality for the sample 
distribution. 

 

Test of homogeneity of variances 

Levene Estatistic df1 df2 Sig. 
4,0688 2 57 0,0223 

The statistics of Levene tests the null hypothesis of homogeneity of variances 
for the sample distributions.  

 

Kruskal-Wallis test 

Statistic H test:   
Qui-square 0,7400  

Df 2  
Sig. 0,6907  

The non-parametric statistic H of KW tests the null hypothesis that the 
sample means are equal. 

 
 

 

 


