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Abstract

In this paper we formulate the portfolio choice problem as a robust
control problem. Extending our previous work [32] , by considering a
stochastic investment opportunity set, we derive optimal portfolio rules
under uncertainty aversion, in the cases of one and two risky assets. In
particular, with two risky assets and one risk-free asset, with the same
level of ambiguity aversion for the two assets, we show that the robust
portfolio rule could lead to an increase in the total holdings of risky assets
as compared to the holdings under the Merton rule, which is the standard
risk aversion case. Furthermore the investor is more likely to increase
the holdings of the asset for which there is no ambiguity, and reduce the
holdings of the asset for which there is ambiguity, a result that might
provide an explanation for the home bias puzzle.

Key words Uncertainty Aversion, Model Misspecification, Robust
Control, Portfolio Choice Models.
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1 Introduction

In finance uncertainty has been mainly related to the assumption of knowledge
of a precise probability measure describing the evolution of an asset’s price.
Thus the expected utility maximization criterion can be used as a methodolog-
ical framework. This assumption has come under some criticism because of its
failure to explain certain ”puzzles” such as the observed equity premium puz-
zle, or the investors home-bias puzzle. In trying to explain these puzzles, but
also to extend the results of traditional portfolio choise theory, the concept of
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Knightian uncertainty has been introduced. Under Knightian uncertainty the
state space of outcomes is known but information is too imprecise in order to
assign probabilities to outcomes.
Two main approaches have emerged recently for analyzing the problem of

choice when the decision maker faces pure uncertainty in the Knightian sense
(or ambiguity) and whose preference relationship is characterized by uncertainty
aversion (Gilboa and Schmeidler [12]). In the first, the multiple priors model, the
decision maker may formulate his/her objective by attaching a probability, say
(1− e), to a baseline prior and a probability e to the infimum of a family of the
disturbed priors around the baseline one. This is the so-called e-contamination
approach (Epstein and Wang [9]), which is consistent with uncertainty or am-
biguity aversion.1 The other, the robust dynamic control approach, provides
another tractable way to incorporate uncertainty aversion (e.g. Hansen and
Sargent, [19], [20], [21], [23], Hansen et al. [24]). This methodology models
an agent who has not enough confidence in the initial benchmark model which
has been estimated given a set of finite data. The agent has concerns about
speciffiction errors, in the sense that there is a set of approximate models that
are also consistent with the data and any one of them could be regarderd as
possible true. To put it differently the decision maker is unable to make a reli-
able estimation of a probability law and so is unsure about what measure to use
in order to form mathematical expectations. Disturbing a benchmark model
generates approximating models, where the admissible disturbances reflect the
set of possible probability measures that the decision maker is willing to accept.
The objective of the resulting robust control problem is to design a rule that
performs well across a variety of approximating models.
Portfolio choice theory has been a prominent area of application of the above

approaches2 (e.g. Dow andWerlang [5], Epstein andWang [9], Chen and Epstein
[7], Epstein and Miao [8], Uppal and Wang [31], Maenhout [25], Pathak [26],
Liu [13], [14]). The idea behind the use of robust control methods in optimal
portfolio choice is that the consumer-investor believes that the initial model is
misspecified regarding the assets’ price processes. In this set-up, the investor
tries to find a portfolio rule that will work well, in the sense of maximizing utility,
under a suitably restricted range of different model specifications. The concerns
about model uncertainty is parametrized by the so called robustness parameter
θ. When the desicion maker shows no concerns about model misspecification,

1Chen and Epstein [7] introduce ambiguity aversion to recursive multiple-prior models of
utility by considering κ − Ignorance which is a concept that allows differentiation between
ambiguous and pure risk cases.

2Monetary policy can be regarded as the initial area of application of these approaches
(e.g., Brainard, [1] Hansen and Sargent [23], Onatski and Stock [17], Onatski and Williams
[18], Soderstrom [29]). See also Brock and Durlauf [2], Brock, Durlauf and West [3] for
similar approaches to policy design and policy evaluation under uncertainty. Another area of
interest is environmental and resource management where uncertainty aversion can be used
to formulate the concept of the Precautionary Principle (Brock and Xepapadeas [4], Roseta-
Palma and Xepapadeas [27])
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then the robustness parameter θ →∞.3, 4

A central result underlying the recent robust control literature in the portfo-
lio selection context (Maenhout [25], Uppal and Wang [31]) suggests that model
uncertainty implies cautiousness in the sense that the investor, under uncer-
tainty aversion, will invest a smaller share of his/her wealth in the risky assets
relative to the share implied by the standard Merton rule under risk aversion. In
more general terms, it seems that uncertainty has been associated in the earlier
literature with some kind of cautious or conservative behavior,5 although more
recent results in the area of monetary policy analysis under uncertainty seem
to provide mixed findings, that is aggressiveness or conservatism depending on
the structure of the model.6

Following Hansen and Sargent’s approach, the present paper attempts to
derive optimal portfolio rules parametrized by the robustness parameter θ, by
formulating the portfolio choice problem as a robust control problem. In mod-
elling the problem we consider a stochastic investment opportunity set where
not only the evolution of asset prices is stochastic, but in addition the drift
and the volatility rate of the prices processes could be stochastic too. We asso-
ciate the intertemporal consumption-investement problem under standard risk
aversion, that is the standard Merton’s problem, with θ → ∞, and the in-
tertemporal consumption-investement problem under uncertainty aversion (or
ambiguity aversion, or concerns about model misspesification) with θ <∞. We
show that as θ → ∞ the robust portfolio rule tends to Merton’s rule.7 The
associated robust portfolio rule indicates that the holdings of risky assets as a
proportion of the investor’s wealth is not always smaller as compared to the
holdings under the Merton rule, a result that comes in contradiction with the
general beleif that uncertainty aversion is mainly associated with a conservative
behaviour regarding portfolio choices. The derived conditions under which such
an increase in the holdings of risky assets takes place, are independent of the
value of the robustness parameter θ.
The rest of the paper is organized as follows. In the next section, we consider

the case of one risky asset, with stochastic investment opportunity set allowing
for ambiguity both with respect to the evolution of the asset’s price process and

3The robustness parameter θ is a fixed exogenous parameter and can be interpreted as the
Lagrangian multiplier associated with an entropy constraint, which determines the maximum
specification error in the asset price equation that the investor is willing to accept (Hansen
and Sargent [21]).

4In recent attempts to study the dynamic portfolio rules using robust control methodology,
(Maenhout [25], and Uppal and Wang [31]) use certain transformations to eliminate θ from
the portfolio rule. As shown by Pathak [26] these transformations break down the consistency
of preferences with Gilboa and Schmeidler’s axiomatization of uncertainty aversion. It seems
that since the exogeneity of θ is required in order for the problem to be consistent with
uncertainty aversion, robust portfolios are parametrized by θ. To estimate θ in order to fully
characterize the robust portfolio, Hansen and Sargent [19] suggest the use of detection error
probabilities.

5For example Brainard’s [1] results suggest caution in the face of model uncertainty in a
Bayesian framework.

6See for example Onatski and Williams [18] and the papers cited by them.
7This is in agreement to Meanhout’s results.
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the evolution of the mean rate of return or/and the volatility rate. We derive
conditions under which the investor never increases the holdings of the risky
asset relative to the standrd Merton rule which is the risk aversion case. Then
we examine the case of two risky assets. In this case the robust portfolio rule
indicates that it is possible to increase the holdings of the risky assets relative
to risk aversion case. Finally considering no ambiguity for the one of the two
assets, we show that the investor is more likely to increase the holdings of the
asset for which there is no uncertainty aversion associated with the evolution of
its price process, than the holdings of the other asset for which the investor has
concerns regarding misspecification errors in the evolution of its price process.
If we associate the asset for which there is no ambiguity aversion (but only risk
aversion) with a home assets and the asset for which ambiguity aversion exists
with a foreign asset, our results could be regarded as an additional explanation
for the home bias puzzle.8

2 Robust Portfolio Choices With One Risky As-
set

2.1 One risky asset with stochastic drift or volatility rate

We consider a market which consists of one riskless asset whose price evolves
according to:

dS(t) = rS(t)dt S(0) = S0, t ≥ 0,
where r denotes the risk free rate of return, and one risky asset. Denoting by α1
the drift rate, or mean rate of return, and by σ1 the volatility rate the evolution
of the price P1 of the asset, is given by:

dP1
P1

= α1dt+ σ1dB1, (1)

where B1 is a standard Brownian process defined on a probability space (Ω,F),
with measure P1. We consider initially that the mean rate of return evolves

8There have been a number of arguments attempting to explain the home bias puzzle.
Strong and Xu [30] explain the puzzle on the basis of optimism of fund managers towards
their home equity market. Serrat [28] considers nontraded goods to operate as factors that
shift the marginal utility of traded goods. This entails dynamic hedging policies which in turn
are consistent with the home bias puzzle, while French and Poterba [11] consider information
costs as an explanation of the puzzle. Pathak [26] also provides an explanation of the home bias
puzzle using a two-asset model and a κ−Ignorance framework, where the worst-case scenario
is used to reduce the mean return of the asset price process. There is a subtle difference
between our result and the κ−Ignorance, worst case scenario approach. In the latter approach
the worst case scenario means that the reduction in the mean return of the asset price process
is determined at the level where the entropy constraint Q (τ) = {Q ∈ Q : Rt(Q k P) ≤ τ ∀t}
is binding. In the robust control model developed in this paper, the robustness parameter
associated with the penalty terms is the Lagrangian multiplier associated with the entropy
constraint.
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stochastically over time and that satisfies the stochastic differential equation:

dα1
α1

= f1dt+ g1dZ1, (2)

where f1, g1, are constants and Z1 is a Brownian process which is corelated with
B1. Let ρ1 denote the corelation coefficient between them

9 10. Merton’s solution
11 of the optimal portfolio allocation problem for an infinite time horizon and
one risky asset determines the optimal porfolio weight, w1, that is the fraction
of the investor’s total wealth, W allocated to the risky asset as:

w1W =
A(α1 − r)

σ21
+H1

g1ρα1
σ1

(3)

A = − VW
VWW

(4)

H1 = −Vα1w
Vww

(5)

where V is the value function of the problem, VW , VWW its first and second
partial derivatives with respect to the wealth W and VWα1the second partial
derivative with respect to W and α1.
Writting dZ1 as ρdB1 +

p
1− ρ2dB2 the equation (2) takes the form:

dα1
α1

= f1dt+ g1(ρdB1 +
p
1− ρ2dB2), (6)

where B1, B2 are two independent Brownian processes, defined on an underlying
probability space (Ω,F), with measure P = P1 ⊗ P2.
Following Hansen and Sargent (2002) [22], Hansen et al. (2002) [24], model

(1), (6) is regarded as a benchmark model. If the consumer-investor is not sure
about the benchmark model then there would be concerns about robustness
to model misspecification. Concerns for robustness to model misspesification
can be reflected by a family of stochastic perturbations. Because there are two
independed Brownian motions we are able to perturb each one separately 12 so
that:

Bi(t) = B̂i(t) +

Z t

0

hi(s)ds, i = 1, 2, (7)

where {B̂i(t) : t ≥ 0} are Brownian motions and {hi(t) : t ≥ 0} measurable drift
distortions. Therefore the probabilities implied by (1), (6) are distorted. The
measure P is replaced by another probability measure Q = Q1⊗ Q2. As shown

9EdB1dZ1 = ρdt
10Following Merton we provide our proofs by considering that the mean rate of return

follows the above general equation. The results also hold if we consider the more realistic case
of a mean reverse process dα1 = (α1f1 − f2) dt+α1g1dZ1. To model the mean reverse process
we need to add only a term related with f2 which does not affect the results. The same also
holds for the stochastic volatility case.
11see Merton (1971)[15], (1973)[16]
12This is the reason for the use of the specific form of equation (6).
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by Hansen et al. (2002) the discrepancy between the distribution P and Q is
measured as the relative entropy R(Q k P). At this stage we consider distortions
to the joint distribution of the asset and of the drift rate so we impose an overall
entropy constraint for them. Based on Corollary C3.3 of Dupuis and Ellis [6],
the entropy constraint becomes:

R(Q k P) =
2X
i=1

Z ∞
0

e−δuEQ
µ
h2i
2

¶
du. (8)

The above equation allows to consider two separate distortion terms one for the
asset and the other for the mean rate of return. However in order to reduce the
complexity of the model, we assume symmetric distorted measures Q1,Q2 and
examine the case with the same distortion terms hi. In this specific case, the
equations for wealth dynamics and the mean rate of return become:·
dα1(t)
dW (t)

¸
=

·
α1[f1 + g1h(ρ+

p
1− ρ2)]

w1(α1 + σ1h− r) + (rW − c)

¸
dt+

·
α1g1ρ α1g1

p
1− ρ2

Wσ1w1 0

¸ ·
dB̂1
dB̂2

¸
(9)

Under model misspecification a multiplier robust control problems can be asso-
ciated with the problem, of maximizing the present value of lifetime expected
utility,or:

max
w1,C

E0
Z ∞
0

e−δtU(C)dt (10)

In this case the multiplier robust control problem becomes:

J(θ) = sup
wi,C

inf
h
EQ

Z ∞
0

e−δt
£
U(C) + θ2

h2

2

¤
dt (11)

subject to (9).
In the above equation because of (8) , θ2 = 2θ where θ denotes the robustness

parameter which takes values greater or equal to zero. Thus it is assumed that
concerns about model misspecification are the same for the price processes of the
asset and of the mean rate of return. As shown by Hansen and Sargent (2002)
θ is the Lagrangean mutiplier at the optimum, associated with the entropy
constraint Q (τ) = {Q ∈ Q : Rt(Q k P) ≤ τ ∀t} . A value of θ = ∞, indicates
that we are sure about the measure P, with no preference for robustness. This
case can be regarded as the risk aversion case and the problem is reduced to
the standard Merton problem with objective given by (10). Lower values for θ
indicate preference for robusness under model misspecification, or uncertainty
aversion, where a value of θ = 0 indicates that we have no knowledge about the
measure P.
Using Fleming and Souganidis (1989) [10], on the existence of a recursive

solution to the multiplier problem, Hansen et al. (2002) show that problem (11)
can be transformed into a stochastic infinite horizon two-player game between
the investor and the Nature. Nature plays here the role of a ”mean agent” and
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chooses a reduction h in the mean return of assets to reduce the investors’ life
time utility. The Bellman-Isaacs conditions for this game imply that the value
function V (W,α1, θ) satisfies the following equation:

δV = max
w1,C

min
h

n
U(C) + θ2

h2

2
+ VW [w1(α1 + σ1h− r)W + (rW − c)](12)

+Vα1α1[f1 + g1h(ρ+
p
1− ρ2)] + α1g1ρWσ1w1Vα1W +

1

2
VWWσw

2
1W

2 +
1

2
Vα1α1α

2
1g
2
1

o
.

The first order conditions which describe the solution of the above two player-
game are:

U 0(C) = VW , (13)

h = −VWWw1σ1 + Vα1α1g1(ρ+
p
1− ρ2)

θ2
, (14)

0 = VWw1(α1 + σ1h− r) + VWWσWw1 + α1g1ρσ1Vα1W (15)

¿From the above system of equations it can be seen that as θ → ∞ the so-
lution reduces to the solution of the standard Merton’s problem given by (3).
Using (14) to elminate h from (15) we obtain the robust portfolio weight, or
equivalently the fraction of the wealth invested on the risky asset as:

w∗1W
µ
1− V 2

W

θ2VWW

¶
=

A(α1 − r)

σ21
+H1

g1ρα1
σ1

+
VWVα1
θ2VWW

g1α1
σ1

(ρ+
p
1− ρ2) (16)

In order to determine the change in portfolio weights induced by uncertainty
aversion relative to the risk aversion weights, we compare the relationships
(3) and (16). It follows from the comparison that the term into the brack-
ets at the left hand side of the above equation is always a number greater
than one. Furthermore, the first two terms at the right hand side are exactly
the same as the two corresponding terms appearing it equation (3). Thereffore

when

Vα1 > 0 if ρ+
p
1− ρ2 < 0

Vα1 = 0 if ρ+
p
1− ρ2 = 0

Vα1 , < 0 if ρ+
p
1− ρ2 > 0

then w∗1W is always less than w1W and

therefore an uncertainty averse investor always reduces the holdings of risky as-
set relative to the risk aversion case.
Assume now that the mean rate of return is constant and consider the case

where the investor-consumer is uncertainty averse due to the stochastic evolution
of the volatility rate, or

dσ1
σ1

= f2dt+ g2dZ2, (17)

where f2, g2 are constants and Z2 is a Brownian process. If by ρ we denote
again the corelation coefficient between dZ2, dB1, then following the previous
approach the following Proposition can be stated
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In a market with one risky and one riskless asset an uncertainty averse
investor with respect either to the stochastic evolution of the mean rate of return,
or to the evolution of the volatility rate, always reduces the total holdings of
the risky asset relative to a risk averse investor.

if

ρ+
p
1− ρ2 < 0

ρ+
p
1− ρ2 = 0

ρ+
p
1− ρ2 > 0

when
Vα1 , Vσ1 > 0
Vα1 , Vσ1 = 0
Vα1 , Vσ1 < 0

respectively.13

2.2 The case of stochastic mean rate of return and stochas-
tic volatility rate

In this section we examine the case where the investor is uncertainty averse with
respect to both, the stochastic evolution of the volatility rate, and the mean rate
of return. If

System =


ρ2 + τ1 + τ2 R 0 when Vα1 R 0 respectively
ρ1 +

p
1− ρ21 R 0 when Vσ1 R 0 respectively
(1− ρ22)(1− ρ21)− (ρ3−ρ1ρ2)2 > 0

1 ≤ ρ2 ≤ 1
−1 ≤ ρ3 ≤ 1

(18)

then the following proposition can be stated.
If the above System (18), of inequalities is satisfied an uncertainty averse in-

vestor, always reduces the holdings of the risky asset relative to the risk aversion
case.
For the proof see Appendix.

3 Robust Portfolio Choices With Two Risky As-
sets

Suppose now that the market consists of two risky and one risk free asset.
Equation (1) along with:

dP2
P2

= α2dt+ σ2dB2, (19)

describe the evolution of the two risky assets, while (2) refers to the mean rate
of return of the first asset which we assume that evolves stochastically over
time. All the parameters of the above relationships are assumed to be con-
stants and it is furthermore assumed that the three Brownian motions are core-
lated, with ρ1, ρ2, ρ3 the corelation coefficients between (dB1, dB2), (dB1, dZ1),

13If this condition is not satisfied we are not able to determine the direction of change in
the assets’ holdings.
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and (dB2, dZ1) respectively. Merton’s solution for the maximization problem
(10) in the two risky assets case is:

w1W =
A(α1 − r)σ22
σ21σ

2
2(1− ρ21)

− A(α2 − r)σ12
σ21σ

2
2(1− ρ21)

+
H1α1g1σ1σ

2
2 (ρ2 − ρ1ρ3)

σ21σ
2
2(1− ρ21)

, (20)

w2W = −A(α1 − r)σ12
σ21σ

2
2(1− ρ21)

+
A(α2 − r)σ22
σ21σ

2
2(1− ρ21)

+
H1α1g1σ

2
1σ2 (−ρ2ρ1 + ρ3)

σ21σ
2
2(1− ρ21)

,(21)

A = − VW
VWW

, H1 = −Vα1w
Vww

.

In the following we consider the optimal robust portfolio allocation problem,
for the maximization of the lifetime expected utility from consumption and we
derive condition under which the holdings invested in the risky assets increase
relative to the risk averson case.14 For this specific case the equations for wealth
dynamics and α1 can be written as:·

dW (t)
dα1(t)

¸
=

·
w1(α1 − r) + w2(α2 − r) + (rW − c)

α1f1

¸
dt+ (22)

·
Wσ1w1 +Wσ2w2ρ1 Wσ2w2

p
1− ρ21 0

α1g1ρ2 α1g1τ1 α1g1τ2

¸d eB1d eB2
d eB3


where eBi i = 1, 2, 3 denote three independent Brownian motions. Considering
again distortions to the joint distribution of the two assets and the drift rate, and
imposing an overall entropy constraint for them, the above equation becomes:

·
dW (t)
dα1(t)

¸
=

·
F1
F2

¸
dt+G

dB̂1dB̂2
dB̂3

 (23)

where

F1 = w1(α1 − r + σ1h) + (rW − c)

+w2

µ
α2 − r + σ2h

µ
ρ1 +

q
1− ρ21

¶¶
F2 = α1f1 + hα1g1 (ρ2 + τ1 + τ2)

G =

·
Wσ1w1 +Wσ2w2ρ1 Wσ2w2

p
1− ρ21 0

α1g1ρ2 α1g1τ1 α1g1τ2

¸
The Bellman-Isaacs conditions for this game imply that the value function
V (W,α1, θ) satisfies the following equation:

δV = max
wi,C

min
h

n
U(C) + θ3

h2

2
+ VWF1 + Vα1F2 +

1

2
trace(GT∂2V G)

o
. (24)

14We will provide the proof only for the stochastic mean rate. Similar conditions can be
derived for the stochastic volatility case
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where now ∂2V =

·
VWW VWα1

VWα1 Vα1α1

¸
. The first order conditions for the above two

players game are:

U 0(C) = VW ,

h =
−VWW

¡
σ1w

∗
1 − σ2(ρ+

p
1− ρ2)w∗2

¢− α1g1qVα1
θ3

q = ρ2 + τ1 + τ2
2X

j=1

w∗jWσ1j = A(α1 − r) +Aσ1h+H1α1g1ρ2σ1

2X
j=1

w∗jWσ2j = A(α2 − r) +Aσ2(ρ1 +
q
1− ρ21)h+H1α1g1ρ3σ2.

A = − VW
VWW

, H1 = −Vα1w
Vww

Using matrix notation the solution of the above problem can be described
by the following equation:£
w∗1W w∗2W

¤
Λ =

£
A(α1 − r) A(α2 − r)

¤
+
£
H1α1g1ρ2σ1 H1α1g1ρ3σ2

¤

+
h
−Aσ1 α1g1(ρ2+τ1+τ2)Vα1θ3

−Aσ2(ρ1 +
p
1− ρ21)

α1g1(ρ2+τ1+τ2)Vα1
θ3

i
where:

Λ =

 σ11(1− V 2
W

θ3VWW
) σ12

¡
1− V 2

W

θ3VWW

ρ1+
√
1−ρ21
ρ

¢
σ12
¡
1− V 2

W

θ3VWW

ρ1+
√
1−ρ21

ρ1

¢
σ22
¡
1− V 2

W

θ3VWW
(1 + 2ρ1

p
1− ρ21)

¢
 .
(25)

If Σ denotes the diagonal matrix with elements σ1, σ2 then:

Λ = Σ

"
(1− V 2

W

θ2VWW
)

¡
ρ− V 2

W

θ3VWW
(ρ1 +

p
1− ρ21)

¢¡
ρ1 − V 2

W

θ3VWW
(ρ1 +

p
1− ρ21)

¢ ¡
1− V 2

W

θ3VWW
(1 + 2ρ1

p
1− ρ21)

¢ #Σ.
(26)

Solving the above system we determine the fraction of the wealth invested on
the first and second asset under robust portfolio choices as:£

w∗1W w∗2W
¤
=

1

(1− ρ21)
¡
1− 2 V 2

W

θ3VWW
)
MΣ−1 (27)

"
1− V 2

W

θ3VWW
(1 + 2ρ1

p
1− ρ21) −ρ1 + V 2

W

θ3VWW
(ρ1 +

p
1− ρ21)

−ρ1 + V 2
W

θ3VWW
(ρ1 +

p
1− ρ21) 1− V 2

W

θ3VWW

#
Σ−1.(28)

where M is the matrix:
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M =
£
A(α1 − r) A(α2 − r)

¤
+
£
H1α1g1ρ2σ1 H1α1g1ρ3σ2

¤
+h

−Aσ1 α1g1(ρ2+τ1+τ2)Vα1θ3
−Aσ2(ρ1 +

p
1− ρ21)

α1g1(ρ2+τ1+τ2)Vα1
θ3

i
Next we examine, as in the previous section, the changes in the robust port-

folio weights ∆wi = wi − w∗i , i = 1, 2 between the risk aversion case (θ→∞)
and the uncertainty aversion case (θ <∞) .Using (20),(21),(27) we obtain:15£

W∆w1 W∆w2
¤
=

1

(1− ρ21)
M1Σ

−1ΞΣ−1 − TM2, (29)

where:

Ξ =

·
1 −ρ1
−ρ1 1

¸
− 1¡

1− 2 V 2
W

θ3VWW
)

(30)

"
1− V 2

W

θ3VWW
(1 + 2ρ1

p
1− ρ21) −ρ1 + V 2

W

θ3VWW
(ρ1 +

p
1− ρ21)

−ρ1 + V 2
W

θ3VWW
(ρ1 +

p
1− ρ21) 1− V 2

W

θ3VWW

#

M1 =
£
A(α1 − r) A(α2 − r)

¤
+
£
H1α1g1ρ2σ1 H1α1g1ρ3σ2

¤
M2 = [M21 M22]

M21 = −Aσ1 α1g1(ρ2+τ1+τ2)Vα1θ3
.

M22 = −Aσ2(ρ1 +
q
1− ρ21)

α1g1 (ρ2 + τ1 + τ2)Vα1
θ3

and

T =
1

(1− ρ21)
¡
1− 2 V 2

W

θ3VWW
)
Σ−1QΣ−1

Q =

"
1− V 2

W

θ3VWW
(1 + 2ρ1

p
1− ρ21) −ρ1 + V 2

W

θ3VWW
(ρ1 +

p
1− ρ21)

−ρ1 + V 2
W

θ3VWW
(ρ1 +

p
1− ρ21) 1− V 2

W

θ3VWW

#

After some manipulations we obtain:£
W∆w1 W∆w2

¤
= −TM2+ (31)

AV 2
W

(1− ρ21)(θ3VWW − V 2
W )

M1Σ
−1
·
2ρ1
p
1− ρ21 − 1 ρ1 −

p
1− ρ21

ρ1 −
p
1− ρ21 −1

¸
Σ−1.

15For infinitesimal changes in θ, this is basically a comparative statics exercise that charac-
terizes the derivative ∂w∗i /∂θ.
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From the above equation it can be shown that the changes in the robust portfolio
weights are affected by two componets. One which is related to M1 and one
wich is related to M2. If the effect of each one of them induces an increase of
total holdings invested on each risky asset then we will have that the portfolio
weights will be increased relative to risk aversion case. Matrix M1 includes two
sub matrices, where the first one appears also in the case where the mean rate
of return of the price process is not stochastic. (see [32]). If by (·)1 we denote
the change of the invested wealth due to the M1 component then:

(W∆w1)1 =
κ

σ1

·
α1 − r

σ1
(2ρ1

q
1− ρ21 − 1) +

α2 − r

σ2
(ρ1 −

q
1− ρ21)

¸
(32)

(W∆w2)1 =
κ

σ2

·
α1 − r

σ1
(ρ1 −

q
1− ρ21)−

α2 − r

σ2

¸
(33)

κ =
AV 2

W

(1− ρ21)(θ3VWW − V 2
W )

. (34)

In the above equation κ is always a negative number, so by setting:

λ =
α2−r
σ2

α1−r
σ1

, (35)

we obtain

(W∆w1)1 < 0 if
ρ1 −

p
1− ρ21

1− 2ρ1
p
1− ρ21

>
1

λ
, (36)

(W∆w2)1 < 0 if ρ1 −
q
1− ρ21 > λ. (37)

Similar if (·)2 refers to the change in the invested wealth in each asset, associated
with the second submatrix of the M1 component, that is£

H1α1g1ρ2σ1 H1α1g1ρ3σ2
¤
then :

(W∆w1)2 =
eκ
σ1

·
ρ2(2ρ1

q
1− ρ21 − 1) + ρ3(ρ1 −

q
1− ρ21)

¸
(38)

(W∆w2)2 =
eκ
σ2

·
ρ2(ρ1 −

q
1− ρ21)− ρ3

¸
(39)

eκ =
H1α1g1V

2
W

(1− ρ21)(θ3VWW − V 2
W )
≷ 0 if H1 ≶ 0.

So

(W∆w1)2 < 0 if ρ2(2ρ1

q
1− ρ21 − 1) + ρ3(ρ1 −

q
1− ρ21) ≶ 0, (40)

(W∆w2)2 < 0 if ρ2(ρ1 −
q
1− ρ21)− ρ3 ≶ 0. (41)

12



Furthermore if by (·)3 we denote similar effects due to the M2 component we
obtain, for Vα1 > 0, that:

(W∆w1)3 < 0 if M21 ≷ 0⇔ ρ2 + τ1 + τ2 ≷ 0 (42)

(W∆w2)3 < 0 if M22 ≷ 0⇔ (ρ1 +
q
1− ρ21) (ρ2 + τ1 + τ2) ≷ 0 (43)

If we combine (32)− (33), we obtain that:

(W∆W )1 = (W∆w1)1 + (W∆w2)1 = (44)

κ
α1 − r

σ1

1

σ2

£
(2ρ1

q
1− ρ21 − 1)σ + λσ(ρ1 −

q
1− ρ21)+ (45)

(ρ1 −
q
1− ρ21)− λ

¤
< 0 if (46)

(λσ + 1)(ρ1 −
q
1− ρ21) > λ+ σ(1− 2ρ1

q
1− ρ21) or

λ̂(ρ1 −
q
1− ρ21 −

1

σ
) > σ(1− 2ρ1

q
1− ρ21)− (ρ1 −

q
1− ρ21) (47)

with λ̂ =
a2 − r

a1 − r
, σ =

σ2
σ1

Combining (38)− (39) for the corresponding term (·)2, we obtain that:

(W∆W )2 = (W∆w1)2 + (W∆w2)2 (48)

=
eκ
σ1

£
σ

µ
ρ2(2ρ1

q
1− ρ21 − 1) + ρ3(ρ1 −

q
1− ρ21)

¶
+ρ2(ρ1 −

q
1− ρ21)− ρ3

¤
< 0 if P ≶ 0 where

P =
£
σ

µ
ρ2(2ρ1

q
1− ρ21 − 1) + ρ3(ρ1 −

q
1− ρ21)

¶
(49)

+ρ2(ρ1 −
q
1− ρ21)− ρ3

¤
Therefore for admissible values of ρi , i = 1, 2, 3 and independent the value of
the robustness parameter θ, we can state the following proposition:16

Assuming that the mean rate of return or the volatility rate evolves stochas-
tically over time, robust portfolio choices under uncertainty aversion imply for
a market consisting of one riskless and two risky assets the following:

1. If (36), (40), (42) hold at the same time there is an increase in the
holdings invested in the first risky asset, relative to risk aversion, or
∆w1 = (W∆w1)1 + (W∆w1)2 + (W∆w1)3 < 0.

16Using the Mathematica software package we are able to verify that there exist values of
ρi satisfying the sufficient conditions provided in the following proposition.
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2. If (37), (41), (43) hold at the same time there is an increase in the
holdings invested in the second risky asset, relative to risk aversion, or
∆w2 = (W∆w2)1 + (W∆w2)2 + (W∆w2)3 < 0.

3. If (42)−(43) and (47), (48) hold at the same time then there is an increase
in the total holdings invested in the risky assets, relative to risk aversion,
or ∆W < 0.

4. When concerns about model misspecification do not exist, or θ →∞, then
the difference in portfolio choices between uncertainty aversion and risk
aversion vanishes ∆W = ∆w1 +∆w2 → 0, (∆w1,∆w2)→ 0

4 Robust Portfolio Rules and Differences in Am-
biguity

We consider now a similar problem with two risky assets, but we assume that
the first one is a foreign asset for which concerns about misspecification of
its price processes exist, while the second one is a home asset for which the
investor believes that she/he knows the true evolution of its price process over
time through the benchmark model. Thus, both assets are risky but there is
uncertainty (or ambiguity) aversion regarding the price processes of the foreign
asset. The investor is risk averse, in the standard way, regarding the price
process of the home asset.
In this case the derivation of robust portfolio desicion rules requires distort-

ing only the Brownian motions which are related to the evolution of the first
asset and of its mean rate of return α1. Relationship (22) also holds in this case
and the respective componets of the equation (23) become:

F1 = w1(α1 − r + σ1h) + (rW − c) + w2

µ
α2 − r + σ2hρ1 + σ2

q
1− ρ21

¶
F2 = α1f1 + τ1α1g1 + hα1g1 (ρ2 + τ2) (50)

while G remains the same. The Bellman-Isaacs conditions for this game implies
that the value function V (W,α1, θ) satisfies again equation (24) where the first
order conditions for the above two players game are:

U 0(C) = VW , (51)

h = −VWW
¡
σ1w

∗
1 + σ2ρ1w

∗
2

¢
+ (α1g1 (ρ2 + τ2)Vα1)

θ3
2X

j=1

w∗jWσ1j = A(α1 − r) +Aσ1h+H1α1g1ρ2σ1

2X
j=1

w∗jWσ2j = A(α2 − r) +Aσ2(ρ1h+
q
1− ρ21) +H1α1g1ρ3σ2.

14



A = − VW
VWW

, H1 = −Vα1w
Vww

Using matrix notation the solution of the above problem can be described by
the following equation:£

w∗1W w∗2W
¤
Λ =

£
A(α1 − r) A(α2 − r + σ2

p
1− ρ21)

¤
+

£
H1α1g1ρ2σ1 H1α1g1ρ3σ2

¤
+
h
−Aσ1 α1g1(ρ2+τ2)Vα1θ3

−Aσ2ρ1 α1g1(ρ2+τ2)Vα1θ3

i
where

Λ =

"
σ11(1− V 2

W

θ3VWW
) σ12(1− V 2

W

θ3VWW
)

σ12(1− V 2
W

θ3VWW
) σ22

¡
1− V 2

W

θ3VWW
ρ21
¢ # .

If Σ denotes the diagonal matrix with elements σ1, σ2 then:

Λ = Σ

"
(1− V 2

W

θ3VWW
) (1− V 2

W

θ3VWW
)

(1− V 2
W

θ3VWW
)
¡
1− V 2

W

θ3VWW
ρ21
¢ #Σ.

Solving the above system we determine the fraction of the wealth invested on
the first and second risky asset under robust portfolio choices as:£

w∗1W w∗2W
¤
=

1

(1− ρ21)
¡
1− V 2

W

θ3VWW
)

V 2
W

θ3VWW

MΣ−1 (52)

" ¡
1− V 2

W

θ3VWW
ρ21
¢ −(1− V 2

W

θ3VWW
)

−(1− V 2
W

θ3VWW
) (1− V 2

W

θ3VWW

¢ #
Σ−1.

where now M is the matrix:

M =
£
A(α1 − r) A(α2 − r + σ2

p
1− ρ21)

¤
+
£
H1α1g1ρ2σ1 H1α1g1ρ3σ2

¤
+
h
−Aσ1 α1g1(ρ2+τ2)Vα1θ3

−Aσ2ρ1 α1g1(ρ2+τ2)Vα1θ3

i
Next we examine the changes in the robust portfolio weights∆wi = wi−w∗i , i =
1, 2 between risk aversion (θ →∞) and uncertainty aversion (θ <∞) .
Using, (20),(21),(52) we obtain:£

W∆w1 W∆w2
¤
=

1

(1− ρ21)
M1Σ

−1ΞΣ−1 − TM2, (53)

where in this specific case:

Ξ =

·
1 −ρ1
−ρ1 1

¸
− 1¡
1− V 2

W

θ3VWW
)

V 2
W

θ3VWW

" ¡
1− V 2

W

θ3VWW
ρ21
¢ −(1− V 2

W

θ3VWW
)

−(1− V 2
W

θ3VWW
) (1− V 2

W

θ3VWW

¢ #
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M1 =
£
A(α1 − r) A(α2 − r + σ2

p
1− ρ21)

¤
+£

H1α1g1ρ2σ1 H1α1g1ρ3σ2
¤

M2 = [M21 M22]

M21 = −Aσ1α1g1 (ρ2 + τ2)Vα1
θ3

,M22 = −Aσ2ρ1
α1g1 (ρ2 + τ2)Vα1

θ3

and

T =
1

(1− ρ21)
¡
1− V 2

W

θ3VWW
)

V 2
W

θ3VWW

Σ−1QΣ−1

Q =

" ¡
1− V 2

W

θ3VWW
ρ21
¢ −(1− V 2

W

θ3VWW
)

−(1− V 2
W

θ3VWW
) (1− V 2

W

θ3VWW

¢ #
After some manipulations we obtain:

£
W∆w1 W∆w2

¤
= −TM2 +

1

(1− ρ21)
M1Σ

−1
·

ξ x− ρ1
x− ρ1 1− x

¸
Σ−1.

(54)

where ξ = 1 +
x
¡
ρ21 − x

¢
x− 1 > 0, x =

θ3VWW

V 2
W

.

From the above equation we can see that the changes in the robust portfolio
weights are affected by two componets M1 and M2, where matrix M1 includes
two submatrices matrices. Working as in the previous section we obtain:

(W∆w1)1 =
κ

σ1

·
α1 − r

σ1
ξ +

α2 − r + σ2
p
1− ρ21

σ2
(x− ρ1)

¸
(55)

(W∆w2)1 =
κ

σ2

·
α1 − r

σ1
(x− ρ1)−

α2 − r + σ2
p
1− ρ21

σ2
(1− x)

¸
(56)

where now κ =
1

(1− ρ21)
.

In the above equations κ is always a positive number, so by setting:

bλ = α2−r+σ2
√
1−ρ21

σ2
α1−r
σ1

, (57)

we obtain

(W∆w1)1 < 0 if ξ < bλ(x− ρ1) (58)

(W∆w2)1 < 0 if
x− ρ1
1− x

< bλ. (59)
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The above equations indicate that the effect is to always reduce the holdings of
the second asset if ρ1 > 0 and

bλ > 0, or otherwise when bλ > 1.
Considering the case where Vα1 > 0,H1 < 0, then if (·)2 refers to the term

related to the matrix£
H1α1g1ρ2σ1 H1α1g1ρ3σ2

¤
, we have:

(W∆w1)2 =
eκ
σ1

·
ρ2ξ + ρ3(x− ρ1)

¸
(60)

(W∆w2)2 =
eκ
σ2

·
ρ2(x− ρ1) + ρ3(1− x)

¸
(61)

where now eκ =
H1α1g1
(1− ρ21)

< 0

So

(W∆w1)2 < 0 if ρ2 > 0, ρ1 > 0, ρ3 < 0. (62)

(W∆w2)2 < 0 if 0 < ρ2 < ρ3, ρ1 > 0 or

ρ1 > 0, ρ2 < 0 , ρ3 > 0. (63)

Finally if (·)3 refers to the term −TM2 related to the matrix
£
M21 M22

¤
then:

(W∆w1)3 =
eκ0
σ1

·
(ρ2 + τ2)

¡
ρ21 − x

¢
x

1− x
− ρ1 (ρ2 + τ2)x

¸
(W∆w2)3 =

eκ0
σ2

·
− (ρ2 + τ2)x+ ρ1 (ρ2 + τ2)x

¸
where eκ0 = −−A

α1g1Vα1
θ3

(1− ρ21)
> 0

Therefore

(W∆w1)3 < 0 if ρ1 < 0, (ρ2 + τ2) > 0. (64)

(W∆w2)3 < 0 if ρ1 (ρ2 + τ2) > (ρ2 + τ2) (65)

Equations (58) with (62) and (64), can be never satisfied simultaneously.
Therefore in this particular case we are not able to derive a general rule regard-
ing the increase in holdings of the first ”ambiguous” asset relative to the risk
aversion case. Thus, when we consider the case where a consumer-investor is
ambiguity averse regarding the evolution of the first asset’s price process, we
have shown that, when Vα1 > 0,H1 > 0 the following proposition holds.
For a market consisting of one riskless and two risky assets, when ambiguity

for the price process equation of one of them is considered, robust portfolio
choices under uncertainty aversion imply the following:
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1. If (59), (63), (65) hold at the same time then there is an increase in the
holdings of the second ”no ambiguous asset”, relative to risk aversion, or
∆w2 = (W∆w2)1 + (W∆w2)2 + (W∆w2)3 < 0.

2. When concerns about model misspecification do not exist, or θ →∞, then
the difference in portfolio choices between uncertainty aversion and risk
aversion vanishes. ∆W = ∆w1 +∆w2 → 0, (∆w1,∆w2)→ 0.

Thus in this case uncertainty aversion for one asset only, implies that the
holdings of the other, ”no ambiguous” asset might increase relative to the case
where the investor is risk averse for both assets.
Applying the same approach to the other three cases associated with the

relationship of the signs between H1 and Va1 ,
17 when the mean rate of the price

process is uncertain we obtain the following result:18.
For a market consisting of one riskless and two risky assets, with ambiguity

associated only with the price process of one of them, robust portfolio choices
under uncertainty aversion imply the following:

1. It is more likely to have an increase in the holdings of the second ”no am-
biguous asset,” relative to risk aversion, or ∆w2 = (W∆w2)1+(W∆w2)2+
(W∆w2)3 < 0.

2. When concerns about model misspecification do not exist, or θ →∞, then
the difference in portfolio choices between uncertainty aversion and risk
aversion vanishes. ∆W = ∆w1 +∆w2 → 0, (∆w1,∆w2)→ 0.

The proof is given in the Appendix.
This proposition suggests that the consumer investor is more likely to in-

crease the holdings of the second ”home” or ”no ambiguous” asset and reduce the
holdings of the first ”foreign”, ”ambiguous” asset, in a situation where she/he
believes that the benchmark price process for the home asset is an adequate
representation, but has concerns regarding model misspecification associated to
the price process of the foreign asset. The result holds both for the case of un-
certain mean return or uncertain volatility of the price proces. This is a result
that can be regarded as providing an additional explanation for the home bias
puzzle.

5 Concluding Remarks

By considering a stochastic investment opportunity set, where not only the
assets’ price processes, but also the drift and the volatility of the price processes

17The three cases are:
H1 > 0, Vα1 < 0
H1 > 0, Vα1 > 0
H1 < 0, Vα1 < 0

18If we assume that uncertainty is associated with the volatility of the price process, instead
of the rate of return, then the result remains the same. For the proofs we need only to
substitute H2 for H1 and Vσ1 for Va1 .
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are driven by stochastic processes themselves, we derive optimal robust portfolio
rules and provide another explanation of the home bias puzzle based on the
optimizing behavior of a consumer - investor exhibiting uncertainly aversion for
the foreign asset and risk aversion for the home asset. Our robust portfolio rules
are parametrized using the exogenous parameter θ, and not eliminating it, in
order to preserve the consistency of preferences with Gilboa and Schmeidler’s
axiomatization of uncertainty aversion. Furthermore the derived robust rules
suggest that total holdings of risky assets may increase, for certain parameter
values, under uncertainty aversion relative to the risk aversion case, which is
a result that can be contrasted to results suggesting that robust methods in
portfolio selection imply a reduction in the total holdings of risky assets. The
fact that changes could go either way depending on the structure of the model
parameters suggests that uncertainty aversion and adoption of robust portfolio
rules should not be associated with conservative behavior regarding the holdings
of risky assets.

19



A Appendix

Proof of proposition 2: Equations (1), (2), (17), which describe the dy-
namics of P1, α1, σ1 can be written as:

dP1
P1

= α1dt+ σ1dB1, (66)

dα1
α1

= f1dt+ g1(ρ1dB1 +
q
1− ρ21dB2),

dσ1
σ1

= f2dt+ g2(ρ2dB1 + τ1dB2 + τ2dB3),

τ1 =
ρ3−ρ1ρ2p
1− ρ21

, (67)

τ2 = (i)
q
1− ρ22 − τ21 if (1− ρ22 − τ21) > (<)0, (68)

where in the above system of equations B1, B2, B3 are independent Brownian
motions and ρ1, ρ2, ρ3 denote the corelation coefficients between
(dB1, dZ1), (dB1, dZ2), and (dZ1, dZ2) respectively

19 20.
For the problem (10) of maximizing expected lifetime utility of consumption

Merton’s solution determines the optimal portfolio weight w1, for the risky asset
as:

w1W =
A(α1 − r)

σ21
+H1

g1ρα1
σ1

+H2ρg2, (69)

A = − VW
VWW

,

H1 = −Vα1w
Vww

,

H2 = −Vσ1w
Vww

.

We face again the similar problem of a consumer-investor who is not sure about
the benchmark model (66) and seeks to find robust desicion rules. Aplying
the same technique as before the probabilities implied by the above model are

19We use the fact that the corelation matrix is RRT =

 1 ρ1 ρ2
ρ1 1 ρ3
ρ2 ρ3 1

 where R = 1 0 0

ρ1

q
1− ρ21 0

ρ2 τ1 τ2

 .We solve our prblem for the case where the matrix R is a real matrix

which happens when (1−ρ22− τ21) > 0⇔ (1−ρ22)(1−ρ21)− (ρ3−ρ1ρ2)
2 > 0. We are able to

undertake the above analysis when all the main determinates of the initial matrix are strictly
positive numbers and the method we use in order to achieve this is the orthogonormalization
method of Grant-Smith.
20i is the imagine unit of a complex number: i2 = −1

20



distorted. After some manipulations we can write the dynamics of the system
for the distorted model as:

dS = Adt+ΣdB̂ (70)

S =

W (t)
α1(t)
σ1(t)



A =

w1(α1 + σ1h− r) + (rW − c)

α1[f1 + g1h(ρ1 +
p
1− ρ21)]

σ1[f2 + g2h(ρ2 + τ1 + τ2)]


Σ =

Wσ1w1 0 0

α1g1ρ1 α1g1(ρ1 +
p
1− ρ21) 0

σ1g2ρ2 σ1g2τ1 σ1g2τ2


B̂ =

B̂1B̂2
B̂3


In this case the associated multiplier robust control problem becomes:

J(θ) = sup
wi,C

inf
h
EQ

Z ∞
0

e−δt
£
U(C) + θ3

h2

2

¤
dt (71)

subject to (70),
where θ3 = 3θ, and θ denotes the robustness parameter which takes values

greater or equal to zero. The Bellman-Isaacs conditions for this game implies
that the value function V (W,α1, σ1, θ) satisfies the following equation:

δV = max
w1,C

min
h

n
U(C) + θ3

h2

2
+ VW [w1(α1 + σ1h− r)W + (rW − c)]

+Vα1α1[f1 + g1h(ρ1 +
q
1− ρ21)] + Vσ1σ1[f2 + g2h(ρ2 + τ1 + τ2)]

+
1

2
trace(ΣT∂2V Σ)

o
.

where by ∂2V 21 denotes the matrix of second partial derivatives with respect
W,α1, σ1

22. The first order conditions for the above two players game are:

U 0(C) = VW ,

h = −VWWw1σ1 + Vα1α1g1(ρ1 +
p
1− ρ21) + Vσ1σ1g2(ρ2 + τ1 + τ2)

θ2
,

0 = VWw1(α1 + σ1h− r) + VWWσWw1 + α1g1ρ1σ1Vα1W + Vσ1W g2ρ2σ
2
1

21∂2V =

VWW VWα1 VWσ1
VWα1 Vα1α1 VWσ1

VWσ1 VWσ1 Vσ1σ1


22Superscript T denotes the transpose of a matrix.
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Solving the above system of equations we obtain the fraction of the wealth w∗1
invested in the risky asset for the case of uncertainty aversion with respect both,
to the stochastic evolution of the volatility rate and of the mean rate of return
of the price processes.

w∗1W
µ
1 − V 2

W

θ2VWW

¶
=

A(α1 − r)

σ21
+H1

g1ρ1α1
σ1

+H2ρg2 (72)

+
VWVα1
θ3VWW

g1α1(ρ1 +
p
1− ρ21)

σ1
+

VWVσ1
θ3VWW

g2(ρ2 + τ1 + τ2)

The first three terms on the right hand side of the above equation are the same as
in (69), therefore based on the usuall argument as in the previous cases we have
to distinguish four cases depending on the signs of the partials derivatives of the
value function with respect to mean rate and the volatility rate. Particuralrly
when Vα1 R 0 and Vσ1 R 0 if ρ1 +

p
1− ρ21 R 0 and ρ2 + τ1 + τ2 R 0 then an

uncertainty averse investor always reduces the total holdings of the risky asset
relative to a risk averse.Therefore if

System =


ρ2 + τ1 + τ2 R 0 when Vα1 R 0 respectively
ρ1 +

p
1− ρ21 R 0 when Vσ1 R 0 respectively
(1− ρ22)(1− ρ21)− (ρ3−ρ1ρ2)2 > 0

1 ≤ ρ2 ≤ 1
−1 ≤ ρ3 ≤ 1

the proposition has been proved.
Proof of proposition 5: We will present the proof for the stochastic

volatility case when H2 > 0, Vσ1 < 0. Equations (50) − (54) also hold in this
specific case with the difference that H2, σ1, g2 , f2, Vα1 have replaced H1, α1, g1,
f1, Vσ1 respectively. Following this proof we obtain that equations (58), (59)
also hold this time.
Similar if (·)2 refers to the corresponding term related with the matrix£
H2σ1g2ρ2σ1 H2σ1g1ρ3σ2

¤
then :

(W∆w1)2 =
eκ
σ1

·
ρ2ξ + ρ3(x− ρ1)

¸
(73)

(W∆w2)2 =
eκ
σ2

·
ρ2(x− ρ1) + ρ3(1− x)

¸
(74)

eκ =
H2σ1g2
(1− ρ21)

> 0.

So

(W∆w1)2 < 0 if ρ2 < 0, ρ1 > 0, ρ3 > 0. (75)

(W∆w2)2 < 0 if 0 > ρ2 > ρ3, ρ1 > 0 or (76)

ρ1 > 0, ρ2 > 0 , ρ3 < 0. (77)

Moreover if (·)3 refers to the corresponding term −TM2 related with the matrix£
M21 M22

¤
then :
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(W∆w1)3 =
eκ0
σ1

·
(ρ2 + τ2)

¡
ρ21 − x

¢
x

1− x
− ρ1 (ρ2 + τ2)x

¸
(W∆w2)3 =

eκ0
σ2

·
− (ρ2 + τ2)x+ ρ1 (ρ2 + τ2)x

¸
eκ0 = −−A

σ1g2 Vα1
θ3

(1− ρ21)
< 0.

So

(W∆w1)3 < 0 if ρ1 < 0, (ρ2 + τ2) < 0. (78)

(W∆w2)3 < 0 if ρ1 (ρ2 + τ2) < (ρ2 + τ2) (79)

Therefore we have shown that:

1. If (59), (79) with (76) or (77), hold simultaneously then there is an in-
crease in the holdings of the second risky asset, relative to risk aversion,
or ∆w2 = (W∆w2)1 + (W∆w2)2 + (W∆w2)3 < 0.

2. When concerns about model misspecification do not exist, or θ →∞, then
the difference in portfolio choices between uncertainty aversion and risk
aversion vanishes. ∆W = ∆w1 +∆w2 → 0, (∆w1,∆w2)→ 0.

The proof for the other two cases, either
H1 > 0, Vα1 > 0
H1 < 0, Vα1 < 0

when we refer

to the case of a stochastic mean rate of return, or
H2 > 0, Vσ1 > 0
H2 < 0, Vσ1 < 0

when we

examine the case of a stochastic volatility rate, is similar.
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