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Abstract. In this paper we propose a model of financial markets in which agents have limited ability to

trade and no probability measure is given from the outset. In the absence of arbitrage opportunities, assets

are priced according to a probability measure that lacks countable additivity. Pricing bubbles are shown

to exist and a clear characterization is given in conditional terms. Despite finite additivity, we obtain an

explicit representation of the expected value with respect to the pricing measure, based on some new results

on finitely additive conditional expectation and finitely additive martingales. From this representation

we derive a weak version of the Capital Asset Pricing Model according to which an appropriate linear

transformation of assets returns is turned into a local martingale by multiplication by a stochastic discount

factor. In general this conclusion need not be true for original returns and this is shown to imply deviations

from the CAPM that may potentially contribute to explain the equity premium puzzle. We also discuss

special cases in which the above results can be improved.

1. Introduction.

Continuous time financial models adopt a wide definition of the trading activity of agents, no matter the

degree of market imperfections considered. The ground for such definition is laid by two basic assumptions:

that a probability measure is given from the outset (and known to agents) and that with reference to this

gains from trade may be modeled as semimartingales. The powerful mathematical construction of stochastic

integration becomes thus available. We shall henceforth refer to this approach as the traditional setting.

It is its merit to have permitted to rewrite under full generality the model of financial markets proposed

by Arrow [5] for a finite state space and to which, by its nature, such assumptions are extraneous. This

point emerges very clearly in Duffie and Huang [27]. Furthermore, this modeling choice has fostered a large

number of important results in the theory of asset pricing and portfolio selection. In all such developments

is therefore implicit the view of investors as agents of considerably refined ability, both in the assessment of

uncertainty and in the trading of assets. The delta hedging strategy of Black and Scholes [10], a standard

textbook case regardless of its overwhelming complexity, is a good case in point.

We present in this paper a theory of financial prices in continuous time and a with general state space

but based on a more realistic picture of individual capabilities. To this end we introduce in section 2 a

model with two distinctive features: no probability measure is taken as given and the trading of assets is

considerably restricted. More precisely, we will only consider trading strategies which (i) extend over a finite

time horizon, (ii) prescribe rebalancing positions a finite number of times and (iii) are contingent on a finite

number of possible scenarios. This is, we believe, close in spirit to Arrow’s original set up which still survives

in binomial models but is here made entirely general. On the other hand, given our focus on the constraints

to financial activity coming from the subjective side, we assume that markets are free of any imperfection and
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that investment (discounted) returns are bounded. In sections 3 to 8 we analyze the implications arising in

this framework from the basic economic principle of absence of arbitrage opportunities. We obtain versions

of the Fundamental Theorem of Asset Pricing and of the Capital Asset Pricing Model that compare with

the corresponding results developed in the traditional setting but present at the same time differences which

are significant in economic terms.

An explicit motivation for the assumption of a given probability measure may hardly be found in contri-

butions to the theory of finance. However two main arguments underlying it refer to either the possibility

of retrieving such a measure from historical data or to the circumstance that this be embodied in individual

preferences over uncertain outcomes, i.e. expected utility. The first argument, helps explaining how is it

that all agents have the same starting probability, given ease of accessing past data. Nevertheless, averaging

data is not be free of troubles whenever time series are not sufficiently stationary, as it may either lead to

unstable estimates or to severe undervaluation of rarely occurring events. Non stationarity of financial time

series is one of the of stylized facts in financial analysis and it contributes significantly to exaplining well

known puzzles, such as the equity premium (see [19] and [8] for alternative attempts to explain the equity

premium puzzle based on non stationarity).

As for the second argument, a vast stream of literature, taking its moves from paradoxes of expected

utility, has questioned the idea that a probabilistic assessment of uncertainty be implicit in preferences both

on theoretical and empirical ground. Although in experimental psychology, subadditivity is a long-standing

evidence (see [61] and [62] for pioneering work), more recent theoretical work has laid ground for models in

which choice may not be based on probability measures but rather on set functions with a considerably poorer

stricture. Examples are Choquet expected utility [57], case-based decision making [31], prospect theory ([45]

and [63]) and support theory ([64]). On the other side, much experimental evidence has been obtained (see

[20] and [21] for comprehensive reviews) showing how deeply individual choice is influenced by psychological

elements such as the framing of decisions. These elements may lead investors to attach importance to events

in a selective way and be responsible of market phenomena such as over- or under-reactions.

This brief discussion motivated the choice to abandon the familiar assumption of a given probability

measure and to treat as the primitive of our model the collection N of events that do not affect individual

decisions. Such events will be called negligible. Of course, the traditional setting may be easily reconciled

with our framework when N amounts to the null sets generated by some probability prior Q. We want to

stress, however, that in our approach this is only an important special case — another being N = ∅. Our
stance is that negligible events need not stem from a probabilistic assessment but, for example, from some

sort of bounded rationality making individuals unable to make decisions contingent on some specific events.

This part of the model is presented in section 2.2.

Most of this paper is dedicated to investigating the implications of the absence of arbitrage opportunities.

The first conclusion we reach is that there exists a pricing measure, m, (a “martingale measure”, in the

terminology of traditional modeling) that does not charge negligible events and that will in general only be

finitely additive. Second, we show that associated to m is a countably additive probability measure, P —

which we denominate the representing measure — the role of which compares to that of the “physical” or

“objective” measure in traditional models. The interplay between P and m is a distinguished feature of

our model and most of what follows is based on it. The measure P , in particular, permits an explicit and

analytically tractable representation of the pricing rule arising from m, described in Proposition 2. This is

the core result of the paper and essentially it allows to overcome some of the difficulties involved in finitely
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additive expectation. The representing measure will also be relevant in establishing implicit mathematical

properties of the return processes. It is worth highlighting that the measure P is endogenous in our approach

(and typically non unique) and that it is generated by the pricing measure m, rather than the other way

round as in traditional models.

The existence of a representing measure P induced by m relies on a new decomposition result for finitely

additive measures (proved in [12] but restated in Lemma 1 below) which, to some extent, translates the

celebrated result of Yosida and Hewitt [67] in the framework of filtered probability spaces. Some additional

new tools for handling finitely additive measures also play an important role in our analysis. We prove in

Proposition 1 the existence of a conditional expectation operator for finitely additive probabilities which

possesses several important properties of ordinary conditional expectation and actually coincides with it in

the case in which countable additivity obtains (a different proof with additional results is in [13]). This

operator, of which we provide an explicit and familiar example in section 3.2, is employed to show that the

martingale pricing of assets gets along with the existence of pricing bubbles, of which we offer a conditional

version.

We give now a brief account of the other results obtained, which follow from the assumption that arbitrage

opportunities are ruled out. First of all, we show that upon stopping at a given stopping time T , financial

returns are P semimartingales — with T = ∞ in the case of complete financial markets. Second, we derive

a formula partially analogous to the continuous time version developed by Merton [52] of the CAPM of

Sharpe [59] and Lintner [48]. The two formulas actually coincide in the case of continuous return processes,

although the difference between them is significant in the general case. The evolution of the decomposants

of m with respect to time may be represented as a P positive supermartingale X =M −A. In our modified

CAPM, M and A act as two distinct factors, the latter associated to the discontinuous part of the return

process. Under the assumption of predictability (suitably defined for the finitely additive context in section

7) this result can be further refined and the analogy with the CAPM made more stringent. Several authors

have extended the CAPM to the case of discontinuous asset returns (see [6], [42] and [58], among others).

However, in the traditional setting there cannot be but one risk factor unless ad hoc structure of individuals

preferences are invoked as in [26] or [24]. On the other hand, it has long been recognized that the existence

of more than one factor could be responsible for the poor performance of the CAPM in explaining the equity

premium.

The preceding result may be reformulated as follows: asset returns, conveniently transformed, are turned

into local martingales if a positive local martingale Z (a martingale density in the terminology of [58])

is adopted as a discount factor. Apart from the intervening transformation of returns (which does not

apply in important special cases), this situation is typical of most financial models, in which the existence

of a martingale density is a convenient assumption. The local martingale nature of Z reflects the lack of

countable additivity of the pricing measure m. The case in which Z is strictly positive and of class D has

a clear characterization in terms of absence of free lunches, as illustrated by Delbaen and Schachermayer

[23] in a highly influential paper (see also [43]). While uniform integrability requires substantial restrictions

on the volatility process, the existence of a martingale density is not clearly related to absence of arbitrage.

In section 8 we prove that given our assumptions on trading strategies if there are no free lunches on the

market, then the martingale density is strictly positive provided a probability measure is assumed to be

given.
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On the relationship between this paper and other contributions to this literature, we will remark in due

course. However, we cannot help mentioning the strong connection between our set up and the one proposed

by Bättig and Jarrow in [7], a paper we came across only when the present one was almost complete.

Indeed these authors introduce assumptions very similar to ours for what concerns trading strategies and

the collection N of negligible sets (null sets, in their terminology) and must therefore be credited priority (for

some relevant differences emerging in the treatment of N , see the comments in section 2.2). Nevertheless,
in [7] the absence of arbitrage opportunities is not considered, as the focus is on the second fundamental

theorem of asset pricing rather than on the first one. Furthermore, in [7] the authors almost invariably revert

to the standard case in which N is generated by some given probability measure.

The present paper is organized as follows. After describing the model, in section 2, we prove in section

3 the existence of the pricing measure m and discuss some of its properties. In particular, we obtain a

characterization of asset bubbles in conditional terms, of which we provide an explicit example too. In

section 4 we show the existence of a full probability measure P associated to m. In the following section 5 we

obtain the main result of the paper, namely an explicit characterization of the expected value of asset returns

with respect to the pricing measure. This crucial result, which heavily exploits the characterization of the

structure of the separating measure over a filtered probability space studied in [12], allows to establish, in

section 6, the conclusion that asset returns, conveniently transformed, are P semimartingales which may be

turned into local martingales via a stochastic discount factor. In section 7 we restrict attention to predictable

return processes, a class for which the preceding results may be significantly enhanced. In section 8 we replace

the requirement that there be no arbitrage opportunities with the stronger notion of absence of free lunches,

borrowed from [23]. Eventually, in section 9 we discuss the implication of our setting for empirical research

and, in particular, we characterize the distribution function of assets returns with respect to the pricing

measure m.

2. The Model.

2.1. The Set-up. The state space is represented, as customary, by an arbitrary set Ω relatively to which

information evolves according to a right continuous filtration (Ft : t ∈ R+) satisfying F0 = {∅,Ω}. This
assumption, not uncommon in the literature, is equivalent to interpreting t = 0 as time present and it will

play an important role in what follows. By F we denote the smallest algebra on Ω containing N ∪
S
t∈R+ Ft,

where N is the collection to be discussed below. Although, for the reasons addressed in the introduction, we

will not refer to any probability measure, it will be important to know that a probability may be constructed

on F .

Assumption 1. The set P (F) of probability measures on F is not empty.

T will denote the set of stopping times of the filtration (Ft : t ∈ R+); T0 = {τ ∈ T : τ <∞}. If X =

(Xt : t ∈ R+) and τ ∈ T , by Xτ we indicate the “stopped” process (Xt∧τ : t ∈ R+). F̃ is the product σ

algebra F⊗B (R+) on Ω̃ = Ω×R+ — where B (R+) is the Borel σ algebra over R+ — and P is the predictable
σ algebras of subsets of Ω̃ (for standard terminology of the theory of stochastic processes we refer to [41] or

[54]). The stochastic integral of θ with respect to X, whenever well defined, is indicated at will by
R
θdX

or θ.X. As a matter of notation, we do not distinguish between a set and its indicator (so that by FG we

may denote the sets F ∩G or F ×G as well as their indicators); if G is a collection of subsets of Ω, by L (G)
we indicate the linear space spanned by the indicators of sets in G; B (X) denotes the space of all bounded,
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real valued functions on some set X as defined in [28]. By ba (F) and ca (F) we denote, as usual, the spaces
of additive and countably additive set functions on F of bounded variation.

2.2. Negligible Events. Preferences are not the focus of this work and will therefore not be modelled

explicitly. However, we introduce a weak notion of indifference that we denominate negligibility. This is

defined with reference to a collection N of subsets of Ω, the class of negligible events, which is given a priori.

Letting N take different forms, we can cover several situations of interest to financial modelling. We make

the following assumption on N .

Assumption 2. The collection N satisfies the following properties:

(i) Ω /∈ N ;
(ii) A,B ∈ N implies A ∪B ∈ N ;
(iii) A ∈ N and B ⊂ A imply B ∈ N .

As suggested in the introduction, N should be considered from the point of view of a decision maker

and interpreted as describing the events that do not affect his choice. Several examples may be given. The

most familiar and intuitive one is the class NQ of null sets generated by some Q ∈ P (F) describing the
agent’s prior. Alternatively, the agent’s attitude towards uncertainty may be associated with a capacity or

a multiplicity of priors and N may thus amount to the collection of sets which are null with respect to the

capacity or to all priors. In either one of these examples negligibility stems from an explicit, though possibly

unconventional, assessment of the relative likelihood of events. We may however also consider situations in

which agents are simply unable to carry out a proper assessment of the likelihood of events as they may feel,

e.g., that the information available to them is too poor or that its processing cost is too high. Being required

to consider the likelihood of some scientific discovery without being in the field is perhaps a case in point.

The source of negligibility may in other words lie in some form of bounded rationality.

While property (i) only helps avoiding trivial cases, the brief discussion that precedes supports property

(iii). As for (ii), although N need not be closed with respect to countable unions (as assumed in [7]), it is

essential for what follows that it is so for finite unions. In fact (ii) may fail in special cases such as that of

prior beliefs represented by a superadditive capacity, an expression of the propensity to uncertainty1.

Definition 1. X : Ω→ R is negligible if {|X| > η} ∈ N for any η > 0.

It is fairly clear that, due to property (iii), X is negligible if and only if 1 ∧ |X| belongs to the closure
L (N ) in B

¡
2Ω
¢
of the linear space L (N ). This definition induces an equivalence relationship defined by

saying that X ∼N Y whenever X − Y is negligible (we also say X = Y up to an negligible set) as well

as the quotient spaces B (F ,N ) = B (F)
/
L (N ) and B

³
F̃ ,N

´
= B

³
F̃
´/

L (N ) . If N = NQ for some

Q ∈ P (F) then B (F ,NQ) = L∞ (F , Q) while B (F ,N ) = B (F) whenever N = {∅}. In Lemma 4 in the
Appendix we prove, not surprisingly, that bounded linear functionals on B (F ,N ) may be identified with
finitely additive measures on F vanishing on N — i.e. elements of ba (F ,N ). We shall write X ∈ B (F ,N )+
whenever {X < −η} ∈ N for any η > 0; X ∈ B (F ,N )++ whenever X ∈ B (F ,N )+ and there is some η > 0
such that {X > η} /∈ N .
The content of the next sections is compatible with any system Â of strict preferences such that X Â Y

whenever X−Y ∈ B (F ,N )++; if, moreover, X % Y whenever X−Y ∈ B (F ,N )+ then negligibility implies

1Assumption 2 may be reconciled with more general situations if we interpret N as the subcollection of negligible sets

possessing the listed properties.



6 GIANLUCA CASSESE

indifference. Preferences of this sort may indeed be considered as an exemplification of over confidence, as

X − Y ∈ B (F ,N )++ does not clearly rule out the event {X < Y − η} even for η large but simply implies
that it are not considered by the decision maker.

A natural question is whether negligibility, stemming from bounded rationality or not, may be reconciled

with probability. An answer is provided by the following result, to which we shall refer later on.

Theorem 1. Let N satisfy Assumption 2. Then:

(1) there exists m ∈ ba (F ,N )+ with m (Ω) = 1;

(2) the following two statements are equivalent:

(a) there exists P ∈ P (F) vanishing on N ;
(b) there exists Q ∈ P (F) such that for any increasing sequence hFnin∈N of sets in N

lim
n

Q (F c
n) > 0 (2.1)

It is always possible to find some finitely additive probability which is compatible with N in the above

sense — given Assumption 2 — but this may no longer be the case if countable additivity is required. Consider

the case of a sequence hFnin∈N in N such that Ω =
S
n Fn: anym ∈ ba (F ,N ) is then purely finitely additive.

To see that this situation is not a pure mathematical curiosum, imagine an individual confronted with a real

valued experiment (the example is taken from [35, p. 74]). With no informative prior over the experiment,

he may reasonably assess two events of equal “size” to be equally likely, thus necessarily falling into the

above case whenever the values of the experiment are rational numbers between 0 and 1. More generally, the

uniform distribution over the natural numbers is a useful model both in probability (see [9, pp. 38-41] and

[44]) and in economics (see [66] where measures of this family are employed to represent perfectly diversified

portfolios in an APT framework) in which countable additivity cannot hold. Condition (2.1) clearly rules

these cases out and all it requires is essentially that there exists a measure which is not in blatant contrast

with the interpretation of N as a collection of null sets. Failure of (2.1) will bring several complications to

the analysis that follows2.

We let F̂t =
T
u>t σ (Ft ∪N ).

2.3. Asset Returns and Trading Strategies. We shall make the following assumption concerning ad-

missible returns:

Assumption 3. K is a linear subspace of B
³
F̃
´
such that if K ∈ K

(i) K is adapted to (Ft : t ∈ R+) — i.e. Kt is Ft measurable — and K0 = 0;

(ii) there exists T ∈ R+ such that K = KT ;

(iii) θ.K ∈ K whenever θ belongs to the set Θ of all processes of the form

θ (ω, t) =
MX
m=1

θm ]]τm, τm+1]] (2.2)

where τm ∈ T and θm ∈ L (Fτm), m = 1, . . . ,M .

We also define

K =
n
K∞ + L (N ) : K ∈ K

o
(2.3)

2Let us just mention that omitting to impose condition (2.1) makes the whole construction in [7] potentially vacuous.
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(where, as usual, K∞ + L (N ) =
n
K∞ + f : f ∈ L (N )

o
) and

C = K−B (F ,N )+ (2.4)

In other words, the elements of K coincide, up to negligibility, with final returns from admissible investments.
By assumption, then, 0 ∈ K which may be interpreted as the existence of an asset bearing no yield,

such as money or, more generally, the numéraire asset with respect to which the processes in K have been

normalized. Observe that, given (ii) above, we could equivalently require that each θ ∈ Θ vanishes on

Ω× ]T,∞[ for some T ∈ R+.
Assumption 3 seems to us a reasonable approximation to the way real markets actually work on three

grounds. First, the strategies considered do not imply a life commitment on the side of investors. Second,

trading only involves a finite number of transactions: the cost of trading — which may either consist of explicit

transaction fees or be simply implicit in information processing — is then certain and reasonable. Eventually,

each transaction is contingent on a finite number of scenarios, a feature making the actual implementation

of the investment strategy realistically simple; it also captures the increasing importance of scenario analysis

in the investment industry (see [50]). Observe that pathological situations which are of concern in the

traditional approach — like so called “doubling strategies” — do not arise here, as our definition of stochastic

integration is entirely trivial.

The boundedness property, although important in the following developments, may raise discussion. The

existence of a lower bound on returns may be seen as the result of some form of financial regulation aiming

at preventing the possibility of Ponzi schemes. The restriction of an upper bound is far less obvious and will

therefore be relaxed in section 9, when dealing with applications.

A market in which the diversification of risk is to no extent restricted would allow investors to diversify

their portfolios at will across admissible investment projects, provided their resulting position does not imply

the possibility of unbounded losses. Portfolio returns would be described for such a market by the set

Kσ =

(X
n

Kn : Kn ∈ K, n ≥ 1,
X
n

°°Kn−°° <∞) (2.5)

from which

Kσ =
n
K∞ + L (N ) : K ∈ Kσ

o
(2.6)

and Cσ =
¡
Kσ − RΩ+

¢
∩B (F ,N ).

A time honored issue in the theory of finance is that of completeness of markets, introduced in [36], [37]

and [38] (see also [40] for a more recent treatment and [7] for a different approach). In our model completeness

is defined as follows:

Definition 2. Financial markets are complete if for every f ∈ B (F ,N ) there exists γ (f) ∈ R such that

f − γ (f) ∈ K.

Remark that our definition slightly differs from the familiar one as the claims f with respect to which

completeness is defined must have bounded maturity, in accordance to the view on financial markets described

above. Of course, given the current set of assumptions, market completeness is not expected to prevail. In

fact this condition will only be used as a reference, in Theorem 5.
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2.4. A Preliminary Result. Starting from section 3, we shall be concerned with bounded, finitely additive

measures over F . Useful results on finitely additive measures are decomposition theorems, among which the
one of Yosida and Hewitt [67] is probably the best known. In the sequel we shall heavily exploit the following

variant on such theorem (proved in [13]):

Lemma 1. Let G be a sub algebra of F and ξ ∈ ba (G) . There exists a unique way of writing

ξ = ξe + ξp (2.7)

with ξe, ξp ∈ ba (G), where ξe admits a countably additive extension to F and any norm preserving extension
of ξp to F is purely finitely additive. Furthermore,

(1) if ξ ≥ 0 then ξe, ξp ≥ 0;
(2) if G is a σ algebra, � > 0 and P ∈ ca (F)+ there exists G ∈ G such that |ξ

p| (G) = 0 and P (Gc) < �;

(3) if H is a sub σ algebra of G, ξ|H the restriction of ξ to H, and ξeH + ξpH the decomposition of ξ|H
in accordance to (2.7), then ξeH ≥ ξe|H and ξpH ≤ ξp|H.

It is clear that without Assumption 1, the statement of this lemma would be vacuous, as ξe = 0. In the

case G = F this decomposition coincides with that of Yosida and Hewitt — ξ = ξc + ξ⊥, with ξc ∈ ca (G)
and ξ⊥ purely finitely additive. This result illustrates how a probability assessment ξ on G contains in itself
a completely additive probabilistic model on F , namely that element ξ̄e of ca (F) such that ξ̄

e¯̄G = ξe.

Uniqueness of ξe does not imply in general that ξ̄
e
is itself unique (unless of course F = σ (G)). However,

when G = {∅,Ω}, any P ∈ ca (F) represents an extension of ξ provided P (Ω) = ξ (Ω). In section 4 the

relationship between ξ and ξ̄
e
will be viewed as the outcome of an inferential process.

In the context of a filtered probability space when m ∈ ba (F)+ and τ ∈ T we shall denote by mτ the

restriction of m to Fτ . Letting G = Fτ in the above Lemma 1, we obtain for each τ ∈ T a decomposition

mτ = me
τ +mp

τ in accordance with (2.7). Then, if s < t we have

(me
s −me

t )| Fs = (ms −mt)| Fs + (mp
t −mp

s)| Fs = (mp
t −mp

s)| Fs (2.8)

Although the decomposants me
t and mp

t are orthogonal (and therefore as different as possible), (2.8) illus-

trates how the “processes” m̃e = (me
t : t ∈ R+) and m̃p = (mp

t : t ∈ R+) (finitely additive processes, in the
terminology of [4]) exhibit mirroring behaviour, analogously to the Poisson process, a purely discontinuous

process admitting a predictable compensator with continuous paths. This suggests that the expectation with

respect to the mp component may be characterized to some extent by m̃e, a much more treatable object.

Much of section 5 builds on this remark.

Denote by F̂t the σ algebra
T
u>t σ (Fu ∪N ), by m̂τ the restriction of m̂τ to F̂τ for τ ∈ T and by m̂e

τ

and m̂p
τ its decomposants.

3. Arbitrage, Martingales and Bubbles: The Pricing Measure

Any sensible model of financial markets should exclude the existence of free money, defined as an element

k0 of K ∩B (F ,N )++, i.e. an admissible return which is strictly positive (up to negligibility) in discounted
terms. To understand this definition, remark that the initial cost of k0 is null while it provides a strict

improvement of welfare, i.e. k0 Â 0, for any agent with preferences as above. The existence on the market of
an asset with these features contrasts therefore with the existence of equilibrium. In our setting the absence
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of arbitrage opportunities takes then the form:

K ∩B (F ,N )+ = {0} (3.1)

Many versions of the above condition appear in the literature, all considerably more restrictive than (3.1).

Further to assuming a richer structure of asset returns, the concept of an arbitrage opportunity is often

conveniently reinforced into that of a free lunch (see [17], [18] and the seminal paper by Kreps [46], for a

discussion). In our setting the absence of free lunches may be defined via the condition

C ∩B (F ,N )+ = {0} (3.2)

(the upper bar denotes the closure in the norm topology).

Let us introduce the following quantities, where k ∈ K and f ∈ RΩ
²
L (N )

ᾱk (f) = inf
N∈N

sup
ω∈Nc

(k + f) (ω) αk (f) = sup
N∈N

inf
ω∈Nc

(k + f) (ω) (3.3)

and

ᾱK (f) = inf
k∈K

ᾱk (f) αK (f) = sup
k∈K

αk (f) (3.4)

We shall see in later sections that imposing condition (3.1) has several important implications, hinging

on the following

Theorem 2. Let (3.1) and Assumption 3 hold. Then

(1) there exists m ∈ ba (F ,N )+ such that m (Ω) = 1 and m [K] = 0, i.e. a pricing measure;
(2) if markets are complete the pricing measure m is strictly positive, i.e. m (F ) = 0 and F ∈ F imply

F ∈ N ;
(3) there exists a countably additive separating measure whenever

(i). for any sequence hfnin∈N in B (F ,N )+ with
P

n fn ∈ B (F ,N )+,

inf

(X
n

ᾱkn (fn) : kn ∈ K, n ∈ N
)
<∞ (3.5)

(ii). N is closed under countable unions and

(iii). Cσ ∩B (F ,N )+ = {0}.

The last claim provides evidence that the countable additivity property of m is related to the degree

to which portfolio diversification is allowed. The set Kσ will not be considered further in the paper but it

contributes here to the view that countable additivity of the pricing measure is more an artifact of the theory

than a property of actual markets. In particular, (3.5) requires that the cost incurred into by hedging each

of the countable components of f separately is limited — as would clearly be the case if financial assets in K
are sufficient to complete the markets.

Completeness of financial markets is not likely to prevail in general (particularly so under Assumption 3).

Thus uniqueness of the pricing measure cannot be claimed and we denote

M (K) =
©
m ∈ ba (F ,N )+ : m (Ω) = 1,m [K] = 0

ª
(3.6)

Alternative selection mechanisms out, such as the minimization of the expected value of some random element

or of other functionals, raise issues of existence whenever countable additivity is required. The compactness

of M (K) in the weak∗ topology guarantees that, for any f ∈ B (F ,N ), we can always find mf ∈ M (K)
such that, for example, mf (f) = sup {m (f) : m ∈M (K)}.
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3.1. Conditional Expectation, Asset Pricing and Bubbles. A straightforward implication of the ex-

istence of a pricing measure in the traditional setting, as in [37] for example, is that investment returns

obey a martingale restriction with respect to this measure. This is also of fundamental importance in order

to establish a clear, backward pricing rule. It is not straightforward that these conclusions carry through

to our model due to the fact that conditional expectation is not available with respect to finitely additive

probability. The construction of conditional expectation in the finitely additive setting has received due

attention in the subjective approach to probability theory in which it is obtained under the requirement

of conditional coherence (see, among others, [22], [39] and [55]). In the following proposition we introduce

a new operator acting on finitely additive probabilities and possessing some of the properties of ordinary

conditional expectation (a different proof is in [13] which also contains a brief comparison of this operator

with the subjective approach to conditional expectation).

Proposition 1. Let H be an algebra of subsets of some set Ω, G ⊂ H a σ algebra and ξ ∈ ba (H)+. Denote
by ξG the restriction of ξ to G, let ξG = γ + η be an orthogonal decomposition of ξG with γ ∈ ca (G)+ and
η ∈ ba (G)+ and define

Iη = {F ∈ G : η (F ) = 0} (3.7)

Then, for each f ∈ L1 (H, ξ) there exists a unique ξ (f | Iη) ∈ L1 (G, γ) such that

ξ (fI) = ξ (ξ (f | Iη) I) = γ (ξ (f | Iη) I) (3.8)

for each I ∈ Iη and that for any G ∈ G

ξ (fG| Iη) = ξ (f | Iη)G (3.9)

The mapping ξ ( ·| Iη) : L1 (H, ξ)→ L1 (G, γ) is a positive, unitary and linear operator.

We find it convenient to call the operator ξ ( ·| Iη) “conditional expectation” (in [13] it is called compensated
conditional expectation) for purely terminological reasons, although it is evident from (3.8) that it does not

satisfy the law of iterated expectation but locally, i.e. with respect to sets in Iη. From the point of view

of a statistician it is perhaps regrettable that the forecast of a forecast may differ from the direct forecast.

Although we have no explicit interest here for the otherwise important statistical interpretation of conditional

expectation, it should be remarked that in the subjective approach following from de Finetti’s work (see [22]),

conditioning events are determined by admissible bets the family of which, therefore, need not be an algebra.

To illustrate the use we shall make of the preceding Proposition in the current and the following sections,

let σ ∈ T . Remark that in view of (2.8)

mp| Fσ = (me
σ −me)| Fσ +mp

σ

and (me
σ −me)| Fσ ≥ 0, by Lemma 1.3. Proposition 1 then applies with G = Fσ, ξ = mp, γ = (me

σ −me)| Fσ
and η = mp

σ. Write Iσ = Imp
σ
. If I ∈ Iσ and f ∈ B (F)

mp (fI) = mp (mp (f | Iσ) I)

= (mp −mp
σ) (m

p (f | Iσ) I)

= (me
σ −me) (mp (f | Iσ) I)

When f = G (Kτ −Kσ) with K ∈ K, τ ∈ T τ ≥ σ and G ∈ Fσ, then by Assumption 3 and (3.1),
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0 = m (GI (Kτ −Kσ))

= me (GI (Kτ −Kσ)) +mp (GI (Kτ −Kσ))

= me (me (Kτ −Kσ| Fσ)GI) + (me
σ −me) (mp (Kτ −Kσ| Iσ)GI)

i.e.

me
σ (KσGI) = me (me (Kτ | Fσ)GI) + (me

σ −me) (mp (Kτ | Iσ)GI) (3.10)

This expression can be further developed to obtain the following

Theorem 3. Let Assumption 3 hold and K ∈ K. If (3.1) is satisfied, there exists a stochastic process
h = (ht : t ∈ R+) such that h0 = me (Ω) and that for any σ ∈ T there exists a me

σ null set outside of which,

0 ≤ hσ ≤ 1, hσ ≤ me
τ (hτ | Fσ) and

Kσ = hσm
e (K∞| Fσ) + (1− hσ)m

p (K∞| Iσ) = m (K∞| Iσ) (3.11)

Furthermore hσ = 1 me
σ a.s. for each σ ∈ T if and only if m is countably additive.

The second equality in (3.11) establishes that, relatively to the conditioning operator introduced in Propo-

sition 1, the pricing measure is indeed a “martingale” measure — although many analytical properties of

ordinary martingales (such as convergence theorems) do not apply here. Pricing is therefore an intrinsically

forward looking exercise and, provided the structure of the conditioning operator m ( ·| Iσ) is explicit enough
(as in the example that follows), then a clear and useful relationship exists between K and K.
Let W represent the wealth process out of some admissible investment, so that W −W0 ∈ K: (3.11)

clearly translates into

Wσ = hσφ (W )σ + (1− hσ)β (W )σ (3.12)

where φ (W )σ = me (W∞| Fσ) and β (W )σ = mp (W∞| Iσ) — so that

φ (W )0 = me (Ω)−1me (W∞) and β (W )0 = mp (Ω)−1mp (W∞)

Indeed (3.12) establishes that the pricing rule just described differs considerably from the traditional one.

In fact one may remark that the conditioning operator mp ( ·| Iσ) inherits, through (3.8), the property that
for any P ∈ ca (F)+ and � > 0 there exists F ∈ F such that P (F c) < � and mp (F | Iσ) = 0. In other words,
the component β (W ) of W only charges the remote behavior of the wealth process W , both with respect

to time and randomness. It is therefore quite natural, after the seminal work of Gilles and Leroy [32], to

interpret φ (W ) as the fundamental value of the investment and β (W ) as its bubble part. The noteworthy

properties of (3.12) is that such decomposition is established here in conditional terms, that it applies to

bounded processes over a finite horizon and that, as the returns need not be positive throughout, bubbles

may assume either sign.

3.2. An Example. Consider a traditional financial model with underlying probability Q in which (dis-

counted) asset returns are turned into a martingale by means of multiplication by positive martingale Z

with Z0 = 1 but non necessarily uniformly integrable3. As we shall see in the following section 6 this situa-

tion is quite general. Let Z∞ be the Q a.s. limit of Z. We can associate to Z the finitely additive probability

3Some aspects of this example were treated in [15].
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measure µ defined as

µ (F ) = LIM
n

Q (ZnF ) (3.13)

for F ∈ F — where LIM denotes here the Banach limit introduced in [1] (but see also [56, p. 367])4. It is

easy to conclude that µ is a pricing measure as for k ∈ K

µ (k) = µ (Kt) = lim
n

Q (ZnKt) = Q (ZtKt) = 0

Furthermore, µet (F ) = Q (ZtF ) for F ∈ Ft and µPt (F ) = LIMnQ ((Zn − Zt)F ) for t ∈ R+: in fact
Q (ZtF ) clearly extends to a countably additive measure on F while LIMnQ ((Zn − Zt)F ) vanishes on©
sups≤t Zs < 2n

ª
for each n so that it is purely finitely additive [9, theorem 10.3.3, p. 244] as well as any of

its extensions.

Let σ ∈ T . Recalling Assumption 3 above we easily get that ZW is a martingale too and that, therefore,

ZσWσ = lim
n

Zn
σW

n
σ

= lim
n

Q (ZnWn| Fσ) (3.14)

= Q (Z∞W∞| Fσ) + lim
n

Q ( (Zn − Z∞)Wn| Fσ) 5

If we define (with the convention 0
0 = 0) hσ = Z−1σ Q (Z∞| Fσ), φ (W )σ = Q (Z∞| Fσ)−1Q (Z∞W∞| Fσ) and

β (W )σ = (Zσ −Q (Z∞| Fσ))−1 limnQ ((Zn − Z∞)Wτn | Fσ), then (3.14) is the exact translation of (3.12)
to the present setting. It should be remarked that ht = 1 Q a.s. is equivalent to the case in which Z is a

uniformly integrable martingale i.e. µ is countably additive. In models of optimal consumption and portfolio

selection (such as those treated e.g. in [6] and [29], for example) Z emerges as the process describing marginal

utility of consumption along the optimal path. In these models it cannot usually be established that Z is a

uniformly integrable martingale nor is it clear which economically meaningful conditions could be imposed

in order to obtain such property. This remark is a point in case for the finitely additive model we propose

here. Of course, it would be important to see if a partial converse could be established, i.e. if in the full

generality of our model the separating measure could be associated to a martingale density. An answer to

this problem will be offered in section 6.

4. Probability from Asset Returns: The Representing Measure.

In this section we shall show that the absence of arbitrage opportunities induces the existence of a full

probability measure P on F . The role played by P may be compared to that of the objective measure in

the traditional setting and we will refer to it as the representing measure generated by m. Although pricing

is performed via the finitely additive measure m, it could still be of practical as well as of theoretical worth

to establish statistical properties of the return process for which countable additivity matters, as will clearly

emerge from the following section 5. Thus m and P play entirely different roles and may in principle be far

apart not only for what concerns additivity. Our treatment in section 2.2 has shown, for example, that P

may not vanish on negligible sets, making the connection with preferences remote. An important issue is

that of the difference between the collections of null sets of m and P — the issue of consistency between m

and P , in the terminology of section 8. This has an immediate answer in the context of complete markets

(by the second claim of Theorem 2) while it is more delicate in the general case.

4Definition (3.13) may be given in terms of ordinary limits if and only if Z is a uniformly integrable martingale (see [15]).
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Let t ∈ R+. Givenm and the information Ft available at time t, the componentme
t , by its same definition,

allows to infer a completely additive measure m̄e
t over the whole of F : in other words, agents may extract

from the restriction of m to Ft a fully additive view concerning randomness, i.e. on F . However, the
probabilistic view implicit in m̄e

t has only a local meaning and is bound to change considerably as time

passes by, as the effect of the arrival of new information. In particular, the last claim of Lemma 1 implies

m̄e
t | Fs = me

t | Fs ≤ me
s = m̄e

s| Fs (4.1)

for s ≤ t. This ilustrates how deeply the decomposition (2.7) depends on the underlying information

structure. The question therefore arises whether it is possible to extract from the collection {m̄e
t : t ∈ R+}

a global perspective P on F not contradicting the inference made at each point in time, me
t . Although

different, sensible criteria could be considered in order to judge whether P contrasts with me
t or not, a clear

contradiction definitely exists between these two measures whenever, for some F ∈ Ft, me
t (F ) > 0 but

P (F ) = 0: it may well be that events that were first assessed to be null are later deemed likely, as new

information becomes available, but the opposite would indeed imply that the global assessment expressed

by P implicitly disproves the one embodied in me
t . In the context of a model in which agents form their

beliefs based on past experience, Kurz [47, axiom 2, p. 13] suggests the above criterion as a definition of

individual beliefs not contradicting observable data (so called rational beliefs). The following result (proved

in [12]) provides a positive answer to the above question.

Theorem 4. There exist P, P̂ ∈ P (F) such that me
τ ¿ P | Fτ and m̂e

τ ¿ P̂
¯̄̄
F̂τ for each τ ∈ T0. If the

condition (2.1) is satisfied, then P̂ may be chosen such that P̂ [N ] = 0.

It should be remarked that P is partly influenced by subjective elements — namely the collection N — and

partly by the structure of markets. When confronted with a richer structure either of negligible events or

of admissible trading strategies the resulting set K0 of marketed claims would be strictly larger than K and
both the separating measure and the probability associated to K0 will differ from the ones arising from K.
Denote

P (m) = {P ∈ P (F) : me
τ ¿ P | Fτ , τ ∈ T0} (4.2)

An almost immediate consequence of Theorem 4 and (4.1) is the following

Corollary 1. Let P ∈ P (m), τ ∈ T0 and dme
τ/ dPτ = Xτ . The stochastic process X = (Xt; t ∈ R+) is a P

right continuous, positive supermartingale, decomposing as

X =M −A (4.3)

where M is a positive local martingale and A an increasing, predictable process (see [41]) with A0 = 0 and

P (A∞) <∞ (see [49]).6

Given right continuity of A, we can define λ ∈ ca
³
F̃
´
+
implicitly through the equation λ (F ) = P

R
FdA.

It is clear from (4.2) that if P ∈ P (m) and P 0 À P then P 0 ∈ P (m). If beliefs are formed in accor-
dance with the inferential or learning mechanism described above, then, in principle, they will be strongly

heterogeneous among agents. This notwithstanding, in the following sections we will treat P ∈ P (m) as
fixed.

6With the aid of Corollary 1 and the convention 0
0
= 0, we may identify explicitely the process h in (3.11) as hσ =

P (X∞| Fσ)X−1σ .
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5. An Explicit Representation.

Due to finite additivity, the expected value of asset returns with respect to m has a limited analytical

tractability and this may represent a major drawback of the present approach, both in theory and in appli-

cations. For what concerns applications, this issue will be addressed in section 9. In this section we shall

prove that the expectation m (k) may receive an explicit and convenient representation whenever k ∈ K,
obtained by mapping each element in K onto its past history. The advantage of doing so is that, on the

space of processes, countable additivity of the integral is partly restored. In the following, it will be clear

that it makes no difference wether we adopt as filtration the original one rather than its completion so that

we can take it to be complete. Condition (2.1) plays quite a role and will be assumed.

The structure of the me
t component has been characterized in Corollary 1 through the supermartingale

X. For what concerns the mp
τ component we shall take advantage of the following result:

Lemma 2. There exists a collection
©
m̄p
τ ∈ ba (F)+ : τ ∈ T0

ª
such that m̄p

τ is an extension of m
p
τ to F and

m̄p
τ ≥ m̄p

σ whenever σ ∈ T0 and σ ≤ τ .

We shall now investigate more deeply the properties of the pricing kernel. Define to this end the following

quantities:

• The collection H of all pairs H =
³
htiiIi=0 , hFii

I
i=0

´
of finite sequences such that

(i) ti ∈ T0 and 0 = t0 ≤ t1 ≤ . . . ≤ tI , P a.s.,

(ii) Fi ∈ Iti , Fi ⊂ Fi−1 for i = 1, . . . , I, FI = ∅ and
(iii) M tI is a uniformly integrable martingale.

• DH
i (K) = Fi

¡
Kti+1 −Kti

¢
and

• KH =
¡
KH
t : t ∈ R+

¢
where

KH
t =

I−1X
i=0

DH
i

¡
Kt
¢

(5.1)

KH
t is an “approximation” of Kt obtained according to H ∈ H. Later on it will be useful to rewrite (5.1)

as KH
t =

PI−1
i=0 FiF

c
i+1Kti+1∧t. The trading strategy behind (5.1) prescribes to stop at time ti whenever Fi

does not occur. Choosing Fi appropriately, this criterion will apply very rarely, if we judge likelihood by

me
ti , although with certainty if we evaluate it under m

p
ti . In this way the role of the “irregular” component

of m at the start of each investing period (ti, ti+1) may be entirely neglected and, if the behavior of m
p
t

is sufficiently regular with respect to time and the length of the interval sufficiently short, then it may be

conjectured that mp
ti+1 will play a minor role. Clearly, this argument hinges on the behavior of K

H when

passing to the limit, provided convergence obtains in some suitable sense. It is crucial to our aims that if

Kt ∈ K then KH
t ∈ K as well. Observe that DH

i (K
t) and KH

t are Fti+1∧t and FtI∧t measurable respectively
and that m̄p

ti+1∧t (Fi; ti ≥ t) = 0 (see Lemma 7 in the Appendix). We shall write Itti as short for Imp
ti∧t

(see

(3.7)).

Let us define the following key terms:

JH (K)t =
I−1X
i=0

³
m̄p
tI∧t − m̄p

ti+1∧t
´¡

DH
i

¡
Kt
¢¢
−

I−1X
i=1

m̄p
ti+1∧t

¡
FiK

t
ti

¢
(5.2)

and

IH (K)t =
I−1X
i=0

m̄p
ti+1∧t

³
FiK

t
ti+1

´
(5.3)



ASSET PRICING WITHOUT PROBABILITYDC 15

From (5.1) — (5.3) it clearly follows the decomposition

mp
tI∧t

¡
KH
t

¢
= JH (K)t + IH (K)t (5.4)

Exploiting (2.8) and Proposition 1, we show in Proposition 2 below that the terms JH (K) and IH (K)

can be described explicitly. This result is based on the following intuition. First, since, as we have seen,

m̄p
ti+1∧t (Fi) = mp

ti+1∧t (Fi; ti < t) and Fi {ti < t} ∈ Itti , then

IH (K)t =
I−1X
i=0

mp
ti+1∧t

³
Fi {ti < t}Kt

ti+1

´

=
I−1X
i=0

mp
ti+1∧t

³
mp
ti+1∧t

³
Kt
ti+1

¯̄̄
Itti
´
Fi {ti < t}

´

=
I−1X
i=0

³
mp
ti+1∧t −mp

ti∧t
´³

mp
ti+1∧t

³
Kt
ti+1

¯̄̄
Itti
´
Fi {ti < t}

´

= P
I−1X
i=0

³
At
ti+1 −At

ti

´
mp
ti+1∧t

³
Kt
ti+1

¯̄̄
Itti
´
Fi {ti < t}

Observe that this can be rewritten more concisely as

IH (K)t = P

Z t

0

f tH
¡
Kt
¢
dA =

Z t

0

f tH
¡
Kt
¢
dλ (5.5)

where for Y ∈ B
³
2Ω̃
´
,

fuH (Y ) =
I−1X
i=0

m̄p
ti+1∧u

¡
Yti+1

¯̄
Iuti
¢
Fi {ti < u} ]]ti, ti+1]] (5.6)

We obtain then from (5.5) that I behaves like an ordinary stochastic integral: several nice properties become

thus available.

For what concerns the J term, by (2.8)

I−1X
i=0

³
mp
tI∧t −mp

ti+1∧t
´ ¡

DH
i

¡
Kt
¢¢

= P
I−1X
i=0

³
At
tI −At

ti+1

´
DH
i

¡
Kt
¢

= P
I−1X
i=0

I−1X
j=i+1

³
At
tj+1 −At

tj

´
DH
i

¡
Kt
¢

= P
I−1X
j=1

³
At
tj+1 −At

tj

´ j−1X
i=0

DH
i

¡
Kt
¢

= P
I−1X
j=1

³
At
tj+1 −At

tj

´
KH
t∧tj
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Then from (5.2) and the fact that K0 = 0 (by definition) it follows that

JH (K)t = P
I−1X
j=1

³
At
tj+1 −At

tj

´
KH
t∧tj − P

I−1X
i=1

³
At
ti+1 −At

ti

´
FiK

t
ti

= P
I−1X
i=1

³
At
ti+1 −At

ti

´ ¡
KH
ti − FiKti

¢
= P

I−1X
i=1

³
At
ti+1 −At

ti

´ i−1X
j=0

FjF
c
j+1Ktj+1

so that we obtain the bound

|JH (K)t| ≤ kKkP
¡
AtF

c
I−1
¢

(5.7)

It is natural to conjecture from (5.7) that the J term may be set so to converge to 0; a more delicate issue

is that of existence of the limit for the “stochastic integral” I and of its representation. This is solved in the

following

Proposition 2. Let τ ∈ T0 be such that Xτ is uniformly integrable. If K ∈ K and (3.1) holds, then under

Assumption 3

mp
τ (Kτ ) =

Z τ

0

f (K) dλ i.e. m (Kτ ) = P

µ
XτKτ +

Z τ

0

f (K) dA

¶
(5.8)

where f : B
³
2Ω̃,N

´
→ L∞ (P, λ) is a positive, linear operator of unitary norm and such that f (Y Z) =

f (Y )Z whenever Y,Z ∈ B
³
F̃ ,N

´
and Z is càglàd. Therefore, if K ∈ B

³
F̃
´
is càdlàg, f (K) = K− +

f (∆K).

The representation (5.8) following from the no arbitrage principle has a number of implications that will

be developed in the present and in the following sections. The operator f defined in Proposition 2 is to some

extent similar to the P predictable projection — denoted in the sequel by P (X). However, f is not invariant
with respect to predictable processes but to càglàd processes only: once again the difference amounts to

lack of continuity. In section 7 we will consider an extension of the notion of predictability suitable for the

present finitely additive context.

It is worth noticing that (5.8) establishes, in restriction to K and K respectively, a correspondence between
mp and λ which, so to speak, restores countable additivity by translating expectation of random elements

into expectation of random processes. In fact, if Tf : B (F) → L∞ (P, λ) is the linear and continuous
mapping defined implicitly via Tf (K∞) = f (K), then mp = λTf . The lack of countable additivity of m

is therefore a consequence of the discontinuity of Tf : f (Kn) may not converge to 0 although the sequence

hKn
∞in∈N may be such that Kn

∞ ↓ 0, a situation which contrasts with the usual setting of a countably
additive pricing measure. The pricing rule (5.8) is therefore intrinsically path dependent since, regardless of

the actual structure of the asset return, it is based on the whole process f (K) rather than just on K∞.

6. The Martingale Property

The representation obtained in Proposition 2 will be shown in this section to deliver a number of note-

worthy implications concerning the nature of the return process K. To make explicit the financial content

of the representation obtained in Proposition 2 we need the following assumption

Assumption 4. Every K ∈ K is càdlàg.
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The following stopping time has a key role in our analysis.7

T = inf {t ∈ R+ : Xt− = 0 or Xt = 0} (6.1)

Theorem 5. Let K ∈ K and (3.1) hold. Then under Assumptions 3 and 4:

(i) XK is a P special semimartingale;

(ii) the stochastic process K stopped at T , i.e. KT , is a P semimartingale;

(iii) if financial markets are complete and (2.1) holds, then P may be chosen such that P (T <∞) = 0
so that K is a P semimartingale.

Theorem 5 establishes that, in some appropriate form, the absence of arbitrage opportunities implies

the semimartingale nature of asset returns, a pervasive assumption in all financial models. It should be

highlighted that there are predecessors to this result, particularly Ansel and Stricker [3, theorem 8, p. 383]

and Stricker [60, theorem 3 p. 456 and theorem 5, p. 458] (but see also [23, theorem 7.2, p. 504]). The

noticeable fact is that this property, which crucially depends on the underlying probability measure, is

obtained here without explicit reference to any preassigned probability: it is therefore entirely endogenous.

Of course, the behavior of K after the random time T is totally unrestricted. In fact our model contains no

prediction over ]]T,∞[[, as the behavior of the separating measure becomes purely finitely additive over that
domain. The last claim, which anticipates in its proof the main ideas of Proposition 3 below, establishes

that this cannot be the case if markets are complete. Once again the implicit probability model of returns

turns out to depend in a crucial way on the structure of markets. The issue of the positivity of X outside

the special case of complete markets will be addressed in section 8.

Define ∆K∼ = f (∆K)−P (∆K), DK = {∆K∼ = 0}. Denoting by E the exponential semimartingale of
Doléans-Dade (and L its inverse, the stochastic logarithm) we may then define

K̂t =

Z t

0

DKdK
T (6.2)

Z = E
µZ

X−1− dM

¶
(6.3)

— clearly a positive local martingale — and

B = E
µZ

X−1− dA

¶
(6.4)

— clearly a predictable process of locally integrable variation (in the proof of the theorem that follows it

is shown that indeed Z and B are well defined, as assumed here). By Theorem 5, KT admits a unique

decomposition KT = MK + V K where MK is a local martingale and V K a predictable process of locally

integrable variation.

Theorem 6. Let K ∈ K and define K̂, Z and B as in (6.2), (6.3) and (6.4) respectively. If (3.1) holds

then:

(1) V K +
£
L (Z) ,MK

¤
+
R
∆K∼dL (B) is a P local martingale, i.e.

V K + P
¡£
L (Z) ,MK

¤¢
+

Z
∆K∼dL (B) = 0 (6.5)

(2) ZK̂ is a P local martingale.

7In [41], lemma III.3.6 it is shown that T is a stopping time. Remark that, since X0 = 1 and X is right continuous,

P (T > 0) = 1. In the following we will refer to T assuming that m ∈M (K) and P ∈ P (m) is given.
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The Intertemporal Capital Asset Pricing Model, a core result of modern asset pricing that dates back

to [52], is often stated in one of these two equivalent formulations: (i) there exists a stochastic discount

factor transforming asset returns into local martingales, (ii) the expected (excess) return of assets equals the

(negative) of the quadratic covariation of the return process with the “market price for risk”, often identified

with the marginal utility from consumption of a representative agent in equilibrium. These formulations

find their translation into the present context in the above statements which, however, consider a linear

transformation of asset returns. Theorem 6 differs then from the traditional CAPM if either Dc
K 6= ∅ or

P (T <∞) > 0. We will discuss these two conditions in some detail in sections 7 and 8 (although easy

special cases are that of continuous return processes — when Dc
K = ∅ — and of complete financial markets).

Apart from such issues, the stochastic discount factor Z will in general only be a positive local martingale

rather than a uniformly integrable one: following [58] we will refer to it as a martingale density. According

to the celebrated result of Delbaen and Schachermayer [23], the existence of a maritngale density is neither

necessary nor sufficient to exclude the existence of free lunches, unless the stochastic factor is strictly positive

and of class D. The latter condition is usually obtained by imposing considerable constraints on the volatility

of returns (particularly in the form of some lower bound) in contrast, though, with the fact that volatility

is usually the primary focus of most models and with the evidence that periods of high and of low volatility

often alternate randomly on the market.

(6.5) suggests that the original intuition underlying the CAPM should actually be adapted to keep into

account the correlation with an additional factor represented by B i.e., ultimately, by A. M and A act in

this model as separate market factors and the latter plays a specific role in the pricing of the jump part

of K. It is then indeed tempting to consider A as a market price of the risk implicit in the discontinuities

of asset returns, an exemple of which are unexpected, large falls of the market index. (6.5) contributes to

the view that correlation with a unique discount factor is not enough to explain excess returns, an issue

addressed repeatedly by the literature on the equity premium puzzle. It is remarkable that this conclusion

does not hinge on any special assumption, as on preferences or beliefs, which are usually invoked to explain

such stylized fact8.

An equivalent reformulation of (6.5) is the joint condition:

V K,c +
­
L (Z) ,MK

®
+

Z
∆K∼dL (B)c = 0 (6.6)

V K,d +
X

p
¡
∆L (Z)∆MK

¢
+
X
∆K∼∆L (B) = 0 (6.7)

Although the term
R
∆K∼dL (B) is actually a function of the jumps of the return process, we cannot

conclude that it is itself a jump process. In other words, (6.6) suggests that the risk originating from the

discontinuities of the return process may affect its continuous part too. One may expect that exceptional

corporate actions, such as dividend payouts or mergers, or events influencing the prospects of default of firms

will influence the path of the corresponding stock more substantially than in the narrow proximity of the

8The existence of multiple factors in the CAPM may also be obtained from a non additive specification of preference. In a

model with habit formation, Detemple and Zapatero [24, equation (6.5), p. 1647] characterize the second factor as covariance

with disutility of future standards of living. In the context of stochastic differential utility, Duffie and Epstein [26, equation

(18), p. 422] recover two additional factors further to equilibrium consumption, one of which being related to market portfolio.

In a model with differential information, Ziegler [68, equation (24), p. 9] obtains additional factors ensuing from the updating

process. It should be stressed that all these papers consider a model of general equilibrium while our analysis has only a partial

equilibrium flavour.
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event considered. This marks quite a difference with the more traditional version of the CAPM extended to

include possible jumps9.

Of course in some of the previous examples of discontinuities (such as dividends announcements), the

timing of discontinuities in asset returns may be announced with due notice. This influences our result as

follows

Corollary 2. Let K ∈ K and [[τ ]] ⊂ {∆K 6= 0}. If τ is predictable, then

P

Z
f (∆Kτ ) dA = Pf (∆Kτ )∆Aτ (6.8)

Therefore, if {∆K 6= 0} is exhausted by the sequence hτnin∈N of predictable times, then
R
∆K∼dL (B) =P

n∆K
∼
τn∆L (B)τnand V

K,c +
­
L (Z) ,MK

®
= 0.

In the special case considered in Corollary 2, the finitely additive nature of m only bears consequences

on the pricing of discontinuities but as far as the continuous part of asset returns is concerned the model

is indistinguishable from the traditional one. It is surprising that, as will be shown in section 9, this same

conclusion emerges relatively to the statistical properties of returns with respect to the separating measure.

It remains true that exceptional events taking place at times that do not admit being announced will have

a deeper impact on returns. Examples of these may be firm specific — such as changes in credit ratings — or

market driven. Our conclusion is therefore that events such as October 87 may have a long lasting influence

on the pricing of assets, a view which has received some consense.

7. Predictable Returns.

A vast majority of financial models are written under the assumption that the price process is càdlàg and

predictable — or even that it has continuous sample paths. In this section we will comply with predictability,

a property that allows for a representation of the pricing kernel more explicit than (5.8). The notion of

predictability has though to be partly adapted to our finitely additive set up. In fact let σ be a stopping

time predictable with respect to some Q ∈ P (F) and hσrir∈N its announcing sequence. Then, for each n

and r there exists δ > 0 such that Q (σr > σ − δ;σ > 0) < 2−nQ (σ > 0): in other words, most of σ can

be anticipated with fixed notice. This same property may not hold whenever Q is only finitely additive,

a situation that deprives the announcing sequence of much of its economic content. Denote by mτ− the

restriction of m to Fτ− when τ ∈ T and by mp
τ− and me

τ− its components.

Definition 3. A stopping time σ is (m,P ) predictable if it admits a sequence hσrir∈N of stopping times such
that:

(i). σr ↑ σ, P a.s. and P (σr < σ) = P (0 < σ),

(ii). limnm (σ − σr ≤ 2−n) = 0 and
(iii). limr

¡
mp
σ− −mp

σr
¢
(Ω) = 0.

Definition 4. A càdlàg, adapted process K is (m,P ) predictable if

(i) there exists a sequence hυrir∈N of (m,P ) predictable stopping times such that {∆K 6= 0} =
S
r [[υr]]

and

(ii) for each r, Kυr is Fυr− measurable.

9Jarrow and Rosenfeld [42] consider an extension of the CAPM to include jumps. See also [6].
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It is clear that continuous processes are (m,P ) predictable and that the above condition coincides with

the usual definition of a predictable stopping time in the case in which m is countably additive.

Theorem 7. Let K ∈ K be càdlàg with {∆K 6= 0} =
S
r [[υr]], let (3.1) hold and let τ ∈ T be such that Xτ

is uniformly integrable. If K is (m,P ) predictable

mp
τ (Kτ ) =

Z τ

0

Kdλ i.e. m (Kτ ) = P

½
MτKτ −

Z τ

0

A−dK
¾

(7.1)

It follows that ZKT — see (6.3) — is a P local martingale.

Essentially, in the first part of this theorem it is established a sufficient condition under which f (K) = K.

8. Consistent Pricing Measures

It is commonly believed that financial markets are incomplete. However, it is as widely shared the view

that any contingent claim may be introduced and traded on the market provided its price is set fairly. The

pricing measure should then not only be considered as a tool to evaluate currently traded assets, as in the

preceding sections, but it should also provide reliable indications for the pricing of claims that do not yet

exist on the market but that it may sensible to introduce at some later stage. Viewing the current market

setting as the outcome of some equilibrium process (and borrowing from game theoretic terminology) we

conclude that the pricing measure may partly depend on out of equilibrium elements.

Consider a situation in which f is a bounded, strictly positive random element and agents investigate

what would the fair price of an asset paying f at maturity be in a market free of arbitrage opportunities.

Of course the answer is trivial if such asset is actually traded, as its price cannot be but m (f). For the

more general case we can only conclude that its price to be should be positive, in the absence of arbitrage

opportunities.

Definition 5. Let m be a pricing measure and P ∈ P (m). The pair (m,P ) is consistent if f ∈ B (F ,N )+
and P (f > 0) > 0 imply m (f) > 0. m ∈M (K) is consistent if there exists P ∈ P (m) such that (m,P ) is

consistent.

To understand better the economic content of the preceding definition, imagine that condition (2.1) holds.

Then P (f > 0) > 0 implies that f is not negligible and, as such, it would be reasonable to write a claim

contingent on it. However, pricing such claim by m would result in a violation of the no arbitrage principle,

given that m (f) = 0. Therefore consistency demands that m may be extended as a pricing functional to a

larger collection of claims than those actually traded.

To illustrate a situation in which the pair (m,P ) is not consistent, imagine that P (T ≤ t) > 0 for some

t ∈ R+ (where T is defined as in (6.1) with reference to m and P ). Then, by Lemma 1, for each � there

exists a set F ∈ Ft such that F ⊂ {T ≤ t}, P (F ) ≥ (1− �)P (T ≤ t) and mp
t (F ) = 0. But then

m (F ) = me
t (F ) = P (XtF {T ≤ t}) = 0

It is then clear that the consistency of m requires that P (T <∞) = 0. This situation is more general than
it appears at a first glance

Lemma 3. Let (2.1) hold, m ∈M (K), P ∈ P (m) and T be defined as in (6.1) with reference to m and P .

(m,P ) is consistent if and only if P (T <∞) = 0.
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We introduce this additional definition:

Definition 6. Let π be a real valued function on B (F ,N ), f ∈ B (F ,N ) and define

K (f ;π) = {k + d (f − π (f)) : k ∈ K, d ∈ R}

If

K (f ;π) ∩B (F ,N )+ = {0} (8.1)

then we write π (f) ∈ A (f,K) and we say that π is an admissible pricing rule for f and that K possesses

the extension property with respect to f . If A (f,K) 6= ∅ for any f ∈ B (F ,N ) then K is said to possess the
extension property.

It is clear from the definition that the extension property reinforces that of absence of arbitrage oppor-

tunities. In Theorem 8 we provide a useful characterization of the extension property (in the Appendix a

more general result is proved, see Theorem 10).

Theorem 8. K has the extension property if and only if it admits no free lunches, i.e. (3.2) holds.

The abstract NFL condition translates thus into the practical issue of whether markets may or not be

extended consistently with the no arbitrage principle. This characterization helps providing economic content

to the mathematical notion of free lunch, often criticized for not having a clear market interpretation (see

especially [17] and [18]). In their seminal paper Harrison and Kreps [36, theorem 1, p. 386-7.] have already

pointed out the relationship between the extension property and viability, i.e. the property that asset prices

may support the optimal choice of an agent with regular preferences (see also [46]).

The property introduced, however, is not sufficient to guarantee that the market could be extended to

any arbitrary set of new contracts in respect of the no arbitrage principle. In general, for example, it will

not be possible to stretch the given pricing measure to a consistent price system for the completed financial

market. According to Theorem 5 (iii) this would guarantee the semimartingale nature of assets returns and

the existence of a positive martingale density. In the next result we show, however, that such an extension

is possible under the additional assumption of a given probability measure Q generating N .

Proposition 3. Let (3.2) be satisfied and assume that N = NQ for some Q ∈ P (F). Then there exists a
consistent pricing measure.

This result, even if cast in the traditional setting of an existing probability measure, is new and provides

some firm ground for much of the existing financial literature.The statement of the proposition will however

not hold in the general case, i.e. without the assumption that negligible sets originate from a probability

measure. A closer look at the proof, based on a fixed point argument, reveals that this may be due to the

impossibility to select for each m ∈M (K) a measure Pm ∈ P (m) in such a way that the function m→ Pm

be continuous. Once again the point is that the pricing measure and the representing measure may be

considerably different mathematical objects.

9. Applications.

A deep objection to the finitely additive model in asset pricing comes from the need for a tractable

description of the distribution function of asset returns under the risk neutral measure. Statistical properties

of asset returns under the pricing measure are in fact important. A major area of empirical research,
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originating from [11], suggests for example that the prices of derivatives may be useful to extract an estimate

of such function (see [2] and [16] for samples of more recent work). It would be doubtful in the finitely

additive setting that such a distribution is analytically tractable and, even more, that it may be inferred

from current prices of derivative contracts. Particularly so in a model of financial markets less restrictive

than the one considered under Assumption 3.

A more realistic assumption on the process of investment returns may be obtained by relaxing the condition

of the existence of an upper bound.

Assumption 5. K ⊂ RΩ̃
/
L (N ) is such that if K ∈ K

(i’ ) K is adapted to (Ft : t ∈ R+), K0 = 0 and K− ∈ B
³
F̃ ,N

´
;

(ii) there exists T ∈ R+ such that K = KT ;

(iii’ ) if θ ∈ Θ, a, b ∈ R, K1,K2 ∈ K then θ.K,aK1+bK2 ∈ K provided (θ.K)−,(aK1 + bK2)
− ∈ B

³
F̃ ,N

´
.

Furthermore, we assume that there are no arbitrage opportunities — so that (3.1) is in place. We easily

deduce the analogous of Theorem 2 for the present context:

Theorem 9. Let Assumption 5 hold. Then if there are no arbitrage opportunities there existsm ∈ ba (F ,N )+
such that m (Ω) = 1 and m [K] ≤ 0. I

It is implicit in the statement that if k is the overall, discounted return from an admissible trading strategy

then necessarily k ism integrable. From this it readily follows thatm (|k| > 2n) converges to 0 as n increases.
Let then µ be the measure on (R+,B (R+)) induced by k — i.e. µ = m ◦ k−1. Then for each ε there exists

a η such that µ ([−η, η]) < ε or, in other words, the measure µ is tight. Then, Dubins and Savage have

proved [25, see pp. 190-191] that one may associate to µ a countably additive measure µ∗ on (R,B (R)) —
the conventional companion in their terminology — which is unique and has the following properties:

(1)
R
hdµ =

R
hdµ∗ for each h : R→ R continuous and bounded;

(2) µ ([x− ε,∞[) ≤ µ∗ ([x,∞)) and µ∗ ([x− ε,∞[) ≤ µ ([x,∞[) for each x ∈ R and ε > 0.

The first property ensures that µ∗ may be employed to compute all moments of K∞ along with other

important quantities. The second property implies that the two distribution functions have exactly the same

points of continuity and on these they agree with each other. It also follows that
R
hdµ =

R
hdµ∗ for any

function h : R→ R for which either integral is well defined [25, lemma 3, p. 191].
In particular let K ∈ K be the underlying asset in discounted terms at maturity T and let ct (s, T ) be the

time t price of a call option maturing at T and with discounted strike price equal to s. Then, if there are

no arbitrage opportunities and Assumption 5 holds asset payoff functions are integrable with respect to the

separating measure m, by Theorem 9. By the preceding remarks, then,

ct (s, T ) =

Z
(KT − s)+ dm (ω)

=

Z
(x− s)

+
dµ (x)

=

Z ∞
s

(x− s) dµ∗ (x)

Then, as in the case of a countably additive risk neutral measure, we deduce the inequalities

εµ∗ (]s+ ε,∞[) ≤ ct (s, T )− ct (s+ ε, T ) ≤ εµ∗ (]s,∞[)
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from which it follows that the right derivative of the call price with respect to the strike price, i.e.

lim
n

ε−1 [ct (s, T )− ct (s+ ε, T )]

exists and coincides with µ∗ (]s,∞[). Of course this quantity may differ from µ (]s,∞[) and, more precisely,
µ (]s,∞[) ≤ µ∗ (]s,∞[) unless s is a point of continuity.
This analysis suggests that the significance of derivative prices for evaluating the risk neutral measure

carries over to the case in which such measure lacks countable additivity. Nevertheless it is implicit that

allowing for the existence of points of discontinuity receives now greater significance since these are the only

points in which the risk neutral measure may differ from its conventional companion. In particular, we

conclude that the standard approach may induce an over-estimate of the mass assigned by the risk neutral

measure to the right hand tail. The importance of discontinuities partly contrasts with many empirical

works in which it is common to assume that µ is absolutely continuous and to estimate therefore the density

function. Although this choice has the advantage of guaranteeing that the resulting distribution function is

increasing, it has, though, the additional meaning of ruling out the role of finitely additive measures.
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Appendix A. Proofs from Section 2.

We recall that each X ∈ B (F ,N ) is be of the form κ (f) =
n
f + h : h ∈ L (N )

o
for some f ∈ B (F) and

that a norm is defined by letting kXkB(F,N ) = inf
n
kfkB(F) : X = κ (f)

o
. It is clear from the definition

that f ∈ X and kXkB(F,N ) = 0 if and only if f ∈ L (N ) i.e. if and only if f is negligible. B (F ,N )
is complete [56, p. 219], hence a Banach space and the embedding κ of B (F) into B (F ,N ) is a linear
homeomorphism with kκk ≤ 1. We shall exploit the following result which is fairly obvious and in which
ba (F ,N ) denotes the set of bounded, finitely additive set functions vanishing on N .

Lemma 4. There exists an isometric isomorphism between B (F ,N )∗ and ba (F ,N ) defined implicitly via
the equation

φ (κ (f)) =
Z

fdµ (A.1)

Proof. If µ ∈ ba (F ,N ) the right hand side of (A.1) defines a functional over B (F ,N ) which is linear by the
linearity of κ. Let κ∗ : B (F ,N )∗ → B (F)∗ be the adjoint of κ and φ ∈ B (F ,N )∗. Then κ∗φ ∈ B (F)∗

and is therefore isometrically isomorphic to some µ ∈ ba (F) via
R
fdµ = (κ∗φ) (f) = φ (κ (f)). Given

that L (N ) ∈ κ (0), if N ∈ N then µ (N) = φ (κ (0)) = 0 and, as N is closed with respect to intersection,

it follows that |µ| (N) = 0 for each N ∈ N : in other words, µ ∈ ba (F ,N ). (A.1) establishes then an
isomorphism. Given kκ∗k ≤ 1, kµk ≤ kφk; however if X = κ (f), then |φ (X)| =

¯̄R
fdµ

¯̄
≤ kµk kfk so that

|φ (X)| ≤ kµk inf
n
kfkB(F) : X = κ (f)

o
= kµk kXk, i.e. kφk ≤ kµk. ¤

Let R (N ) be the σ ring generated by the collection N and R (N )⊥ = {F ⊂ Ω : F c ∈ R (N )}.

Lemma 5. If m,n ∈ ba (σ (N ) ,R (N ))+, then m = n if and only if m (Ω) = n (Ω). Furthermore, m is

countably additive.

Proof. If m ∈ ba (σ (N ) ,R (N ))+ then for F ∈ R (N )⊥, m (F ) = m (Ω) − m (F c) = m (Ω) and the first

claim follows from the well known fact σ (N ) = R (N ) ∪ R (N )⊥. If F,G ∈ R (N )⊥ and FG = ∅, then
Ω ∈ R (N ) and ba (σ (N ) ,R (N ))+ only contains the null measure which is trivially countably additive. Let
hFnin∈N be a disjoint sequence of σ (N ) measurable sets, then with at most one element in R (N )

⊥, say

F1, and let F =
S
n Fn If F1 ∈ R (N ) then F ∈ R (N ) so that m (F ) = 0 =

P
nm (Fn); if F1 /∈ R (N ),

m (F ) = m (F1) =
P

nm (Fn). ¤

Proof of Theorem 1. (first claim). B (F ,N ) is a Banach space and κ (Ω) an inner point for B (F ,N )+ as
kκ (f)− κ (Ω)k < η implies {f < 1− 2η} ∈ N . The linear functional φ separating the convex sets B (F ,N )+
and {0} will therefore be bounded and non trivial, i.e. φ (κ (Ω)) > 0 and such that φ

£
B (F ,N )+

¤
≥ φ (0) = 0.

By Lemma 4 φ is associated to some m ∈ ba (F ,N )+ that can be normalized so that m (Ω) = 1.
(second claim). Assume that (b) holds and let N 0 = {F ∪G : F ∈ N , G ∈ NQ}. N 0 satisfies Assumption

2 and moreover Ω /∈ R (N 0). According to the first claim of this Lemma and Lemma 5 the latter condi-

tion is necessary and sufficient for the existence of Q0 ∈ P (σ (N 0)) which vanishes on N 0. Let F ∈ F .
Each two versions of the conditional expectation Q (F |σ (N )) coincide outside some set in NQ ⊂ N 0, i.e.

they coincide Q0 a.s.. Let P (F ) = Q0 (Q (F |σ (N ))). Then P is unambiguously defined, positive and

P (Ω) = 1; furthermore, P vanishes on N . If hFnin∈N is a disjoint sequence of F measurable sets, then
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Q (
S
n Fn|σ (N )) =

P
nQ (Fn|σ (N )) up to a Q0 null set and since Q0 ∈ P (σ (N 0)),

P

Ã[
n

Fn

!
= Q0

Ã
Q

Ã[
n

Fn

¯̄̄̄
¯σ (N )

!!

= Q0

ÃX
n

Q (Fn|σ (N ))
!

=
X
n

Q0 (Q (Fn|σ (N )))

=
X
n

P (Fn)

and (a) follows. The reverse implication is obvious.

Lemma 6. Let F̂t be defined as in the text (see p. 6). Then F̂0 = σ (N ).

Proof. It is easy to see that σ (Ft ∪N ) = {F∆N : F ∈ Ft, N ∈ R (N )}. Let tn < 2−n. If F ∈ F̂0 then
F ∈ σ (Ftn ∪N ) for each n and we may therefore write F = Fn∆Nn or even

F =
S
k

T
n>k

(Fn∆Nn)

=
S
k

½µ T
n>k

FnN
c
n

¶
∪N∗k

¾
=

S
k

½µ T
n>k

Fn ∩
T
n>k

Nc
n

¶¾
∪
S
k

N∗k

=

½S
k

T
n>k

Fn ∩
S
k

T
n>k

Nc
n

¾
∪
S
k

N∗k

It is clear that N∗k ⊂
S
n>kNn so that N∗k ,

S
kN
∗
k ∈ R (N ) by Assumption 2. On the other hand,S

k

T
n>k Fn ∈ F0 by right continuity so that

S
k

T
n>k Fn is either Ω or ∅: in the former case, F =¡S

k

T
n>kN

c
n

¢
∪ (
S
kN
∗
k ); in the latter F =

S
kN
∗
k . In either case, F ∈ σ (N ). ¤

Appendix B. Proofs from Section 3.

Proof of Theorem 2. Since κ (Ω) is an internal point ofB (F ,N )+, there exists a non trivial, continuous
linear functional φ that separates B (F ,N )+ \ {0} and K. Since φ [K] and φ

£
B (F ,N )+

¤
are a linear

subspace and a convex cone in R, respectively, and since φ [K] ∩ φ
£
B (F ,N )+

¤
⊂ {0}, it must be that

φ [K] = 0 ≤ φ
£
B (F ,N )+

¤
and φ (κ (Ω)) > 0. By Lemma 4 and normalization we may represent φ via

m ∈ ba (F ,N )+ with m (Ω) = 1.

Let k = −
P

n kn ∈ RΩ, fn ∈ RΩ+ and f =
P

n fn; let also Nn ∈ N , n ≥ 1 and N0 =
S
nNn. Then,

Nc
0 (f − k) ≤ sup

ω∈Nc
0

(f − k) (ω) = sup
ω∈Nc

0

X
n

(fn + kn) (ω) ≤
X
n

sup
ω∈Nc

n

(fn + kn) (ω)

Suppose that f ∈ B (F ,N )+, that Nn is such that ᾱkn (fn) ≥ supω∈Nc
n
(fn + kn) (ω) − η2−n and thatP

n ᾱkn (fn) <∞ then for ω ∈ Nc
0 ,

ᾱkn (fn) + η2−n > kn (ω)

Let Kn ∈ K be such that kn = Kn∞ and F ∈ Ft. Since F ]]t,∞[[ ∈ Θ, then F (Kn∞ + h−Kn
t ) ∈ K whenever

h ∈ L (N ). Given that
(Kn
∞ + h−Kn

t )F ≥ − (k(Kn
∞ + h) ∧ 0k+Kn

t )F
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the absence of arbitrage opportunities implies that for all h ∈ L (N ) and F ∈ Ft with F 6= ∅ there must be
ω ∈ F such that − k(Kn

∞ + h) ∧ 0k ≤ Kn
t i.e. supω∈F Kn

t (ω) ≥ − kk−n k so that {Kn
t < − kk−n k} = ∅ and

{Kn < − kk−n k} = ∅: therefore kKn−k ≤ kk−n k and k ∈ Kσ (see the definition (2.5)). Moreover, the absence

of arbitrage opportunities implies supω∈Nc
n
(fn + kn) (ω) ≥ 0 for each n so that

Nc
0f ≤

X
n

sup
ω∈Nc

n

(fn + kn) (ω) +Nc
0 (k ∧ kfk) ≤

X
n

ᾱkn (fn) + η +Nc
0 (k ∧ kfk)

Remark that k∧kfk ∈ Cσ and choosem ∈ ba (F ,N )+ withm (Ω) = 1 such thatm [Cσ] ≤ 0 ≤ m
£
B (F ,N )+

¤
.

Then, m (f) ≤
P

n ᾱkn (fn)+η for each η ≥ 0 i.e. m (f) ≤
P

n ᾱkn (fn). Replacing f by
P

n>N fn we obtain

likewise the inequality m
¡P

n>N fn
¢
≤
P

n>N ᾱkn (fn) from which we deduce that

lim
N

m

ÃX
n>N

fn

!
≤ lim

N

X
n>N

ᾱkn (fn) = 0

i.e. m (f) =
P

nm (fn).

Appendix C. Proofs from Section 3.1.

Proof of Proposition 1. By proving the statement separately for f+ and f− we can reduce to the case

where f ∈ L1 (H, ξ)+. Let I ∈ Iη and G ∈ G. The set function φfI (G) = ξ (fIG) defined on G is positive
and additive. Let hGnin∈N be a sequence of G measurable sets such that limn γ (Gn) = 0 and fix ε, δ > 0.

As f is ξ integrable, then letting hn = fIGn

ξ (hn > ε) ≤ ξ
¡
f ≤ δ−1;hn > ε

¢
+ δξ (f)

≤ ξ (IGn > εδ) + δξ (f)

≤ ξ (IGn) + δξ (f)

≤ γ (Gn) + δξ (f)

as IGn ∈ Iη. Since δ was chosen arbitrarily, we deduce that hn converges to 0 in ξ measure and, since

|hn| ≤ f , this implies [28, theorem III.3.7, p. 124] that

lim
n

φfI (Gn) = lim
n

ξ (hn) = 0

φfI is then absolutely continuous with respect to γ and therefore countably additive. Denote then by

ξ (fI| Iη) the corresponding Radon Nikodym derivative. If G ∈ G, I ⊂ I 0 and I, I 0 ∈ Iη then

γ (ξ (fI| Iη)G) = ξ (fIG) ≤ ξ (fI 0G) = γ (ξ (fI 0| Iη)G)

i.e. 0 ≤ ξ (fI| Iη) ≤ ξ (fI 0| Iη) up to a γ null set. Let hInin∈N be an increasing sequence of sets in Iη
with the property that limn ξ (fIn) = supI∈Iη ξ (fI): then the sequence hξ (fIn| Iη)in∈N is γ a.s. increasing
and we may thus define ξ (f | Iη) = limn ξ (fIn| Iη) outside some γ null set. Monotone convergence and the
inequality γ (ξ (fIn| Iη)) ≤ ξ (f) imply that ξ (f | Iη) ∈ L1 (G, γ)+. To prove (3.8) let I ∈ Iη.

γ (ξ (f | Iη) I) = lim
n

γ (ξ (fIn| Iη) I) = lim
n

ξ (fInI) ≤ ξ (fI)
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However, if limn ξ (fInI) < ξ (fI), then,

sup
I0∈Iη

ξ (fI 0) = lim
n

ξ (fIn)

= lim
n

ξ (fInI) + lim
n

ξ (fInI
c)

< ξ (fI) + lim
n

ξ (fInI
c)

= lim
n

ξ (f (InI
c ∪ I))

which is contradictory since IcIn ∪ I ∈ Iη.
To prove uniqueness remark that, since G is a σ algebra and γ is countably additive, for any k there exists

a set Ik ∈ Iη such that γ (Ick) < 2−k. Let y ∈ L1 (G, γ)+ satisfy (3.8) and G ∈ G. Then, y = ξ (f | Iη) up to
a γ null set as

γ (yG) = lim
k
γ (yGIk) = lim

k
ξ (fGIk) = lim

k
γ (ξ (f | Iη)GIk) = γ (ξ (f | Iη)G)

Given uniqueness and additivity of ξ, ξ (f + g| Iη) = ξ (f | Iη) + ξ (g| Iη); (3.9) is a consequence of the fact
that IG ∈ Iη whenever I ∈ Iη and G ∈ G.

Proof of Theorem 3. Observe that, by Lemma 1 claim 3, we have for σ ≤ τ and σ, τ ∈ T , 0 ≤ me| Fσ ≤
me
τ | Fσ ≤ me

σ. From the theorem of Radon Nikodym, we can therefore write me (F ) = me
σ (hσF ) for each

F ∈ Fσ, where 0 ≤ hσ ≤ 1, me
σ a.s.. Of course, if F ∈ Fσ it is also true that

me
σ (hσF ) = me (F ) = me

τ (hτF ) = me
τ (m

e
τ (hτ | Fσ)F ) ≤ me

σ (m
e
τ (hτ | Fσ)F )

i.e. hσ ≤ me
τ (hτ | Fσ), me

σ a.s.. Therefore, (3.10) becomes

me
σ (KσGI) = me

σ (hσm
e (Kτ | Fσ)GI) +me

σ ((1− hσ)m
p (Kτ | Iσ)GI)

Since G ∈ Fσ is arbitrary and I may be so chosen that me
σ (I

c) < � for each �, we obtain that

Kσ = hσm
e (Kτ | Fσ) + (1− hσ)m

p (Kτ | Iσ)

up to a me
σ null set. By Assumption 3 K∞ = KT for some T ∈ R+: choosing τ = T proves (3.11). hσ = 1

up to a me
σ null set is equivalent to me| Fσ = me

σ i.e. mp (Ω) = mp
0 (Ω). However, since F0 is trivial and

given Assumption 1, mp
0 clearly admits a countably additive extension to F or, in other terms, m0 = me

0

i.e. mp
0 = 0: it follows that m

p = 0 too. By the remarks following Lemma 1, mp = m⊥ and m is countably

additive.

Appendix D. Proofs from Section 4.

Proof of Theorem 4. The first claim is essentially Theorem 2 in [12], in which it is proved that

a countably additive, positive measure P 0 exists with this property: essentially, P 0 =
P

n 2
−nm̄e

tn where

htnin∈N is a judiciously chosen sequence in R+ and m̄e
tn is the countably additive extension of m

e
tn to F .

It remains to prove that P 0 (Ω) > 0 and that P 0 can thus be normalized to be a probability, P . This is

immediate by noting that P 0 = 0 is equivalent to me
t = 0 for each t ∈ R+. However, as F0 is trivial and

given Assumption 1, then any probability measure on F is an extension of m0 so that m (Ω) = me
0 (Ω) and,

since m is the separating measure, the non triviality of m follows by standard arguments. Replacing me
tn

by m̂e
tn would still give a countably additive, positive measure P̂

0 such that P̂ 0
¯̄̄
F̂τ À m̂e

τ and that, being

generated by the extensions of m̂e
tn to F and since N ⊂ F̂tn , necessarily vanishes on N . If Assumption 1

holds there exists a probability on F while, by lemmas 5 and 6, the restriction to F̂0 coincides necessarily
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with m̂0. In other words, m̂e
0 (Ω) = m (Ω) so that necessarily P̂ 0 (Ω) > 0. P̂ is then obtained, as before, by

normalization.

Proof of Corollary 1. The supermartingale nature of X is obvious given 4.1. For right continuity, see

[12, lemma 2.].

Appendix E. Proofs from Section 5.

Proof of Lemma 2. Let nt = (mp −mp
t )| Ft and ñ = (nt : t ∈ R+). As ns ≥ nt| Fs ≥ 0 (by Lemma 1,

claim 3), ñ describes a positive, bounded finitely additive supermartingale and generates therefore a positive,

bounded measure φ on the collection of all sets of the form (F0 × {0}) ∪ ]]σ,∞[[ where σ ∈ T and F0 ∈ F0
defined by letting

φ ((F0 × {0}) ∪ ]]σ,∞[[) = n0 (F0) + nσ (σ <∞)

By lemma 2 in [12], φ admits a positive, bounded extension φ̄ to the whole of 2Ω̃. For τ ∈ T , define
m̄p
τ (F ) = mp (F )− φ̄ (F ×R+ ]]τ ,∞[[) for F ⊂ Ω. This is clearly an extension of mp

τ satisfying the claim.

We shall repeatedly exploit the following lemma.

Lemma 7. If σ, τ ∈ T0 and F ∈ Iτ , then m̄p
σ∨τ (F ; τ ≥ σ) = 0.

Proof. Observe that F {τ ≥ σ} ∈ Fτ and that

mp
σ∨τ (F {τ ≥ σ}) = (mp

σ∨τ −mp
τ ) (F ; τ ≥ σ)

= (me
τ −me

σ∨τ ) (F ; τ ≥ σ)

= P ((Xτ −Xσ∨τ )F {τ ≥ σ})

= 0

¤

We start the proof of Proposition 2 by defining a net in H. Let D be the set of all càdlàg processes

with respect to P ; D the collection of all finite sets D in D which include the processes Z where Zt = t;

A = D × R3+. Despite the potential incompleteness of the filtration [41, lemma I.1.28, p. 7], to any α ∈ A,
with α = (Dα; (tα, ηα, �α)), we can associate the sequence htαi ii∈N in T0 defined recursively as follows (with
inf ∅ =∞): tα0 = 0;

tαi = inf

(
t > tαi−1 :

_
X∈Dα

¯̄̄
Xt −Xtαi−1

¯̄̄
> ηα

)
∧ inf {t :M∗t > iηα} (E.1)

By construction, tαi ≤ tαi−1 + ηα ≤ iηα and Mt∧tαi ≤ 2Mtαi − +Mtαi
≤ 2iηα +Mtαi

. It follows that M tαi is

uniformly integrable. On the set {limi t
α
i < tα} there either exist one process X ∈ Dα which has infinitely

many oscillations larger than ηα or supt≤tα Mt = ∞: since both are P null events 0 = P (limi t
α
i < tα) =

limi P (t
α
i < tα). Define then

Iα = min {i ∈ N : P (tαi < tα) ≤ �α}

Let A be directed with respect to the partial order defined implicitly by letting α ≥ β whenever Dβ ⊂ Dα,

tβ ≤ tα, ηβ ≥ ηα and �β ≥ �α. For each α ∈ A the set of elements
³
htαi i

Iα

i=0 , hFα
i i

Iα

i=0

´
in H such that

P
¡
Fαc
Iα−1

¢
≤ �α is non empty. Invoking the axiom of choice, we can select for each α ∈ A an element
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Hα =
³
htαi i

Iα

i=0 , hFα
i i

Iα

i=0

´
∈ H with the above properties. hHαiα∈A will be a fixed net throughout this

section. Let Iα (Y )t = IHα (Y )t, Jα (Y )t = JHα (Y )t and Kα = KHα .

We start with a preliminary result. Let Ω̃0 = [[0]], Ω̃αj =
¤¤
tαj−1, t

α
j

¤¤
for 0 < j ≤ Iα and Ω̃αIα+1 =

¤¤
tαIα ,∞

££
and define

Pα
j =

n
(Fj ×R+) Ω̃αj : Fj ∈ Ftα(j−1)∨0

o
for j = 0, . . . , Iα + 1. It is clear that Pα

j is a σ algebra of subsets of Ω̃
α
j .

Lemma 8. For each α ∈ A define

Pα =


Iα+1[
j=0

Ẽj : Ẽj ∈ Pα
j , 0 ≤ j ≤ Iα + 1

 (E.2)

Pα is a σ algebra of subsets of Ω̃ and any g : Ω̃→ R is Pα measurable if and only if it is of the form

g = g0 [[0]] +

Iα−1X
i=0

gi
¤¤
tαi , t

α
i+1

¤¤
+ gIα

¤¤
tαIα ,∞

££
(E.3)

with gi measurable with respect to Ftαi .

Proof. Since Pα =
n
Ẽ ⊂ Ω̃ : ẼΩ̃αj ∈ Pα

j , 0 ≤ j ≤ Iα + 1
o
and

n
Ω̃αj : j = 0, . . . , Iα + 1

o
is a partition of Ω̃

then Pα is a σ algebra [56, problem 2, p. 257]. If g is of the form (E.3) it is clearly Pα measurable. On

the other hand the class of all bounded processes of the form (E.3) is a vector space which contains the

indicators of all Pα measurable sets and is closed with respect to increasing, bounded sequences. The claim

then follows by a monotone class argument. ¤

Lemma 9. There exists a mapping f : B
³
2Ω̃
´
→ L∞ (P, λ) such that for each Y ∈ B

³
2Ω̃
´
and υ ∈ T ,

LIM
α

Iα (Y )υ = P

Z υ

0

f (Y ) dA

f is a positive, linear operator such that kfk = 1 and f (Y Z) = f (Y )Z whenever Y, Y Z ∈ B
³
2Ω̃
´
and

Z ∈ B
³
F̃ ,N

´
is càglàd.

Proof. Adapting (5.6) to the present setting we have, for υ ∈ T and Y ∈ B
³
2Ω̃
´
,

fυα (Y ) =

Iα−1X
i=0

m̄p
tαi+1∧υ

³
Ytαi+1

¯̄̄
Iυtαi
´
Fα
i {tαi < υ}

¤¤
tαi , t

α
i+1

¤¤
(E.4)

Remark that fυα (Y ) ∈ L∞ (Pα, λ) by Lemma 8 with kfυα (Y )k ≤ kY k and that {tαi < υ} ⊂
©
tαi+1 < υ + ηα

ª
by (E.1) so that fυα (Y ) vanishes then on ]]υ + ηα,∞[[. If g ∈ L1 (P, λ) then

¯̄R
gfυα (Y ) dλ

¯̄
≤ kY k kgk and

the quantity φυY (g) = LIMα

R
gfυα (Y ) dλ is well defined and finite. The functional φ

υ
Y : L

1 (P, λ) → R, is
linear and kφυY k ≤ kY k: by standard representation theorems [28, IV.8.5], we can associate to φυY an element
fυ (Y ) ∈ L∞ (P, λ) such that

LIM
α

Z
gfυα (Y ) dλ =

Z
gfυ (Y ) dλ

holds for any g ∈ L1 (P, λ). Furthermore, by the remark following (E.4), fυ (Y ) vanishes outside [[0, υ]];
eventually, fυ is additive since fυα is.



30 GIANLUCA CASSESE

By Lemma 8 we can define gα = λ (g| Pα) and we deduce from (E.4) and (E.3) that fυα (Y ) gα = fυα (Y g
α).

Therefore, Z υ

0

fυα (Y ) gdλ =

Z υ

0

fυα (Y ) g
αdλ =

Z υ

0

fυα (Y g
α) dλ =

Iα−1X
i=0

m̄p
tαi+1∧υ

³
Ytαi+1g

α
tαi+1

Fα
i

´
and consequently Z

fυα (Y ) gdλ =

Iα−1X
i=0

m̄p
tαi+1∧υ

³
Ytαi+1g

α
tαi+1

Fα
i

´
+

Z υ+ηα

υ

fυα (Y g
α) dλ

Let now σ ∈ T be such that υ ≥ σ. Since LIMα

R υ+ηα
υ

gdλ = 0 as λ is countably additive,

LIM
α

¯̄̄̄Z
[fυα (Y )− fσα (Y )] gdλ

¯̄̄̄
≤ 2 kY kLIM

α

Iα−1X
i=0

¯̄̄³
m̄p
tαi+1∧υ − m̄p

tαi+1∧σ
´³

gαtαi+1F
α
i

´¯̄̄
(E.5)

Remark now that
Iα−1X
i=0

¯̄̄³
m̄p
tαi+1∧υ − m̄p

tαi+1∧σ
´
(Fα

i {tαi < σ})
¯̄̄
≤ P

Iα−1X
i=0

³
Aυ
tαi+1
−Aσ

tαi+1

´©
tαi < σ ≤ tαi+1

ª
≤ P

Iα−1X
i=0

¡
Aσ+ηα −Aσ

¢ ©
tαi < σ ≤ tαi+1

ª
(E.6)

≤ P
¡
Aσ+ηα −Aσ

¢
Let hα =

PIα−1
i=0 {σ ≤ tαi < υ}

¤¤
tαi , t

α
i+1

¤¤
, recall (from Lemma 7) that m̄p

tαi+1∧σ (F
α
i {tαi ≥ σ}) = 0 and that

gαtαi+1 is Ftαi measurable. Then,
Iα−1X
i=0

¯̄̄³
m̄p
tαi+1∧υ − m̄p

tαi+1∧σ
´³

Fα
i g

α
tαi+1

{tαi ≥ σ}
´¯̄̄
≤

Iα−1X
i=0

mp
tαi+1∧υ

³
Fα
i

¯̄̄
gαtαi+1

¯̄̄
{σ ≤ tαi < υ}

´

≤ P

Iα−1X
i=0

³
Aυ
tαi+1
−Aυ

tαi

´ ¯̄̄
gαtαi+1

¯̄̄
{σ ≤ tαi < υ} (E.7)

= P

Z υ

0

|gα|hαdλ

It is clear that hα is Pα measurable and vanishes on [[0, σ]]. Joining (E.5), (E.6) and (E.7) we obtain that
if g ∈ L∞ (P, λ)+ vanishes on [[0, σ]]

c, then¯̄̄̄Z
[fυ (Y )− fσ (Y )] gdλ

¯̄̄̄
≤ LIM

α

¯̄̄̄Z
[fυα (Y )− fσα (Y )] gdλ

¯̄̄̄

≤ 2 kY kLIM
α

Iα−1X
i=0

³
m̄p
tαi+1∧υ − m̄p

tαi+1∧σ
´³

gαtαi+1F
α
i

´
≤ 2 kY kLIM

α
P

Z υ

0

gαhαdλ

= 2 kY kLIM
α

P

Z υ

0

ghαdλ

= 0

i.e. that fυ (Y ) = fσ (Y ) on [[0, σ]] up to a λ null set. We can then define f : B
³
2Ω̃
´
→ L∞ (P, λ) by

setting

f (Y ) =
X
n

fn (Y ) ]n− 1, n] (E.8)
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f is positive and linear since fn (Y ) is for each n; furthermore, up to a λ null set, f (Y ) = fυ (Y ) on [[0, υ]]

for each υ ∈ T .
Let now U be càdlàg and bounded and define πα (U) = U0 {0} +

PIα−1
i=0 Utαi

¤¤
tαi , t

α
i+1

¤¤
. Since U ∈ D,

then for α ∈ A sufficiently large, |U− − πα (U)| ≤ ηα on
££
0, tαIα

¤¤
. Therefore, since fTα (Y U)

££
0, tαIα

¤¤
=

fTα
¡
Y U

££
0, tαIα

¤¤¢
and πα (U) is Pα measurable, we obtain for Y ∈ B

³
2Ω̃
´

Z
|f (Y U−)− f (Y )U−| dλ = lim

n

Z n

0

|fn (Y U−)− fn (Y )U−| dλ

= lim
n
LIM
α

Z n∧tαIα

0

|fnα (Y U−)− fnα (Y )U−| dλ

= lim
n
LIM
α

Z n∧tαIα

0

|fnα (Y U−)− fnα (Y )πα (U)| dλ

= lim
n
LIM
α

Z n∧tαIα

0

|fnα (Y (U− − πα (U)))| dλ

≤ lim
α
2ηα kY kP (A∞)

= 0

so that, by linearity,Z
f (Y ) dλ =

Z
f (∆Y ) dλ+

Z
f (Y−) dλ =

Z
f (∆Y ) dλ+

Z
Y−dλ

It is clear that kfk ≤ 1 but we have just considered a case in which f (Y ) = Y . ¤

Proof of Proposition 2. For any τ ∈ T and K ∈ K

mp
τ (Kτ ) = mp

τ (Kτ −Kα
τ ) +mp

τ∧tαIα (K
α
τ ) +

³
mp
τ −mp

τ∧tαIα

´
(Kα

τ )

= mp
τ (Kτ −Kα

τ ) + Jα (K)τ +
³
mp
τ −mp

τ∧tαIα

´
(Kα

τ ) + Iα (K)τ

As for the first term,

|Kτ −Kα
τ | ≤

¯̄̄
Kτ∧tαIα −Kα

τ

¯̄̄
+
¯̄̄
Kτ −Kτ∧tαIα

¯̄̄
≤

Iα−1X
i=0

Fαc
i

¯̄̄
Kτ∧tαi+1 −Kτ∧tαi

¯̄̄
+
¯̄̄
Kτ −Kτ∧tαIα

¯̄̄
≤ 2 kKk

©
Fαc
Iα−1 ∪

©
τ > tαIα

ªª
and given that Kα

τ ,Kτ ∈ K

|mp
τ (K

α
τ −Kτ )| ≤ |mτ (K

α
τ −Kτ )|+ |me

τ (K
α
τ −Kτ )|

≤ me
τ (|Kα

τ −Kτ |) (E.9)

≤ 2 kKkP
¡
Xτ

¡
Fαc
Iα−1 +

©
τ > tαIα

ª¢¢
i.e. (i) LIMα |mp

τ (K
α
τ −Kτ )| = 0. On the other hand, from (5.7) we conclude that (ii) limα Jα (K)τ = 0.

Eventually, by (2.8), ¯̄̄³
mp
τ −mp

τ∧tαIα

´
(Kα

τ )
¯̄̄
≤ kKkP

³
Xτ∧tαIα −Xτ

´
so that (iii) limα

³
mp
τ −mp

τ∧tαIα

´
(Kα

τ ) = 0 whenever τ is such that Xτ is uniformly integrable. We then

conclude that, when τ ∈ T and Xτ is uniformly integrable, mp
τ (Kτ ) = limα Iα (K)τ . The claim then follows

from Lemma 9.
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Appendix F. Proofs from Section 6.

Proof of Theorem 5. By localization, we can assume temporarily that (5.8) holds for every τ ∈ T .
Observe that the process Yt = XtKt+

R t
0
f (K) dA is right continuous, admits a terminal variable and Y0 = 0.

Then, [41, lemma I.1.44], Y is a uniformly integrable martingale, i.e. XtKt = Yt −
R t
0
f (K) dA a special

semimartingale, given that
R
f (K) dA is predictable. If W is a bounded process, then WT [[T,∞[[ consists

of a bounded jump at time T and is therefore càdlàg and of integrable variation, i.e. a semimartingale. It

follows that KT [[T,∞[[ and [[T,∞[[ are semimartingales as well as the process

XK +KT [[T,∞[[ = (X + [[T,∞[[)KT = UKT

The process U is a strictly positive semimartingale, as P (Xt = 0) = 0 when t < T . Let

rn = inf

½
t ∈ R+ : sup

s≤t
Xs > 2

n or Xt ≤ 2−n
¾

D = [[T,∞[[ and let superscript n denote a process stopped before time Rn, i.e. Un = Urn−. Un takes its

values in the compact set [2−n, 2n] on which the inverse function h is well defined and, being convex, admits

a Lipschitz constant cn. Let F ∈ Fs and s < t. Then |h (Xn
t +Dn

t )− h (Xn
t +Dn

s )| ≤ cn (D
n
t −Dn

s ) so that

P (h (Xn
t +Dn

t ) + cn (D
n
t −Dn

s )| Fs) ≥ P (h (Xn
t +Dn

s )| Fs)

≥ h (P (Xn
t +Dn

s | Fs))

≥ h (Xn
s +Dn

s )

In other words, h (Un) + cnD
n is a submartingale therefore h (Un) = h (U)

rn− is a semimartingale. As

the sequence hRnin∈N increases to ∞, P a.s. it follows [54, theorem 6, p. 46] that h (U) = U−1 is a

semimartingale. But then KT , being the product of two semimartingales, is itself a semimartingale by Ito’s

lemma.

If markets are complete and F ∈ Ft is such that mp
t (F ) = 0 then

m (F ;T ≤ t) = me
t (F ;T ≤ t) ≤ P (Xt {T ≤ t}) = 0

so that, by Theorem 2, {F ;T ≤ t} ∈ N . But under the current assumptions, by Theorem 4, we conclude

that P vanishes on N . Since it is possible to find a sequence hFnin∈N with Fn ∈ I2n and P (F c
n) < 2

−n, we

conclude that P (T <∞) = limn P (T ≤ 2n) = limn P (Fn;T ≤ 2n) = 0.

Proof of Theorem 6. First of all, remark thatM = A on {X− = 0} up to indistinguishability and there-
fore, by Doob Meyer theorem, M and A remain constant over that stochastic interval so that the stochastic

integrals
R
X−1− dM and

R
X−1− dA are well defined. The first statement is a fairly obvious consequence of

integration by parts and (5.8) from which we obtain that the process Y , where Yt = XtKt +
R t
0
f (K) dA ,

is a local martingale (see the proof of Theorem 5). Integration by parts implies

Y −
Z

X−dMK −
Z

KT
−dM =

Z
X−dV K +

£
KT ,M

¤
+

Z t

0

∆K∼dA

where the left hand side is a local martingale while the right hand side is of finite variation: (6.5) follows

from [41, lemmas I.3.11 and I.3.22]. We also deduce that the processZ
X−1− DKd

½
Y −

Z
KT
−dM

¾
= K̂ +

Z
X−1− d

h
M, K̂

i
= K̂ +

Z
d
h
L (Z) , K̂

i
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is a local martingale. The formula

ZK̂ =

Z
K̂−dZ +

Z
Z−dK̂ +

h
Z, K̂

i
=

Z
K̂−dZ +

Z
Z−d

³
K̂ +

h
L (Z) , K̂

i´
proves the second claim.

Proof of Corollary 2. If θ is càglàd ∆ (θ.K) = θ∆K and f (∆ (θ.K)) = θf (∆K). Since the same

invariance property holds for the ordinary predictable projection, we conclude that (∆ (θ.K))∼ = θ (∆K)
∼.

Let τn be announced by the sequence hτrnir∈N. We obtain that

lim
r

Z
(∆ (]]τrn, τn]] .K))

∼
dλ = lim

r

Z τn

τrn

(∆K∼) dλ = P
¡
(∆K)

∼
τn
∆Aτn

¢
There is no loss of generality assuming τn < τn+1 P a.s. so that, replacing τ rn by τrn ∨ τn−1, we may

assume that the sequence h]]τrn, τn]]in∈N is disjoint and therefore ∆K =
P

n ]]τ
r
n, τn]]∆K. Let ∆

kK =

∆K {|∆K| > k} and ∆kK = ∆K −∆kK and exploiting the fact that càdlàg processes only admit finitely

many jumps of width larger than k on each compact intervalZ t

0

¡
∆kK

¢∼
dλ = lim

r

Z t

0

ÃX
n

]]τ rn, τn]]∆
kK

!∼
dλ

=
X
n

lim
r

Z t

0

¡
]]τrn, τn]]∆

kK
¢∼

dλ

=
X
n

P
³¡
∆kK

¢∼
τn∧t∆Aτn∧t

´
while

¯̄̄R t
0
(∆kK)

∼
dλ
¯̄̄
+ P

¯̄P
n (∆kK)

∼
τn∧t∆Aτn∧t

¯̄
≤ 6kP (A∞) so thatZ t

0

(∆K)
∼
dλ = lim

k↓0

Z t

0

¡
∆kK

¢∼
dλ

= lim
k↓0

P
X
n

¡
∆kK

¢∼
τn∧t∆Aτn∧t

= P
X
n

(∆K)
∼
τn∧t∆Aτn∧t

In other words, ∆K∼ =
P

n (∆K)
∼
τn
[[τn]] which proves the claim.

Appendix G. Proofs from Section 7.

Proof of Theorem 7. The same argument used in the proof of Corollary 2 may be employed to obtain

that, under the current assumptions, f (∆K) =
P

n f (∆Kτn) [[τn]]. Therefore, by definition of the operator

f , Z
f (∆Kτn) dλ = LIM

α

Z
fτnα (∆Kτn) dλ

= LIM
α

Iα−1X
i=0

mp
tαi+1∧τn

¡
∆Kτn

©
tαi+1 = τn

ª
Fα
i

¢
= LIM

α
mp
τn

Ã
∆Kτn

Iα−1[
i=0

©
tαi+1 = τn

ª
Fα
i

!
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Under the current assumptions, however,

LIM
α

Iα−1X
i=0

mp
τn

¡©
tαi < τ rn < τn ≤ tαi+1

ª¢
≤ lim

α
m (τn − τ rn < ηα) = 0 (G.1)

and, for r sufficiently large,
°°°m̄p

τrn
− m̄p

τn−
°°° = ³mp

τrn
−mp

τn−
´
(Ω) < �. For F ∈

S
Fτrn we deduce from (2.8)

me
τn− (F ) = lim

r
me
τrn
(F ) + lim

r

³
mp
τrn
−mp

τn−
´
(F )

= lim
r
P
¡
AτrnF

¢
= P (Aτn−F )

and since Fτn− = σ
¡S
Fτrn

¢
we conclude that dme

τn−
±
dPFτn− = Aτn− by uniqueness of the Carathéodori

extension. Moreover,

Iα−1X
i=0

mp
τn−

¡©
tαi+1 = τn; t

α
i > τ rn

ª
Fα
i

¢
≤

Iα−1X
i=0

³
mp
τn− − m̄p

τrn

´ ¡
tαi+1 = τn

¢
=

³
mp
τn− −mp

τrn

´ÃIα−1[
i=1

©
tαi+1 = τn

ª!
(G.2)

≤ �

We can now remark that∆Kτn
©
tαi+1 = τn

ª
Fα
i is Fτn− measurable by assumption, that

¡
mp
τn −mp

τn−
¢¯̄
Fτn− =¡

me
τn− −me

τn

¢¯̄
Fτn− and that

©
∆kKtIα−1 6= 0

ª
⊂
SIα−1
i=1 [[tαi ]] whenever α is large enough. Eventually we

conclude that Z
f (∆Kτn) dλ = LIM

α

Iα−1X
i=0

¡
mp
τn −mp

τn−
¢ ¡
∆Kτn

©
tαi+1 = τn

ª
Fα
i

¢
= LIM

α
P

Ã
∆Kτn

Iα−1[
i=1

©
tαi+1 = τn

ª
∆Aτn

!
= lim

k
LIM
α

P
³
∆kK

tIα−1
τn ∆Aτn

´
= P (∆Kτn∆Aτn)

i.e. that
R
f (∆K) dλ = P

P
∆Kτn∆Aτn . The last claim is obvious given Theorem 6.2 and that fact that

in the current context DK = ∅.

Appendix H. Proofs from Section 8.

Proof of Lemma 3. Necessity is obvious given the remark preceding the lemma; the inequality, m (F ) ≥
me
t (F ) = Pm (XtF ) = Pm (XtF {Tm > t}) for F ∈ Ft implies that this is sufficient as well.

Lemma 10. Let f ∈ B (F ,N ), υ ∈ ba (F ,N )+ with υ (Ω) = 1 and k ∈ K, then

αk (f) ≥ υ (k + f) ≥ αk (f) (H.1)

If NA holds

(1) (αK (f) ;αK (f)) ⊂ A (f,K) ⊂ [αK (f) ;αK (f)];
(2) αK (f) = αK (f) if and only if f − 1

2 (αK (f) + αK (f)) ∈ C̄ .
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Proof. Fix k ∈ K and letN+, N− ∈ N be such that supω∈Nc
+
(k + f) (ω) ≤ αk (f)+2

−n and infω∈Nc
− (k + f) (ω)+

2−n ≥ αk (f). Then on Nc = Nc
+N

c
−

2−n + αk (f) ≥ k + f ≥ αk (f)− 2−n (H.2)

The first claim follows from N ∈ N .
(1). Suppose that π (f) /∈ A (f,K): then for some k ∈ K and d ∈ R we would have k + d (f − π (f)) ∈

B (F ,N )+ or, equivalently, Nk,η = {k + d (f − π (f)) < −η} ∈ N for all η > 0. Take the case d > 0, then

αd−1k (f) ≥ inf
ω∈Nc

k,η

¡
d−1k + f

¢
(ω) = d−1 inf

ω∈Nc
k,η

(k + df) (ω) ≥ π (f)− η

If d < 0 we likewise deduce ᾱ−d−1k (f) ≤ π (f) + η. Of course, η being arbitrary, we conclude there exists

k ∈ K such that either αk (f) ≥ π (f) or ᾱk (f) ≤ π (f). We deduce that (αK (f) ;αK (f)) ⊂ A (f,K). If
π (f) ∈ A (f,K), K (f ;π) and B (F ,N )+ are separated and there exists therefore mf ∈ M (K) such that
mf (f) = π (f). By (H.2), we conclude that π (f) ∈ [αK (f) ;αK (f)].
(2). Let f̂ = f − 1

2 (αK (f) + αK (f)) and suppose that f̂ /∈ C̄. Then
n
f̂
o
and C̄ may be separated

by a finitely additive probability mf vanishing on N and on K and such that mf

³
f̂
´
> 0. Since mf is a

separating measure for K, by (H.2) it follows that αK
³
f̂
´
≥ mf

³
f̂
´
≥ αK

³
f̂
´
. Given that both functionals,

αK (·) and αK (·), are linear with respect to constants the preceding double inequality translates into

αK (f) ≥ mf

³
f̂
´
+
1

2
(αK (f) + αK (f)) >

1

2
(αK (f) + αK (f)) ≥ αK (f)

i.e. αK (f) > αK (f). On the other hand, if f̂ ∈ C̄ thenm
³
f̂
´
≤ 0 for eachm ∈M (K) so thatA

³
f̂ ,K

´
⊂ R−

and therefore, by the first claim, 0 ≥ αK
³
f̂
´
i.e. αK (f) ≤ αK (f). ¤

We shall now prove a theorem more general that Theorem 8. Let us introduce the following definition.

Definition 7. Let U ⊂ ba (F ,N ) and J ⊂ B (F ,N ). U is norm attaining for J if for each f ∈ J ,
kfk = supυ∈U υ (f).

Theorem 10. The following properties are mutually equivalent:

(a) there exists a subset U of finitely additive probabilities vanishing on N which is (i) norm attaining

for B (F ,N )+ and such that (ii) if υ ∈ U and hhnin∈N is a sequence in C such that kh−n k→ 0 then

hn converges to 0 in υ measure;

(b) for every k ∈ K and f ∈ B (F ,N ), ᾱk (f) = αK (f) if and only if αk (f) = ᾱK (f);

(c) K has the extension property;

(d) there are no free lunches, i.e. (3.2) holds.

Proof. (a)→(b). Suppose that for some k0 ∈ K, say, αk0 (f) = ᾱK (f) (so that αK (f) = ᾱK (f)) and

assume, without loss of generality, that ᾱK (f) ≥ 0 (if not, replace f by f − ᾱK (f)). Then, for each

n there exists kn ∈ K such that αk0 (f) > ᾱkn (f) − 2−n from which one deduces easily that, letting

hn = (1 + kk0 + fk)−1 (k0 − kn), hn > −2−n outside some negligible set N 0
n and hn ∈ K. Choose hknin∈N

such that hᾱkn (f)in∈N is monotonically decreasing to ᾱK (f). Let N 00
n ∈ N be such that ᾱkn (f) ≥
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supω∈N 00c
n
(kn + f) (ω)− 2−n and Nn = N 0

n ∪N 00
n . Then, as Nn ∈ N

(k0 + f) (ω)Nc
n = (k0 − kn) (ω)N

c
n + (kn + f) (ω)Nc

n

= [(k0 − kn) (ω)N
c
n + (kn + f) (ω)Nc

n] ∧ kk0 + fk

≤
h
(k0 − kn) (ω)N

c
n + ᾱkn (f) + 2

−(n−1)
i
∧ kk0 + fk

≤ [(k0 − kn) (ω)N
c
n ∧ kk0 + fk] + ᾱkn (f) + 2

−(n−1)

If υ ∈ U then υ (hn ∧ 1) converges to 0 and therefore

υ (k0 + f) ≤ lim
n

h
(1 + kk0 + fk) υ (hn ∧ 1) + ᾱkn (f) + 2

−(n−1)
i

= lim
n

ᾱkn (f)

= ᾱK (f)

By definition of U then ᾱk0 (f) ≤ supυ∈U υ (k0 + f) ≤ ᾱK (f), i.e.ᾱk0 (f) = ᾱK (f). If, on the other side,

ᾱk0 (f) = αK (f), then the same argument can be used to show that αk0 (f) = π (f). In other words, (b)

holds.

(b)→(c). By (b) we have αK (f) = ᾱK (f). Let π (f) = 1
2 (αK (f) + ᾱK (f)) and suppose that there exist

k ∈ K and d ∈ R such that y = k + d (f − π (f)) ∈ B (F ,N )+ i.e. such that {y < −η} ∈ N for each η > 0.

A shown in the proof of Lemma 10, this implies either αk (f) = π (f) (if d > 0) or ᾱk (f) = π (f) (if d < 0),

in any case π (f) = αK (f) = ᾱK (f). Say d > 0. But then, since ᾱk (f) = π (f) by (b), we conclude that

for any η > 0 there must exist a set N ∈ N such that supω∈Nc y (ω) < η i.e. {y > η} ∈ N from which the

implication y = 0 follows.

(c)→(d). Let f ∈ C̄. Then, by assumption it has an admissible price π (f) but by Lemma 10 it must be
π (f) = 0. Then, as f − π (f) ∈ B (F ,N )+ if and only if f = π (f) we deduce that C̄ ∩B (F ,N )+ = {0}.
(d)→(a). Let η, ε > 0 and c ∈ C̄ be such that c > −ε up to negligibility. If υ ∈M (K) then 0 ≥ υ (c)

and from this we easily deduce that υ (c ≥ η) ≤ ε
ε+η . It follows that every sequence hcnin∈N in C̄ converges

to 0 in υ measure whenever c−n converges to 0 in norm. The same property easily extends to the collection

M (K)∗ of all finitely additive probabilities absolutely continuous with respect to some υ ∈M (K). If (d)
holds, then for any set F ∈ F not negligible there exists a corresponding υF ∈M (K) such that υF (F ) > 0
while the finitely additive probability ῡF = υF (F )

−1 FdυF is clearly absolutely continuous with respect

to υF [28, theorem III.2.20, p. 114]. Letting F = {h > (1− η) khk} for h ∈ B (F ,N )+, then we have
ῡF (h) ≥ (1− η) khk. But then the collectionM (K)∗ is norm attaining for B (F ,N )+ and (a) is therefore
satisfied. ¤

The equivalence between (a) and (d) has a direct correspondence in a result of Delbaen and Schachermayer

([23, corollary 3.7, p. 477], [43, lemma 2.2, p. 193]) obtained under the assumption N = NQ.

Proof of Proposition 3. We start by proving that Q (Tm <∞) > 0 for each m ∈M (K) if and only
if there exists η such that for any sequence hmnin∈N in M (K) Q (

T
n {Tmn <∞}) > η. If this were not

true it should be possible to find a sequence hmnin∈N in M (K) such that Q (
T
n {Tmn <∞}) = 0. Let

m =
P

n 2
−nmn: then, m ∈ M (K) and for each τ ∈ T and me

τ =
P

n 2
−nme

n,τ (by uniqueness of the

decomposition (2.7)): therefore, me
τ À me

n,τ . As a consequence, Q (Tm < Tmn) = 0 for each n: in other

words, up to a null set
T
n {Tmn <∞} ⊂ {Tm <∞} and Q (Tm <∞) = 0.
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In the attempt to derive a contradiction, assume that η > 0. Fix � > 0 and consider the mapping F� that

associates to each m ∈M (K) the set

F� (m) =
©
f ∈ B (F ,N )+ : f ≤ 1, Q (f) ≥ η (1− �) , m (f) < �

ª
It is clear from the definition that F� is convex valued and non empty if (in factm (Tm <∞) = mp (Tm <∞)
and mp and Q are orthogonal). Letting X be M (K) endowed with the weak∗ topology of ba (F ,N ) and
Y = B (F ,N ) we easily establish that X is Hausdorff and compact and that Y is a Banach space. In order

to show that F� is lower hemicontinuous, consider an open set Uf0 ⊂ Y containing f0 ∈ F� (m0). It is clear

that Vf = {m ∈M (K) : m (f) < �} is open and that

F−1� (Uf0) = {m ∈M (K) : F� (m) ∩ Uf0 6= ∅} =
[

{f∈Uf0 : Q(f)≥η(1−�)}
Vf

In other words, the lower inverse F−1� of F� maps open sets into open sets, i.e. F� is lower hemicontinuous.

By virtue of Michael selection theorem [51, footnote 7, p. 364.], F� admits therefore a continuous function

φ� such that φ� (m) ∈ F� (m) for each m ∈M (K) so that (i) 0 < φ� (m) ≤ 1, (ii) Q (φ� (m)) ≥ η (1− �) and

(iii) m (φ� (m)) ≤ �.

Consider now the mapping M that associates to each f ∈ Y the set

M (f) = {m ∈M (K) : m (f) = ᾱK (f)}

M (f) is clearly a non empty, compact and convex subset of X. Let V be a closed subset of X and f0 ∈
M−1 (V): for each δ there exists then fδ ∈M−1 (V) such that kfδ − f0k < δ. By definition this implies that

for some mδ ∈ V, mδ (fδ) = ᾱK (fδ) so that

mδ (f0) ≥ mδ (fδ)− δ

= ᾱK (fδ)− δ

≥ ᾱK (f0)− 2δ

Put it differently, for each δ > 0 the set Vf0,δ = {m ∈ V : mδ (f0) ≥ ᾱK (f0)− 2δ} is non empty. It then
ensues from the finite intersection property that

T
δ>0 Vf0,δ = {m ∈ V : mδ (f0) = ᾱK (f0)} is also non empty

or, in other words, that f0 ∈ M−1 (V) and therefore M−1 (V) is closed. We conclude that M is upper

hemicontinuous and that so is the composite map Φ� =M ◦ φ� : X→ X; further, Φ� is convex and compact

valued. It follows that Φ� has closed graph and, X being a Hausdorff, locally convex topological vector

space, it admits a fixed point m∗ as a result of a well known theorem of Glicksberg [33, p. 171]. Letting

f∗ = φ� (m
∗) we have that

� ≥ m∗ (f∗) = ᾱK (f∗)

while Q (f∗) ≥ η (1− �). This can be considered as an orthogonality condition between Q and ᾱK.

Given that � was entirely arbitrary, we can establish the same conclusion replacing � with �n = 2−n−1:

let mn be the fixed point of Φ�n and fn = φ�n (mn) so that Q (fn) ≥ η (1− �n) and �n ≥ ᾱK (fn). These

same inequalities remain valid if we replace fn by g0n =
P

i≥n ai,nfi where ai,n ≥ 0, the sequence hai,nii∈N
contains finitely many non null elements and

P
i≥n ai,n = 1. In fact

ᾱK (g0n) ≤
X
i≥n

ai,nᾱK (fi) ≤
X
i≥n

ai,n2
−i−1 ≤ 2−n−1
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Choosing weights conveniently, we obtain by Komlòs lemma, that the sequence hg0nin∈N converges P a.s.;

by Egoroff theorem there will therefore exists a set F ∈ F such that P (F c) < η� and gn = g0nF converges

uniformly to some g ≥ 0. But then, since 0 ≤ g0n ≤ 1

P (g) = lim
n

P (gn)

≥ lim
n

P (g0n)− P (F c)

≥ lim
n

η (1− �n − �)

= η (1− �)

so that g 6= 0. However

ᾱK (g) = lim
n

ᾱK (gn)

≤ lim
n

ᾱK (g0n)

= 0

By the second claim in Lemma 3, the last inequality implies g ∈ C̄ and the NFL property is therefore violated,
a contradiction.

Appendix I. Proofs from Section 9.

Define the functional πK : B (F ,N ) → R implicitly as πK (f) = −αK (−f). The following is a fairly
trivial lemma.

Lemma 11. Let Assumption 5 hold.

(1) The functional πK is positive, sub additive, positively homogeneous and such that πK (1) ≤ 1;
(2) if (3.1) holds, then πK (1) = 1 and πK (k) ≤ 0 when k ∈ K.

Proof. (claim 1). Let f, g ∈ B (F ,N ). By definition (3.4), αK (f) ≥ α0 (f) ≥ supN∈N infω∈Nc f (ω) so that

αK is positive and πK (1) ≤ 1. As k ∈ K if and only if k = k1 + k2 with k1, k2 ∈ K

αK (f + g) = sup
k∈K

sup
N∈N

inf
ω∈Nc

(k + f + g) (ω)

= sup
k1,k2∈K

sup
N∈N

inf
ω∈Nc

(k1 + k2 + f + g) (ω)

≥ sup
k1∈K

sup
N∈N

inf
ω∈Nc

(k1 + f) (ω) + sup
k2∈K

sup
N∈N

inf
ω∈Nc

(k1 + f) (ω)

= αK (f) + αK (g)

Since λ−1k ∈ K whenever λ > 0, then

αK (λf) = λ sup
k∈K

sup
N∈N

inf
ω∈Nc

¡
λ−1k + f

¢
(ω)

= λ sup
k0∈K

sup
N∈N

inf
ω∈Nc

(k0 + f) (ω)

= λαK (f)

from which πK (0) = 0 also follows.

(claim 2). If αk (−1) > −1 then there exists N ∈ N such that k > 0 on Nc, a contradiction of (3.1).

If k0 ∈ K then πK (k0) = infk∈K infN∈N supω∈Nc (−k + k0) (ω) ≤ αk0 (−k0) = 0. πK [K] ≤ 0 follows from
positivity of πK. ¤
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Proof of Theorem 9. Consider the functional πK on B (F ,N ) and, appealing to Hahn Banach theorem,
construct a functional φ on B (F ,N ) such that φ (Ω) = πK (Ω) and φ ≤ πK. By Lemmas 4 and 11 we may

thus represent φ via a finitely additive probability m vanishing on N and such that m [C] ≤ 0. If k ∈ K, then

m (k > 2n) ≤ πK (k > 2n) ≤ πK

µ
k + kk−k
2n

¶
≤ 2−n

°°k−°°
Then k is m integrable and m (k) = limnm (k ∧ n) ≤ πK (k) = 0.
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