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Abstract
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CAPM with the term spread as conditioning variable is able to explain the
cross-section of German stock returns about as well as the Fama-French
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specifications however do a better job than conditional ones at capturing
time-series predictability of the test portfolio returns.

JEL Classification: G12
Keywords: Asset Pricing, Conditioning Information, Hansen-Jagannathan Distance,
Generalized Method of Moments

*We thank Erik Liiders and seminar participants at HU Berlin for helpful comments. Access
to the German interest rate and bond database of Wolfgang Biihler, University of Mannheim, is
gratefully acknowledged. We also thank Stefan Frey and Joachim Grammig for helpful comments
and providing us with a GMM library for GAUSS. Zohal Hessami provided excellent research as-
sistance. This research benefitted from financial support of Fritz Thyssen Stiftung. All remaining
errors and omissions are the responsibility of the authors.

fCorresponding author: Andreas Schrimpf, Centre for European Economic Research (ZEW),
Mannheim, P.O. Box 10 34 43, 68034 Mannheim, Germany, email: schrimpf@zew.de, phone:
+49 621 1235160, fax: +49 621 1235223.



1 Introduction

It is widely known that the Capital Asset Pricing Model (CAPM) by Sharpe (1964),
Lintner (1965) and Black (1972) has severe problems in explaining empirical pat-
terns of the cross-section of stock returns.! The most serious blow to the CAPM
has been the work by Fama and French (1992) who demonstrated the inability of
the CAPM’s measure of systematic risk (beta) to explain the cross-section of stock
returns. Instead, two variables (size and the book-to-market ratio) are found to
bear a strong relation to the cross-sectional variation of average stock returns. In
the light of this empirical evidence, numerous attempts have been made to extend

the canonical model in order to achieve empirical success.

Several authors have argued that the empirical failure of the CAPM can be at-
tributed to the fact that the conditional implications of the model had been
neglected in previous tests [e.g. Harvey (1989), Ferson and Harvey (1991), Ja-
gannathan and Wang (1996), Lettau and Ludvigson (2001b) etc.]. These papers
are based on the literature of time series predictability of excess stock returns at
long-horizons, which suggests that risk premia are time-varying.? The implication
for the econometric testing of asset pricing models is that the parameters of the

stochastic discount factor (SDF) are potentially time-varying.

As yet, the research on conditional asset pricing models has focused primarily on
the U.S. stock market. However, an important out-of sample check for an asset
pricing model is the question whether the results for the U.S. also hold true for
other developed capital markets. The purpose of this paper is therefore to evaluate
several specifications of the conditional CAPM for a major European market, the
German stock market. In this way, our study provides an additional robustness
check for conditional asset pricing models. As our test assets, we use 16 portfolios

of German stocks sorted by size and book-to-market which are constructed in the

1See e.g. Banz (1981), Basu (1983), Rosenberg, Reid and Lanstein (1985), DeBondt and
Thaler (1985).

2See e.g. Campbell and Shiller (1988), Fama and French (1989) and Lettau and Ludvigson
(2001a). Cochrane (2001, ch.20) provides an excellent survey on the predictability of stock
returns. For critical views regarding the time-series predictability of returns, see for instance
Goyal and Welch (2004) and Ang and Bekaert (2005).



same way as in the seminal paper by Fama and French (1993). For the empirical
tests we use the excess returns of these portfolios over the German T-Bill rate
equivalent. We also include the gross return of the German T-Bill as an additional
test asset, in order to identify the mean of the stochastic discount factor, i.e. we
have 17 moment conditions in total. Our estimations are based on monthly data

for the time period ranging from 1969:12 to 2002:12.

There are certain criteria for the choice of conditioning variables. It has been sug-
gested in the literature that these variables should capture investors’ expectations
about future market returns or business cycle conditions. Our set of conditioning
variables largely follows the previous literature, in particular Ferson and Harvey
(1999). We use the spread between the return on corporate bonds and government
bonds (DEF), the term spread (TERM ), short term interest rates (7'B) as well
as dividend yields (DIV'). In order to see whether a "January-effect” plays a role
on the German stock market, we follow Hodrick and Zhang (2001) in considering a
January-Dummy as a conditioning variable, which allows for different parameters
of the SDF in January and other months.? Following Hodrick and Zhang (2001)
we also use a variable intended to capture the cyclical component of industrial

production (CY).

Up to now the most prominent model to explain cross-sectional variation in stock
returns has been the model by Fama and French (1993). Motivated by the empiri-
cal evidence against the CAPM, Fama and French proposed a factor model includ-
ing two additional risk factors designed to capture risks regarding size (SM B) and
book-to-market (HML). In contrast to the theory-derived conditional CAPM, the
Fama-French model is mainly motivated from an empirical perspective. There has
been an ongoing debate on what the true risks behind the Fama-French factors

4

actually are.* However, owing to its stunning empirical performance in explain-

3As argued by Daniel and Titman (1997), the fact that value stocks have earned higher risk
premia on average than implied by the CAPM ("value” effect) can be largely explained by a
”January-effect”.

4Fama and French (1993, 1995, 1996) interpret their model as a version of Ross’s (1976) APT
or Merton’s (1973) ICAPM. Thus, they provide a risk-based interpretation of the SM B and
H ML factors. This view has been corroborated recently by the work of Liew and Vassalou (2000)
who provided evidence that SM B and HM L contain news regarding future economic growth
suggesting that SM B and HM L are indeed proxies for more fundamental macroeconomic risks.



ing the cross-section of portfolio returns sorted by size and book-to-market, it

constitutes the perfect benchmark model for our model comparison tests.

Since the purpose of our paper is to run a horse race among different types of asset
pricing models, we estimate the models by the Generalized Method of Moments
(GMM) using the second moment matrix of returns as the weighting matrix, as
proposed by Hansen and Jagannathan (1997). The authors have shown that by
doing so, the solution to the GMM problem amounts to minimizing the distance
between the set of true stochastic discount factors and the proxy for the SDF
implied by the respective asset pricing model. Following Jagannathan and Wang
(1996) and Hodrick and Zhang (2001), we test whether this distance is zero. There
is another reason for choosing the second moment matrix of returns as our weight-
ing matrix. Optimal GMM by Hansen (1982) uses the inverse of covariance matrix
of sample moments as a weighting matrix in order to obtain efficient estimates.
This weighting matrix usually differs from model to model. Since the purpose
of our paper is to analyze different specifications of asset pricing models and to
compare their performance to each other on a common data set, it is essential to
use the same weighting matrix for all model specifications. Hence, we prefer the
Hansen-Jagannathan (HJ) weighting matrix over optimal GMM in our empirical

setup.

We conduct a series of additional robustness checks in order to provide a tough
challenge for the different model specifications. Ghysels (1998) has criticized con-
ditional asset pricing models on the grounds that incorporating conditioning infor-
mation may lead to greater parameter instability. This can be a serious drawback
if the model is to be used out-of-sample in corporate finance applications. There-
fore, we augment our model comparison tests with the supLM-Test for parameter
stability suggested by Andrews (1993). This test has also been used recently in the
model comparison tests conducted by Hodrick and Zhang (2001) and Li, Vassalou
and Xing (2001). We also investigate the capacity of the different model specifi-

cations in capturing the time series predictability of our size and book-to-market

Nevertheless, the model remains controversial.



portfolio returns according to the test by Farnsworth, Ferson, Jackson and Todd
(2002). Moreover, we test whether the factors of the conditional asset pricing
models are driven out once the Fama-French factors SM B and HM L are included

in the SDF.

Prior research on the German stock market has primarily used time series and
cross-sectional regression methods in order to evaluate empirical asset pricing
models. Earlier studies have investigated for instance the explanatory power of
market capitalization, book-to-market ratio and other financial ratios.> In con-
trast to the model by Fama and French (1993) the additional factors are included
as characteristics rather than risk factors. Beiker (1993) finds that the negative
relationship between returns and market capitalization which has been found for
the U.S. stock market also exists for German stocks but that the strength of this
relationship depends on the sample period. The study of Stehle (1997) confirms
the results found by Beiker using all stocks listed at the Frankfurt Stock Exchange
during the period from 1954 until 1990. Stocks with a low market capitalization
exhibited a significantly higher average return compared to blue chip stocks but
most of this extra-return was realized in January and February. Thus, the size
effect seems to be highly correlated with a January effect. Sattler (1994) and
Gehrke (1994) find a significantly positive relationship between average stock re-
turns and the book-to-market ratio. In a more recent study Wallmeier (2000) also
considers other financial ratios such as leverage, price-earnings and price-cash-flow
ratio. He finds that book-to-market ratio and price-cash-flow ratio have a highly
significant impact on German stock returns whereas the size effect is only of minor
importance. Ziegler, Schroder, Schulz and Stehle (2005) estimate different multi-
factor models including the CAPM and the Fama-French model using portfolios
sorted by size and book-to-market as test assets. The main result from their time-
series regressions is that the Fama-French multifactor model clearly outperforms

the conventional CAPM in terms of explanatory power and pricing errors.

5These studies made use of cross-sectional regressions and in most cases the two-step frame-
work of Fama and MacBeth (1973). See for instance Beiker (1993); Gehrke (1994); Sattler (1994);
Stehle (1997); Bunke, Sommerfeld and Stehle (1999); Wallmeier (2000); Stock (2002) and Schulz
and Stehle (2002).



The empirical results of this paper can be briefly summarized as follows. In line
with previous research, we present further evidence regarding the empirical short-
comings of the conventional CAPM in explaining German stock returns. Most
importantly, we find that conditioning information leads to substantial improve-
ments of the model’s performance. According to our empirical results, the CAPM
with TERM as the conditioning variable is able to explain the cross-section of
returns about as well as the Fama-French model. In contrast to the research by
Ghysels (1998) for the U.S., we do not find that the use of conditioning variables
necessarily leads to increased parameter instability. By contrast, the null hypoth-
esis of stable parameters is rejected in the case of the three-factor model of Fama
and French. Additional test results reveal however, that unconditional model spec-
ifications perform quite well in capturing the time-series predictability of the test

asset returns.

The organization of this paper is as follows. The next section shows briefly how
conditioning information can be incorporated into asset pricing models. In section
3 we provide an overview of our data set. In section 4 we give an overview of the
empirical methods applied in this study with particular focus on HJ-GMM. Section
5 presents the results of model estimation and comparison tests and provides a

discussion of our empirical results. Section 6 concludes.

2 Conditional Asset Pricing Models

Conditional asset pricing models can be conveniently expressed in their stochastic
discount factor representation. Assuming the absence of arbitrage opportunities,
asset pricing theory states that there is a stochastic discount factor (or pricing

kernel) M,,,, where

E[My1 R | Y] = pi (1)

holds for all assets i (i = 1,...,N) in the economy. T, denotes the information



set of the investor as of time ¢ and R,y is the return of asset 7 whose price in ¢
is given by p;. If R;;11 is an excess return of asset ¢ over a risk-free asset, then p;
in (1) is equal to zero. If R;;,1 denotes the gross return of asset 4, then p; in (1)
is equal to one.® In the most basic asset pricing model — the consumption-based
asset pricing model — the pricing kernel M, ; is equal to the investor’s marginal
rate of substitution.” The focus of this paper, however, is on linear factor models

which express the pricing kernel as a linear function of factors:

My = Dot + by o fer1s (2)

where f;11 is a k-dimensional vector of factors. In the case of the CAPM, for
instance, there is only a single factor, the excess return of the market portfolio,
ie. fir1 = Rpy+1. For the Fama-French model the vector of factors is given by
fee1 = [Rmits1, SM By, HM Ly 1. We denote the SDF of an asset pricing model
as Mt+1, in order to indicate that it is an approximation of the true SDF M.
Notice also that equation (2) represents a conditional linear factor model since the
parameters by, and b, ; are time-varying. It can be shown that the parameters of
the SDF of linear factor models such as the CAPM can be expressed as functions
of expected excess returns.® Empirical evidence from the literature on time series
predictability therefore suggests that the parameters of the SDF are potentially

time-varying as in (2).

The moment conditions in (1) are not directly testable since they are based on the
information set of the investor T, which is not directly observable by an econometri-
cian. As a consequence, asset pricing models are usually tested after transforming
(1) into an unconditional moment condition by the law of iterated expectations,

which leads to E[M;11R;14+1] = p;. Note that this is feasible only when the pa-

6The estimation results reported in this paper are based on moment conditions for the excess
returns RS, for the 16 test portfolios, E[M;11R5, ] = 0, plus an additional moment condition

for the gross return of the German T-Bill equivalent, F[M; 4 R,{ ] = 1. The purpose of the latter
is to identify the mean of the stochastic discount factor.

7 As yet, empirical tests have not supported the original specification of the consumption-based
model. See for instance Hansen and Singleton (1982), Cochrane (1996).

8See for instance Lettau and Ludvigson (2001b) or Cochrane (2001, ch.8).



rameters in (2) are assumed to be constant, i.e. Mt+1 = by + b, fr41.2 In this way,

however, the conditional implications of the model are neglected.

This problem can also be made clear when the model is expressed in its equivalent
conditional expected return-beta representation. Combining (1) and (2) we can

rewrite the model as

Ei(Rigs1) = Rlpi + NP (3)

where (3;; = vary(fiy1) " 'covi(fir1, Rizr1) represents the conditional betas of asset
i, the elements of \; = —RYvar;(fi11)'b1+ are also known as the conditional factor
risk premia and R) = 1/E,(M,,,) is the conditional zero-beta rate. When tak-
ing unconditional expectations of (3), we obtain according to the law of iterated

expectations

E(Rij+1) = E(R?)pi + E()\t)/E(ﬁi;t) + COV()\;a Bit)- (4)

When the additional covariance term is different from zero, the conditional ex-
pected return beta model in (4) cannot be transformed into an unconditional
model, F(R;.41) = E(RY)pi+FE(\) E(Bi). Thus, conventional tests of the CAPM
and other multifactor models based on the unconditional model are misspecified

when betas and factor risk premia are time-varying and correlated.

A way of incorporating conditioning information into the model is by modelling
the parameters by; b1+ in the SDF in equation (2) as linear functions of lagged
instruments z; [See e.g. Cochrane (1996), Hodrick and Zhang (2001)]. In our
estimations we only use one conditioning variable at one time, hence z; is a scalar.
In the single factor case, we then obtain the stochastic discount factor of the scaled

factor model:

9See Cochrane (2001, ch.8) for a formal statement.



Miyw = (boa +booz) + (b1 + b1,2zt)/ft+l

= Do1 + boaz + U]y frar 4+ V) o (frrr2e). (5)

According to Hodrick and Zhang (2001), the conditioning variables must fulfill
three requirements. First of all, they must belong to the investor’s information set
T,. Furthermore, they must capture information regarding future excess returns
or the business cycle. It is also necessary that conditioning variables should be par-
simoniously selected, because otherwise the number of factors of the scaled model
quickly explodes. Note that the scaled factor model in (3) is effectively an uncondi-
tional multifactor-model, where the factors are given by fir1 = [z, fis1, fi12] and
the coeflicients are now constant. Plugging (5) into (1) and taking unconditional
expectations, the following unconditional moment restriction can be obtained by

the law of iterated expectations:

E[(bo,1 + bo2z + b/1,1ft+1 + b/1,2ft+12t)Rz‘;t+1] = Di- (6)

These moment conditions for the assets i (¢ = 1,...,N) can then be exploited
for the estimation of the unknown parameters b by the Generalized Method of
Moments (GMM). When we estimate the scaled factor model by GMM, we obtain
estimates of the parameters b = [by,1, bo2, b} 1,0 5] of the stochastic discount fac-
tor. Testing the null whether parameter j of the SDF is zero, we can assess whether
the jth factor significantly influences the pricing kernel. When we want to assess,
however, if a particular factor j is priced, we test whether the corresponding ele-
ment of A is zero [See Cochrane (1996)]. When b is known, the factor risk premia
can be readily computed using the sample equivalent of —E(R®)var(fi1)'b. We
will provide both estimates in our empirical results. The reported standard errors

for the estimates of the factor risk premia are calculated by the delta method.



3 The Data

This section gives an overview of the data used for the estimation of the different
models. All estimations are based on monthly data ranging from 1969:12 - 2002:12.
We first provide details on the construction of our test assets for the German stock
market, followed by a discussion of the construction of the risk factors as well as

on the conditioning variables for the scaled factor models.

3.1 Portfolio Returns

Ever since the influential work by Fama and French (1993), it has been common
practice in the empirical asset pricing literature to test asset pricing models on
the cross-section of portfolios sorted by size (market value of equity) and the ratio
of book-equity to market-equity. Following this tradition, we construct 16 size
and book-to-market portfolios for the German stock market.!® Our data basis
comprises all stocks traded on the Frankfurt stock exchange between December
1969 and December 2002, for which the necessary data on market capitalization
and book value of common equity are available. Companies with a negative book
value are not taken into account. Banks and insurance companies are also not con-
sidered because they differ from other companies in their valuation by the market
and are subject to special accounting standards. Our source of the book-value
of common equity is the German Finance Database (Deutsche Finanzdatenbank,
DFDB). The monthly stock returns and the data necessary to compute the market

value of equity are obtained from a database maintained by Richard Stehle.

We construct the 16 portfolios for the German stock market in a fashion similar
to the one proposed by Fama and French (1993). For all stocks, we calculate the

quartiles of market capitalization at the end of June of year ¢ as well as the quartiles

10WWe prefer to use 16 instead of the usual 25 portfolios. Owing to the fact that fewer companies
are listed on the German stock exchange compared to the U.S., some of the 25 stock portfolios
constructed for the German market contained far fewer companies than those in the original paper
by Fama and French. For instance, one portfolio did not even contain a single stock during one
year. In order to avoid potential biases, we prefer to use only 16 stock market portfolios instead
of the original 25 as in the paper by Fama and French.



of the book-to-market ratio from December of the preceding year ¢ — 1. Using the
intersections of these quartiles, all stocks are allocated into 16 portfolios based on
their individual size and book-to-market ratio. Then value-weighted returns are
calculated from July in ¢ to June ¢ + 1, when a realignment of the portfolios takes

place taking into account the new information on size and book-to-market.

Table 1: Summary Statistics: 16 Test Assets

Excess returns of test assets, 16 stock portfolios
Mean (standard deviation)

Size Quartiles Book-to-market Quartiles
B1 (Low) B2 B3 B4 (High)
S1 (Small) -0.329 -0.095  -0.006 0.021

(4.848)  (3.743) (4.036)  (5.066)

S2 0.046  0.143 0147  0.304
(4.134)  (4.146) (4.432)  (4.524)

S3 0.014 0145 0.106  0.325
(3.956)  (4.184) (4.576)  (5.276)

S4 (Big) 0.007 0337 0417 0472
(6.209)  (5.594) (5.084)  (5.291)

Note: The returns are the monthly excess returns on 16 size and book-to-
market sorted portfolios of the German stock market. The corresponding
standard deviations are reported in brackets. The table is organized as fol-
lows: for instance S1B1 contains the average (monthly) excess return of the
portfolio containing the smallest stocks in terms of market capitalization and
the lowest book-to-market ratio. The sample period is 1969:12 - 2002:12.

Table 1 contains descriptive statistics of our test assets. First of all, it is noteworthy
that there is a sizeable spread in the average monthly excess returns of the different
portfolios which is to be explained by the different asset pricing models. The largest
excess return is 0.472% for the stock portfolio containing big value stocks (portfolio

S4B4), whereas the lowest average excess return is a negative -0.329% (portfolio

S1B1).

It is striking that in contrast to the pattern documented for the U.S. stock market,

no negative relationship between size and average returns can be found for the

10



German stock market.!! One can even observe a tendency that average returns
rise when size increases. The “value effect”, however, holds true on the German
stock market: moving from growth stocks (low book-to-market for a given size
category) to value stocks (high book-to-market for a given size category), one can

see from table 1 that average excess returns tend to rise.

3.2 Factors

For the construction of our proxy for the market portfolio, we use the value-
weighted return on all stocks listed on the Frankfurt stock exchange, including the
stocks of banks and insurance companies as well as of those companies which have
a negative book value at the end of December of the respective year. We compute
the market excess return R, by subtracting the return of the German T-Bill rate

equivalent.!?

The Fama-French factors SMB and HML are designed to mimick risk factors
regarding to size and book-to-market. The starting point for the construction of
SMB (Small minus Big) and HM L (High minus Low) are six portfolios derived
in a similar way as the 16 size and book-to-market portfolios. At the end of June
of each year t, all stocks are sorted by their market capitalization. Then the size
median is used as a breakpoint in order to split the stocks into small stocks (S)
and big stocks (B). In a similar way, all stocks are sorted into three categories
according to their book-to-market ratio [low (L), medium (M) and high (H)] at
the end of December in year ¢t — 1. From the intersections of the two size and three
book-to-market groups, six portfolios are formed, into which all stocks traded on
the Frankfurt stock market are allocated. This procedure results in six portfolios
(S/L, S/M, S/H, B/L, B/M, B/H) for which monthly value-weighted returns are
calculated. Every year in June, a realignment of the portfolios takes place taking

new information on market capitalization and book-to-market into account.

"This finding has been recently reported by Ziegler et al. (2005) who analyzed different types
of multifactor models for the German stock market for the period 1968:07-1995:06.
12"Einmonatsgeld” obtained from the time series database of Deutsche Bundesbank.
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The portfolio SM B (Small minus Big) is intended to mimick the risk factor related
to size. It is calculated as the average of the returns of the portfolios containing
small stocks (S/L, S/M, S/H) minus the average of the returns of the portfolios
containing big stocks (B/L, B/M, B/H). As noted by Fama and French (1993), this
construction eliminates the influence of book-to-market in SM B. The portfolio
HML (High minus Low) is similarly constructed and designed to capture risk
related to book-to-market. It is calculated as the average of the returns of the
portfolios containing high BE/ME stocks (S/H, B/H) minus the average of the
returns of the portfolios containing low BE/ME stocks (S/L, B/L). Obviously this

aims at eliminating the effect of size in HM L.

3.3 Conditioning Variables

In this paper we use six conditioning variables in total. Our first conditioning
variable is the default spread DEF', which was constructed using the data for all
corporate bonds listed at German security exchanges during the period 1967 until
2002. The German market for corporate bonds was relatively small in the years
until the end of the 1980s but has grown rapidly in the past 15 years: the number of
listed bonds increased from 14 in 1989 to 43 in 1994 and 171 in 2002. The factor
DFEF is constructed as a long position in a value-weighted portfolio consisting
of all corporate bonds and a short position in German government bonds. Due
to the fact that the duration of the corporate bond portfolio changes over time,
the duration of the government bond portfolio has to be adjusted accordingly.
Otherwise DFEF would not only measure changes in default risk but also changes
in duration. Therefore the government bond portfolio is constructed as a weighted
average of REXP sub-indexes with different time to maturity.!® The weighting
scheme changes over time in order to match the duration of the corporate bond
portfolio. The DFEF conditioning variable i.e. the return difference of the two
bond portfolios thus measures changes in default risk for the German corporate

bond market. The mean of the DEF factor of 0.138% (see Table 2) shows that on

13The REXP index family consists of 10 sub-indexes each representing a different time to
maturity, ranging from 1 year (first sub-index) until 10 years (last sub-index).

12



average investors in German corporate bonds have been rewarded by an additional

return of 1,67% per annum for bearing default risk.

The term spread T'ERM is defined as the difference between the return on long-
term government bonds over the short-term interest rate. For the short-term
interest rate we used the German T-Bill rate equivalent mentioned above. The
monthly return on long-term government bonds was calculated from the REX-
performance index of government bonds with ten years to maturity. Moreover,
also aggregate dividend yields DIV have featured prominently in recent tests of
conditional asset pricing models. Our time series of aggregate dividend yields is
based on the MSCI Index Germany and was made available to us by MSCI. This
paper also considers the short-term interest rate T'B as a conditioning variable. For
this purpose, we use the German T-Bill rate mentioned above. Following Hodrick
and Zhang (2001), we explore the effect of using a January-dummy JAN, which

takes the value one in January and zero otherwise.

Table 2: Summary Statistics: Conditioning Variables

Size Quartiles Book-to-market Quartiles
B1 (Low) B2 B3 B4 (High)

S1(Small)  y% 22217 5863 7.380  13.303
(0.001)  (0.320) (0.194)  (0.021)

52 Xh 9499 21345 17.072  7.558
(0.091)  (0.001) (0.004)  (0.182)

93 X% 13721 8394 10.528  11.489
(0.018)  (0.136) (0.062)  (0.043)

S4 (Big) Xk 14356 9.233  9.862  9.530
(0.014)  (0.100) (0.079)  (0.090)

Note: The table reports tests for the predictive power of our set of condition-
ing variables. The sample period is 1969:12 - 2002:12. The set of conditioning
variables is defined as z; = (DEF;, TERM;,TBy, DIV;,CY;)’. The table re-
ports the Wald statistic of the null hypothesis Hy: b = 0 in the following
regression R;.41 = a+ b'Z; + €;,11. p-values are reported in parantheses.

We also use the cyclical component of industrial production as a conditioning

variable as proposed in the paper by Hodrick and Zhang (2001). We construct this

13



variable for Germany using the filter by Hodrick and Prescott (1997) (HP-filter).
Our time series of (log-)industrial production is available from 1960:01-2002:12.
The period from 1960:01-1969:11 is used to initialize the series. The smoothing
parameter is set to 6,400. Then we apply the HP-filter recursively in order to
extract the cyclical component of the series. The recursive application of the filter
ensures that only information which is truly available to the investor as of time ¢

appears in the information set.

Table 2 presents test results for the predictive power of our set of conditioning

variables. For this purpose we run the following regression

Rigt1 =a+ bz + €41 (7)

The table reports Wald statistics and the corresponding p-values for the test that
the lagged conditioning variables z; = (DEF,, TERM;, T B;, DIV;,CY})" bear no
relation with the portfolio excess returns, i.e. that the coefficients b are jointly zero.
For most portfolios, the null hypothesis can be rejected at the 10% level. Further
descriptive statistics for the factors and the conditioning variables are provided in

table 3.

Table 3: Summary Statistics: Factors and Conditioning Variables

Variable Cross Correlation

Mean Std. R™ SMB HML TERM DEF Rf DIV cY
R™ 0.235  5.265  1.000
SMB -0.189 2.918 -0.657  1.000

HML 0.271  2.598 -0.069 0.071 1.000
TERM 0.136 1.282 -0.002 0.015 -0.004 1.000

DEF 0.115 1.118 0.189 -0.169  0.035 -0.072 1.000

RS 0.489 1.118 -0.095 0.043 -0.005 0.015 -0.122 1.000

DIV 0.296  0.095 -0.100 0.102 -0.039 0.088 -0.079  0.591 1.000

cYy -0.184 2.119  0.054 0.001 0.092 0.068 -0.054 -0.334 -0.237  1.000

Note: The table reports means and standard deviations in (%, per month) of factors and
conditioning variables for the period 1969:12 - 2002:12. Furthermore, correlation coefficients
are reported. The set of factors includes the excess return on the market portfolio R™ as well
as the Fama-French factors SM B and HM L. The set of conditioning variables is defined
as zz = (DEF;,,TERM;,TB;, DIV;,CY;)’, where DEF; is the default spread, TERM;
represents the term spread, T'B; denotes the short term interest rate, DIV; are aggregate
dividend yields, C'Y; denotes the cyclical component of industrial production.
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4 Empirical Methods

We estimate the different model specifications using a Generalized Method of Mo-
ments (GMM) approach. The appendix also contains empirical results for the tra-
ditional cross-sectional regression approach by Fama and MacBeth (1973), mainly
for the sake of completeness. Our primary focus, however, is on the variation of the
GMM estimation approach proposed by Hansen and Jagannathan (1997), which

we briefly outline in the following.

Asset pricing models are characterized by different approximations M (b) of the
“true” SDF in equation (1). Hansen and Jagannathan (1997) have proposed a
measure to evaluate by how much the pricing kernel proxy of the respective asset
pricing model differs from the set of true pricing kernels M.'* They show that the

minimum value of the distance has the following expression

5=\ BIVI(6)R — p E(RR) B[N (5)R — p). )

It is straightforward to map the concept of the HJ-distance into the standard
GMM framework. GMM estimation is based on minimizing a quadratic form of
the pricing errors of the model. The N x 1 vector of pricing errors is equal to

g(b) = E[M(b)R — p|, whereas the sample analogue is given by

gr(6) = 7 " V()R ~p. (9)

Hansen and Jagannathan propose to use the inverse of the second moment matrix
of returns W = F(RR')™! as a weighting matrix for GMM estimation. By doing
so, it is ensured that the parameters are chosen such that the distance between
the pricing kernel proxy and the true pricing kernel is as small as possible. The
k x 1 vector of unknown parameters b of the stochastic discount factor are therefore

found by solving the following GMM criterion:

141n this sub-section we suppress time subscripts for simplicity.
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min &7 :mbin g1(b) Wrgr(b), (10)

where W is given by the empirical counterpart to the Hansen-Jagannathan weight-
ing matrix, i.e. Wp = (% 2th1 R,J%;) _1. Jagannathan and Wang (1996, Appendix
C) have derived a test for the null hypothesis that the HJ-distance is equal to zero,
as implied by the candidate asset pricing model. They show that the statistic 702
is asymptotically distributed as a weighted sum of X?I)—distributed random vari-
ables. We run the simulation suggested by Jagannathan and Wang (1996) 10,000

times in order to determine the p-value for testing the null hypothesis Hy : = 0.

This estimation approach is different from the conventional optimal GMM ap-
proach by Hansen (1982) who suggests to use an estimate of the variance-covariance
matrix of moment conditions as weighting matrix, Wy = S;' = [Tvar(gr)]~!. He
shows that by doing so, asymptotically efficient estimates are obtained. Despite
this theoretical statistical advantage, we prefer HJ-GMM over optimal GMM for a
number of reasons. Firstly, the GMM objective evaluated at the estimated param-
eters has an intuitively appealing interpretation as the (squared) distance between
the pricing kernel proxy and the set of true discount factors. Most importantly
however, the HJ-weighting matrix remains constant from one model to the other.
Optimal GMM on the contrary weights the different moment conditions according
to statistical considerations and changes from model to model. Since our paper
aims at comparing different models on a common data set, the HJ-approach is
more suitable in our empirical setup. For completeness, however, we report the
Jr-statistic by Hansen (1982) as an additional statistic of model fit. Another
possibility to have a “level” playground for model comparisons is by the use of
the identity matrix as the weighting matrix for GMM. In this way all assets are
treated symmetrically in the GMM optimization. Since this approach leads to very
similar results as the Fama-Macbeth procedure (Cochrane 2001), we only report

the results of the Fama-MacBeth regressions in the appendix.

An important robustness check for an asset pricing model is whether its parameters

are stable over time. Apart from the tests mentioned above, we therefore also
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report results from the test for parameter stability derived by Andrews (1993).
The null hypothesis states that there is parameter stability, whereas the alternative
is that there is a single structural break at an unknown date. We compute the
LM-statistic for m = 15% to my = 85% of the sample, which corresponds to the
interval recommended by Andrews (1993). Critical values of the maximum of the

calculated values (supLM-statistic) have been tabulated by Andrews (1993, Table

1).

5 Results and Discussion

In the following, we discuss the results of our cross-sectional tests of the different
asset pricing models. First, we report empirical results for the unconditional mod-
els, i.e. the conventional CAPM as well as the Fama-French three-factor model.
Then, empirical results are reported for different specifications of conditional fac-
tor models. Moreover, the results of additional robustness tests are also presented

in this section.

5.1 Unconditional Factor Models

We first discuss the empirical results for the conventional CAPM specification. Ta-
ble 4 contains the GMM estimation results using the Hansen-Jagannathan weight-
ing matrix and table 8 in the appendix provides the results from the Fama-Macbeth
two-stage approach. Panel A in table 4 demonstrates that the market excess re-
turn does not influence the pricing kernel significantly. It also does not earn a
risk price which is significantly different from zero. In line with previous results in
the empirical asset pricing literature, we find that the pricing errors of the CAPM
are very large when the model is confronted by size and book-to-market sorted
portfolios. The CAPM has clearly the worst empirical performance in explaining
the cross-section of German stock returns, which is illustrated by the plots of re-
alized excess returns against the fitted excess returns in figure 1 and 3. This is

corroborated by the (adjusted) R? of 17.4% in the cross-sectional Fama-MacBeth
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regressions, which is the smallest of all models investigated in this paper. The
estimated Hansen-Jagannathan distance amounts to 0.209. The corresponding p-
value of 28.7% indicates that the model cannot be rejected statistically. The same
conclusion is obtained by Hansen’s test of overidentifying restrictions which we
calculate on the basis of optimal GMM. In general, we find that both model di-
agnostics lead to the same conclusions in our study. It should be also pointed out
that none of the model specifications investigated in our study can be rejected by

the two tests.'®

The finite sample properties of the model specification test based on the HJ-
distance have recently been investigated by Ahn and Gadarowski (2004) using
simulation techniques. They find that tests of the null Hy : 6 = 0 can exhibit size
distortions in finite samples in the sense that a true model is rejected too often.
According to their Monte-Carlo experiments, Hansen’s (1982) test of overidentify-
ing restrictions has a slightly better empirical performance with this respect. Table
1 of Ahn and Gadarowski (2004) reveals that this over-rejection problem is partic-
ularly severe when the number of observations is small and/or the number of test
assets is large.'® Since none of the model specifications investigated in this paper
is rejected neither by the test based on the HJ-distance nor Hansen’s Jp-test, we

do not consider this issue further in this paper.

Estimation results for the Fama-French three-factor model that uses SM B and
HML as additional factors are reported in panel B of tables 4 and 8. The only
factor which is statistically relevant for the pricing kernel is HM L. 1t is also the
only factor which earns a significant price of risk as indicated by the t-statistic
of 2.202 for the estimated factor risk premium Mgy p. It is striking that SM B
earns a negative factor risk premium, which is in contrast to the general findings

obtained for the U.S. stock market.!” When looking at the pricing error plots

15This result differs from the one obtained for the U.S. where usually even the Fama-French
model is rejected by formal tests such as the Jp-Test or the test Hy : § = 0 when the updated
25 Fama-French portfolios are used as test assets. See e.g. Hodrick and Zhang (2001).

16With 25 test assets and 330 observations, which comes closest to our empirical setup (16 test
assets and 397 observations), the true model is rejected at the 5% level in 8.8% of the cases by
the test Hy : 6 = 0 and in 6.9% of the cases by the Jp-test.

17See for instance Lettau and Ludvigson (2001b) who also find that only HM L has a price of
risk which is significantly different from zero.
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Table 4: Estimation results HJ-GMM : CAPM and Fama-French Model.
Panel A: Non-scaled CAPM

Parameter of the SDF:  const. bm

Estimate 0.997 -0.858

t-statistic -0.843

Factor risk price: Am

Estimate 0.002

t-statistic 0.843

Model tests: Jpr-Stat. HJ-Dist. supLM

Statistic 17.511 0.209 1.226

p-value 0.289 0.287

Panel B: Fama-French Model

Parameter of the SDF:  const. bm, bsymB bumr
Estimate 1.014 -0.021 2.555 -5.153
t-statistic -0.015 1.019 -2.290
Factor risk price: Am ASMB ANHML
Estimate 0.002 -0.002 0.003
t-statistic 0.753 -1.238 2.202
Model tests: Jpr-Stat. HJ-Dist. supLM

Statistic 10.477 0.166 29.248***

p-value 0.655 0.667

Note: The table reports the results of GMM estimation for the unconditional
CAPM and the Fama-French model. The sample period is 1969:12 - 2002:12.
We report both estimates of the parameters of the SDF and factor risk premia
calculated from these estimates. The standard errors of the latter were calculated
using the delta method. *** and *** means that Andrew’s supLM-statistic is
significant at the 10, 5 or 1 %.

in 1 and 3, it becomes apparent that the Fama-French three-factor model clearly
outperforms the CAPM. This is also reflected by the higher adjusted R? of 47.8%
in the Fama-MacBeth cross-sectional regressions. Our estimations confirm the
earlier results for the German stock market by Ziegler et al. (2005) who found
a superior performance of the Fama-French model over the unconditional CAPM
based on a time-series OLS approach. Nevertheless, we find that the model has a
serious drawback: our tests for parameter stability reveal that the model suffers

from unstable parameters as indicated by a significant supLM-statistic.
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Figure 1: HJ-GMM: CAPM and Fama-French Model, Fitted versus Actual Mean
Excess Returns, in % per month, 16 Fama-French portfolios.
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Note: The graphs were generated using the results from the HJ-GMM estimation. The test asset
are 16 excess returns of size and book-to-market portfolios as well as the gross return of the
German T-Bill equivalent. The sample period is 1969:12 - 2002:12. The two graphs show results
for the CAPM and the Fama-French-Model.

5.2 Main Empirical Results: Conditional CAPM

We now turn to the main results for the different versions of the conditional CAPM.
The results from HJ-GMM are provided in table 5 and the estimation results from
the Fama-MacBeth regressions are given in table 9 in the appendix. Pricing error
plots are shown in figures 2 and 4 respectively. We consider six model specification
in total. We incorporate each conditioning variable separately into the SDF in

order to avoid overfitting.

The first specification of the conditional CAPM uses the default spread DEF as
scaling variable. According to our empirical findings, this conditioning variable
does not help much to improve the performance of the CAPM in explaining cross-
sectional returns. None of the factors significantly influences the pricing kernel.
The HJ-distance only falls slightly in comparison to the unconditional CAPM. As
indicated by the pricing error plots, scaling by DEF only induces a small reduction
in pricing errors. The null hypothesis of parameter stability, however, cannot be

rejected according to Andrew’s supLM-test for this model.
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Table 5: Estimation results HJ-GMM: conditional CAPM

Panel A: CAPM scaled by DEF

Parameter of the SDF': const. bm bpeEF bpEF«m
Estimate 0.998 -0.107 -0.353 -4.680
t-statistic -0.074 -1.102 -1.038
Factor risk price: A ADEF ADEFsm
Estimate 0.003 0.333 0.014
t-statistic 0.710 1.051 0.973
Model tests: Jr-Stat. HJ-Dist. supLM

Statistic 13.658 0.198 10.087

p-value 0.398 0.444

Panel B: CAPM scaled by TERM

Parameter of the SDF': const. bm brerMm brERMxm
Estimate 0.966 -2.776 0.708 8.170
t-statistic -1.494 1.665 1.286
Factor risk price: A ATERM ATERMsm
Estimate 0.002 -0.763 -0.026
t-statistic 0.461 -1.781 -1.547
Model tests: Jr-Stat. HJ-Dist. supLM

Statistic 4.498 0.139 6.411

p-value 0.985 0.991

Panel C: CAPM scaled by TB

Parameter of the SDF': const. bm bra brBsm,
Estimate 0.985 -1.668 -0.143 -3.204
t-statistic -1.264 -0.417 -1.172
Factor risk price: A, ATB AT Bsm
Estimate 0.002 0.123 0.007
t-statistic 0.659 0.358 0.914
Model tests: Jp-Stat. HJ-Dist. supLM

Statistic 15.898 0.200 45.266***

p-value 0.255 0.317

Note: The table reports the results of GMM estimation for the different specifications of the
conditional CAPM. DEF is the default spread, TERM is the term spread, DIV denotes dividend
JAN is a January-Dummy which takes 1 in

yields and T'B is the short-term interest rate.

January and zero otherwise. CY is the cyclical component of log-industrial production. The
sample period is 1969:12 - 2002:12. We report both estimates of the parameters of the SDF
and factor risk premia calculated from these estimates. The standard errors of the factor risk
premia were calculated using the delta method. *** and *** means that the supLM-statistic is

significant at the 10, 5 or 1 %.
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Table 5: cont.

Panel D: CAPM scaled by DIV

Parameter of the SDF': const. bm bprv bprvsm
Estimate 1.020 -3.073 0.348 -6.433
t-statistic -2.073 1.088 -2.176
Factor risk price: A ADIV ADIVsm
Estimate 0.001 -0.339 0.013
t-statistic 0.176 -1.058 2.013
Model tests: Jr-Stat. HJ-Dist. supLM

Statistic 12.210 0.178 79.933%*

p-value 0.511 0.548

Panel E: CAPM scaled by JAN

Parameter of the SDF': const. bm bran byANs«m
Estimate 1.040 2.298 0.072 -52.003
t-statistic 1.355 0.085 -1.807
Factor risk price: Am AJAN AT AN*m
Estimate 0.003 0.044 0.009
t-statistic 0.709 0.770 1.911
Model tests: Jr-Stat. HJ-Dist. supLM

Statistic 6.623 0.160 16.274***

p-value 0.921 0.897

Panel F: CAPM scaled by CY

Parameter of the SDF': const. bm boy boysm
Estimate 0.989 0.131 -1.082 3.062
t-statistic 0.454 -1.036 0.464
Factor risk price: A Aoy ACY sm
Estimate 0.003 -0.150 -0.007
t-statistic 0.855 -0.539 -0.551
Model tests: Jp-Stat. HJ-Dist. sup-LM

Statistic 16.794 0.208 24.749%**

p-value 0.209 0.234

Note: The table reports the results of GMM estimation for the different specifications of the
conditional CAPM. DEF is the default spread, T'ERM is the term spread, DIV denotes dividend

yields and T'B is the short-term interest rate.

significant at the 10, 5 or 1 %.
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We next consider the term spread TERM as a conditioning variable for the con-
ditional CAPM. Panel B of table 5 shows that brggras is significant at the 10%
level, thus indicating that it is an important component of the pricing kernel. The
market excess return and the interaction term between the market excess return
and the lagged term spread are not significant.'® We find that the CAPM scaled
by TERM exhibits the best empirical performance of all scaled and non-scaled
models in explaining the cross-sectional variation of German stock returns. It has
the smallest HJ-distance (0.139) among all models investigated in this study and
the p-value for the test Hy : 6 = 0 is equal to 99.1%. This result is also reflected
by the small pricing errors (figures 2 and 4), which are smaller than those of the
Fama-French three-factor model. As reported in table 9, the adjusted R? is about
57%, which is the highest of all models estimated in this paper. Note also that the
model passes the test for parameter stability by Andrews (1993) in contrast to the

Fama-French three-factor.

We also estimate a specification of the scaled CAPM, using the lagged short-
term interest rate as a conditioning variable. Our results suggest that in contrast
to the slope of the yield curve, the short term interest rate does not play a big
role in explaining the variation in cross-sectional returns. None of the (scaled)
factors affects the pricing kernel significantly and the estimate of the HJ-distance
is approximately of the same size as the one of the unconditional CAPM. What
is more, the model also suffers from parameter instability as suggested by the

significant supLM-statistic by Andrews (1993).

The fourth variable considered as conditioning variable for the CAPM are aggre-
gate dividend-yields (DIV). According to the estimation results reported in Panel
D of table 5, both the market excess return and the interaction term between the
market excess return and DIV are significant components of the pricing kernel and
consequently important determinants of the cross-section of returns. The model
scaled by DIV is superior to the standard CAPM in terms of pricing errors (smaller
HJ-distance). This is also visualized by the pricing error plots in figures 2 and 4.

18The empirical finding that the interaction term is insignificant can be interpreted as evidence
that time-variation in the price of market risk does not significantly affect the pricing kernel.
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However, the null hypothesis of stable parameters is rejected by the supLM-Test
according to Andrews (1993).

We now turn to the January-Dummy as scaling variable. According to our HJ-
GMM estimation results provided in Panel E of table 5, the interaction between the
January-Dummy and the market excess return is significant at the 10% level. This
can be interpreted as evidence that the market price of risk is different in January
than in other periods of the year. The January term taken by itself, however,
is not a significant component of the stochastic discount factor. As revealed by
the pricing error plots in 2 and 4, the model is clearly better than the CAPM
in explaining the cross-section of average returns of our size and book-to-market
portfolios. This is a rather interesting result given the fact that the model is only a
slight modification of the standard CAPM. The estimate of the HJ-Distance is the
second smallest among the scaled factor models. Unfortunately, the model suffers

from parameter instability, as indicated by the significant supLLM-Test statistic.

Finally, we consider a conditional version CAPM scaled by the cyclical component
of industrial production. The model’s empirical performance is rather unattractive.
Incorporating the conditioning information into the SDF does not lead to a great
reduction of pricing errors as visualized by figures 1 and 4. None of the parameters
of the SDF are significantly different from zero. Additionally, the CAPM scaled
by CY suffers from parameter instability.

5.3 Further Investigations

In the following we report the results of additional robustness checks. We con-
sider two further investigations to assess the empirical performance of the different
model specifications. First we report the results of the evaluation of dynamic
model performance according to Farnsworth et al. (2002). Then, we investigate
the empirical performance of the conditional models when the Fama-French factors
are added to the SDF. In particular we want to see, whether the factors of the

conditional models survive in the presence of the Fama-French factors.
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Figure 2: HJ-GMM: conditional CAPM, Fitted versus Actual Mean Excess Returns,
in % per month, 16 Fama-French portfolios.
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Note: The graphs were generated using the results from the HJ-GMM estimation. The test asset
are 16 excess returns of size and book-to-market portfolios as well as the gross return of the
German T-Bill equivalent. The sample period is 1969:12 - 2002:12. The upper two graphs show
results for the CAPM scaled by the default spread DEF' and the term spread TERM. In the
middle the pricing error plots of the CAPM scaled by the short-term interest rate T'B and by
dividend yields DIV are illustrated. At the bottom plots for the CAPM scaled by the January
dummy JAN and the cyclical component of industrial production C'Y are presented.
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Dynamic Model performance

The main focus of the two previous subsections has been to investigate whether
the different specifications of the conditional CAPM are able to explain the cross-
sectional variation of average stock returns on the German stock-market. We now
turn to an analysis of how well the different models explain the time variation of
the test portfolio returns. The central idea of this testing approach, which has been
put forth in the paper by Farnsworth et al. (2002), is the following. Assuming that
the model does a good job in capturing the time variation of the test portfolios, the
model’s time series pricing errors, étﬂ = Mt+1(l;) Ri.111, should not be predictable
using any information available as of t. Note that R;;;; in this context denotes
the return of portfolio 7 in excess of the short term interest rate. Farnsworth et al.
(2002) propose to use a linear projection of the time series of pricing errors ét+1
onto the set of conditioning variables z;. The standard deviation of the fitted
values of this regression then serves as an indicator of how well the model captures

the time variation of the respective portfolio return.

We conduct this exercise for our 16 test portfolios. Table 6 reports the average of
the standard deviations of the fitted values across the test portfolios. In addition,
the minimum and maximum standard deviation are provided. A low average
standard deviation indicates that the specific model does a good job in capturing

time-series predictability of the excess returns of test portfolios.

The table shows that unconditional models, in particular the “plain vanilla” ver-
sion of the CAPM apparently do a good job in capturing the time-series predi-
cability of the portfolio excess returns. The unconditional CAPM has the lowest
average standard deviation of all investigated models. We do not find that con-
ditional models tend to outperform unconditional ones in this test. It is striking
that the different specifications of the conditional CAPM, especially those with a
good cross-sectional performance, have a clearly worse performance with regard to
time series predictability relative to unconditional specifications such as the un-
conditional CAPM and the Fama-French model. Our findings are similar to those

reported by Farnsworth et al. (2002). The authors find that conditional versions
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Table 6: Dynamic Model performance

Mean Minimum Maximum

Panel A: Unconditional Models
CAPM 0.805 0.580 1.205
Fama-French 0.810 0.586 1.193

Panel B: Conditional Models

CAPM scaled by DEF 1.070 0.643 1.630
CAPM scaled by TERM 1.591 1.014 1.877
CAPM scaled by T'B 1.071 0.775 1.422
CAPM scaled by DIV 1.068 0.671 1.681
CAPM scaled by JAN 0.839 0.486 1.184
CAPM scaled by CY 0.895 0.643 1.334

Note: The table reports the results of the test for dynamic performance proposed by Farnsworth
et al. (2002). The test is based on a regression of the models’ pricing errors for the 16 portfolios
on the set of conditioning variables z; = (DEF;, TERM;,TB;, DIV,,CY;)’. The table reports
the mean of the standard deviations of the regressions’ fitted values across the 16 portfolios.
Moreover the minimum and the maximum standard deviation across the 16 test portfolios are
reported. Panel A provides results for the unconditional factor models whereas panel B gives
the results of the different versions of the conditional CAPM. The sample period is 1969:12 -
2002:12.

of the CAPM and the Fama-French model perform worse than their unconditional
counterparts, whereas other conditional models they consider in their paper tend

to do better than unconditional specifications.
Factor Combinations

An additional robustness check for the conditional specifications of the CAPM is
to see whether the factors are sufficient for pricing the cross-section of returns or
whether they are driven out once other factors are included in the specification of

the pricing kernel. For this purpose, we add the Fama-French factors SM B and
HML to the SDF

M1 = by + b2z + b/171ft+1 + b/1,2(ft+12’t) +c1SMByy 4 cogHM L. (11)

To assess whether the Fama-French factors provide explanatory power in addition
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to the original set of factors we use a likelihood-ratio test.! We first estimate
the unrestricted model in (11) by optimal GMM. Then we rerun the estimation
imposing ¢; = ¢ = 0 as implied by the conditional CAPM. The test-statistic
based on the differences of the Jr-statistics is asymptotically distributed y? with

two degrees of freedom.

Table 7: Combining Factors: Likelihood-ratio Tests

Model X%g) p-value
CAPM scaled by DEF 5.191 0.075
CAPM scaled by TERM 1.176 0.555
CAPM scaled by T'B 5.839 0.054
CAPM scaled by DIV 3.348 0.188
CAPM scaled by JAN 0.540 0.763
CAPM scaled by CY 12.347  0.002

Note: The table reports the results of the likelihood-ratio test described in
the text. First, we estimate an unrestricted model including the factors of
the conditional CAPM plus the Fama-French factors SM B and HM L using
optimal GMM. Second, we estimate a restricted model which only includes the
factors of the conditional CAPM. The test statistic based on the difference of
the Jp-statistics of the unrestricted and restricted models is distributed X%g)-
The sample period is 1969:12 - 2002:12.

Table 7 contains the results of the likelihood-ratio tests. Adding the Fama-French
factors can influence the results considerably for some conditioning variables. As
shown in table 7, the likelihood-ratio statistic is significant in the case of the
CAPM scaled by DEF and TB (10% level) and in particular for the CAPM
scaled by CY (1%). The model scaled by the term spread TERM and the CAPM
scaled by the January Dummy JAN remain largely unaffected by the inclusion of
the Fama-French factors, which provides further evidence on their good empirical

performance.

19This test is described for instance in Cochrane (2001, p.258).
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6 Conclusion

In this paper we investigated whether conditional versions of the CAPM, allowing
for time-variation of the parameters in the stochastic discount factor, are able to
explain the cross-section of German stock returns better than unconditional factor
models such as the conventional CAPM or the three-factor model by Fama and
French (1993). Previous research suggests that scaling the factors with condition-
ing variables improves the empirical performance of unconditional asset pricing
models. Since prior research focused primarily on the U.S. stock market, the aim
of this paper was to investigate whether this also holds true for the German stock

market.

Using a cross-section of 16 portfolios sorted by size and book-to-market charac-
teristics, we were able to show that, by allowing the parameters of the stochastic
discount factor to vary over time through the incorporation of conditioning infor-
mation, the empirical performance of the CAPM can be enhanced considerably.
We focused on several variables, which (according to previous research) are asso-
ciated with market expectations on future market excess returns or business cycle
conditions. The selection of the term spread, default spread, short-term interest
rate and aggregate dividend yields as conditioning variables largely followed Ferson
and Harvey (1999). In addition, we also considered a January-Dummy and the
cyclical component of industrial production as proposed by Hodrick and Zhang
(2001). Not all variables however lead to the same degree of improvement. In
particular, we find that the CAPM scaled by the term spread T"E'RM has the best
explanatory power for the German cross-section of stock returns. Its pricing errors
are smaller than those of the Fama-French three-factor model. Furthermore, the
model has the lowest HJ-distance of all models evaluated in this study. Additional
robustness checks demonstrate that the model is robust to an inclusion of the

Fama-French factors into the SDF.

We also used the test procedure suggested by Andrews (1993), in order to as-
sess how parameter instability might affect estimation outcomes. Ghysels (1998)

criticizes conditional factor models using lagged instruments for having unstable
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parameters. Our estimations show that parameter instability is present when the
CAPM is scaled by the short-term interest rate T'B, dividend yields DIV, the
January dummmy JAN and the cyclical component of industrial production C'Y".
However, we do not find parameter instability to be important for the CAPM
scaled by the term spread TERM or the default spread DEF. Moreover, we
find evidence for structural breaks in the case of the Fama-French model. Given
this empirical evidence for parameter stability and the small pricing errors, the
conditional CAPM using TERM as scaling variable is our preferred specification
for explaining the cross-section of German stock returns. However, the model’s
performance in capturing the time-series predictability of the test asset returns is

quite unsatisfactory.
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A The Fama-MacBeth Procedure

Beside HJ-GMM we also report results from the two-step cross-sectional regression
approach by Fama and MacBeth (1973) (FMB) which has a long tradition in the
empirical asset pricing literature. First, a time series regression is carried out by

regressing excess returns R;; on the factors for all assets 7.

Riit=a+ 0B fi+e4; i=1,...,N. (12)

The next step is to use the estimated @ as explanatory variables in the cross-
sectional regression in order to estimate the factor risk premia. Instead of es-
timating one cross-sectional regression of average portfolio returns on the betas,

however, the following regression is estimated at every point of time ¢t =1,...,T.

Ry = @At + &t (13)

The estimated factor risk premia are calculated as the time series averages of the

estimates of each point in time:

1 I
A= — A, 14
TZ (14)

Fama and MacBeth (1973) suggest to interpret the estimated X as a random
sample. The standard errors of the estimated parameters are then calculated

based on the time series of the estimated /):t:

1/2
1 N T\2
TZ(/\t - ] . (15)

A well known problem of the FMB approach is the errors-in-variables problem
since only estimated betas enter the cross-sectional regression and not the true
betas. Shanken (1992) has derived a correction term to alleviate this problem. We

report the Shanken-adjusted along with conventional ¢-statistics. Furthermore, we
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report the cross-sectional R? as an intuitive measure of model fit.

B Additional Figures and Tables

Table 8: FMB estimation: CAPM and Fama-French Model.

Panel A: CAPM

Factor risk price: A\, R? (adj.)
Estimate 0.002 0.174
t-statistic 0.748

t-statistic (adj.)  0.748

Panel A: Fama-French Model

Factor risk price: Ay AsmMB  AHML R? (adj.)
Estimate 0.002 -0.003 0.003 0.478
t-statistic 0.806 -1.853 2.258

t-statistic (adj.)  0.795 -1.827 2.227

Note: The table reports the results of Fama-Macbeth estimation for
several models. The sample period is 1969:12 - 2002:12. We report
estimates of the factor risk premia calculated from these estimates. The
standard errors of the factor risk premia were calculated using the delta

method.
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Table 9: FMB estimation: scaled CAPM.

Panel A: CAPM

scaled by DEF

Factor risk price: Am ADEF Apersm  R? (adj.)
Estimate 0.003 0.567 0.015 0.320
t-statistic 1.042 1.641 1.094

t-statistic (adj.) 0.876 1.380 0.920

Panel B: CAPM scaled by TERM

Factor risk price: A ArERM  AMTERMsm  RZ (adj.)
Estimate 0.003  -0.851 -0.029 0.571
t-statistic 0.939 -2.572 -2.289

t-statistic (adj.) 0.674 -1.846 -1.643

Panel C: CAPM scaled by TB

Factor risk price: A ATB AT Bsm, R? (adj.)
Estimate 0.002 0.336 0.003 0.217
t-statistic 0.749 0.913 0.392

t-statistic (adj.) 0.706 0.860 0.369

Panel D: CAPM scaled by DIV

Factor risk price: Am ADIV Aprvsm  R? (adj.)
Estimate -0.001  -0.704 0.013 0.419
t-statistic -0.304 -1.972 2.023

t-statistic (adj.)  -0.241  -1.564 1.604

Panel E: CAPM scaled by JAN

Factor risk price:  A\m AJAN MjaNsm  R? (adj.)
Estimate 0.002 0.021 0.012 0.486
t-statistic 0.818 0.343 3.245

t-statistic (adj.) 0.609  0.255 2.415

Panel F: CAPM scaled by CY

Factor risk price: A Aoy ACY sm R? (adj.)
Estimate 0.002 -0.334 -0.016 0.236
t-statistic 0.744 -1.039 -1.168

t-statistic (adj.) 0.676  -0.944 -1.062

Note: The table reports the results of Fama-Macbeth estimation for the dif-
ferent specifications of the scaled CAPM. DEF is the default spread, TERM
is the term spread, DIV denotes dividend yields and T'B is the short-term
interest rate. JAN is a January-Dummy which takes 1 in January and zero
otherwise. C'Y denotes the cyclical component of (log-)industrial production.
The sample period is 1969:12 - 2002:12. We report estimates of the factor
risk premia calculated from these estimates. The standard errors of the factor

risk premia were calculated using the delta method.

33



Figure 3: FMB cross-sectional regression: CAPM and Fama-French Model, Fitted

versus Actual Mean Excess Returns, in % per month, 16 Fama-French portfolios.
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Note: The graphs were generated using the results from the Fama-Macbeth estimation. The test
asset are 16 excess returns of size and book-to-market portfolios as well as the gross return of
the German T-Bill equivalent. The sample period is 1969:12 - 2002:12. The two graphs show
results for the CAPM and the Fama-French-Model.
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Figure 4: FMB cross-sectional regression: Scaled CAPM, Fitted versus Actual Mean

o
=

Excess Returns, in % per month, 16 Fama-French portfolios.
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Note: The graphs were generated using the results from the Fama-Macbeth estimation. The test
asset are 16 excess returns of size and book-to-market portfolios as well as the gross return of the
German T-Bill equivalent. The sample period is 1969:12 - 2002:12. The upper two graphs show
results for the CAPM scaled by the default spread DEF' and the term spread TERM. In the
middle the pricing error plots of the CAPM scaled by the short-term interest rate T'B and by
dividend yields DIV are illustrated. At the bottom plots for the CAPM scaled by the January
dummy JAN and the cyclical component of industrial production CY are presented.
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