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Abstract

We estimate the Constant Elasticity of Variance (CEV) model in order to study the level of

nonlinearity in the volatility dynamic. We also estimate a CEV process combined with a jump

process (CEVJ), and analyze the effects of the jump component on the nonlinearity coefficient.

We investigate whether there is complementarity or competition between the jumps and the CEV

specification since both are intended to address the misspecification of existing linear models.

Estimation is performed using the particle-filtering technique on a long series of S&P500 returns

and on options data. Our results show that both returns and returns and options favor nonlinear

specifications for the volatility dynamic, suggesting that the extensive use of linear models is

not supported empirically. We also find that the inclusion of jumps does not lower the level of

nonlinearity and does not improve the CEV model fit.
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1 Introduction

The performance of any option pricing model is measured by its ability to fit far from at-the-money

prices. In that respect, a convenient way to evaluate the performance of different processes is

to compute the model-implied Black and Scholes volatilities and compare them to their market

counterparts retrieved from options data. In fact, we observe that the market-implied volatility is

typically higher for in-and out-of-the-money call options compared to at-the-money calls. Plotting

the strike versus implied volatility produces therefore a U-shaped curve known also as the smile.

However, despite many attempts in the literature to find a model which replicates the smile, there

has been mitigated success in fitting deep in-and out-of-the-money option prices. One surmises that

this is due to the fact that all popular options pricing models share the common feature of having

linear specifications for the volatility dynamic. In fact, the existing literature on stochastic volatility

offers scant evidence on nonlinear models. In particular, the degree of nonlinearity implied from

available returns and options data and the role of jump processes in a nonlinear context are not

investigated in a consistent manner which would allow for comparison. We endeavor to understand

these issues using a set of S&P500 returns and European call options.

We should note that the existing literature uses linear specifications in the diffusion term because

they allow for closed-form solutions for option prices and facilitate empirical implementations.1

Nonlinear models, in particular the CEV and CEVJ models, were not the preferred choice for

empirical investigations. Therefore, few empirical studies implement them relative to the extensive

literature on linear models. However, new evidence shows that nonlinear specifications may lead

to a better fit for option prices. Recent findings using a set of options and daily returns conclude

that the Heston (1993) model, while more convenient and computationally easy, is dominated by a

continuous time stochastic volatility model where the diffusion term is quadratic as a function of

the spot volatility.2 These new findings suggest the use of nonlinear models as building blocks to

explore better specifications which is the primary concern of this paper.

We investigate two nonlinear models: the CEV model which has been previously estimated

in a small number of empirical papers, and the CEV model with jumps i.e., CEVJ.3 This paper

makes two main contributions. First, we perform the estimation of the CEV model on S&P500

returns and on a multiple cross-section of European call options. This options data set is richer

than the one used by Jones (2003) and Ait-Sahalia and Kimmel (2006) as it allows the nonlinearity

coefficient to be estimated using options with different maturities. Our empirical implementation

1The most popular empirical implementations include the original version of Heston (1993) or by adding jumps

in returns and volatility. See, for example, Bakshi, Cao and Chen (1997), Chernov and Ghysels (2000), Pan (2002),

Eraker (2004), and Eraker, Johannes and Polson (2003).
2See Christoffersen, Jacobs and Mimouni (2006), Ait-Sahalia and Kimmel (2006), and Jones (2003).
3See Jones (2003) and Ait-Sahalia and Kimmel (2006) for empirical implementations of the CEV model. See

Chacko and Viceira (2003) for empirical implementation of the CEVJ model using returns only.
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builds on the particle-filtering technique in order to conduct a fair comparison between the estimates

obtained using returns and those obtained using options. Specifically, we aim to determine whether

nonlinearity is an option phenomenon which is not present in returns, or if it is a characteristic of

both data. Second, we investigate the effects of allowing for jumps on the degree of nonlinearity

and on the model fit. To our knowledge, Chacko and Viceira (2003) are unique in including jumps

in the nonlinear context using returns only. Hence, we believe that the estimation of the CEVJ

model using options could prove very informative. The principal reason why the existing literature

does not study the CEVJ model using options is the challenge posed estimating the model by

Monte Carlo simulations. One advantage of our estimation methodology is that it allows the latent

variable to be easily extracted and, hence, reduces the estimation burden of a CEVJ model using

options.

Our empirical results show clearly that nonlinearity is confirmed by returns and options alike,

and that the level of nonlinearity obtained from returns and options is of the same order of magni-

tude. We also find evidence that the inclusion of jumps does not affect the degree of nonlinearity.

It is therefore more likely that the two features are complementary rather than competitive as was

the case in the findings of Chacko and Viceira (2003).

We use two different sources of data to estimate the models. First, we estimate the parameters

on S&P500 returns only. Although stochastic volatility models were motivated by fitting options,

estimation of these models on returns only is very common because we typically want to be able

to use the estimates obtained from returns to price options. Second, we use a combination of daily

returns and at-the-money European call options in order to estimate the model parameters.

To estimate the model on returns, we use the technique presented by Pitt (2002) who proposes

a likelihood approximation and shows its efficiency in the presence of unobserved states. His

likelihood estimator is a by-product of the particle filter used to estimate the volatility path, and

hence it uses the true dynamic of returns to compute the approximate likelihood. This method is

attributed to the Simulated Maximum Likelihood techniques. The Simulated Maximum Likelihood

and Quasi-Maximum Likelihood approaches have been used extensively in the context of stochastic

volatility mainly because the inclusion of spot volatility as a state variable considerably increases

the dimension of the true likelihood and, therefore, does not yield a closed-form solution. However,

most of these techniques are difficult to implement and computationally intensive. We propose

therefore to use the particle-filtering technique to estimate the CEV and CEVJ models. The

advantage of this method is that it allows the models to be estimated using returns only, and using

returns and options. This ensures consistency in methodology and allows for comparison between

the parameter estimates. In addition, this method is easy to implement empirically.

To estimate the CEV and CEVJ models on options, we use the methodology presented by

Christoffersen et al. (2006) based on an iterative Nonlinear Least Squares (NLS) procedure. This
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NLS optimization technique has not been used in the context of the CEV and CEVJ models because,

since neither model admits a closed-form solution, option prices have to be computed by Monte

Carlo simulations. This adds considerably to the computational complexity of the estimation.

In both estimations, the volatility path is filtered from daily returns using the particle filter

technique of Gordon et al. (1993) which is suitable for nonlinear state space applications.

The paper is organized as follows. Section 2 presents the CEV and CEVJ models. Section

3 describes the particle-filtering technique used to obtain the volatility conditional densities. It

then exposes the estimation methodology based on those conditional densities using returns and

using returns and options jointly. In section 4 we present the empirical results. Finally, section 5

concludes.

2 The CEV and the CEVJ models

The most general model that we investigate, the CEVJ model, is defined by the following two

equations under the physical measure

d log(St) =

µ
r + λ1

¡
1− ρ2

¢
Vt − 1

2
Vt − λJµJ

¶
dt+

p
VtdB1t + JtdNt (1)

dVt = κ (θ − Vt) dt+ σV β
t

³
ρdB1t +

p
1− ρ2dB2t

´
,

where St is the price of the underlying asset, Vt is the volatility, Jt is the jump intensity, Nt is the

jump size, and corr(dB1t, dB2t) = 0. The parameter κ represents the speed of mean reversion of the

volatility to its long-run mean. θ is the stationary value for the volatility process known also as the

long-run mean. σ determines the level of the volatility of volatility, λ1 determines the risk premium

required to compensate investors for holding the underlying asset, and ρ represents the correlation

between returns and volatility leading to a skewed returns distribution. As in most of the existing

literature, we assume that B1t and B2t are two standard Brownian motions, Jt ∼ Poisson(λJ),

and dNt ∼ N
¡
µJ , σ

2
J

¢
.

In this paper, we consider jumps only in returns. The effects of jumps in the volatility dynamic

are left for future research.4

When JtdNt = 0 in the CEVJ model, the jump component vanishes and we obtain the CEV

model. Hence, the CEV model is defined by the following two equations

4Eraker (2004) estimates a model with correlated jumps in returns and volatility. Because this model is not

parsimonious and because there is no empirical evidence on the role of jumps in volatility, we do not include the

model for estimation.
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d log(St) =

µ
r + λ1

¡
1− ρ2

¢
Vt − 1

2
Vt

¶
dt+

p
VtdB1t (2)

dVt = κ (θ − Vt) dt+ σV β
t

³
ρdB1t +

p
1− ρ2dB2t

´
.

Models (1) and (2) share the same expression for the volatility process. The only difference is

the inclusion of jumps in the price dynamic of the CEVJ model. In what follows, we study the

impact of including jumps on the estimate of the nonlinearity coefficient β, and its implications on

the model fit when we use returns and when we use options. In fact, while most of the literature on

linear models shows the importance of jumps in prices, estimation of those models based on options

offers mixed results. Some infer that there are no economic benefits to including jumps, whereas

others find tremendous improvements in fit.5 It is therefore interesting to investigate these effects

in a nonlinear context.

3 The Estimation Methodology

In order to estimate the models on returns and on options we ascertain to know the conditional

distribution of the volatility at each time step. To this end, we apply the particle-filtering tech-

nique.6 In what follows, we describe how we can derive the conditional densities and outline, in the

appendix, all the steps required to obtain them in the context of the CEV and CEVJ models.

The most general representation of the Euler disretization of any stochastic volatility model is

given by

S(t) = F
¡
S1:(t−1), V1:(t−1), ξ, εSt

¢
(3)

V (t) = G(V1:(t−1), ξ, εVt ), (4)

where F and G are some given nonlinear functions of the previous states, ξ is the vector of model

parameters, and εSt and εVt are two standard normal distributions.

Equation (3) represents the dynamic of the observed measurement, whereas equation (4) rep-

resents the dynamic of the state that is usually unobserved. The filtering problem arises when

estimating sequentially the new state (the volatility) using the history of returns. Therefore, solv-

ing the sequential filtering problem is equivalent to finding a way to sample from the true posterior

5Eraker (2004) reports an improvement in fit of 1%. Bates (2000) finds an improvement of circa 2%. Broadie,

Chernov and Johannes (2006) find a 50% improvement in fit by adding jumps in prices to the SV model.
6For more details on the particle-filtering technique and its applications in the context of the estimation on returns

and options, see Christoffersen, Jacobs, and Mimouni (2006).
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density of the state, p (V (t)|S) . Unfortunately, in most applications, it is impossible to sample
directly from the posterior density p (V (t)|S). We need therefore to define an approximate density
q (V (t)|S) that allows for easy sampling, and that plays the role of proposal density.

Typically, we need to evaluate the mean of the true distribution p (V (t)|S) or some confidence
interval around the mean. This is easily achieved in the context of particle filtering by noting that

E (V (t)) =

Z
V (t)p (V (t)|S) dV (t)

=

Z
V (t)

p (V (t)|S)
q (V (t)|S)q (V (t)|S) dV (t)

=

Z
V (t)

p(S|V (t))p(V (t))
p(S)

q (S|V (t)) q (V (t)|S) dV (t)

=
1

p(S)

Z
V (t)wt (V (t)) q (V (t)|S) dV (t), (5)

where wt (V (t)) =
p(S|V (t))p(V (t))

q(S|V (t)) .

p(S) =

Z
p(S|V (t))p(V (t))dV (t)

=

Z
p(S|V (t))p(V (t))

q (S|V (t)) q (S|V (t)) dV (t)

=

Z
wt (V (t)) q (S|V (t)) dV (t). (6)

Combining (5) and (6) we conclude that

E (V (t)) =
Eq (V (t)wt (V (t)))

Eq (wt (V (t)))
. (7)

Equation (7) describes how it is possible to compute indirectly the mean of the distribution of V (t)

by drawing a sample of size N from the proposal and computing the expectation defined in (7) as

follows

Ed (V (t)) =

1
N

NX
k=1

V k(t)wt

¡
V k(t)

¢
1
N

NX
k=1

wt (V k(t))

, (8)

where V k(t) is a draw from q (V (t)|S) .
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It can be shown that Ed (V (t))→ E (V (t)) as N →∞. Note that

E (V (t)) ' Ed (V (t)) =
NX
k=1

V k(t)Ψ(V k(t)), (9)

where

Ψ(V k(t)) = Ψk =
wt

¡
V k(t)

¢
NX
k=1

wt (V k(t))

. (10)

We can see from (10) that
NX
k=1

Ψk = 1. Hence, the sample
©
V k
ªN
k=1

with the corresponding weights©
Ψk
ªN
k=1

can be considered as a draw from p (V (t)|S) . Therefore, ©V k,Ψk
ªN
k=1

converges to the

true posterior density p (V (t)|S) as N tends to infinity.

Equation (9) shows how we can utilize the history of returns and the filtered states to obtain a

sample from p (V (t)|S). First, we need to define an importance density q. The choice of q (V (t)|S) is
crucial for the performance of the particle filter. Next, we draw a sample of size N from q (V (t)|S)
and assign weights to each particle given by (10) . Hence,

©
V k,Ψk

ªN
k=1

is an approximate draw from

p (V (t)|S) .We can then compute the mean of the distribution using equation (9) . These steps are
repeated for t = 1, .., T. A description of the particle filter applied to the cases of the CEV and

CEVJ models is provided in the appendix.

3.1 Model Estimation Using Returns

We now examine the Importance Sampling Maximum Likelihood (ISML) approach of estimating the

CEV and CEVJ models. Pioneered by Pitt (2002), the method allows us to compute an approximate

likelihood when the state is unobserved. Not only does the technique apply to general models, but

it does not require efforts or extra computations to switch from one model to another. It is fully

consistent with the returns dynamic since, in this setup the volatility is treated as endogenous, and

is estimated at the same time as the parameters.

Pitt (2002) shows that, in the context of particle filters, the likelihood is given by the following

equation

p(S(t)|θ, S1:t−1, V1:t−1) =
Z

p (S(t)|θ, V (t)) p (V (t)|θ, S1:t−1, V1:t−1) dV (t). (11)

This likelihood can be approximated by

bp(S(t)|θ, S1:t−1, V1:t−1) = 1

N

NX
k=1

'k
t , (12)
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where {'k}Nk=1 represent the unnormalized weights obtained from the particle filter. It can be

shown by applying the Kolmogorov’s strong law of large numbers that bp(S(t)|θ, S1:t−1, V1:t−1) a.s.→
p(S(t)|θ, S1:t−1, V1:t−1) as N tends to infinity.7 Hence, the computation of the Log likelihood is a

by-product of the particle filter, and extra computation is not incurred.

The objective function to be maximized is therefore given by

LPF =
TX
t=2

ln

Ã
1

N

NX
k=1

'k
t

!
. (13)

The estimation of the models using returns requires the following three steps. First, for a given

set of candidate parameters, we compute the weights
©
'k

t

ªN
t=1

using the particle filter approach

described in the appendix. Second, we evaluate the objective function given by (13). Third, the

optimizer proposes a new set of parameters and the procedure restarts until the objective function

(13) is maximized.

3.2 Model Estimation Using Options

The risk-neutral dynamic of the CEVJ model implied by equation (1) is given by

d log(St) =

µ
r − 1

2
Vt − λ∗Jµ

∗
J

¶
dt+

p
VtdB

∗
1t + J∗t dN

∗
t (14)

dVt = κ∗ (θ∗ − Vt) dt+ σV β
t

³
ρdB∗1t +

p
1− ρ2dB∗2t

´
,

Where dB∗1t and dB∗2t are two uncorrelated standard Brownian motions under the risk-neutral
measure Q, J∗t ∼ Poisson(λ∗J), and dN∗

t ∼ N
¡
µ∗J , σ

2
J

¢
under Q. κ∗ = κ+ λ and θ∗ = κθ

κ+λ . λ
∗
J and

µ∗J are allowed to be different from λJ and µJ under the risk-neutral measure. Note that we have

assumed that the volatility risk premium is linear in Vt.

Discretizing equation (14) using the Euler discretization yields

log(St+∆) = log(St) +

µ
r − 1

2
Vt − λ∗Jµ

∗
J

¶
∆+

p
Vt∆ε

∗
1,t+∆ + J∗t+∆N

∗
t+∆ (15)

Vt+∆ = κ∗ (θ∗ − Vt)∆+ σ
√
∆V β

t

³
ρε∗1,t+∆ +

p
1− ρ2ε∗2,t+∆

´
,

with corr
³
ε∗1,t+∆, ε

∗
2,t+∆

´
= 0.

The CEVJ model with jumps does not admit a closed form solution. Therefore, option prices

must be computed by Monte Carlo simulations. Estimating the CEVJ model by NLS requires

the following steps. First, we choose a set of starting points for the parameters of the model and
7See Gallant (1997) and Geweke (1989) for further details on Kolmogorov’s strong law of large numbers.
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filter the volatility using the Gordon et al. (1993) particle filter described in the appendix. Next,

option prices are computed by Monte Carlo simulations. Finally, the following objective function

is evaluated.

SSE =
TX
t=1

NtX
i=1

³
CModel
t,i − CMarket

t,i

´2
, (16)

where T is the total number of days where option prices are observed, Nt is the number of contracts

in day t, CModel is the model price obtained by Monte Carlo simulation, and CMarket is the market

price. This procedure is repeated until an optimum is reached.

Similar results can be obtained for the CEV model by assuming that J∗t dN∗
t = 0. Hence, for

the CEV model we have

d log(St) =

µ
r − 1

2
Vt

¶
dt+

p
VtdB

∗
1t (17)

dVt = κ∗ (θ∗ − Vt) dt+ σV β
t

³
ρdB∗1t +

p
1− ρ2dB∗2t

´
,

and its discretized version gives

log(St+∆) = log(St) +

µ
r − 1

2
Vt

¶
∆+

p
Vt∆ε

∗
1,t+∆ (18)

Vt+∆ = κ∗ (θ∗ − Vt)∆+ σ
√
∆V β

t

³
ρε∗1,t+∆ +

p
1− ρ2ε∗2,t+∆

´
.

Again, the objective function (16) is minimized using Monte Carlo simulations until the set of

optimal parameters is reached.

4 Empirical Results

In this section we estimate the models described by equations (1) and (2) using first returns and then

using European call options and returns. We propose to investigate the level of nonlinearity implied

by options and by returns, and to study the effects of the inclusion of jumps on the nonlinearity

coefficient.

4.1 Data

To estimate the CEV and CEVJ models on returns we use two S&P500 return samples. The first

sample, from January 2, 1987 to December 31, 2004, includes the 1987 crash whereas in the second

sample, from January 2, 1990 to December 31, 2004, we exclude the year 1987 as well as the three

subsequent years which might be indirectly affected by the extremely high volatility levels recorded

around the crash. We utilize closing prices from the CRSP database. Table 1 contains some
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statistics about the sample periods. The chosen samples are representative of previous empirical

studies using returns. In fact, the standard deviation, skewness and kurtosis of returns are of the

same order of magnitude as any typical sample used in the literature.

To estimate the model on returns and options we use at-the-money (ATM) European call options

on the S&P500 index for the period 1990-1995. We apply the same filters to the data as in Bakshi,

Cao and Chen (1997). We use Wednesday data since it is the day of the week least likely to be a

holiday.

A call option is considered ATM if the forward stock price F (t, T ) divided by the strike price

K, is equal to 1. Hence, we identify ATM options by checking the following condition

F (t, T )

K
=

Ste
r(T−t)

K
= 1. (19)

Since the equality in (19) is not typically fulfilled for the available set of options at each Wednes-

day, we construct the ATM sample as follows. For each Wednesday, we choose two options such

that their forward price divided by their strike price bracket one.

If, for a certain date, all forward prices normalized by the strike prices are less than one,

we choose the option corresponding to Fj = Max
³
{Fi(t, T )}Nt

i=1

´
, where Nt is the total number

of options contracts at date t, as the ATM option for that date. If, however, all forward prices

normalized by the strike prices are greater than one, we choose the option corresponding to Fk =

Min
³
{Fi(t, T )}Nt

i=1

´
as the ATM option for date t.

We use a volatility updating rule on the 252 days predating the first Wednesday used in the

estimation sample. This volatility updating rule is initialized at the model’s unconditional variance.

Table 2 presents descriptive statistics of the options data for the period 1990-1995 by maturity.

There are 3,275 contracts, the largest group among them having a maturity ranging from 20 to 80

days. The average call price is 14.34 dollars and the average volatility is around 15% somewhat

higher than the sample volatility of the S&P500 index for the period 1990-1995 as reported in

Table 1. These above features indicate that the sample at hand is standard. The top panel of

Figure 1 gives some indication about the pattern of implied volatility over time. We present the

average implied volatility of the options on each Wednesday. It is evident from Figure 1 that there

is substantial clustering in implied volatilities. It can also be seen that volatility is higher in the

early part of the sample.

4.2 Discussion of the Results

4.2.1 Estimation Using Historical Returns

Table 3 contains the parameter estimates and their standard deviations for the sample January 2,

1987 to December 31, 2004. Column 1 of Table 3 presents the results for the CEV model. It is
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clear that the nonlinearity coefficient β is significantly different from 0.5. This suggests that the

Heston (1993) model is rejected by using returns data in favor of a more general CEV specification.

We now review the values of the other parameters of the model. We can see that the speed

of mean reversion is around 2.18; this is expected since many empirical studies have shown the

volatility to be very persistent. Our estimate of the mean reversion implies a daily persistence

around 99.13%. The annualized long-run mean volatility
√
θ is around 20.42%. This value is also

not surprising because our sample period is characterized overall by several volatile periods including

the 1987 crash. The volatility of volatility parameter is 2.21. The correlation is negative around

-0.67 confirming most findings in the literature and the observed empirical skewed distribution of

the S&P500 index.8 Finally, the value of the parameter associated with the risk premium is high.

This parameter has been poorly estimated in the literature and this is also the case in this paper,

as confirmed by the relatively high standard deviation. Hence, we will not want to offer conclusions

from this estimate except noticing that, in the range of any conventional confidence interval, this

parameter is positive. The latter suggests that investors ask for a risk premium to hold the index.

Column 3 of Table 3 contains the estimates for the CEVJ model. It is striking that, when we

add jumps to the model, the coefficient of nonlinearity becomes even higher and changes from 0.93

in the CEV model to 1.34 in the CEVJ model. Our result posits that the inclusion of jumps does

not rule out nonlinearity and directly contradicts the results found by Chacko and Viceira (2003).

Therefore, estimation of the CEVJ model using options data is in order to test the results obtained

using daily S&P500 returns.

We also find a slightly higher persistence of approximately 99.44% in line with most of the

stochastic volatility literature. The unconditional volatility drops to around 18.71%; this implies

that the data become less demanding on this parameter in the presence of jumps. The parameter

determining the volatility of volatility is higher and the correlation is in the same order of magnitude

as in the CEV model although somewhat lower.

Turning now to the jump process parameters, we find that the jump size has a negative mean

of around -2.41% daily and that the jump intensity is very small, at around 2.2 jumps per year.

This low intensity confirms the infrequent occurrence of jumps in the financial data. Figure 2-A

presents the estimated jump sizes and jump probabilities using the estimates of the CEVJ model

from Table 3.9 The top panel clearly displays the large negative drop in returns that occurred in

October 1987. The middle and bottom panels show that the particle filter is able to detect this

jump. Overall, we can conclude from Figure 2-A that almost all jumps are of negative size and

that jumps are very infrequent. In fact, following Johannes et al. (2006) who consider that there

8See, for example, Benzoni (2002), and Pan (2002) for empirical evidence of the skewness of the distribution of

returns.
9See Johannes, Polson and Stroud (2006) for details on how to estimate the jump sizes and jump probabilities

using the SIR particle filter.
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is a jump if its estimated probability is greater than 0.5, we count a mere 12 jumps in 18 years.

Table 4 contains the parameter estimates for the CEV and CEVJ models when we do not

include the 1987 crash and the three subsequent years. It is noticeable that, even with this set of

returns data, the Heston (1993) model is rejected in favor of a nonlinear specification. All the other

parameter estimates move toward the expected directions. In fact, we obtain a lower persistence,

a lower long run volatility, and a lower level for the nonlinearity coefficient. We obtain almost the

same correlation as in the 1987-2004 sample. The jump size and jump intensity are remarkably

lower than when the 1987 crash is included. Figure 2-B highlights how much smaller the estimated

jump sizes and probabilities are for the sample 1990-2004, indicating nontrivial impacts of excluding

the 1987 crash on the estimates of the jump process parameters.

For reference, we may compare our estimates to the existing results in the literature. Indeed,

the value of the mean reversion parameter is similar not only to the value obtained by Ait-Sahalia

and Kimmel (2006) using the VIX index as a proxy for the daily spot volatility, but also to the

value obtained by Jones (2003) which is around 4. We should stress, however, that the results

described in Table 3 are not directly comparable to their findings. First, Jones (2003) and Ait-

Sahalia and Kimmel (2006) perform a joint estimation using options and returns data whereas,

here, we use returns only. Besides, Ait-Sahalia and Kimmel (2006) restrict the value of the power

on the volatility in the diffusion term to less than 1 and we do not impose any restrictions.10 The

level of correlation is in the same range as that generated by other empirical studies using returns11

but less than the correlation obtained using options or a combination of returns and options.12

In terms of Log likelihood, adding jumps to the CEV model improves the Log likelihood crite-

rion by more than 16 points for the sample 1987-2004. This difference seems important in terms of

magnitude. However, a closer look at the top panel of Figure 3, which plots the difference between

daily Log likelihood over the period January 2, 1987 to December 31, 2004, reveals that the differ-

ence stems from one observation corresponding to the October 1987 crash. This result is similar

to the findings of Christoffersen et al. (2006) when they compare different models for the S&P500

dynamics. The authors find that some of the differences in Log likelihood across models vanish

when they remove one observation from their sample. Therefore, we conclude that the difference of

16 points in Log likelihood between the CEV and the CEVJ models is fully explained by the 1987

crash. Table 4 and the bottom panel of Figure 3 confirm this finding since, when we estimate the

model excluding the 1987 crash, we obtain almost the same Log likelihood.

10When β ≥ 1 the Euler approximation given by equations (15) and (18) may diverge. We follow Jones (2003)

who shows that these Euler discretizations are accurate for typical estimates of stochastic volatility parameters.

Ait-Sahalia and Kimmel (2006) impose the restriction 0 ≤ β ≤ 1 to obtain the unicity of options prices.
11Eraker, Johannes and Polson (2003) find a correlation of circa -0.7. Jacquier, Polson and Rossi (1994) find a

correlation of around -0.5.
12See, for example, Christoffersen et al. (2006) and Eraker (2004).
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Overall, we find that returns seem to favor a nonlinear specification for the model regardless

of whether we include the 1987 crash. We also ascertain that jumps and nonlinearity are comple-

mentary in the sense that the presence of jumps does not rule out the importance of nonlinearity

in the model.

4.2.2 Estimation Using Options Data 1990-1995

Table 5 exhibits the results of the estimation of the CEV and the CEVJ models using options. It is

clear that when we compare Table 5 and Table 3, there is some consistency between the estimates

obtained using returns and those obtained using returns and options. The first column in Table 5

contains the estimates for the CEV model. The coefficient of nonlinearity is slightly lower than the

estimates obtained from returns, suggesting that options may require less nonlinearity. However,

our estimate of the nonlinearity coefficient indicates clearly that the linear specification is rejected

by the options data.

For the other parameters of the model, we notice that the speed of mean reversion is lower

when we estimate the model on options compared to the estimate in Table 3. Hence, we may

conclude that option data imply strong persistence in the volatility; at around 99.9% slightly

higher than the persistence obtained using returns only. The correlation coefficient is negative

at around -0.86. The negative correlation is a standard result in the literature which is observed

when we estimate stochastic volatility models on any set of data. The long-run volatility is around

27%, close to the results obtained with returns but somewhat higher than the volatility in Table

1. We should stress that, even though the estimate of this parameter varies considerably in the

stochastic volatility literature, it always falls within a certain interval around the sample variance

of returns.13 The risk premium associated with the volatility dynamic λ is small and statistically

not significant. Therefore, setting this parameter to zero in many empirical papers seems to be

a realistic assumption.14 Next, the risk premium coefficient λ1 associated with returns is quite

variable but it always remains positive, suggesting again that investors ask for a premium to hold

risky assets. Its value is in the same range as the estimate obtained using returns.

At this stage, a few remarks on some of the parameters values are in order. In fact, the

correlation implied from options is higher than the correlation implied from returns. This result

is confirmed by Eraker (2004) and by Christoffersen et al. (2006). Our estimate is lower than

the correlation obtained by Christoffersen et al. (2006) using the same estimation technique. We

believe that this paper’s use of long samples of options data permits more accurate identification

of the level of correlation. However, the estimate reported in Eraker (2004) using options but a

13Ait-Sahalia and Kimmel, for example, find an unconditional variance of around 21%. Eraker, Johannes and

Polson (2003) find it equal to 15%.
14See, for example, Ait-Sahalia and Kimmel (2006).

13



different estimation methodology yields a correlation ranging from -0.57 to -0.59, even lower than

our results. But, as noticed by Eraker (2004) there is no consensus in the literature as to the level

of this parameter. In the case of the level of nonlinearity, a lack of empirical studies does not allow

to make valid comparison with the existing literature. The only known exceptions who estimated

the CEV model on returns and options are Jones (2003) and Ait-Sahalia and Kimmel (2006). Our

estimate is higher than the one obtained by Ait-Sahalia and Kimmel (2006) and lower than the

estimate of Jones (2003).

Column 3 of Table 5 contains the estimates of the CEVJ model. The options data confirm our

findings using returns since the coefficient of nonlinearity remains almost unchanged when we add

jumps to the CEV model. This result further supports the complementary nature of nonlinearity

and jumps.

Turning now to the other model parameters we can see that the inclusion of jumps increases the

persistence. This result is in line with the findings of Eraker (2004) in the context of linear models.

What is surprising is that the unconditional estimate of the variance is higher than in the CEV

model. In fact, we expect that the inclusion of jumps will lower the unconditional variance since

the data becomes less demanding on this parameter in the presence of jumps. However, as we are

going to see below, jumps do not add much to the model in terms of fit. We suspect therefore that

this poor performance in fit for the CEVJ model is due to the fact that jumps do not improve the

volatility process itself. The parameter σ and the coefficient of nonlinearity are in the same order

of magnitude as in the CEV model. Finally, jumps have a large negative mean around -1.98% daily

and are very infrequent around 0.84 jumps per year.

As we pointed out, the inclusion of jumps does not improve the model fit. In fact, the RMSE

decreases from 1.38 to 1.36, which cannot be considered as a large benefit. This result confirms

the findings of Bates (2000) and Eraker (2004) but contradicts those of Broadie et al. (2006).

However, the results of Broadie et al. (2006) are not directly comparable to our results. First, they

use a linear specification for the volatility process, whereas we use a nonlinear specification. Second,

their model parameterization allows all the parameters to have a risk premium and, therefore, to be

different under the objective and risk-neutral measure, whereas we use a much more parsimonious

specification. Finally, the options data used and the periods covered differ from those used in our

sample.

Figure 4 elaborates on the potential reasons why we obtain similar performances for the CEV

and CEVJ models. The top panel of Figure 4 shows that the weekly RMSE from the CEVJ

model and the CEV model are almost indistinguishable. The bottom panel further investigates

the difference between the RMSE obtained from the two models. We see that we cannot infer an

obvious pattern. These findings, along with the results obtained from returns, stress the fact that

the difference in fit, when we add jumps to the CEV model, is very small. This is not surprising
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when we examine the top and bottom panels of Figure 5. In fact, the first and second columns

of Figure 5 show that the residuals obtained from the CEV and CEVJ models generate empirical

distributions having both tails similar to the standard normal. This finding does not seem to

depend on whether we estimate the model on returns or on options. Moreover, when we compare

the residuals of the CEV model to those of the CEVJ model we observe from the right column of

Figure 5 that their empirical CDFs are almost the same. The latter may explain why these models

do equally well in fitting options data.

5 Conclusion

We investigate the degree of nonlinearity implied by returns and options, and the impact of including

jump processes on this parameter. We find that both returns and options data favor nonlinear

specifications and that the coefficient of nonlinearity is between 0.93 and 1.34 when we use returns

and between 0.80 and 0.82 when we use returns and options. Our findings are significant since they

show that estimations based on returns and on returns and option are consistent. We also find that

adding jumps to nonlinear models does not minimize the importance of nonlinearity in the models’

specifications. Hence, nonlinearity and jumps seem to be complementary rather than competitive.

Nonlinear models are therefore good building blocks for models that include jumps.

We also obtained reasonable correlation that fell within the range of what has been previously

documented in the literature. This is important since Christoffersen et al. (2006) used the same

technique and found that the correlation sometimes approaches the prespecified boundary of -0.999

when they estimated the model using options. In this paper, we obtain a lower correlation by using

a longer sample, and by estimating the CEV model instead of using quadratic volatility in the

diffusion term as in Christoffersen et al. (2006).

Although we find in this paper that adding jumps to nonlinear models does not improve the

model fit, this does not imply that we should exclude them from stochastic volatility models.

First, jumps are infrequent in the sense that our sample may not be rich enough in terms of

volatility dynamics to show their importance in improving the model fit. Second, because of the

computational burden, we only use ATM call options which define a moneyness interval where

almost all stochastic volatility models perform the best. Indeed, including a full cross section of

options data along with the time series dimension may lead to more favorable results for jump

processes.

Finally, while the CEV and the CEVJ models are certainly better models in sample compared

to the typical linear model, the effect including extra parameters on the out-of-sample performance

for these models is not obvious and should be studied in future work.
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6 Appendix

6.1 Appendix 1: The SIR Particle Filter (PF) of the CEV model

We illustrate the implementation of the particle filter technique in the context of the CEV model

which has the Euler discretization given by

log(St+∆) = log(St) +

µ
r + λ1

¡
1− ρ2

¢
Vt − 1

2
Vt

¶
∆+

p
Vt∆ε1,t+∆ (20)

Vt+∆ = κ (θ − Vt)∆+ σ
√
∆V β

t

³
ρε1,t+∆ +

p
1− ρ2ε2,t+∆

´
.

Filtering the state variable consists in the following 3 steps.

6.2 Step 1: Simulating the state forward: Sampling

This is done by computing V j
t+∆ from the original set of particles {V j

t }
N
j=1 assumed to be known

at time t using equation (20) and taking the correlation into account.15 We have

ln

µ
St+∆
St

¶
=

µ
µt −

1

2
V j
t

¶
∆+

q
V j
t ∆ε

j
1,t+∆,

where µt = r + λ1
¡
1− ρ2

¢
V j
t .

which gives

εj1,t+∆ =
ln
³
St+∆
St

´
−
³
µt − 1

2V
j
t

´
∆q

V j
t ∆

.

Since

wj
t+∆ = ρεj1,t+∆ +

p
1− ρ2εj2,t+∆,

where corr(εj1,t+∆, ε
j
2,t+∆) = 0, we get

V j
t+∆ = V j

t + κ
³
θ − V j

t

´
∆+ σV j β

t

√
∆

ρ
ln
³
St+∆
St

´
−
³
µt − 1

2V
j
t

´
∆q

V j
t ∆

+
p
1− ρ2εj2,t+∆

 .

We simulate N particles which describe the set of possible values of Vt+∆.

15We initialize the variance in the first period to equal the model-implied unconditional variance, that is, V j
0 = θ,

for all j. In the MLIS estimation, t = 0 is simply the first day of observed returns, that is January 2, 1987 for the first

sample, and January 2, 1990 for the second sample. In the NLS estimation, t = 0 is January 2, 1989 corresponding

to one year prior to the first available option quote.
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6.3 Step 2: Computing and normalizing the weights: Importance Sampling

At this point, we have a vector of N possible values of Vt+∆ and we know, according to equation

(20) , that, given the other available information, Vt+∆ is sufficient to generate ln(St+2∆). Therefore,

equation (20) offers a simple way to evaluate the likelihood that the observation St+2∆ has been

generated by Vt+∆. Hence, we are able to compute the weight given to each particle (or the likelihood

or probability that the particle has generated St+2∆). The likelihood is computed as follows:

W j
t+∆ =

1q
V j
t+∆∆

exp

−1
2

³
ln
³
St+2∆
St+∆

´
−
³
µt − 1

2V
j
t+∆

´
∆
´2

V j
t+∆

 1

p(St+2∆|V j
t+∆)

for j = 1, ..,N. Finally, because nothing guarantees that
PN

j=1W
j
t+∆ = 1, we have to normalize

and set W j
t+∆ =

W j
t+∆PN

j=1W
j
t+∆

.

6.4 Step 3: Resampling

The motivation for this step is that we want to propagate high probability particles often and vice

versa. We use a simple technique to resample the particles, which eliminates the low probability

particles and replicates the high probability particles. accordingly, we construct a set of integer

variables {ιjt+∆}
N
j=1 which can be obtained in different ways. Our implementation uses the resam-

pling scheme proposed by Pitt (2002) which allows us to obtain a smooth objective function in the

parameters’ space.

First, the adjusted weights obtained in Step 2, W j
t+∆, are mapped into a set of integer variables

{ιjt+∆}
N
j=1, using an algorithm that takes into account that the weights are not multiples of 1/N.

This algorithm is based on the empirical CDF of V smoothed using linear interpolation as sug-

gested by Pitt (2002). The smoothing enables gradient based optimization and the computation of

standard errors using conventional first-order techniques.

Next, we construct the new set of particles {V (ι)jt+∆}
N
j=1 by replicating each particle in the

original set {V j
t+∆}

N
j=1 ι

j
t+∆ times. Therefore, the particles in the original set are either eliminated,

or included one or multiple times according to their adjusted weights {W j
t+∆}

N
j=1. The higher the

weight, W j
t+∆, the higher the integer variable ι

j
t+∆, and the more often the original particle V

j
t+∆

is included in the resampled set {V (ι)jt+∆}
N
j=1.

We now have a new set of N particles and weights {V (ι)jt+∆, V (ι)
j
t+∆}

N
j=1 which are implicitly

functions of the variable ιt+∆ and which all have weights 1/N . We are thus ready to return to Step

1 to move the filter forward.
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6.5 Appendix 2: Adaptation of the PF to the CEVJ model

Note that the jumps in equations (1) create further discontinuities in the objective function in

addition to those generated by the particle filter. One possible solution to this problem is to

approximate the density of returns by the following expression

f(Rt|Vt−1) =
∞X
x=0

N

µ
Rt|xµJ ,

Z t+∆

t
Vt−1∆+ xσ2J

¶
(∆λJ)

xe−∆λJ

x!
. (21)

Proof of this approximation result:

Rt = log(S(t+∆))− log(S(t)) =
µ
µt −

1

2
Vt − λJµJ

¶
∆+

p
VtdB(t) +

N(t+∆)−N(t)X
x=1

Jx,

where N(t+∆)−N(t) ∼ Poisson(
R t+∆
t λJ(u)du). Assuming that the jump intensity λJ is constant

so that, N(t+∆)−N(t) ∼ Poisson(∆λJ) and that each jump Jx ∼ N(µJ , σ
2
J), then we may write

Rt =

µ
µt −

1

2
Vt−1 − λJµJ

¶
∆+

p
Vt−1∆εt +

Poisson(∆λJ )X
x=1

Jx.

Then we have

f(Rt|Vt−1) =
∞X
x=0

f(Rt|x, Vt−1) Pr(x)

=
∞X
x=0

N(Rt|xµJ , Vt−1∆+ xσ2J) Pr(x)

=
∞X
x=0

N(Rt|xµJ ,
Z t+∆

t
Vt−1∆+ xσ2J))

(∆λJ)
xe−∆λJ

x!
.

This converges quickly (we typically can ignore terms beyond three or four terms i.e. x> 4). So

now we have the form of f(Rt|Vr−1) which is more heavy tailed than Gaussian as it is a mixture.

This form of the density given by equation (21) allows us to do the smooth resampling as it was

previously carried in the filtering algorithm (see step 3 in appendix1). Note that if the density is

not written in the above form, then the optimization using the particle-filtering technique will be

infeasible.

The Euler discretization of the model after applying the density approximation can be shown

to be
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log(St+∆) = log(St) +
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2
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∆V β

t

³
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´
,

where z1,t+∆ ∼ N(0, 1), corr(z1t, ε2t) = 0 and Pr (Jx = x) = (∆λJ )
xe−∆λJ
x! .

We then proceed with the filtering exercise exactly as with the CEV model.
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Figure 1: Average Weekly Implied Volatility in the S&P500 Option Data and the

CBOE VIX
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Notes to Figure: The top panel plots the average implied Black-Scholes volatility each Wednes-

day during 1990-1995. The average is taken across maturities and strike prices using the call options

in our data set. For comparison, the bottom panel shows the one-month, at-the-money VIX volatil-

ity index retrieved from the CBOE website.
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Figure 2-A: Estimated Jump Sizes and Probabilities Using the SIR Particle Filter for

Historical Returns Data 1987-2004
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Notes to Figure: The top panel plots the S&P500 returns for the period January 2, 1987 to

December 31, 2004. The middle panel plots the estimated jump sizes obtained using the particle

filter. Finally, the bottom panel represents the jump probabilities obtained by applying the same

particle filter. The middle and bottom panels are obtained using the returns estimates in Table 3.
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Figure 2-B: Estimated Jump Sizes and Probabilities Using the SIR Particle Filter for

Historical Returns Data 1990-2004
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Notes to Figure: The top panel plots the S&P500 returns for the period January 2, 1990 to

December 31, 2004. The middle panel plots the estimated jump sizes obtained using the particle

filter. Finally, the bottom panel represents the jump probabilities obtained by applying the same

particle filter. The middle and bottom panels are obtained using the returns estimates in Table 4.
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Figure 3: Daily Log likelihood (L) Difference: Lt(CEVJ)− Lt(CEV)
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Notes to Figure: We plot the difference in Log likelihood observation by observation for the

periods January 2, 1987 to December 31, 2004, and January 2, 1990 to December 31, 2004. The

difference represents the Log likelihood of the CEVJ model less the Log likelihood of the CEV

model.
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Figure 4: Weekly RMSE Difference: RMSE(CEVJ)−RMSE(CEV)
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Notes to Figure: We plot the difference in weekly RMSE for the period January 2, 1990 to

December 31, 1995. The difference represents the weekly RMSE of the CEVJ model less the

weekly RMSE of the CEV model.
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Figure 5: Empirical Cumulative Distribution Function of the CEV and CEVJ

Models Implied from S&P500 Returns and from ATM Options.
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Notes to Figure: We plot the empirical CDFs for the CEV model and CEVJ model using the

residuals evaluated at the optimal parameters. To plot the CDFs in the top panel, we use the

estimates in Table 3 obtained from Returns for the period 87-04. To plot the CDFs in the middle

panel, we use the estimates in Table 4 obtained from returns data for the period 90-04. The CDFs

in the bottom panel were generated using the estimates in Table 5 obtained from ATM options.
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1987-2004 1990-2004 1990-1995
Mean 8.5299 7.7710 8.9412

Volatility 17.3837 16.0826 11.4270

Skewness -2.0894 -0.1020 -0.0997

Kurtosis 44.4628 3.7922 2.4402

Min -22.8997 -7.1139 -3.7272

Max 8.7089 5.5732 3.6642

We provide summary statistics for daily S&P500 index for the two samples used in the MLIS estimation form January 2, 1987 to December 31, 2004, 
and from January 2, 1990 to December 31, 2004. We provide the same summary statistics for the sample used in the NLS estimation from January 2, 
1990 to December 31, 1995.These statistics include the annualized mean, volatility, skewness and kurtosis. We also provide the minimum and the 
maximum daily returns.

Table 1: Summary Statistics for Daily S&P500 Returns.



DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
Number of Call Option Contracts 282 1170 722 1101 3275

 Average Call Price 4.35 8.51 14.48 23.01 14.34

Average Implied Volatility from Call Options 0.146 0.142 0.150 0.155 0.149

Notes: The sample contains At the Money (ATM) European call options on the S&P500 index. We use quotes within 30 minutes from 
closing on every Wednesday during the January 1, 1990 to December 31, 1995 period. The moneyness is determined as defined in the data 
section. When choosing the options, we use the same filters as in Bakshi, Cao and Chen (1997).

Table 2: S&P500 Index Call Option Data. 1990-1995.



Estimate Standard Error Estimate Standard Error
κ 2.1752 0.6102 1.4200 0.5914
θ 0.0417 0.0080 0.0350 0.0199
σ 2.2131 0.2723 8.8611 1.0256
ρ -0.6676 0.0269 -0.6016 0.0911
β 0.9300 0.0425 1.3378 0.0371
λ1 4.1721 1.7687 8.4424 2.5400
µJ -6.0672 4.3123
σJ 0.2653 9.1210
λJ 2.2024 0.5338

Log Likelihood
Annualized volatility (%)

Daily persistence (%) 99.44

We estimate the CEV and CEVJ models using daily S&P500 returns from January 2, 1987 to December 31, 2004. Columns 2 and 
4 contain the parameter estimates for the CEV model and the CEVJ model, respectively. Columns 3 and 5 contain their 
corresponding standard errors.

Table 3: Parameter Estimates Using S&P500 Returns Data, 1987-2004.

CEV CEVJ

15818.15 15834.55
20.41
99.14

18.71



Estimate Standard Error Estimate Standard Error
κ 2.5818 0.9208 2.6070 0.9116
θ 0.0287 0.0056 0.0268 0.0135
σ 1.8667 0.5322 2.0274 0.4992
ρ -0.6739 0.0338 -0.6885 0.0828
β 0.9283 0.0843 0.9488 0.0798
λ1 3.2887 2.1914 3.1763 3.2103
µJ -2.0574 3.2133
σJ 1.5252 0.7954
λJ 1.0215 0.5623

Log Likelihood
Annualized volatility (%)

Daily persistence (%)

We estimate the CEV and CEVJ models using daily S&P500 returns from January 2, 1990 to December 31, 2004. Columns 2 
and 4 contain the parameter estimates for the CEV model and the CEVJ model, respectively. Columns 3 and 5 contain their 
corresponding standard errors.

Table 4: Parameter Estimates Using S&P500 Returns Data, 1990-2004.

CEV CEVJ

13433.60 13434.92
16.95 16.36
98.98 98.97



Estimate Standard Error Estimate Standard Error
κ 0.1824 0.0190 0.1784 0.0175
θ 0.0740 0.0064 0.0756 0.0107
σ 0.2107 0.0314 0.2267 0.0267
ρ -0.8604 0.0140 -0.8847 0.0184
β 0.8200 0.0414 0.7958 0.0376
λ1 1.7735 3.8425 1.9111 11.3695
λ 0.0157 0.0504 0.0153 0.1040
µJ -4.9965 9.9098
σJ 0.4843 16.7820
λJ 0.8368 0.2996
µJ

* -5.0030 7.8746
λJ

* 0.9864 0.2020

RMSE
Annualized volatility (%)

Daily persistence (%)

Table 5: Parameter Estimates Using European Call Options on the S&P500 Index, 1990-1995.

Note: We estimate the CEV model using Wednesday Options on the S&P500 Index for the period 1990 to 1995. Columns 2 and 
4 contain the parameter estimates for the CEV model and the CEVJ model, respectively. Columns 3 and 5 contain their 
corresponding standard errors.

CEVJCEV

1.3833 1.3584
27.20 27.49
99.93 99.93


