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Abstract

Long memory (long-term dependence) seems to be as widespread in
financial time series as in nature. Inspired by the long memory property,
multi-fractal processes have recently been introduced as a new tool for
modeling the stylized facts in financial time series. In this paper, we
attempt to construct bivariate multi-fractal model, and implement its
estimation via both GMM and likelihood approaches. For its empirical
assessment, we apply the model on portfolio investment concerning VaR
using time series of stock exchange indices, foreign exchange rates and
bond maturity rates.
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1 Introduction

Following statistical analyses like Hurst’s R/S test and the modified R/S by
Lo (1991); as well as some econometric models such as ARFIMA (Fractional
Integrated Autoregressive Moving Average), and FIGARCH (Fractional In-
tegrated General Autoregressive Conditional Heteroscedasticity), the Multi-
Fractal Model (MF) has been recently introduced as an alterative formalisa-
tion, which conceives volatility as a hierarchical, multiplicative process with
heterogeneous components. The essential new feature of MF models is their
ability of generating different degrees of long-term dependence in various pow-
ers of returns - a feature pervasively found in empirical financial data (Ding et



al 1993). Research on Multi-Fractal models originated from statistical physics
(Mandelbrot, 1974). Unfortunately, the models used in physics are of a com-
binatorial nature and suffer from non-stationarity due to the limitation to a
bounded interval and the non-convergence of moments in the continuous-time
limit. This major weakness was overcome by introducing a iterative version of
the multi-fractal model.

So far, available multi-fractal models are mostly univariate ones How-
ever, for many important questions in empirical research, multi-variate settings
are preferable. In particulary it is now well accepted that financial volatilities
move together over time across assets and markets. This is particularly im-
portant when considering asset allocation, value-at-risk and portfolio hedging
strategies. Secondly, since the information on the source of long memory in
the volatility process is quite limited, the Multivariate (bivariate) model may
provide additional insight into the factors responsible for long memory.

The rest of this paper is organized as follows: Section 2 provides a review of
the Multi-fractal model of financial returns. Section 3 introduces the bivariate
multi-fractal model and different approaches to its estimation. For GMM, we
give the details of the analytical moments in the Appendix. Empirical works on
the base of this new bi-variate process is presented in Section 4.

1

2 Review of Multifractal Model

Financial markets display some similarities to fluid turbulence. For example,
both turbulent fluctuations and financial fluctuations display intermittency at
all scales. A cascade of energy flux is known to occur from the large scale of
injection to the small scale of dissipation. This cascade is typically modeled by
a multiplicative cascade, which then leads to multi-fractal field.

Mandelbrot et al. (1997) first introduced the Multi-Fractal Model, trans-
lating the approach of Mandelbrot (1974) from the statistical physics area into
finance. Fisher and Calvet (2004a) report advantages of Multi-Fractal mod-
els compared to GARCH and FIGARCH in various financial time series. Lux
(2004b) provides related evidence on forecasting of future volatility generated
from the Multi-Fractal model, the results demonstrating its potential advantage.

The first type of the MF proposed by Mandelbrot et al. (1997), named
the Multi-Fractal Model of Assets Returns (MMAR), assumes that returns z(t)
follow a compound process:

(t) = Bu[0(t)] (1)

in which an incremental fractional Brownian motion with index H, Bg[],
is subordinate to the cumulative distribution function 6(¢) of a multi-fractal
measure, which was already employed by Mandelbrot (1974), when modeling
the distribution of energy in turbulent dissipation.

L An exception is Calvet, et al (2004b) whose approach, however, differs from ours in various
aspects.



The simplest way to create a multi-fractal measure is the “binomial multi-
fractal”, constructed on a unit interval [0,1] with uniform density. one proceeds
as follows: Divide the interval into two subintervals of equal length. Let my
and m; be two positive numbers adding up to 1. In the first step, this interval
is split into two equal subintervals, and the measure uniformly spreads mass
equal to mg on the subinterval [0, 0.5] and mass equal to my on [0.5, 1], in step
2, the set [0, 0.5] is split into two subintervals, [0, 0.25] and [0.25, 0.5]; which
respectively receive a fraction measure mg and m; of the total mass [0, 0.5]; We
apply the same procedure to the dyadic set [0.5, 1], and the above procedure is
then repeated ad infinitum, and iteration of this procedure generates an infinite
sequence of measures.

As a minor extension of the original binomial measure one could simply
dispense with the rule of always assigning myg to the left, and m; to the right,
randomizing the assignment instead; or, one may uniformly split the interval
into an arbitrary number b larger than 2 at each stage of the cascade, and receive
the fractions mg, my ... mp_1, which leads to a so-called multinomial measure.
Furthermore, we can also randomize the allocations between the subintervals,
taking mg, m1...mp—1 with certain probabilities, or using random numbers
for mg instead of the same constant value, such as draws from a Lognormal
distribution in Mandelbrot (1974, 1997).

The above mechanism may be called a combinatorial MF model. It is im-
mediately obvious that one important limitation of this approach is the limited
domain of resulting measure. With an underlying cascade extending over k
steps, we have exactly 2F (Binary cascade) different subintervals at our disposal
and, therefore, could generate only “time series” which are no longer than 2*.
Later, this difficulty was overcome by the introduction of an iterative Markov-
switching MF model in Calvet and Fisher (2001). In their approach, returns
are modeled as:

5 1/2
Ty =0 <H Mt(z)> Uy (2)
i=1

with u; drawn from a standard Normal distribution N (0, 1) and instanta-
neous volatility being determined by the product of k volatility components or
multipliers Mt(l), Mt(2) e Mt(k)7 2 and a constant scale parameter o.

Each volatility component is renewed at time ¢ with probability ~; depend-
ing on its rank within the hierarchy of multipliers or remains unchanged with
probability 1 — ;. The transition probabilities are specified as:

k-1
yi=1—(1—y) ) (3)

with parameters v; € [0,1] and b € (1, 00). Estimation of this model, then,

2 Additionally, E[Mt(l)] or E[Y° Mt(l)] equal to some arbitrary value is usually imposed for
the sake of normalizing the time-varying components of volatility. Both Calvet and Fisher
(2002) and Lux (2004) assume a Binomial distribution with parameters mg and 2 —mg (thus,

guaranteeing an expectation of unity for all Méi) ), and for a Lognormal distribution E[M] = 1.



involves the parameters v; and b as well as those characterizing the distribution
of the components M; ;.

The main attraction of Multi-Fractal model is that it shares certain proper-
ties of asset returns: fat tails and asymptotic power-law behavior of the auto-
covariance function (long memory)? . Furthermore, multifractality implies that
different powers of the measure have different decay rates of their autocovari-
ances. Calvet and Fisher (2002) show that this feature carries over to absolute
moments of returns in the MMAR (eq.1). In this sense, other alternatives like
FIGARCH or ARFIMA models belong to the catalogue of uni-fractal model,
i.e. they have the same decay rate for all moments. Although the Multi-Fractal
model is a rather new model in financial economics, there are already various
attempts at estimating the parameters of the multi-fractal model. Available
options include the traditional Scaling estimator; GMM estimation introduced
by Lux (2003, 2004b) and Maximum Likelihood Estimation derived by Calvet
and Fisher (2004a), which will both be used in the next section.

3 The Bivariate Multi-Fractal Model and its Es-
timation

We introduced a parsimonious Bivariate Multi-fractal model (BMF) under the
hypothesis of two time series having certain amounts of joint cascade levels in
common in both multi-fractal processes.

k n 1/2
P =g [(H ME“> ~ ( II Mf“)] g 4

I=k+1

q = 1,2 refers to two time series, both having an overall number of n levels
of their volatility cascades, and they share k numbers of joint cascade levels
which govern the strength of their volatility correlation. o, are the uncondi-
tional standard deviation of the return series. Obviously, the larger k, the more
correlation between them. After & joint multiplications, each series has sepa-
rate additional multifractal components. The increments u4 ¢+ follow a bivariate
standard Normal distribution with correlation parameter p.*

Furthermore, we restrict the specification of the transition probabilities to:

~; =27 (K= (5)

Fach component is renewed at time ¢ with probability 7; depending on its
rank within the hierarchy of multipliers and remains unchanged with probability

17’}/7

3Le.Cov(|zt|?, |zetr]9) o< 724D ~1 However, one should note that the Markov-switching

multi-fractal of eq. (2) only has “long memory over a limited range”, cf. Calvet and Fisher,
2001, for details.
4The independence of increments was assumed in former version of this paper.



We specify the multipliers to be random draws from either a Binomial or
Lognormal distribution, In the binomial case in which we assume two draws
mo € (0,2) and alternative m; = 2 — my, for the latter, we assume —logo M ~
N (X, 02), and assign constraint E[M "] = 0.5 which leads to 02, = 2(A—1)/In2.

Figure 1 and Figure 2 show simulations of the bivariate multi-fractal model
(k = 4, n = 20) with Binomial distribution of its multipliers together with its
ACFs. The simulation apparently shares some of the stylized facts of financial
time series, namely volatility clustering and hyperbolical decay of the autocor-
relation function. One also easily recognizes the correlation in the volatility of
both time series.

3.1 Generalized Method of Moments Estimation

Historically, the first attempt at estimating the multi-fractal models is the scal-
ing estimator. Since multifractal measures are characterized by a non-linear
scaling function of moments (scaling law), through a Legendre transformation,
parameter estimation is achieved by matching the empirical and hypothetical
spectrum of Holder exponents. In our proceeding bivariate MF model, we will,
however, exclude the scaling estimator due to its bias and lack of asymptotic
distribution theory, cf. Lux (2003, 2004a).

Instead, we adopt the GMM (Generalized Method of Moments) approach
by Hansen (1982) with analytical solutions of a set of appropriate moment
conditions. In the GMM approach, the vector of parameter estimates of the
model, say (3, can be obtained as:

~

f = argmin M(B)'W M(3) (6)

with 3 the parameter vector, M (3) the vector of differences between sample
moments and analytical moments, and W a positive definite weighting matrix,
which controls the over-identification when applying GMM. Implementing (6),
one typically starts with the identity matrix, then the inverse of the covariance
matrix obtained from the first round estimation is used as the weighting ma-
trix in the next step, and the procedure will continue until the estimates and
weighting matrices converge. Under suitable conditions, B is consistent and
asymptotically converges to TV/2(3 — y) ~ N(0,Z) with covariance matrix =.

The applicability of GMM for multi-fractal models has been discussed by
Lux (2003). The approach recommended in this paper is using log differences of
absolute returns together with the pertinent analytical moment conditions, i.e.



to transform the observed data r; into Tth differences of the log observations:

Xer=Inlriy —In|ry 7|

k) T (h) kG o (h)
=[05Y¢"+05 Y e +infu| | — 05> e 7 +05 > e p+ Infui_7|
=1 h=k+1 =1 h=k+1

k X . n
=052 (el — ) +05 S (6" ) + (infuy| — Infusr—r))
i=1 h=k+1

(7)

with eti) =In (Mf“), and in the same way to define the second time series,
say Y.

In order to exploit as much as possible information, the moment conditions
that we consider include two categories: the first set of conditions is obtained
by considering some order of log-squared observations, and the second set of
moment conditions is derived from the absolute observations. In particular, we
select moment conditions for the powers of X; v and Y; 7, i.e. moments of the
raw observations and square observations:

Cov[ X7, Y] CoulX [y 1, il CoulXi g, X{gli CovlYipr, Viy]

forg=1,2and T = 1,5,10, 20. It is straightforward to get the moments for
the raw observations, but the moment calculations for the squared data seem a
bit tedious. The detailed analytical moments are given in the Appendix.

We proceed by conducting several Monte Carlo experiments to explore the
performance of the GMM estimation. Moment conditions for the Binomial
and Lognormal distribution can be found in Appendices A and B. We start
with the Binomial Model (n = 20) with number of joint multipliers k¥ = 4 and
k = 8, we fixed correlation parameter p = 0.5, and choose multipliers from
mg = 1.2 to 1.5 by 0.1 increment with sample sizes N; = 2000, N = 5000, and
N3 = 10000. Table 1 shows the statistical result of the GMM estimator: for
the Binomial distribution parameter nig, not only the Bias but also the finite
sample standard deviation and root mean squared error show quite encouraging
behavior, even in the small sample size N = 2000 and N = 5000, the average
bias of the Monte Carlo estimates is moderate throughout and practically zero
for the larger sample sizes N = 10000.

It is also interesting to note that our estimates are in harmony with T2
consistency, and the Hansen’s J test reveals that there is not disappointing con-
cerning the over-identification restrictions (see Figure 3). All these results can
be viewed as a positive signal of the log transformation in practice. Further-
more, we also notice that there is almost no significant difference between k = 4
and k = 8 in Table 1, the very slight sensitivity of the estimates of mg with
respect to the number of joint cascades might be viewed as a very welcome phe-
nomenon as it implies that estimation of myg is hardly affected by the potential
mis-specification of the number of joint cascade k.



Then, we turn to the Bivariate MF with a continuous distribution (—loga M ~
N(),0?)). In our Monte Carlo simulations reported in Table 2, we cover pa-
rameter values A = 1.10, 1.20 1.30 and 1.40, and use the same numbers of joint
multiplier cascade levels and the sample sizes as in the Binomial case above. As
can be seen, results are not too different from those obtained with the Binomial
model: Biases are moderate again, and results for A are almost insensitive with
respect to k. Somewhat in contrast to the Binomial case, we notice a very slight
deterioration of efficiency with increasing A, which might be due to increasing A
leading to increasing o2, by their dependence (recalling that 02, = 2(A—1)/In2).
All in all, the results from both the Binomial and Lognormal Monte Carlo simu-
lation and estimation show that GMM seems to work quite well for multi-fractal
processes both in the discrete and in the continuous state space.

3.2 Maximum Likelihood Estimation

The MF dynamics can be interpreted as a special case of a Markov-switching
process with a large state space. This makes Maximum Likelihood Estimation
feasible. In our parsimonious bivariate MF model, the state spaces is finite
when the multipliers follow a discrete distribution (i.e. Binomial distribution).
The likelihood function can be derived by determining the exact form of each
possible component in the transition matrix, and is similar to the likelihood
function developed for the uni-variate process by Calvet et al (2004b), but differs
in so far as the transition matrix of each multifractal component contains two
starting cascade level. 7 is the set of joint return observations {rq;} for ¢ =
1,2. We have the likelihood function below:

T
f(rla"' ,TT;("')) = Hf(’rtl’rla"' 7rt—1) (8)
t=1
T 4" . '
=TI P(Me=milrs, - orea) - o] M, —ml>]
t=1 Li=1
T

= TT(Qu_14) - f(re| M, = m?).

t=

—

With transition matrix A which has components 4;; equal to
P(Mt+1 = mJ|Mt = ml) (9)

f[ [ L — ) 1{m@_m1} + v P(M; = mk)]

Both M; and m() are vectors, M; = (M}, -, MF, MF ... MP), mi
denotes the kth component of vector m®.



The density of the innovation r; conditional on M; is:

0.5
k . n .
Fy{r)/ 0~<H M 11 Mf”)

‘ i=1 j=k+1
f(re| My =m') = - 0.5 (10)
o (_H A th)
i=1 j=k+1

Fn{-} denotes the bivariate Normal density function.

The last unknown component in the likelihood function above is €2, which is
the conditional probability defined by Qi = P(M; = m‘|ry,--- ,7), and due to
4’IL )

Qi = 1, by Bayesian updating, we get®
=1

1=

flre| My = m*) (% A)
Z f(rt‘Mt = mi) ®(QtA)

Qey1 = (11)

It would be not too surprising that the ML estimators are more efficient
compared with the two previous tables, as ML extracts all the information
in the data. However, applicability of the ML approach is constrained by its
computational demands: First, it is not applicable for models with an infinite
state space, i.e. continuous distributions of the multipliers such as Lognormal
distribution we use here. Secondly, even for the discrete distributions, say the
Binomial case, current computational limitations make choices of cascades with
a number of steps n beyond 5 unfeasible because of the implied evaluation of a
4™ x 4™ transition matrix in each iteration. Table 3 presents the comparison of
ML and GMM estimator (Monte Carlo design as previous tables) in the case of
n =5, k = 2. Table 4 reports the performance of ML estimator including the
scaling parameters.

3.3 Simulated based Maximum Likelihood Estimation

Particle filter.

4 Value at Risk

One widely used tool to gear and control market risk is Value-at-Risk (VaR),
which measures the worst loss over a specified target horizon with a given sta-
tistical confidence level. In other words, it represents a quantile of an estimated
profit-loss distribution. Various organizations and interest groups have recom-
mended VaR as a portfolio risk-measurement tool.

5® represents element by element product.



In this section, We will report empirical work on the application of the
Bivariate MF model for value at risk assessment. 7 ;4 is defined as the forward-

h
looking h-period return at time ¢: 7445 = > 744. VaR at the h-period horizon
i=1
is defined as the « quantile of the conditional probability distribution of 7.1 p:
Pr (Ft;t+h S Vath+h|It) = Q. (12)

The performance of our model is assessed by computing the failure rate for
the returns and the portfolio. By definition, the failure rate is the number of
times returns exceed (here in absolute value) the forecasted VaR. If the model
is well specified, the failure rate is expected to be as close as possible to the
prespecified VaR level.

In the empirical application we consider daily data for a collection of Stock
Exchange Index: Dow Jones Composite 65 Average Index and NIKKEI 225
Average Index (DOW/NIK, Jan. 1969 - Aug. 1999); two Foreign Exchange
rates: British Pound to US Dollar , Australian Dollar to US Dollar (BP/AUD,
March 1973 - Nov. 2004); and U.S. 1 Year and 2 Year Treasury Constant
Maturity Bond Rate (T1/T2, June 1976 - Oct.2004), where the first symbol
inside the parentheses designates the short notation for the time series and the
numbers in parentheses are the start and end period for the sample at hand.
For all time series daily observations are denoted p;, returns are defined as
re = In(py) — In(pr—1).

Empirical results for the time series are given in tables 5 and 6. We estimate
the bivariate MF model by GMM and Maximum Likelihood. In GMM estima-
tion, we employ both the Binomial model (for Stocks and Bonds) and with the
Lognormal model (for Foreign Exchange rate). We then simulate the bivariate
time series based on the estimators, and calculate forward-looking h-period re-
turns for single time series and portfolios. VaR; 5(p) is obtained as the (1 —p)t"
empirical quantile, we calculate the failure rate to assess the performance of our
bivariate MF model, if the model is well specified, the failure rate should be
close to the pre-assume confident level. We describe the results with respect
each pair time series as following:

(1) For Stock Exchange Index DOW and NIK, the VaR forecasts based on
GMM and ML are quite satisfactory, except with only one too risky case for
individual Dow Jones index at 5% confident level .

(2) For Foreign Exchange rates BP and AU D, a remarkable result we have is
that VaR by GMM estimation (table 5) is very successful throughout all cases.
On the contrary, table 6 (VaR based ML estimator) reports some conservative
VaRs for Equal Weighting portfolio: one in 1-day horizon, and two cases in
2-day and 5-day horizon. We recognize that excessive conservativeness does not
imply superior risk management in financial investment.

(3) For US Bond maturity rates, we first find the success at 10% level from
both table, furthermore for T1, VaR forecasts from both GMM and ML are also
well specified in all horizons. In contrast, for T2 and Equal Weighting portfolio
(EW), it leaves several too risky VaRs in both table 5 and table 6 at confidence
levels of 1% and 5%, which is of course against the investment principle.



5 Conclusion

In this paper we have developed a bivariate Multi-Fractal model extending the
univariate Markov-switching Multi-Fractal model, and we implemented both
GMM and Maximum Likelihood estimation. For GMM, eight moments condi-
tions have been employed through the log transformation of observations. Our
Monte Carlo experiments indicate the positive performance of both GMM and
ML estimators. Although GMM is not as efficient as ML, it has the impor-
tant advantage that it does not pose computational restrictions on the choice
of the number of cascade levels with GMM compared to a maximum of about
5 cascade levels in ML estimation. Furthermore, empirically speaking, GMM is
much faster compared to the very time-consuming ML process.

In the last part of this paper, we applied the model to Value-at-Risk as-
sessment with empirical financial time series of Stock Exchange index, Foreign
Exchange rates and Bond maturity rates. We demonstrate the applicability of
the bivariate Multi-Fractal model, and the results also present that GMM es-
timator is competitive and could generate better VaR forecasts in some cases
(here exchange rate case).
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Appendix: Moment Conditions

Recall the model from Section 3. Let 55) = ln(|Mt(') |), and we compute the first
log difference:

X =1In(|rie]) — n(|ry,e-1)

L ), 1 S Lo () 1
=lzXxe +t3 X & tinfuyl| —(3Xali+3 X &y +infur]

=1 I1=k+1

=5 () ) +3 3 ( —ell) + (bl — ol

L (), 1 (b Lo () L1 < (b
— 5 Z €t + 3 Z £y + ZH‘U2¢| — |3 2€t_1 + 3 . % 1€t_1 + ln|u27t_1|
1= = J,-

i=1 h=k+1

k n
i i h h
=33 (=) +4 2 (o =) + (nfuzal - nfua )
h=k+1

A Binomial case

cov[ Xy 1, Y 1]

=E[(Xi1 — EXia1]) Y1 — EYia]))] = E[ X1 - Vi)

Lo () )y L1 w0 O
=F 5 ;(Q - 51571) + 3 17%1(% - €t71) + (Zn|u1’t| - ln|u1,t,1|) :

k n
i i h h
InE =)+ 2 (@ =) + (nfug,| - lnluz,t—l)] }

— 2B[u)? 4 2E[In|uq ¢| - Infua ).

(A1)

[In(mg) — In(2 — mg)]?, and it occurs when new draws take place in cascade

We firstly consider F [(Ef) - Egi) )2], the only one non-zero contribution is
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level i between t and ¢ — 1, whose probability by definition is %Qk% Summing
up we get:

cov[Xy 1, Y] = 0.25-[In(mo) —In(2—mg)]?- Y 55— —2E[w]? +2E[In|uy 4|
i=1
].

In|ug,

cov[Xiq1,1, Y1)

k n

i i I I

3 2(€§£1 —et) + %z %: 1(5§JZ1 — ") + (nfur 1| - ln|U1,t|)] :
1= = J’_

n

k
7 7 h h
Iy =)+ 5 2 (@ =) + (nfus,| — ln|uz,t1|)] }

CIRONIE N RONING
<€t+1 & ) P> (€t - Etl):| + Elu]? — Ellnju | - Infug,].
(A2)
For (egﬂl - €£i))(€§i) - €§i_)1), the non-zero value only occurs in case of two
changes of the multiplier from time ¢ + 1 to time ¢ — 1, the probability of this

occurrence is (% 2;@171' )2. So, we have the result:

COU[Xt+1,1a Yt,1]

=0.25 - [2In(my) - In(2 — mg) — (In(mo))? — (In(2 — mg))?] - D2 (

i=1

2k1—i )2

N

+B[u]* — Ellnfuy | - Infus,]-
Then, we look at the moment condition for one single time series:

cov[Xiq1,1, X¢,1]

Lo () () L1 0
=K 3 ;(€t+1 —& )+ 3 li%_l(fwl —& )+ (ln\u11t+1| - l"|ul,t‘) :

n

k
7 7 l !
Iy -+ 5 2 (@ —ell)) + (Infuryl - ln|u1,t_1|>] }

2 ().

I=k+1

£ (-]

+E [Infud])* — E [In|u,)?] .
(A3)

The first component is identical to the one of the case of cov[X;411,Y; 1],
and the second component can be derived in the same way. Adding together we

14



arrive at:

cov[Xit11, X 1] k
=0.25- [QZn(mo) (2 —mg) — (In(mg))? — (In(2 — mO))z] > (%zklfi )?

=1

+0.25 - [2In(mg) - In(2 — mo) — (In(mg))* — (In(2 — mo))?] - 3
+E[In|u|]? — Elln|u)?].

(A4)

By our assumption of both time series having the same number of cascade

levels, the moments for the two individual time series are identical for the same

length of time lags.

Then, let’s turn to the squared observations:

BIXZ, - Y]

O RO R () B0 ?
=Eq |z 2@ —a)+3 2 (6 —e2y) + (nfure] —Infur )| -
i=1 I=k+1
k 2
i i n h h
Lo E? @) 41 2 (@ - el + (nfusy| - muz,t_m]
i=1 h=k+1
k 4 2 2
7 7 n 1 1 n h h
= 1E (Z@E)—eﬁlﬂ) + 5B (z <s§>—s£21>) ( > <s§>—a§_>1>>
=1 I=k+1 h=k+1
k 2 2
[ h h
wm | (B - ) (5, - )
i=1 h=k+1
k 2 2
7 7 l l
+3E (z<s§> ei_%)) (z (e ei_n))
i=1 I=k+1
2 2
1 k@) OO 5 5
+142F Zl(et eh)) | +2E l%—l({‘:t —&) - (2E(In|u?] — 2E([In|u,]]?)
1= =

+2E[(Infu4|)? - (Infuz,])?] = 8E[(Infui])? - Infuzl] - Elin|uy]

+4E[In|uy | - (In|ug4|]? + 2E[(In|u])?]?.

By examining each component in the expression above combining with the
calculations of the previous moments, it is not difficult to find the solution:

15



BIXZ, - V2]

k n n
= fin(mg) ~ In (2 - mo)]* - & 3 bk +lin(mo) — @ —mo)l* - &5 3 bk ¥ gk

=1 1=k-+1 i=k+1

k n

+2[In (mo) — In (2 — mg)]* - DR S SR

i=1 i=k+1

k n
+ (Elinfusl?] = Elinjuq[]2) - [In (mo) — In (2 = mo)]* (Z =Y §2n1i>
=1 i=k-+1
+2E[(Infuy ¢])? - (Infug,¢])?] = 8E[(In|uy ])? - Infug ¢]] - E[in|uy|]
+4E[In|uy ¢ - ln\uQ,tW + 2E[(ln|ut|)2]2.
(A5)
E[X152+1,1 : Ytgﬂ
& 2
i i n l !
—Eq [z 5Eh a5 3 (e - el () - mlul,m] :
i= =k+
2
Lea () )y 1 S ) ()
32 (e’ =) +5 2 (e —&) + (Infug| — Infuz—1])
=1 h=k+1

I=k+1

( 3 (- 591)) ]}-(2E[ln|ut|2]—2E[ln|ut|}2)

E[(In]us, )2 - (In|ug, 32— 4E[(ln|u17t|)2 “Anlugyl] - Blin|ug|] + 4E[In|uq 4| ~ln|uz7t\]E[ln|ut|]2

+3E[In|ug|?)? — 4E[In|us|?| ElIn|u)?.
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Until now, the only unfamiliar component is the first term:

E
i=1
to be considered:

A 2
(Z (8,(5_21 - Et )) (Z (g ) )) ] , there are three different forms

@ OV (0 0V ) £ ()
(1) (&1 st € —&;21) , which have non-zero value only if ¢,/ #
€4 (@) # Et_l. and this possibility is (%2,%)2, combining with the non-zero
expectation value,

we have (i(; o )2> i (me) — In (2 — mo)]*.

i=1

. 2 . .
(2) (Eg_)l §”) (a@ 5&1)1) , which are non-zero for ¢ # j, Eg_)l # Egj)

A , k k
and eiz) # agl_)l, the probability of its occurrence is > (2,} > %) )
i=1 =T

Putting together these two possible forms we get

)

(3) Form (6,2_)1 6?)) <5t+ - 5?’)) (sgj) e ) ( el )1> , which for 7 #

j and EE aF stn #+ 5%_)1, n = 1,j are non-zero, and which implies

2{% (<2£i>2 5 <2£j>2) } [in (mo) — In 2 — mo)]*.

i=1 =L

k

[in (mg) — In (2 — mo)]* - < %219 i Zi:%

i=1

Then we have the solution for the first component in the above moment
condition:

(St - a§“>)2 (Ee- “))]

=1

E

k k k k
= [in (mgo) — In (2 — myg)] [Z 3 5 > S5 +2 Z(%2’“1*i)2 > ‘(%le,j )2

The other components can be solved by recalling previous calculations. All
in all, we finally arrive at:
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E[Xt2+1,1 : Yfﬂ

k k k
= [ (mo) — @ = mo)l 5 | 3 hte 3 At 42X (h)? 2 _@2;].)2]

i=1 j=1 i=1 Jj=1,5%#1
+ [In (mg) — In (2 — mo)]* - DR =D P
1=k+1 i=k-+1
k n
+iln(mo) —In(2—mo)' X 35 ¥ iz
=1 i=k+1
k n
+ (Blinfur?) — Elinhu]]?) - [in (mo) — In (2 — mo))*- (Z Ips+ 2 )
i=1 i=k+1

+E[(In|uy4])? - (Infug])?] — 4E[(In|uy ¢])? - Infug|] - Elln|u|] + 4E[In|uy 4| - Infug || E[In]u,|]?

+3E[In|ug|?)? — AE[In|us|?| E[ln|u)?.

(A6)
E[Xt2+1 1 tl]
& 2
E{ $uEh—a) 4 3t —a!) + (Il m|ul,t|>] :

2
k n
7 7 l !
Iy E? —e?)+ 3 3 (@ =) + (infuel - ln|u1,t_1|>]

k . . 2 k . . 2 n . . 2 n . . 2
e | (St -a) (S -0 [ (£ =) o £ 6 -)
=1 =1 I=k+1 I=k+1
k 2 ? k 2 2
i i n l ! i i n ! l
58 | (e -<4) ( > <e£>s§_>1>> ] L LE [(z@)sﬁln) ( 5 (sELeP)) ]
=1 l=k+1 =1 I=k+1
2 2
i i . l l
+142E (Zl@ill—sih) +2F (l%(eiil—e?)) (2B [infu]?) — 2E[Inu,|)?)
k n n
7 7 [ 7 1 l l l
+35 - 4F [Z (sﬁﬁl—e?)z(sﬁ)—s&ll)}E N CHEEDIDY (s?—s&ll)]
=1 i=1 I=k+1 l=k+1
k k . .
+1.4E {; (421 - sgﬂ) > (e§’> _ D )] (Elin|u,[]2 — Blinfuq|?)
o l ! n ! l
+i-4E[ > (e —a”) 2 (e =) | (Bl ~ Blinju)
l=k+1 I=k+1

+3E[In|us|!)? + Eln|ui|*] — 4E[In|u®) Elln|ug]].
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(A7)

The first and second term are the same as the first one in the case E[Xt2+1,17 Yt?l],
and the rest are our familiars. Adding together, we have the result:

E[Xt2+1,1 ‘Xt2,1]

k k k k
4
— lin(mo) = In (2= mo)]* - & |3 dde 3 Ay 420 (At 2 <;2Jj>2]
i=1 j=1 i=1 j=1,5%#i
+ [In (mo) — In (2 — mO)]4 : Tls > %gkl—z‘ > %gkl—j +2 X (% gkl—z‘ DY (% zkl—j )21
i=k+1 j=k+1 i=k+1 j=k+1,j#i
k n
4
+lin(mo) —In(2=mo)l" - § X0 sae 2 g

=1 i=k+1

+ (Eltnfud®] = Eltnfur?) - [in (mo) — In (2 = mo)]” - (i byt 3 )

i=1 i=k+1
4025 [21n (mo) In (2= my) — (1n (ma)* — (in (2 = ma)?] (3 (2g)" 3 (527111)2)
=1 i=k+1
+2 [zzn (mo) In (2 — mo) — (In (m))? — (In. (2 — my)) ]
(Z (7)"+ 3 G >) (Blinbe? — Blinbuc[%)
+3E[In|u|?)? + Elln|us|*] — AE[In|u ]3] E[ln|ug|).
(A8)
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B Lognormal case

cov[Xi1, Y1) = E[(Xe1 — E[Xe1]) - (Vi1 — ElYia] = E[Xe 1 - Y]

(ZE <)

k
= 0.502 > st + 2E[Infuy 4| - Infug,|] — 2E[u,]?

2
+ 2E[In|uy 4| - Infug|] — 2E[us)?

(B1)

Because the non-zero outcomes occur when 5,(51) # E,gl_)l, which implies:

(e = e121)* = 2E(e”)] - Ele}"]?) = 202

k . . . .
wmﬂﬂmﬁﬂ:iE[Z(ﬁh—éﬂ-z(ﬁtﬁﬂJ]+EWP—EWWM-mmu
=1 i=1

]

(B2)

Because the non-zero outcomes occur when sgle # sgi) # egi_)l, which im-
plies:

(it — =) (&) = i) = BEPP - BlE)) = ot

)

cov[Xii1,1, Xt ]

n

£ (o) 5 (-]

i=1 I=k+1 I=k+1

=183 (e ) 35 (- )|+ 4

+E [Infu|]* — E [In]ug|?]

— 0,250 [i ()® 5 ()| + B linlwl)” = B [infudf?]
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2 2
z ! 1 u h h
el (lz <e§>—e§21>) (hz <e§>—e£_>1>>

k 2 n 2
1 7 h h
+i6E (Z(eﬁ) eﬁ%)) (z (e s§>1>>
=1 h=k+1
k 2 2
i i " l l
+16E (z<e§> sﬁln) (z (et a§_>1>>
i=1 =k+1
2 2
! k@6 OO 5 5
+392E || X(e —&2y) ) | +2B > (&) —&iy) - (2E[In|ue]?] — 2E[In|uq|]?)
=1 I=k+1

+2E[(Infuri])? - (Infuz,))?] = 8E[(Inur e])? - Infuz o] - Ellnfu]

+4E[In|uy | - (In|ugt|]? + 2E[(In|u])?]?

i=1 l=k+1

+202 (Elln|u|*] — Elln|u]?) - (i ot + i 2,}L>

+2E((Inluy¢])? - (Infuz.])?] = 8E[(Infuy ¢])? - Infug.¢[] - Elln|u.]]

+4E[In|uy 4| - (In|uz|]? + 2E[(In|u])?)?.

(B4)

. S\ , N}
(e — 5§1)1)> ] , let’s begin with E [(5?) - 5?,)1) ],

k
For the first term F (

=1

the non-zero value implies:

. . 47 . . . .
B| (e - et2,)"] = 2511+ 0BIE? - 85l BT = 1202

This occurs with probability 9277, Then we have the solution:

k 4 k
i i 1
E <§ (Eg)—a§)1)> =1202-3 "
i=1

i=1
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E[Xt2+1,1 : Yt21]

»th—‘

I=k+1

+2E (fj (D - 591)) - (2E[In|ug|?] — 2E[In|us)]?)

E[(In]us, )2 - (In|ug, 3 — 4E[(ln|u17t|)2 “Anfugy|] - Elinfug|] + 4E[Infu 4| - (Infugy || E

+3E[In|ug|?)? — 4E[In|us|?| Elln|u)?.

i=1
three different possible forms:

, N\? sk 2
For the first term E (Z(5§21 - 5,@)) : (Z(sgz) sil)l)> 1, there are

, N2 . , .

(1) (5%21 - sgl)) (5(2) elt )1) has non-zero value only if sﬁﬂl #e) 20
then E [(g§21 i )) ( (0 _ i >1) ] = B[N + 3E[2)2 — 4E[}Ee] =
602. (E[e}] = 3Xo2+ X3 and E[e}] = 302+6A202+)\*)) and the probability

k
of this occurance is (Qk -)2. Putting together we get {Z (zk ) } 6ol

i=1
() () (1) ()
(2) (e — & —¢&,21) , does not equal zero for i # j, st # E

and 5(1) #* 591. since {(5&)1 ,Ej)) ( (0) sgz)l) } = 4F|(e (Z)) 12—

8E|(e (1)) ]E[sgi)] + 4Fe (z)] = 402, together with the probability, this
overall contribution yields:

k k
> <2k1i > 2k1j>] -4’
i=1 J=Lj#i
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(3) (sgi)l — sgj)) (6521 — 5?)) (z—:gj) — sgj,)l) (sgi) - 891), which for i # j and
eii)l #* qn) #* egr_l)l, n = 1,j are non-zero, since

(5521 - EEj)) (55/21 - 59) (5§j) - Egj)l) (Egi) - 591) = 407, we obtain a

k k
contribution 2 Z(ﬁf > (2,%])2 ol
i=1 j=1j#i

Combining those three cases, we have the result:

2 2
Ko@) K@ )
E > (Et+1 —e ) ) {2 (e —ely)
=1 =1
412 PR i 1 L1 & 12
=60; - > (p=5)" +4doc- > 5 > gz T2 ) (=) > (35)
=1 =1 J=1i i=1 J=T,ji
E[Xt2+1,1 ‘ Yth]
1 4 k 1 2 4 k 1 k 1 4 k 1 2 k 1 2
=15 |60z Y (=) +dos- Y 5= X mm t200 Y (m=) X ()
i=1 i=1 J=1,5#i i=1 j=1,5i
n n
+0250'::1 Z in—l Z 217.%}1
=kt 1 h=Ff 1
k 1 n 1 4 k 1 n 1
-i-O250';1 Z k1 Z Sn—h + 0.250’5 Z k3 Z =T
=1 h—ft1 =1 =41

i=1 i=k+1

+202 - (E[ln|u|*] — Elln|u.]]?) - (Xk) = + i 21>

+E[(Infu])? - (Infuz,e])*] = 4E[(Infui])? - Infuzy] - Ellnfuel] + AB(Injuy o] - (In|ug o | E[In|ue[]*

+3E[In|u|?)? — 4E[In|u|?| E[in|u|)?
(B5)
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E[Xt2+1,1 ‘Xt2,1]

k 2 k 2 n 2 2
— 58| (S ) (S -) |+ e ( <e§£1—s£>>) ( > <e§>—s£’21>>

=1 =1 l=k+1 l=k+1

& 2 2 & 2 2

. . n l l n l l

tlg (z@fﬁle?))) (z (ei’s,E)l)) L ip (Z(‘” si”n) (z (0, — §>>>

=1 I=k+1 =1 I=k+1

! Eoa o) U0 Z>

+ii2m| (e -d) [ +2m | 3 e - - (2Blimfu 2] — 2E{imfu] )

=1 l=k+1

. . k . . [ n n
r58 [$ (=) £ (0 - )] 2| 3 @21—4 > (l-eyn)]
=1 i=1 _l:k+1 l=k+1
k i . k i
3B [ S (6 o) 35 (o — )] - (Blalan? — Bl
i=1 i=1 _
ta-3E | (5 =) 2 (e =) | (Blnfu)? - Elnful)
l=k+1 l=k+1 ]

+3E[In|u|?)? + Elln|u|*] — 4E[In|u|®| E[ln|u:|]

k k k k k
N S SCERTEID SRR SR Y S NS <>]
i=1 i=1 j=1,57i i=1 G=1,5i
1 4 v N . . 12 v 12
+E 60—5 ° Z (21,_ ) + 40— Z 2n,—l Z 2” J + 20 Z (2n—l) Z (Q’Lj)
I=kt1 I=kt1 =k, I=k+1 G=kt1,j7i
b 1 n 1 n 1 k 1
+0.250 Z DL Z FaT + 0.250’21 Z FaT E 57
1=1 I=k+1 I=k+1 =1

k n
+202 < S + P 27}_> - (Elln|u|?] = E[ln]ug|]?)

z=1 i=k+1

+3E[In|us|!)? + Eln|u¢|*] — 4E[In|us|®) Elln|ug]].
(B6)

Because the first term is identical with the first one of case E[X?,, 1, Y2 ].
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Figure 1: Simulation of the Bivariate Binomial Multi-Fractal Model with mq =
1.4, p = 0.3.
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Figure 2: ACF for the Simulation of the Bivariate Binomial Multi-Fractal Model

above.
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Figure 3: The distribution of p value for the test of overindentification restric-
tions for Binomial BMF. Three figures from up to down corresponding to three
different sample size: N7 = 2,000, N3 = 5,000 and N3 = 10, 000.
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Table 4: ML estimation

@  Sub-sample Size Bias SD RMSE

Ny —0.0106 0.0170  0.0200
Mg Ns —-0.0096 0.0118 0.0152
Ns —0.0101 0.0075 0.0126
Ny —0.0016 0.0222  0.0221
o1 Ny —0.0004 0.0140 0.0140
N3 0.0002  0.0086  0.0086
Ny —0.0033 0.0227  0.0228
P No —-0.0017 0.0128 0.0128
N3 —0.0010 0.0087  0.0087
Ny 0.0099  0.0208  0.0230
p Ny 0.0108  0.0123  0.0163
N3 0.0110  0.0079  0.0135

Note: Simulations are based on the Bivariate Binomial Multi-Fractal process with n = 5,
k = 2, which is almost the limit of computational feasibility, and initial value mo = 1.3,
o1 =1, 020 = 1, p = 0.5. Sample lengths are N1 = 2,000, No = 5,000 and N3 = 10, 000.
Bias denotes the distance between the given and estimated parameter value, SD and RMSE
denote the standard deviation and root mean squared error, respectively. For each scenario,
400 Monte Carlo simulations have been carried out.
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