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Abstract

When identifying relative value opportunities across credit and equity
markets, the arbitrageur faces two major problems, namely positions based
on model misspeci�cation and mismeasured inputs. Using credit default
swap data, this paper addresses both concerns in a convergence-type trad-
ing strategy. In spite of di¤erences in assumptions governing default and
calibration, we �nd the exact structural model linking the markets second
to timely key inputs. Studying an equally-weighted portfolio of all rela-
tive value positions, the excess returns are insigni�cant when based on a
traditional volatility from historical equity returns. However, relying on an
implied volatility from equity options results in a substantial gain in strategy
execution and highly signi�cant excess returns - even when small gaps are
exploited. The gain is largest in the speculative grade segment, and cannot
be explained from systematic market risk factors. However, although the
strategy may seem attractive at an aggregate level, positions on individual
obligors can be very risky.
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1 Introduction

Capital structure arbitrage refers to trading strategies that take advantage of the

relative mispricing across di¤erent security classes traded on the same capital

structure. As the exponential growth in the credit default swap (CDS) market

has made credit much more tradable and traditional hedge fund strategies have

su¤ered declining returns (Skorecki (2004)), important questions arise for hedge

funds and proprietary trading desks. In particular, do credit and equity markets

ever diverge in opinion on the quality of an obligor? What is the risk and return of

exploiting divergent views in relative value strategies? Although trading strategies

founded in a lack of synchronicity between equity and credit markets have gained

huge popularity in recent years (Currie & Morris (2002) and Zuckerman (2005)),

the academic literature addressing capital structure arbitrage is very sparse.

This paper conducts a comprehensive analysis of the risk and return of capi-

tal structure arbitrage using CDS data on 221 North American obligors in 2002

to 2004. When looking at one security in order to signal the sale or purchase of

another, the resulting link and initiation of a trade depends on the chosen model.

We address two major problems facing the arbitrageur, namely relative value op-

portunities driven by model misspeci�cation or mismeasured inputs.

Duarte, Longsta¤&Yu (2005) analyze traditional �xed income arbitrage strate-

gies such as the swap spread arbitrage, but also brie�y address capital structure

arbitrage. Yu (2006) argues for a complete lack of evidence in favor of or against

strategies trading equity instruments against CDSs. He conducts the �rst analy-

sis of the strategy by implementing the industry benchmark CreditGrades with a

historical volatility, as reputed used by most professionals.

We show that the more comprehensive model by Leland & Toft (1996) only

adds an excess return of secondary order. However, when exploiting a wider array

of inputs and securities in model calibration and identi�cation of relative value

opportunities, the result is a substantial improvement in strategy execution and

returns.

When searching for relative value opportunities, the arbitrageur uses a struc-

tural model to gauge the richness and cheapness of the 5-year CDS spread. Using

the market value of equity, a volatility measure and the liability structure of the

obligor, he compares the market spread with the spread implied from the model.

When the market spread is substantially larger(smaller) than the theoretical coun-

terpart, he sells(buys) a CDS and sells(buys) equity. If the market and model

spreads subsequently converge he pro�ts. Hence, the model helps identify credits
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that either o¤er a discount against equities or trade at a very high level.

As pointed out in Duarte et al. (2005), the nature of capital structure arbitrage

puts a premium on models that can explain the link between securities with dif-

ferent characteristics. In fact, the chosen underlying model plays a central role in

all parts of the strategy. First, it is used to calculate predicted CDS spreads gov-

erning entry and exit decisions in markets. Second, to calculate daily returns on

an open position, it is necessary to keep track on the total value of an outstanding

CDS position. This is done from the model-based term structure of survival prob-

abilities. Third, the model is used to calculate the equity hedge by a numerical

di¤erentiation of the value of the CDS position wrt. the equity price.

CreditGrades loosely builds on Black & Cox (1976), with default de�ned as

the �rst passage time of �rm assets to an unobserved default barrier. This model,

like other structural models, is based on a set of restrictive assumptions regarding

the default mechanism and capital structure characteristics.

Although allowing for a random recovery, CreditGrades belongs to the class of

models with an exogenous default barrier. However, Leland (1994) subsequently

extended in Leland & Toft (1996) has pioneered models with endogenous default.

In these models, the default barrier is chosen by managers as the asset value where

it is no longer optimal for the equityholders to meet the promised debt service

payments. Hence, the default barrier is determined not only by debt principal,

but also by asset volatility, debt maturity, payout rates and tax rates etc.

As a result of model variations, di¤erences in model calibration exist. For

structural models, this is particularly relevant as many key inputs are di¢ cult

to measure. Bypassing strict de�nitions CreditGrades is developed for immedi-

ate application, while the calibration of Leland & Toft (1996) is more extensive.

Hence, the number and characteristics of parameters to be estimated, as well as

the method to infer the underlying asset value process and default barrier, di¤er

across models.

Duarte et al. (2005) and Yu (2006) solely rely on CreditGrades calibrated

with a 1000-day historical volatility.1 When based on a large divergence between

markets and smaller gaps are ignored, both �nd that capital structure arbitrage

is pro�table on average. At the aggregate level, the strategy appears to o¤er

attractive Sharpe ratios and a positive average return with positive skewness. Yet,

individual positions can be very risky and most losses occur when the arbitrageur

1That CreditGrades is the preferred framework among professionals is argued in Currie &
Morris (2002) and Yu (2006), while the CreditGrades Technical Document by Finger (2002)
advocates for the 1000-day historical volatility.
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shorts CDSs but subsequently �nd the market spread rapidly increasing and the

equity hedge ine¤ective.

Due to the substantial di¤erences in model assumptions and calibration, the key

observed gap between the market and model spread fueling the arbitrageur may be

driven by model misspeci�cation. Furthermore, key inputs may be mismeasured

sending the arbitrageur a false signal of relative mispricing. Hence, there is an

urgent need to understand how the risk and return vary with model choice and

calibration. These caveats are unexplored in Duarte et al. (2005) and Yu (2006).

We address these two major problems facing the arbitrageur, and study how

the characteristics of capital structure arbitrage vary with model choice and asset

volatility calibration. For this purpose, we apply the CreditGrades model and

Leland & Toft (1996). As the volatility measure is a key input to the pricing of

credit, we identify relative value opportunities from a traditional 250-day historical

volatility used extensively in the bond pricing literature, and a volatility measure

implied from equity options.

Based on anecdotal evidence using CreditGrades, Finger & Stamicar (2005a)

and Finger & Stamicar (2005b) show how model spreads based on historical volatil-

ities lag the market when spreads increase, while overpredicting the market as

spreads recover. However, the more responsive implied volatility substantially

improves the pricing performance. Cao, Yu & Zhong (2006) conduct a more com-

prehensive study using regression analysis and the CreditGrades model. They �nd

that the more timely option-implied volatility dominates the historical measure

in explaining CDS spreads, and that the gain is concentrated among �rms with

lower credit ratings. While analyzing the determinants of CDS spreads and pricing

errors in CreditGrades, they are silent on the risk and return of capital structure

arbitrage.

As the arbitrageur feeds on large variations in credit and equity markets, these

insights suggest the implied volatility to lead to superior entry and exit decisions

and trading returns. Furthermore, the gain from a more timely credit signal is

expected to be largest for the obligors of most interest to the arbitrageur, namely

those in the speculative grade segment.

Hence, we implement the strategy on 221 North American industrial obligors

in 2002 to 2004. Case studies illustrate that while model choice certainly mat-

ters in identifying relative value opportunities, the volatility input is of primary

importance. The historical volatility may severely lag the market, sending the

arbitrageur a false signal of relatively cheap protection in the aftermath of a cri-

sis. The result is large losses for the arbitrager as market spreads continue to
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tighten. Indeed, the implied volatility may result in the exact opposite positions,

with obvious consequences for the arbitrageur.

However, irrespective of model choice and volatility calibration, the strategy is

very risky at the level of individual obligors. Convergence may never happen and

the equity hedge may be ine¤ective. This may force the arbitrageur to liquidate

positions early and su¤er large losses.

When studying the risk and return at an aggregate level, we focus on holding

period returns and a capital structure arbitrage index of monthly excess returns.

Indeed, both models generally result in insigni�cant excess returns, when cali-

brated with a traditional volatility from historical equity returns. However, the

gain from identifying relative value opportunities from option-implied volatilities

is substantial.

In a variant of the strategy based on CreditGrades, the mean holding period

return for speculative grade obligors increases from 2.64 percent to 4.61 percent

when implemented with option-implied volatilities. The similar numbers based

on Leland & Toft (1996) are 3.14 versus 5.47 percent. However, the incremental

return is much smaller for investment grade obligors.

Additionally, the corresponding excess returns are highly signi�cant when option-

implied volatilities are used to identify opportunities - even when small gaps are

exploited. Based on CreditGrades, the mean excess return is 0.44 percent on invest-

ment grade and 1.33 percent on speculative grade obligors, both highly signi�cant.

The similar numbers when Leland & Toft (1996) is used to identify relative value

opportunities are 0.27 and 2.39 percent, both highly signi�cant. Finally, we do

not �nd the excess returns to represent compensation for exposure to systematic

market factors.

We conclude that while model choice does matter for the arbitrageur, is seems

second to properly measured key inputs in the calibration. Hence, if the arbitrageur

relies on the dynamics of option prices when identifying relative value opportunities

across equity and credit markets, the result is a substantial aggregate gain in

trading returns above the benchmark application of capital structure arbitrage in

Duarte et al. (2005) and Yu (2006).

This paper is based on the premise that structural models price CDSs reason-

ably well. Ericsson, Reneby & Wang (2006) �nd that Leland (1994), Leland &

Toft (1996) and Fan & Sundaresan (2000) underestimate bond spreads consistent

with previous studies, but perform much better in predicting CDS spreads. In

fact, the resulting residual CDS spreads are uncorrelated with default proxies as

well as non-default proxies. Since the rationale for the strategy is to exploit a
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lack of integration between various markets, the paper is also related to studies

on the lead-lag relationship among bond, equity and CDS markets like Hull, Pre-

descu & White (2004), Norden & Weber (2004), Longsta¤, Mithal & Neis (2005)

and Blanco, Brennan & Marsh (2005). While the CDS is found to lead the bond

market, no de�nitive lead-lag relationship exists between equity and CDS markets.

Additionally, Hogan, Jarrow, Teo & Warachka (2004) study statistical arbi-

trages, while Mitchell & Pulvino (2001) and Mitchell, Pulvino & Sta¤ord (2002)

are important studies on merger and equity arbitrage. Finally, the paper is related

to Schaefer & Strebulaev (2004), who show that structural models produce hedge

ratios of equity to debt that cannot be rejected in empirical tests.

The remainder of this paper is organized as follows. Section 2 outlines the

trading strategy, while the data is presented in section 3. Section 4 presents the

underlying models and calibration, and section 5 illustrates some case studies.

Section 6 presents the aggregate results of the strategy, and section 7 concludes.

2 Trading Strategy

This section describes the trading strategy underlying capital structure arbitrage.

The implementation closely follows Yu (2006), to whom we refer for a more elab-

orate description. Since a time-series of predicted CDS spreads forms the basis of

the strategy, we start with a short description of how to price a CDS.

2.1 CDS Pricing

A CDS is an insurance contract against credit events such as the default on a

corporate bond (the reference obligation) by a speci�c issuer (reference entity).

In case of a credit event, the seller of insurance is obligated to buy the reference

obligation from the protection buyer at par.2 For this protection, the buyer pays a

periodic premium to the protection seller until the maturity of the contract or the

credit event, whichever comes �rst. There is no requirement that the protection

buyer actually owns the reference obligation, in which case the CDS is used more

for speculation rather than protection. Since the accrued premium must also be

2In practice, there may be cash settlement or physical settlement, as well as a possible
cheapest-to-deliver option embedded in the spread. However, we refrain from this complica-
tion. Credit events can include bankruptcy, failure to pay or restructuring.
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paid if a credit event occurs between two payment dates, the payments �t nicely

into a continuous-time framework.

First, the present value of the premium payments can be calculated as

EQ
�
c

Z T

0

exp

�
�
Z s

0

rudu

�
1f�>sgds

�
, (1)

where c denotes the annual premium known as the CDS spread, T the maturity

of the contract, r the risk-free interest rate, and � the default time of the obligor.

EQ denotes the expectation under the risk-neutral pricing measure. Assuming

independence between the default time and the risk-free interest rate, this can be

written as

c

Z T

0

P (0; s)q0(s)ds, (2)

where P (0; s) is the price of a default-free zero-coupon bond with maturity s, and

q0(s) is the risk-neutral survival probability of the obligor, P (� > s), at t = 03.

Second, the present value of the credit protection is equal to

EQ
�
(1�R) exp

�
�
Z �

0

rudu

�
1f�<Tg

�
, (3)

where R is the recovery of bond market value measured as a percentage of par

in the event of default. Maintaining the assumption of independence between the

default time and the risk-free interest rate and assuming a constant R, this can be

written as

�(1�R)
Z T

0

P (0; s)q00(s)ds, (4)

where � q00(t) = �dq0(t)=dt is the probability density function of the default time.
The CDS spread is determined such that the value of the credit default swap is

zero at initiation

0 = c

Z T

0

P (0; s)q0(s)ds+ (1�R)
Z T

0

P (0; s)q00(s)ds, (5)

and hence

c(0; T ) = �
(1�R)

R T
0
P (0; s)q00(s)dsR T

0
P (0; s)q0(s)ds

. (6)

3Later, we focus on constant interest rates. This assumption, together with independence be-
tween the default time and the risk-free interest rate, allows us to concentrate on the relationship
between the equity price and the CDS spread. This is exactly the relationship exploited in the
relative value strategy.
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The preceding is the CDS spread on a newly minted contract. To calculate

daily returns to the arbitrageur on open trades, the relevant issue is the value of

the contract as market conditions change and the contract is subsequently held.

To someone who holds a long position from time 0 to t, this is equal to

�(t; T ) = (c(t; T )� c(0; T ))
Z T

t

P (0; s)qt(s)ds, (7)

where c(t; T ) is the CDS spread on a contract initiated at t with maturity date T .

Equation (7) can be interpreted as a survival-contingent annuity maturing at date

T , which depends on the model-speci�c term structure of survival probabilities

qt(s) through s at time t.

Finally, we follow Yu (2006) in de�ning the hedge ratio �(t; T ) as

�(t; T ) = N � @�(t; T )
@St

, (8)

where St denotes the market value of equity at time t and N is the number of

shares outstanding.4 The choice of underlying model-framework and calibration is

discussed in section 4.

2.2 Implementation of the Strategy

Next, we brie�y describe the trading strategy as implemented in Duarte et al.

(2005) and Yu (2006). Using the market value of equity, a volatility measure

and the liability structure of the obligor, the arbitrageur uses a structural model

to gauge the richness and cheapness of the CDS spread. Comparing the daily

spreads in the market with the theoretical spreads implied from the model, the

model helps identify credits that either o¤er a discount against equities or trade

at a very high level.

If the market spread at a point in time has grown substantially larger than

the model spread (or vice versa), the arbitrageur sees an opportunity. It might be

that the credit market is gripped by fear and the equity market is more objective.

Alternatively, he might think that the equity market is slow to react and the CDS

spread is priced fairly. If the �rst view is correct, he should sell protection and

4This de�nition deviates slightly from the one in Yu (2006), since we formulate all models on
a total value basis and not per share. Equation (8) follows from a simple application of the chain
rule.
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if the second view is correct, he should sell equity. Either way, the arbitrageur

is counting on the normal relationship between the two markets to return. He

therefore takes on both short positions and pro�ts if the spreads converge. This

relative value strategy is supposed to be less risky than a naked position in either

market, but is of course far from a textbook de�nition of arbitrage.

Two important caveats to the strategy are positions initiated based on model

misspeci�cation or mismeasured inputs. Such potential false signals of relative

mispricing are exactly what this paper addresses.

We conduct a simulated trading exercise based on this idea across all obligors.

Letting � be the trading trigger, ct the market spread and c0t the equity-implied

model spread, we initiate a trade each day, if one of the following conditions are

satis�ed

ct > (1 + �) c
0
t or c

0
t > (1 + �) ct: (9)

In the �rst case, a CDS with a notional of $1 and shares worth $���1 are shorted.5

In the second case, the arbitrageur buys a CDS with a notional of $1 and buys

shares worth $� � � 1 as a hedge.
Since Yu (2006) �nds his results insensitive to daily rebalancing of the equity

position, we follow his base case and adopt a static hedging scheme. The hedge

ratio is therefore set to correspond to the model CDS spread c0t when entering the

position, and �xed throughout the trade.

Knowing when to enter positions, the arbitrageur must also decide when to

liquidate. We assume that exit occurs when the spreads converge, de�ned as

ct = c
0
t, or by the end of a pre-speci�ed holding period, which ever comes �rst. In

principle, the obligor can also default or be acquired by another company during

the holding period. Yu (2006) notes that in most cases the CDS market will

re�ect these events long before the actual occurrences, and the arbitrageur will

have ample time to make exit decisions.6 Speci�cally, it is reasonable to assume

that the arbitrageur will be forced to close his positions once the liquidity dries

up in the underlying obligor. Such incidents are bound to impose losses on the

arbitrageur.

5� is, of course, negative.
6This argument seems to be supported in Arora, Bohn & Zhu (2005), who study the surprise

e¤ect of distress announcements. Conditional on market information, they �nd only 11 percent
of the distress �rms� equities and 18 percent of the distressed bonds to respond signi�cantly.
The vast majority of prices are found to re�ect the credit deterioration well before the distress
announcement.

8



2.3 Trading returns

The calculation of trading returns is fundamental to analyze how the risk and

return di¤er across model assumptions and calibration methods. Since the CDS

position has a zero market value at initiation, trading returns must be calculated

by assuming that the arbitrageur has a certain level of initial capital. This as-

sumption allows us to hold �xed the e¤ects of leverage on the analysis. The initial

capital is used to �nance the equity hedge, and credited or deducted as a result of

intermediate payments such as dividends or CDS premia. Each trade is equipped

with this initial capital and a limited liability assumption to ensure well-de�ned

returns. Hence, each trade can be thought of as an individual hedge fund subject

to a forced liquidation when the total value of the portfolio becomes zero.7

Through the holding period the value of the equity position is straightforward,

but the value of the CDS position has to be calculated using equation (7). Since

secondary market trading is very limited in the CDS market and not covered by our

dataset, we adopt the same simplifying assumption as Yu (2006), and approximate

c (t; T ) with c (t; t+ T ). That is, we approximate a CDS contract maturing in four

years and ten months, say, with a freshly issued �ve year spread. This should not

pose a problem since the di¤erence between to points on the curve is likely to be

much smaller than the time-variation in spreads.

Yu (2006) �nds his results insensitive to the exact size of transaction costs for

trading CDSs. We adopt his base case, and assume a 5 percent proportional bid-

ask spread on the CDS spread. The CDS market is likely to be the largest single

source of transaction costs for the arbitrageur. We therefore ignore transaction

costs on equities, which is reasonable under the static hedging scheme.

3 Data

Data on CDS spreads is provided by the ValuSpread database from Lombard Risk

Systems, dating back to July 1999. This data is also used by Lando & Mortensen

(2005) and Berndt, Jarrow & Kang (2006). The data consists of mid-market CDS

quotes on both sovereigns and corporates, with varying maturity, restructuring

clause, seniority and currency. For a given date and reference �rm, the database

reports a composite CDS quote together with a standard deviation. This composite

quote is calculated as a mid-market quote by obtaining quotes from up to 25

7This is reminiscent of potential large losses when marked to market, triggering margin calls
and forcing an early liquidation of positions.
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leading market makers. The composite quote o¤ers a more reliable measure of the

market spread than using a single source, and the standard deviation measures

how representative the mid-market quote is for the overall market.

We con�ne ourselves to 5-year composite CDS quotes on senior unsecured debt

for North American corporate obligors with currencies denominated in US dollars.

Regarding the speci�cation of the credit event, we follow Yu (2006) and large

parts of the literature in using contracts with a modi�ed restructuring clause. The

frequency of data on CDS quotes increases signi�cantly through time, re�ecting

the growth and improved liquidity in the market. To generate a subsample of the

data suitable for capital structure arbitrage, we apply several �lters.

First, we merge the CDS data with quarterly balance sheet data from Compu-

stat and daily stock market data from CRSP. The quarterly balance sheet data is

lagged one month from the end of the quarter to avoid the look-ahead bias in using

data not yet available in the market. We then exclude �rms from the �nancial and

utility sector.

Second, for each obligor in the sample, daily data on the 30-day at-the-money

put-implied volatility is obtained from OptionMetrics. OptionMetrics is a com-

prehensive database of daily information on exchange-listed equity options in the

U.S. since 1996. OptionMetrics generates the 30-day at-the-money put-implied

volatility by interpolation.

Third, in order to conduct the simulated trading exercise, a reasonably contin-

uous time-series of CDS quotes must be available. In addition, the consensus quote

must have a certain quality. Therefore, we de�ne the relative quote dispersion as

the standard deviation divided by the mid-market quote. All daily mid-market

quotes with an intra-daily quote dispersion of zero or above 40 percent are then

deleted.8

For each obligor, we next search for the longest string of more than 100 daily

quotes no more than 14 calender days apart, which have all information available

on balance sheet variables, equity market and equity options data.9 As noted in

Yu (2006), this should also yield the most liquid part of coverage for the obligor,

forcing the arbitrageur to close his positions once the liquidity vanishes.

8One could argue for a cut-o¤ point at a lower relative dispersion, but on the other hand a
trader is likely to take advantage of high uncertainty in the market. The majority of quotes have
a relative dispersion below 20 percent.

9As discussed below, this may give rise to a survivorship issue. However, we try to minimize
this by requiring a string of only 100 spreads, far less than Yu (2006). In any case, this should
not pose a problem, since the focus of the paper is on relative risk and return across models and
calibration methods, and not absolute measures.
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Finally, 5-year and 3-month constant maturity treasury yields are obtained

from the Federal Reserve Bank of St. Louis. These interest rates are used to

calculate the equity-implied 5-year CDS spread, and to calculate excess returns

from the trading strategy.

Applying this �ltration to the merged dataset results in 221 obligors with 65,476

daily consensus quotes, dating back to July 2002 and onwards to the end of Sep-

tember 2004. Indeed, this mirrors the exponential growth in liquidity after 2001.

Table 1 presents summary statistics for the obligors across the initial credit rating

from Standard & Poor�s, when entering the sample. The variables presented are

averages over time and then rating. The majority of �rms are BBB rated, and

16 �rms are in the speculative grade segment, including one non-rated obligor. A

lower spread is associated with a lower leverage and volatility, which is in line with

predictions of structural credit risk models.

We implement the trading strategy using the implied volatility from equity

options (IV), and a 250-day volatility from a historical time-series of equity values

(HV). On average these volatilities are similar, but it turns out that the dynamics

of option prices provide the arbitrageur with superior information. The average

correlation between changes in the spread and the equity value is negative as ex-

pected from a structural viewpoint, but fairly low. This is consistent with Yu

(2006) and correlations ranging from 5 to 15 percent quoted by traders in Currie

& Morris (2002). This indicates that the two markets may drift apart and hold di-

vergent views on obligors, which fuels the arbitrageur ex ante. Ex post, it suggests

that the equity hedge may be ine¤ective.

[Table1 about here]

4 Model Choice and Volatility Calibration

Having the trading strategy and data explained, we next introduce the two underly-

ing models and the associated calibration. The formulas for each model including

the risk-neutral survival probability qt(s), the CDS spread c(0; T ), the contract

value �(t; T ) and the equity delta �(t; T ) are described in the appendix. Further

details on the models can be found in Finger (2002) and Leland & Toft (1996).
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4.1 CreditGrades

The CreditGrades model is jointly developed by RiskMetrics, JP Morgan, Gold-

man Sachs and Deutsche Bank with the purpose to establish a simple framework

linking credit and equity markets. As noted by Currie & Morris (2002) and Yu

(2006), this model has become an industry benchmark widely used by traders,

preferably calibrated with a rolling 1000-day historical volatility as advocated in

Finger (2002).

It loosely builds on Black & Cox (1976), with default de�ned as the �rst pas-

sage time of �rm assets to an unobserved default barrier. Hence, deviating from

traditional structural models, it assumes that the default barrier is an unknown

constant drawn from a known distribution. This element of uncertain recovery

increases short-term spreads, but cannot do so consistently through time.10

Originally, the model is built on a per-share basis taking into account preferred

shares and the di¤erences between short-term versus long-term and �nancial versus

non-�nancial obligations, when calculating debt per share. Like Yu (2006), we

only work with total liabilities and common shares outstanding. Therefore, we

formulate the model based on total liabilities and market value of equity.

Under the risk-neutral measure, the �rm assets V are assumed to follow

dVt = �V VtdWt, (10)

where �V is the asset volatility and Wt is a standard Brownian motion. The

zero drift is consistent with the observation of stationary leverage ratios in Collin-

Dufresne & Goldstein (2001). The default barrier is LD, where L is a random

recovery rate given default, and D denotes total liabilities. The recovery rate

L follows a lognormal distribution with mean �L, interpreted as the mean global

recovery rate on all liabilities, and standard deviation �. Then, R in equation (6)

is the recovery rate on the speci�c debt issue underlying the CDS.

Instead of working with a full formula for the value of equity S; CreditGrades

uses the linear approximation

V = S + �LD, (11)

10A theoretically more appealing approach is given by Du¢ e & Lando (2001).
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which also gives a relation between asset volatility �V and equity volatility �S

�V = �S
S

S + �LD
: (12)

The model is easy to implement in practice. In particular, D is the total liabil-

ities from quarterly balance sheet data, S is the market value of equity calculated

as the number of shares outstanding multiplied by the closing price, and r is the

5-year constant maturity treasury yield. Furthermore, the bond-speci�c recovery

rate R is assumed to be 0:5 and the standard deviation of the global recovery rate

� is 0:3. All parameters are motivated in Finger (2002) and Yu (2006).

The volatility measure is a key input to the pricing of credit. Instead of us-

ing a rolling 1000-day volatility �S from historical equity values as Yu (2006),

we implement the strategy using a 250-day historical volatility and the implied

volatility from equity options. Using insights from Finger & Stamicar (2005a) and

Cao et al. (2006), the implied volatility may provide a much more timely measure

of volatility relevant for CDS pricing, and hence lead to superior entry and exit

decisions and thus trading returns. We expect this gain to be most pronounced for

the speculative grade sample, where obligors typically experience large variations

in spreads. Here, historical volatilities may lag true market levels and send a false

signal of mispricing to the arbitrageur.

Finally, the mean global recovery rate �L is set as a free exogenous parameter,

and used to get the model in line with the credit market before conducting the

trading exercise. This is consistent with Yu (2006), who infers �L by minimizing the

sum of squared pricing errors over the �rst 10 CDS spreads. Now, all parameters

are in place to calculate the time-series of CDS spreads underlying the analysis,

together with hedge ratios and values of open CDS positions.

4.2 Leland & Toft (1996)

This model assumes that the decision to default is made by a manager, who acts

to maximize the value of equity. At each moment, the manager must address

the question whether meeting promised debt service payments is optimal for the

equityholders, thereby keeping their call option alive. If the asset value exceeds

the endogenously derived default barrier VB, the �rm will optimally continue to

service the debt - even if the asset value is below the principal value or if cash

�ow available for payout is insu¢ cient to �nance the net debt service, requiring

additional equity contributions.
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In particular, �rm assets V are assumed to follow a geometric Brownian motion

under the risk-neutral measure

dVt = (r � �)Vtdt+ �V VtdWt, (13)

where r is the constant risk-free interest rate, � is the fraction of asset value paid

out to security holders, �V is the asset volatility and Wt is a standard Brownian

motion. Debt of constant maturity � is continuously rolled over, implying that at

any time s the total outstanding debt principal P will have a uniform distribution

over maturities in the interval (s; s+�). Each debt contract in the multi-layered

structure is serviced by a continuous coupon. The resulting total coupon payments

C are tax deductible at a rate � , and the realized costs of �nancial distress amount

to a fraction � of the value of assets in default VB. Rolling over �nite maturity

debt in the way prescribed implies a stationary capital structure, where the total

outstanding principal P , total coupon C, average maturity �
2
and default barrier

VB remain constant through time.

To determine the total value of the levered �rm v(Vt), the model follows Leland

(1994) in valuing bankruptcy costs BC(Vt) and tax bene�ts resulting from debt

issuance TB(Vt) as time-independent securities. It follows, that

�(Vt) = Vt + TB(Vt)�BC(Vt) (14)

= S(Vt) +D(Vt),

where S(Vt) is the market value of equity and D(Vt) the market value of total debt.

To implement the model, we follow Ericsson et al. (2006) in setting the real-

ized bankruptcy cost fraction � = 0:15, the tax rate � = 0:20 and the average

debt maturity �
2
= 3:38.11 Furthermore, as above, P is the total liabilities from

quarterly balance sheet data, S is the market value of equity and r is the 5-year

constant maturity treasury yield. We also follow Ericsson et al. (2006) in assuming

that the average coupon paid out to all debtholders equals the risk-free interest

rate, C = rP .12 The asset payout rate � is calculated as a time-series mean of

11The choice of 15 percent bankruptcy costs lies well within the range estimated by Andrade
& Kaplan (1998). 20 percent as an e¤ective tax rate is below the corporate tax rate to re�ect
the personal tax rate advantage of equity returns. Stohs & Mauer (1996) �nd an average debt
maturity of 3.38 years using a panel of 328 industrial �rms with detailed debt information in
Moody�s Industrial Manuals in 1980-1989.
12A �rm�s debt consists of more than market bonds, and usually a substantial fraction of total

debt is non-interest bearing such as accrued taxes and supplier credits. Furthermore, corporate
bonds may be issued below par, which also opens up for this approximation.
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the weighted average historical dividend yield and relative interest expense from

balance sheet data

� =

�
Interest expenses

Total liabilities

�
� L + (Dividend yield)� (1� L) (15)

L =
Total liabilities

Total liabilities+Market equity
.

Since the default barrier VB is endogenously determined and depends on model

parameters, it does not need to be inferred from market data. Instead, the default

barrier varies with fundamental characteristics of the �rm such as leverage, asset

volatility, debt maturity and asset payout rate. Contrary to the implementation of

CreditGrades in Yu (2006), this allows us to instead �t the bond-speci�c recovery

rate R from the �rst 10 CDS spreads. As Yu (2006) argues, this is also the free

parameter used in practice by traders to �t the level of market spreads.

Before calibration of the bond-speci�c recovery rate R, the asset value V and

asset volatility �V must be estimated. Due to the full-blown relationship between

equity and assets, this is a more troublesome exercise in Leland & Toft (1996).

When analyzing the trading strategy with a 250-day historical volatility, we infer

the unobserved time-series of asset values and asset volatility using the iterative

algorithm of Moody�s KMV, outlined in Crosbie & Bohn (2003) and Vassalou &

Xing (2004).

This iterative algorithm is preferable over an instantaneous relationship be-

tween asset volatility �V and equity volatility �S, governed by Ito�s lemma. The

latter underlies the implementation of CreditGrades in equation (12), and is used

in Jones, Mason & Rosenfeld (1984). As noted in Lando (2004), the iterative al-

gorithm is particularly preferable when changes in leverage are signi�cant over the

estimation period.

In short, the iterative scheme goes as follows. The market value of equity St
is a function of a parameter vector �, the asset value Vt, default barrier VB(�V )

and asset volatility �V , St = f(Vt; �V ; �). Using quarterly balance sheet data, a

rolling 250-day window of historical equity values and an initial guess of the asset

volatility, we calculate the default barrier and invert the equity pricing formula to

infer an implied time-series of asset values Vt (�V ) = f�1(St; �V ; �). The market

value of assets follow a geometric Brownian motion, allowing us to obtain an

updated asset volatility and default barrier. This procedure is repeated until the

values of �V converge.

When analyzing the trading exercise based on implied volatilities from equity
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options, we do not face the problem of changing leverage in a historical estimation

window. Therefore, we solve the instantaneous relationship

St = f(Vt; �V ; �) (16)

�S =
@St
@Vt

�V
Vt
St

(17)

numerically for the unknown asset value Vt and asset volatility �V .

4.3 Model Calibration and Implied Parameters

Table 2 presents summary statistics of implied parameters from CreditGrades and

Leland & Toft (1996), using a rolling 250-day historical volatility (HV) and implied

volatility (IV). The table also shows average calibration targets from the equity

and equity options market, together with asset payout rates. In CreditGrades

implemented with a historical volatility in panel A, the average market value of

assets V is $20,592 million with a median of $14,839 million, while the average and

median expected default barrier �LD is $8,556 million and $3,846 million, respec-

tively. The mean asset volatility �V is 22.8 percent, with a median of 21.3 percent.

Finally, the average and median mean global recovery rate �L is 0.799 and 0.573,

respectively. Similar implied parameters result on aggregate when implemented

with the implied volatility in panel B.

[Table 2 about here]

When implementing Leland & Toft (1996) in panel C and D, several di¤erences

from CreditGrades are apparent. First, the asset values appear larger and asset

volatilities lower. This is due to the observation that the relatively high endogenous

default barrier VB increases the theoretical equity volatility, ceteris paribus. Hence,

the model implies a higher asset value and/or lower asset volatility in order to

match the theoretical and observed equity volatility.

Second, the variation in implied bond recovery R across the two volatility mea-

sures is large. Based on the historical volatility, both the average and median im-

plied bond recovery are highly negative, indicating that the model underestimates

the level of market spreads in the beginning of the sample period.13 Implied recov-

13This should not be a problem for the current trading strategy, since subsequent movements
in relative prices across equity and credit markets drive the arbitrageur, not absolute levels.
The most extreme bond recovery of -1,858 results from an underestimation of only 50 bps. In
this case, the market spread is close to 50 bps, while the model spread with a reasonable bond
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eries are more plausible when inferred from option-implied volatilities. Although

the mean continues to be negative, the median is 0.233. This is indicative of an

implied volatility that varies stronger with changes in the CDS spread. Indeed,

calculating the mean correlation between changes in CDS spreads and changes in

volatility measures, the correlation is 1.8 and 9.9 percent based on historical and

implied volatilities, respectively.

The variation in implied mean global recovery �L in CreditGrades is much

smaller across volatility measures. This is a manifestation of the di¤erence in

information used at various stages, when calibrating the two models. In Cred-

itGrades the expected default barrier is exogenous, while it is endogenously de-

termined in Leland & Toft (1996). As a result of the linear approximation in

equation (11), asset values, the asset volatility and the expected default barrier

are not nailed down and determined in CreditGrades until the mean global recov-

ery rate is inferred from the initial CDS spreads. Subsequent to nailing down this

key parameter, there is a one-to-one relationship between changes in equity and

assets, @S
@V
= 1.

The default mechanism in Leland & Toft (1996) implies a di¤erent use of mar-

ket data. Here, the asset value and asset volatility are solely determined from

the equity and equity options market. Together with the endogenous default bar-

rier, this gives far less �exibility when �tting the �nal bond recovery from initial

CDS spreads. The result is more extreme values for this parameter.14 However,

the subsequent relationship and wedge between equity and assets vary with the

distance to default. When close to default, @S
@V
is very steep and below one. Al-

though delta may go above one as the credit quality improves, the relationship

approaches one-to-one when far from default. Hence, the variation in asset dy-

namics across the two models may be substantial for speculative grade obligors,

with direct consequences for the arbitrageur.

From the discussion in section 2, the chosen structural model plays a central

role in all parts of capital structure arbitrage. In particular, the model under-

lies survival probabilities and predicted CDS spreads, hedge ratios, valuation of

open CDS positions and trading returns. As shown above, assumptions behind

CreditGrades and Leland & Toft (1996), as well as practical implementation, vary

substantially. How these di¤erences in model choice and calibration manifest in

recovery is close to zero.
14If CreditGrades is implemented with a mean global recovery of 0.5 as suggested in Finger

(2002), we qualitatively get the same results for the implied bond recovery as in Leland & Toft
(1996).
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pro�tability and strategy execution is analyzed next. Before turning to the general

results across all obligors, some case studies are analyzed.

5 Case Studies

In this section, the two models calibrated with historical and option-implied volatil-

ities are used to identify divergent views in equity and credit markets. The case

studies illustrate that while model choice certainly matters in identifying relative

value opportunities, the volatility input is of primary importance. In fact, the two

volatility measures may result in opposite positions, with obvious consequences for

the arbitrageur. The �nal study illustrates that the strategy is very risky at the

level of individual obligors.

5.1 Sears, Roebuck and Company

Figure 1 illustrates the fundamentals of capital structure arbitrage for the large

retailer Sears, Roebuck and Company, rated A by S&P and Baa1 by Moody�s.

Panel A and B depict model and market spreads from September 2002 to June

2004 (excluding the initial 10 spreads reserved for calibration), while panel C and

D depict equity volatilities and the market value of equity, respectively.

The uncertainty in the markets increases substantially in the beginning of the

period. Moody�s changes their rating outlook to negative on October 18 2002, due

to increasing uncertainty in the credit card business and management changes. In

this period, equity prices tumble and CDS spreads reach 379 bps on October 24

2002, a doubling in 2 weeks. While the markets begin to recover shortly thereafter,

model spreads based on the sticky historical volatility continue far into 2003 to

suggest the arbitrageur to buy protection and buy equity as a hedge. However,

with only few exceptions the market spreads tighten in the succeeding period,

and the market and model spreads never converge. Depending on the size of the

trading trigger and the chosen model, many losing positions are initiated although

partially o¤set by an increasing equity price.

Panel C illustrates how the historical volatility severely lags the more timely

implied volatility, sending the arbitrageur a false signal of relatively cheap protec-

tion in the aftermath of the crisis. In fact, spreads inferred from implied volatilities

quickly tighten and may initiate the exact opposite strategy. Particularly spreads

in Leland & Toft (1996) indicate that protection is trading too expensive rela-

tive to equity from the end of 2002. Indeed, selling protection and selling equity
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as hedge result in trading returns of 5 to 15 percent on each daily position, due

to tightening market spreads and convergence on June 5, 2003. Subsequent to

convergence, implied volatilities suggest the equity and credit markets to move in

tandem and hold similar view on the credit outlooks.

As a �nal observation, model spreads in CreditGrades react stronger to changes

in volatility than Leland & Toft (1996), widening to over 1000 bps as the implied

volatility from equity options peaks. This may be due to the endogenous default

barrier in the latter model. Indeed, increasing the asset volatility causes equity-

holders to optimally default later in Leland & Toft (1996). This mitigates the

e¤ect on the spread.

[Figure 1 about here]

5.2 Time Warner and Motorola

Simulating the trading strategy on TimeWarner and Motorola supports the former

insights. Figure 2 depicts Time Warner, rated BBB by S&P and Baa1 by Moody�s.

In August 2002 just prior to the beginning of the sample, Moody�s changes their

outlook to negative as the SEC investigates the accounting practices and internal

controls. As markets recover in late 2002, CreditGrades with historical volatility

indicates that protection is cheap relative to equity, while spreads in Leland & Toft

(1996) are more neutral. Although equity prices increase throughout 2003, many

losing trades are initiated as market spreads are more than cut by half within few

months, and Moody�s changes their outlook back to stable.

Again, the historical volatility lags the market after the crisis, while the im-

plied volatility is more responsive to changes in the equity value. In October and

November 2002, where market spreads have already tightened substantially, model

spreads inferred from implied volatilities suggest that protection is expensive rela-

tive to equity and should tighten further. Selling protection at 339 bps and equity

at $14.75 on October 31, 2002, result in convergence and 15 percent returns on

December 12, where the CDS and equity are trading at 259 bps and $13.56, respec-

tively. However, spreads inferred from implied volatilities are volatile as market

spreads tighten, resulting in rather noisy estimates of credit outlooks and frequent

liquidation of positions. Operating with a very low trigger may reverse positions

several times during this period, while a trigger of 0.5 results in only few positions.

In �gure 3, the key variables for Motorola, rated BBB by S&P, are depicted.

Building on historical volatilities, the arbitrageur initiates many trades and suf-

fers losses, while implied volatilities suggest the two markets to move in tandem
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and hold similar views on the obligor. In the latter case, only few relative value

opportunities are apparent.

[Figure 2 and 3 about here]

5.3 Mandalay Resort Group

Capital structure arbitrage is very risky when based on individual obligors, and

the arbitrageur may end up in severe problems irrespective of model choice and

calibration. Figure 4 presents the fundamental variables behind Mandalay Resort

Group, rated BB by S&P. Throughout the coverage, spreads in Leland & Toft

(1996) based on historical volatilities diverge from market spreads in a smooth

manner, while spreads in CreditGrades diverge more slowly. The arbitrageur sells

protection and equity as hedge, and su¤ers losses as positions are liquidated after

the maximum holding period.

May and June 2004 are particularly painful, as model spreads inferred from

implied volatilities plunge and stay tight throughout the coverage. On June 4, 2004

the competitor MGM Mirage announces a bid to acquire Mandalay Resort Group

for $68 per share plus assumption of Mandalay�s existing debt. Moody�s places

the rating on review for a possible downgrade, due to a high level of uncertainty

regarding the level of debt employed to �nance the takeover. As a result, the

equity price increases from $54 to $69 over a short period, the implied volatility

plunges and the CDS spread widens from 188 bps to 227 bps.15 On June 15, 2004

a revised o¤er of $71 per share is approved, and the transaction is completed on

April 26, 2005.

The opposite reaction in equity and credit markets gives the arbitrageur short

in markets a painful one-two punch similar to the one experienced by hedge funds

in May 2005, where General Motors is downgraded while the equity price soars.16

Luckily, not many trades are open during the takeover bid as model and market

spreads recently converged. However, the short positions initiated in May 2004,

where credit seems expensive relative to equity, su¤er large losses on both legs.

[Figure 4 about here]

15Implied volatilities from at-the-money calls plunge as well.
16This case study is discussed in Duarte et al. (2005).
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6 General Results

In this section, we simulate the trading strategy for all 221 obligors. Following

Yu (2006), we assume an initial capital of $0.5 for each trade and $1 notional in

the CDS. The strategy is implemented for trading triggers � of 0.5 and 2, and

maximum holding periods of 30 and 180 days.

Naturally, absolute trading returns will vary with the above characteristics, as

well as the particular period studied and how to account for vanishing liquidity

etc. However, these characteristics are all �xed when studying the relative risk

and return across models and calibration methods. Therefore, a scaling of returns

with the amount of initial capital is unlikely to in�uence our conclusions.17 Indeed,

although based on a di¤erent dataset, the benchmark results for CreditGrades with

a historical volatility are similar to the �ndings in Yu (2006).

Table 3 and 4 present the summary statistics of holding period returns based on

CreditGrades and Leland & Toft (1996), respectively. A longer maximum hold-

ing period leads to more converging trades, fewer trades with negative returns

and higher average returns. This fundamental result underlies both models and

volatility measures. Consistent with Yu (2006), although the distribution of re-

turns becomes less dispersed, a higher trading trigger does not necessarily lead to

higher mean returns.

When identifying relative value opportunities from implied not historical volatil-

ities, the number of initiated trades rises for investment grade obligors and falls

for speculative grade obligors. This results from both models, although the ab-

solute number of trades is larger in Leland & Toft (1996). This is consistent with

�ndings in Finger & Stamicar (2005a) and Cao et al. (2006), where the advantage

of implied volatility in tracking market spreads with CreditGrades is concentrated

among speculative grade obligors. We �nd this measure to identify fewer relative

value opportunities on obligors with larger variations in spreads.

The results clearly show a di¤erence in risk and return across models and

volatility input. Identifying relative value opportunities on speculative grade oblig-

ors in CreditGrades with a historical volatility, a maximum holding period of 180

days and a trading trigger of 2 yields a mean holding period return of 2.64 percent.

However, simulating the trading strategy with option-implied volatilities increases

the return to 4.61 percent.18 The corresponding numbers based on Leland & Toft

17Yu (2006) also conducts his analysis with an initial capital of $0.1. The resulting returns
are scaled up accordingly. Unreported results with this initial capital and other trading triggers
leave our conclusions unchanged.
18While the average pro�tability increases when identifying relative value opportunities from
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(1996) are 3.14 and 5.47 percent. The gain from implied volatilities across trading

triggers and maximum holding periods is also apparent from the number of trades

ending in convergence and the fraction of trades with negative returns. However,

the incremental return is much smaller for investment grade obligors.

On top of this, the mean holding period return and dispersion are both higher

on speculative grade obligors compared to the investment grade sample. This

supports the similar result in Yu (2006) and happens irrespective of model choice

and volatility measure. Although more likely to su¤er from vanishing liquidity and

default, this supports his observation that the aggregate success of the strategy

depends on the availability of large variations in spreads. For these obligors in

particular the implied volatility, being more responsive to changes in equity values,

results in incremental trading returns from superior entry and exit decisions.

The holding period returns are more favorable when Leland & Toft (1996) is

used to identify relative value opportunities. However, in practice it is hard to

discern exactly where the di¤erence arises, as the models di¤er in many respects

and enter in all parts of the strategy. While model choice does matter, it seems

second to properly measured key inputs.

[Table 3 and 4 about here]

6.1 Capital Structure Arbitrage Index Returns

As illustrated in the previous sections, capital structure arbitrage is very risky at

the level of individual trades. The hedge may be ine¤ective and the markets may

continue to diverge, resulting in losses and potential early liquidations. However,

when initiated on the cross-section of obligors, the strategy may be pro�table

on average depending on the particular implementation. Having established this

�nding, the next step is to understand the sources of the pro�ts, i.e. whether the

returns are correlated with priced systematic risk factors. Hence, we construct a

monthly capital structure arbitrage excess return index from all individual trades,

following Duarte et al. (2005) and Yu (2006).

Speci�cally, we compute daily excess returns for all individual trades over the

entire holding period. On a given day, thousands of trades may be open. By

essentially assuming that the arbitrageur is always invested in an equally-weighted

portfolio of hedge funds, where each fund consists of one trade, we calculate an

implied volatilities, so does the volatility of returns. As the mean holding period return consists
of many overlapping holding periods, the statistical signi�cance of trading returns is analyzed
from a return index below.
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equally-weighted average of the excess returns on a daily basis. These average

daily excess returns are then compounded into a monthly frequency.

Table 5 presents the summary statistics of monthly excess returns based on a

maximum holding period of 180 days, covering 24 months in 2002-2004. However,

some strategies result in months with no trades. In this case, a zero excess return

is assumed.

Again, although also present in the investment grade segment, the bene�t

of option-implied volatilities is concentrated among speculative grade obligors.

Additionally, timely inputs are relatively more important than the exact structural

model underlying the strategy. In particular, when based on CreditGrades with

option-implied volatilities and a trading trigger of 2, the mean excess return is

0.44 percent on investment grade and 1.33 percent on speculative grade obligors.

These numbers are highly signi�cant after correcting for serial correlation. The

corresponding numbers when Leland & Toft (1996) is used to identify relative value

opportunities are 0.27 and 2.39 percent, respectively, both highly signi�cant.

The excess returns resulting from a historical volatility are much smaller and

most often insigni�cant. Indeed, the mean excess return from this measure may

turn negative and signi�cant at a lower trading trigger of 0.5, while it continues

to be positive and signi�cant based on implied volatilities.

Addressing whether �xed income arbitrage is comparable to picking up nickels

in front of a steamroller, Duarte et al. (2005) �nd that most of the strategies

result in monthly excess returns that are positively skewed. While our results

are mixed when relative value positions are identi�ed from historical volatilities,

the skewness is always positive when based on the implied measure. Thus, while

producing large negative returns from time to time, this strategy tends to generate

even larger o¤setting positive returns.

[Table 5 about here]

As a �nal exercise, we explore whether the excess returns represent compensa-

tion for exposure to systematic market factors.19 In particular, we use the excess

return on the S&P Industrial Index (S&PINDS) to proxy for equity market risk.

To proxy for investment grade and speculative grade bond market risk, the ex-

cess returns on the Lehman Brothers Baa and Ba Intermediate Index (LHIBAAI)

and (LHHYBBI), respectively, are used. These variables are obtained from Datas-

19For brevity, only regressions with a trading trigger of 2 are reported. Similar results are
obtained at a lower threshold of 0.5.
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tream. As argued by Duarte et al. (2005), such factors are also likely to be sensitive

to major �nancial events, such as a sudden �ight-to-quality or �ight-to-liquidity.

As the same risk would be present, and presumably compensated, in the excess

returns from these portfolios, we may be able to control for the component of

returns that is compensation for bearing the risk of major, but not yet realized,

�nancial events.

As the CDS market was rather illiquid before mid-2002, the regressions consist

of no more than 24 monthly excess returns. Hence, the results must be interpreted

with caution. Yu (2006) �nds no relationship between capital structure arbitrage

monthly excess returns and any of the factors, and the factors cannot bid away the

alphas (regression intercepts) of the strategy. Our R2 range from 8 to 35 percent,

but the market factors are either insigni�cant or only weakly signi�cant. Surpris-

ingly, the occasional weak signi�cance is not related to the size and signi�cance

of excess returns, nor rating category. Hence, the evidence does not indicate that

the excess returns represent compensation for exposure to factors proxying equity

and bond market risk.

As we only have 24 monthly excess returns, there is little chance of detecting

signi�cant alphas after controlling for the market risk. However, the structure

of excess returns after a risk-adjustment is similar to the structure of raw excess

returns in table 5. Indeed, the largest di¤erence in alphas across the historical

and option-implied volatility is in the speculative grade segment. While three of

four intercepts are negative based on the investment grade obligors, it is always

positive on speculative grade obligors.

[Table 6 about here]

7 Conclusion

This paper conducts a comprehensive analysis of the risk and return of capital

structure arbitrage. As a structural credit risk model underlies the identi�cation

of relative value opportunities across equity and credit markets, the chosen model

plays a central role in all parts of the strategy. Di¤erent structural models may

generate di¤erent predicted CDS spreads, entry and exit decisions in markets,

hedge ratios and valuations of open CDS positions. Particularly, an observed

di¤erence in market and equity-implied model CDS spread may be driven by model

misspeci�cation, and key inputs may be mismeasured, sending a false signal of

mispricing in the market.
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We address these two major problems facing the arbitrageur, and study how the

risk and return vary with model choice and asset volatility calibration. The indus-

try benchmark CreditGrades and the Leland & Toft (1996) model di¤er extensively

in assumptions governing default and calibration method. However, while model

choice certainly matters, the exact model underlying the strategy is of secondary

importance. Studying an index of monthly capital structure arbitrage excess re-

turns across 221 North American industrial obligors in 2002-2004, both models

generally result in insigni�cant excess returns, when calibrated with a traditional

rolling 250-day volatility from historical equity returns.

However, as the arbitrageur feeds on large variations in equity and credit

markets, and the asset volatility is a key input to the pricing of credit, a more

timely volatility measure is desirable. In such markets, the historical volatility

may severely lag the market, suggesting the arbitrageur to enter into unfortunate

positions and face large losses. Indeed, basing the strategy on a volatility mea-

sure inferred from the dynamics of equity options may lead to the exact opposite

positions. The result is highly signi�cant excess returns, even at low thresholds

for strategy initiation. The incremental return is largest for the speculative grade

obligors, and cannot be explained by well-known equity and bond market factors.

While pro�table on an aggregate level, individual trades can be very risky.

Irrespective of model choice and volatility measure, the market and equity-implied

spread may continue to drift apart, and the equity hedge may be ine¤ective. This

may force the arbitrageur to liquidate individual positions early, and su¤er large

losses.

Duarte et al. (2005) and Yu (2006) conduct the �rst analysis of the strategy by

implementing CreditGrades with a historical volatility, as reputed used by most

professionals. We show that the more comprehensive model by Leland & Toft

(1996) only adds an excess return of secondary order. However, exploiting a wider

array of inputs and securities in the identi�cation of relative value opportunities

leads to a substantial improvement in strategy execution and returns.

A structural model allows for numerous implementations of capital structure

arbitrage, as it links �rm fundamentals with equities, equity options, corporate

bonds and credit derivatives. As we often �nd the hedge in cash equities ine¤ective,

a further improvement may lie in o¤setting positions in equity options such as out-

of-the-money puts. This non-linear product may also reduce the gamma risk of the

strategy, which can cause losses in a fast moving market. As CDS data continues

to expand, future research will shed light on many unexplored properties of relative

value trading across equity and credit markets.
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A Appendix

The appendix contains formulas for the risk-neutral survival probability qt(s), the

CDS spread c(0; T ), the contract value �(t; T ) and the equity delta �(t; T ). Both

models assume constant default-free interest rates, which allow us to concentrate

on the relationship between the equity price and CDS spread, also exploited in the

relative value strategy.

A.1 CreditGrades

The default barrier is given by

LD = �LDe�Z��
2=2, (18)

where L is the random recovery rate given default, �L = E (L), Z is a standard

normal random variable and �2 = V ar (lnL). Finger (2002) provides an approx-

imate solution to the survival probability using a time-shifted Brownian motion,

which yields the following result20

q(t) = �

�
�At
2
+
ln d

At

�
� d � �

�
�At
2
� ln d
At

�
, (19)

where � (�) is the cumulative normal distribution function and

d =
V0
�LD
e�

2

, (20)

A2t = �2V t+ �
2. (21)

A.1.1 The CDS Spread and Hedge Ratio

Assuming constant interest rates, the CDS spread for maturity T is found by

inserting the survival probability (19) in equation (6), yielding

c(0; T ) = r(1�R) 1� q (0) +H(T )
q (0)� q (T ) e�rT �H (T ) , (22)

20In essence, the uncertainty in the default barrier is shifted to the starting value of the
Brownian motion. In particular, the approximation assumes that Wt starts at an earlier time
than t = 0: As a result, the default probability is non-zero for even very small t, including t = 0.
In other models such as Leland & Toft (1996), the survival probability q (0) = 1.
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where

H (T ) = er� (G (T + �)�G (�)) , (23)

G (T ) = dz+1=2�

�
� ln d

�V
p
T
� z�V

p
T

�
+ d�z+1=2�

�
ln d

�V
p
T
+ z�V

p
T

�
,(24)

� =
�2

�2V
, (25)

z =

s
1

4
+
2r

�2V
, (26)

and G(T ) is given in Reiner & Rubinstein (1991).

When determining the hedge ratio corresponding to the model spread, we as-

sume that t is small compared to the maturity of the CDS contract T . Following

Yu (2006), the contract value (7) is then approximated by

�(0; T ) = (c (0; T )� c)
Z T

0

e�rsq (s) ds (27)

=
c (0; T )� c

r

�
q (0)� q (T ) e�rT �H (T )

�
,

where c (0; T ) is a function of the value of equity in equation (22), and c is the

market spread at initiation.21

Using equation (8) and the product rule, the hedge ratio is found as

� (0; T ) = N � d� (0; T )
dS

=
N

r

@c (0; T )

@S

�
q (0)� q (T ) e�rT �H (T )

�
, (28)

where N denotes the number of shares outstanding. The second term in the

product rule is zero, since by de�nition c is numerically equal to c (0; T ), evaluated

at the equity value S. Finally, @c(0;T )
@S

is found numerically.

A.2 Leland & Toft (1996)

Equation (14) may be written as

�(Vt) = Vt + �
C

r

 
1�

�
Vt
VB

��x!
� �VB

�
Vt
VB

��x
, (29)

21Yu (2006) interprets this equation in his appendix. Equation (27) represents the value of a
contract entered into one instant ago at spread c, that now has a quoted spread of c (0; T ) due
to a change in the value of equity.
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with the value of debt D(Vt)

D(Vt) =
C

r
+

�
P � C

r

��
1� er�
r�

� I (�)
�
+

�
(1� �)VB �

C

r

�
J (�) , (30)

and equity S(Vt)

S(Vt) = Vt + �
C

r

 
1�

�
Vt
VB

��x!
� �VB

�
Vt
VB

��x
� C
r
�
�
P � C

r

��
1� er�
r�

� I (�)
�

(31)

�
�
(1� �)VB �

C

r

�
J (�) ,

and default barrier VB

VB =
C
r

�
A
r�
�B

�
� AP

r�
� �Cx

r

1 + �x� (1� �)B . (32)

The components of the above formulae are

A = 2ae�r��
�
a�V

p
�
�
� 2z�

�
z�V

p
�
�

(33)

� 2

�V
p
�
�
�
z�V

p
�
�
+
2e�r�

�V
p
�
�
�
a�V

p
�
�
+ (z � a) ,

B = �
�
2z +

2

z�2V�

�
�
�
z�V

p
�
�

(34)

� 2

�V
p
�
�
�
z�V

p
�
�
+ (z � a) + 1

z�2V�
, (35)

I (�) =
1

r�

�
K (�)� e�r�F (�)

�
, (36)

K (�) =

�
V

VB

��a+z
� (j1 (�)) +

�
V

VB

��a�z
� (j2 (�)) , (37)

F (�) = � (h1 (�)) +

�
V

VB

��2a
� (h2 (�)) , (38)
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J (�) =
1

z�V
p
�

 
�
�
V

VB

��a+z
� (j1 (�)) j1 (�) (39)

+

�
V

VB

��a�z
� (j2 (�)) j2 (�)

!
, (40)

j1 (�) =
(�b� z�2V�)
�V
p
�

; j2 (�) =
(�b+ z�2V�)
�V
p
�

, (41)

h1 (�) =
(�b� a�2V�)
�V
p
�

; h2 (�) =
(�b+ a�2V�)
�V
p
�

, (42)

a =
(r � �� (�2V =2))

�2V
, (43)

b = ln

�
Vt
VB

�
, (44)

z =

r�
(a�2V )

2
+ 2r�2V

�
�2V

, (45)

x = a+ z: (46)

� (�) and � (�) denote the density of the normal distribution and the cumulative
distribution function, respectively.

A.2.1 The CDS Spread and Hedge Ratio

Using equation (38), the risk-neutral survival probability at horizon t is

q (t) = 1� F (t) (47)

= 1�
 
� (h1 (t)) +

�
V

VB

��2a
� (h2 (t))

!
:

Assuming constant interest rates, the CDS spread for maturity T is found by

inserting the survival probability (47) in equation (6), yielding

0 = c(0; T )

Z T

0

e�rsq(s)ds+ (1�R)
Z T

0

e�rsq0(s)ds: (48)

Integrating the �rst term by parts, yields

0 =
c(0; T )

r

�
1� e�rT q(T ) +

Z T

0

e�rsq0(s)ds

�
+ (1�R)

Z T

0

e�rsq0(s)ds, (49)
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where the integral
R T
0
e�rsq0(s)ds is given by K(T ) in equation (37), following

Reiner & Rubinstein (1991). Then,

0 =
c(0; T )

r

�
1� e�rT q(T )

�
�
�
c(0; T )

r
+ (1�R)

�
K(T ), (50)

which allows us to obtain a closed-form solution for the CDS spread

c(0; T ) = r (1�R) K(T )

(1� e�rT q(T )�K (T )) : (51)

Again, following Yu (2006) when determining the hedge ratio that correspond

to the model spread, we assume that t is small compared to the maturity of the

CDS contract T . Then, the contract value (7) is approximated by

�(0; T ) = (c (0; T )� c)
Z T

0

e�rsq (s) ds: (52)

=
c (0; T )� c

r

�
1� e�rT q(T )�K (T )

�
,

where c (0; T ) is a function of the value of equity in equation (51), and c is the

market spread at initiation.

Similar to CreditGrades, the hedge ratio is found using equation (8)

� (0; T ) =
N

r

@c (0; T )

@S

�
1� e�rT q(T )�K (T )

�
. (53)

However, in Leland & Toft (1996) the CDS spread is not an explicit function

of the equity value. Therefore, @c(0;T )
@S

is found numerically using

@c (0; T )

@S
=
@c (0; T )

@V

@V

@S
=
@c (0; T )

@V

1
@S
@V

: (54)
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Table 1: Sample Characteristics
This table reports sample characteristics for the 221 obligors. First, the average charac-
teristics are calculated for each obligor over time, then averaged across ratings. N is the
number of obligors and spread is the composite CDS quote. While the historical equity
volatility HV is calculated from a 250-day rolling window of equity returns, the implied
equity volatility IV is inferred from 30-day at-the-money put options. The leverage ratio
lev is total liabilities divided by the sum of total liabilities and equity market capitaliza-
tion, and size is the sum of total liabilities and equity market capitalization in millions
of dollars. Finally, corr is the correlation between changes in the CDS spread and the
equity value, averaged across ratings.

Rating N Spread HV IV Lev. Size Corr.
AAA 4 16 0.284 0.227 0.197 142,619 -0.107
AA 11 23 0.267 0.257 0.216 95,237 -0.050
A 80 40 0.305 0.293 0.354 40,274 -0.089
BBB 109 103 0.346 0.337 0.502 25,431 -0.124
BB 15 270 0.386 0.377 0.524 13,667 -0.056
B 1 355 0.554 0.555 0.564 34,173 -0.261
NR 1 172 0.229 0.219 0.450 11,766 -0.129
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Table 2: Descriptive Statistics of Implied Parameters
This table reports the central implied parameters from CreditGrades and Leland &
Toft (1996), calibrated with a historical volatility HV and option-implied volatility IV .
While the �rst measure is calculated from a 250-day rolling window of equity returns,
the latter is implied from 30-day at-the-money put options. The descriptive statistics for
the payout rate, global recovery and bond recovery are calculated across obligors. The
remaining variables are �rst averaged over time, before the statistics are calculated across
obligors. The equity value, asset value and default barrier are measured in millions of
dollars. The upper three rows report the summary statistics of calibration targets from
the equity and equity options market. The global recovery rate is the mean global
recovery on all liabilities of the �rm, while the bond recovery is the recovery rate on
the speci�c debt issue underlying the CDS. Finally, the payout rate is calculated from
historical dividend yields and relative interest expenses.

Variable Mean Median Std. dev. Min Max
Equity value 20,592 9,479 33,425 919 238,995
HV 0.329 0.313 0.106 0.175 0.989
IV 0.318 0.302 0.090 0.135 0.717

Panel A. CreditGrades HV
Asset value 29,895 14,839 46,655 1,360 337,381
Asset vol. 0.228 0.213 0.085 0.084 0.583
Default barrier 8,556 3,846 15,892 59 154,585
Global rec. 0.799 0.573 0.772 0.009 6.025

Panel B. CreditGrades IV
Asset value 26,189 12,914 40,418 1111 294,685
Asset vol. 0.232 0.227 0.079 0.0843 0.552
Default barrier 4,901 2,199 9,071 14 93,838
Global rec. 0.549 0.285 0.719 0.0097 5.715

Panel C. Leland & Toft HV
Asset value 34,837 18,100 53,727 2,008 417,807
Asset vol. 0.179 0.167 0.073 0.0382 0.446
Default barrier 12,445 5,939 32,871 591 374,849
Bond rec. -17.410 -0.443 129.611 -1,858 0.919
Payout rate 0.020 0.020 0.011 0 0.059

Panel D. Leland & Toft IV
Asset value 34,502 17,897 52,035 1972 373,672
Asset vol. 0.167 0.156 0.069 0.0077 0.413
Default barrier 12,762 6,105 33,360 593 364,376
Bond rec. -3.554 0.233 18.256 -222.69 0.835
Payout rate 0.020 0.020 0.011 0 0.059
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Table 6: Regression Results
This table reports the results from regressing capital structure arbitrage monthly per-
centage excess returns on the excess returns of equity and bond market portfolios. The
models underlying the strategy are CreditGrades CG and Leland & Toft (1996) LT ,
calibrated with a historical HV and option-implied volatility IV . The strategy is im-
plemented separately on investment grade and speculative grade obligors. S&PINDS
is the excess return on the S&P Industrial Index. LHIBAAI and LHHY BBI are the
excess returns on the Lehman Brothers Baa and Ba Intermediate Index, respectively.
The coverage is 24 months beginning October 2002 and ending September 2004. Stan-
dard errors are shown in parantheses, and ***, ** and * denote signi�cance at 1, 5 and
10 percent, respectively.

Strategy Intercept S&PINDS LHIBAAI LHHYBBI R2

CG HV Inv -0.57* 0.09 7.29 -14.40* 0.21
(0.28) (2.27) (7.06) (7.80)

CG HV Spec 1.96 -2.61 -53.73 77.25* 0.17
(1.48) (12.02) (37.30) (41.19)

CG IV Inv -0.15 6.13 -26.18** 12.77 0.35
(0.49) (3.96) (12.29) (13.58)

CG IV Spec 3.76 9.11 -45.06 81.11 0.16
(2.21) (18.00) (55.87) (61.70)

LT HV Inv -0.59** 1.51 -1.86 -8.44 0.32
(0.21) (1.74) (5.41) (5.98)

LT HV Spec 1.76 33.36 39.03 -40.44 0.08
(3.18) (25.91) (80.41) (88.80)

LT IV Inv 0.27 2.34 -13.22* 12.13* 0.32
(0.24) (1.98) (6.78) (6.14)

LT IV Spec 7.04*** -22.35 -21.91 121.69* 0.30
(2.22) (18.04) (55.98) (61.82)
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Figure 1: Sears, Roebuck and Company
This �gure illustrates the fundamentals behind capial structure arbitrage. In panel A,
we depict market CDS spreads together with model spreads in Leland & Toft (1996)
LT inferred from historical HV and option-implied volatilities IV . In panel B, the
corresponding spreads are depicted based on CreditGrades CG. Panel C depicts the
historical and option-implied volatility, where the �rst is calculated from a rolling 250-
day window of equity returns, and the latter is inferred from 30-day at-the-money puts.
Finally, panel D illustrates the total market value of equity in millions of dollars.
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Figure 2: Time Warner
This �gure illustrates the fundamentals behind capial structure arbitrage. In panel A,
we depict market CDS spreads together with model spreads in Leland & Toft (1996)
LT inferred from historical HV and option-implied volatilities IV . In panel B, the
corresponding spreads are depicted based on CreditGrades CG. Panel C depicts the
historical and option-implied volatility, where the �rst is calculated from a rolling 250-
day window of equity returns, and the latter is inferred from 30-day at-the-money puts.
Finally, panel D illustrates the total market value of equity in millions of dollars.
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Figure 3: Motorola
This �gure illustrates the fundamentals behind capial structure arbitrage. In panel A,
we depict market CDS spreads together with model spreads in Leland & Toft (1996)
LT inferred from historical HV and option-implied volatilities IV . In panel B, the
corresponding spreads are depicted based on CreditGrades CG. Panel C depicts the
historical and option-implied volatility, where the �rst is calculated from a rolling 250-
day window of equity returns, and the latter is inferred from 30-day at-the-money puts.
Finally, panel D illustrates the total market value of equity in millions of dollars.
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Figure 4: Mandalay Resort Group
This �gure illustrates the fundamentals behind capial structure arbitrage. In panel A,
we depict market CDS spreads together with model spreads in Leland & Toft (1996)
LT inferred from historical HV and option-implied volatilities IV . In panel B, the
corresponding spreads are depicted based on CreditGrades CG. Panel C depicts the
historical and option-implied volatility, where the �rst is calculated from a rolling 250-
day window of equity returns, and the latter is inferred from 30-day at-the-money puts.
Finally, panel D illustrates the total market value of equity in millions of dollars.
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