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Abstract

This paper examines properties of mean-variance inefficient proxies
with respect to producing a linear relation between expected returns
and betas. The numerical results of a Monte Carlo simulation show
that in the CAPM slightly inefficient, positively weighted proxies cause
an almost perfect linear expected return - beta relation. Moreover, we
show that a strong linearity among a predefined subset of assets exists.
These implications are important for the interpretation of empirical
tests as well as for asset pricing and for the improvement of proxies’
benchmark properties. In contrast to current literature the results
suggest that the CAPM’s pricing error is small when slightly inefficient,
positively weighted proxies are used.
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It is well known from mean-variance portfolio analytics that if the market

portfolio is efficient, it produces an exact linear relation between assets’

expected returns and their betas (Roll (1977)). If it is inefficient, no simple

statement about the cross-sectional slope or R2 can be made. Roll and Ross

(1994) demonstrate that even slightly inefficient benchmarks - those being

close to the efficient frontier - may produce slopes of an OLS regression of

expected returns on betas (and hence, R2
OLS -coefficients) of exactly zero.

Kandel and Stambaugh (1995) show that by repackaging the original set

of assets it is possible to replicate any inefficient proxy’s risk and expected

return, while affecting the goodness-of-fit of the resulting OLS regression.

They show that by such repackaging any R2
OLS in the open set between zero

and one can be reached. However, they also propose a specific efficiency

measure for the market portfolio which is directly related to the goodness-

of-fit of a GLS regression - specifically: the R2
GLS value is equal to the

squared relative efficiency measure and hence, is uniquely determined by

the location (inefficiency) of the market proxy. More specifically, they show

that slightly inefficient proxies produce high values of R2
GLS .

There are two problems with the Kandel and Stambaugh (1995) ap-

proach. First, the authors use the inverse of the assets’ returns’ covariance

matrix instead of the residual covariance matrix in their GLS fit. The ad-

vantage is that this matrix is readily available, and moreover, it makes the

estimated coefficients invariant to repackaging the original assets. However,

note that the relationship between expected returns and betas is purely

deterministic, so there is no natural choice to take the variance-covariance

matrix (of the assets’ returns) as weighting matrix in the GLS fit.

The second problem is related to the empirical applicability: Inverting a

covariance matrix magnifies estimation errors. This suggests that the GLS
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fit is economically and statistically problematic.

In this paper, we return to the OLS method and focus on positively

weighted portfolios. We construct two scenarios. In the first scenario using

empirical data we find that slightly inefficient positively weighted proxies

produce with a high probability low values of R2
OLS. For the second sce-

nario we construct a theoretical case where the Capital Asset Pricing Model

is true, thus, where the market portfolio contains only positive, non-zero

weights. In this setting we show that slightly inefficient positively weighted

proxies generate high values of R2
OLS and therefore a strong cross-sectional

expected return - beta relation.

As the cross-sectional relation seems to be relevant only in the theoretical

setting we finally investigate the cause of the weak cross-sectional relation

in the empirical scenario. We show that by a straight forward adjustment of

the R2
OLS measure there is a strong empirical expected return - beta relation

when using positively weighted inefficient proxies.

We therefore conclude that for slightly inefficient, positively weighted

proxies the cross-sectional expected return - beta relation is not sensitive to

the proxy’s choice.

The implications of this paper are beyond portfolio theory. In capital

market equilibrium the market portfolio must be strictly positively weighted.

Our finding that positively weighted proxies close to the market portfolio

reveal a close cross-sectional expected return-beta relationship1 has strong

implications for interpreting empirical CAPM tests and the results from

cross-sectional regressions, such as Fama and French (1992).

The rest of the paper is organized as follows: The first section describes

the numerical algorithm used in the Monte Carlo simulation and the results

1i.e. assets lie close to the security market line if the market proxy is slightly inefficient.
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of two tests. The first test shows the resulting R2
OLS distributions associ-

ated with inefficient, positively weighted proxies for monthly returns of the

Dow Jones Industrial Average between 2001 and 2006. The second test is

theoretical and constructs a case similar to Grauer (1999) where the CAPM

is true - thus, where the market portfolio contains only positive, non-zero

weights. The second section extends the R2
OLS measure in a way that allows

for a better extraction of information about expected return - beta linear-

ity when proxy weights are non-negative. The final section emphasizes the

major implication for portfolio theory and the CAPM.

1 Portfolio Inefficiency and the Cross-Section of

Expected Returns

If a portfolio p is mean-variance efficient, it will produce an exact linear

relation between assets’ expected returns (µi) and the corresponding betas

(βp,i) (see Roll (1977)). If a portfolio is inefficient, Roll and Ross (1994) find

that the slope of a cross-sectional expected return - beta regression is very

sensitive to the proxy’s choice. Moreover, the analytics in Roll and Ross

(1994) reveals that the cross-sectional slope is not uniquely determined by

proxies with identical expected returns and variance. Roll and Ross (1994)

therefore conclude that “[t]he nonexclusivity of our sets makes it impossible

to determine the cross-sectional mean-beta relation simply by plotting the

position of the proxy in the mean-variance plane. We wish this were possible.

It is not.” We show in this paper that more optimistic results are achieved if

restrictions against short selling are imposed. This paper shows that when

including restrictions against short sales proxies close to the efficient frontier

will generally produce a higher cross-sectional expected return - beta relation
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than proxies far away from the efficient frontier.

Kandel and Stambaugh (1995) provide an analytical solution to the prob-

lem raised by Roll and Ross (1994). They show that if the proxy portfolio is

efficient, repackaging the original set of assets2 has no effect on R2
OLS(= 1).

If a proxy is inefficient, repackaging the original set of assets and replicating

a proxy’s expected return and standard deviation, the R2
OLS measure can

reach any value in the interval (0, 1).3

As a consequence of these results the expected return - beta linearity

can break down entirely when a proxy is only slightly inefficient. Therefore

– supporting the critique of Roll (1977) – imposing linearity in empirical

tests can hardly be justified.

Kandel and Stambaugh (1995) propose a GLS procedure that overcomes

the problem of the non-uniqueness of the OLS measure. They are able to

show that the value of R2
GLS is uniquely determined by the proxy’s location

in the expected return - standard deviation plane. Proxies close to the min-

imum variance frontier produce an R2
GLS close to 1. Furthermore, using the

covariance matrix Σ in the GLS regression makes the coefficients invariant

with respect to repackaging.4

However, the major difficulty regarding the inefficiency measure based on

GLS is the choice of the residual covariance matrix. It should be noted that

the assets’ positions in the (βp, µ) plane are deterministic and therefore no

statistical estimation but rather a geometric fit takes place. The residuals ε

2 Formally, this is done by multiplying the assets’ random return vector with an (n×n)
matrix (where n is the number of assets).

3In fact, R2
OLS can even be zero if the proxy is sufficiently inefficient, i.e. if it lies inside

the boundaries shown by Roll and Ross (1994). If the OLS fit’s slope (such as analyzed by
Roll and Ross (1994)) is zero, the corresponding R2

OLS is zero as well. More interestingly,
except for the global minimum variance portfolio the reverse relation is also true.

4However, as shown by Cochrane (2001, p.295), there exist other weighting matrices
with this property.
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are therefore not stochastic but represent the assets’ deterministic deviations

from the estimated linear fit. In fact, the use of Σ instead of E(εε′) as

the artificial covariance matrix in the GLS fit is justified by the analytical

tractability of the resulting equations.5

However, the GLS method is not only problematic from a methodolog-

ical point of view. Since the theoretical value of the covariance matrix is

unknown, the described procedure will cause computational problems when

applying it to empirical data. When inverting a sample covariance matrix

estimation errors are magnified.

In order to circumvent the difficulties related to the GLS methodology

we will return to the simple cross-sectional OLS framework, but examine

positively weighted proxies only. As shown in the following this approach

combines the advantages of the OLS and GLS methods of Kandel and Stam-

baugh (1995).

2 The Goodness-of-fit of Positively Weighted Prox-

ies

Market proxies (mostly stock indices) used in empirical tests are positively

weighted by construction. This is also true when market proxies are used to

test market equilibrium where the market portfolio is a proxy for the aggre-

gate wealth with the components being in net positive supply. Therefore, we

analyze the cross-sectional properties of positively weighted proxies6 and, in

order to avoid the difficulties related to the GLS method, we return to the

simple OLS framework. We introduce the following notation:

5Compare equation (22) in Kandel and Stambaugh (1995, p.167).
6This is in line with a critique pointed out by Grauer (1999) whereas the studies of Roll

and Ross (1994) and Kandel and Stambaugh (1995) do not explicitly investigate positively
weighted proxies.
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n: number of assets,

µ: an n vector containing all assets’ expected returns,

Σ: the positive definite (n × n) covariance matrix,

wq: an n vector describing the weights in a portfolio q,

1: an n vector containing ones, [1 1 · · · 1]′,

µq: the expected return of portfolio q,

σq: a portfolio q’s standard deviation (=
√

w′

qΣwq).

In unconstrained optimization the weight vector of a minimum variance

portfolio is uniquely determined by its expected return level. However, for an

inefficient portfolio q with (σq, µq), the number of weight vectors satisfying

w′

q1 = 1 (1)

w′

qµ = µq (2)

w′

qΣwq = σ2
q (3)

can be infinite as long as the number of assets exceeds 3 (the number of

conditions). Kandel and Stambaugh (1995) show that some of the solutions

wq will yield high and some will yield low values of R2
OLS . As argued before,

we require non-negative solutions of wq. Therefore, we study whether the

Kandel and Stambaugh (1995) results can be extended to the case without

short sales by investigating positively weighted proxies’ R2
OLS conditional

on proxies’ position in the (σ, µ) plane. We apply a Monte Carlo simulation

and examine the distributions of R2
OLS for given values of µq and σq.
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For tackling this problem it is useful to recapitulate some basic properties

of portfolios. For this purpose five different cases of portfolio locations in

the (σ, µ) plane are distinguished; see figure 1.

Consider a universe of n (> 3) assets. Eq. (1) together with (2) form an

n − 2 dimensional hyperplane. Geometrically, the set of solutions S of (1),

(2) and (3) is given by the intersection of the n− 2 dimensional hyperplane

of the constraints (1) and (2) and the ellipsoid given by (3). Define further

the feasible region (F) where all weights are non-negative

w ≥ 0 . (4)

Consider the sets S and SF = S∩F. Moving from point t in figure 1 towards

the right, one can distinguish five cases:

t: S = {}: the n − 2 dimensional hyperplane and the ellipsoid do not

have common points. No solution exists for this (σ, µ) location.

R: S consists of a single point: the n − 2 dimensional hyperplane is tan-

gential to the ellipsoid. This is the (unconstrained) minimum variance

portfolio. For the case shown in figure 1 this point lies, however, out-

side of the feasible region F, SF = {}.

r: Increasing σq further, S will become an extended region, which still

lies completely outside F. Here, all portfolios will contain at least one

negatively weighted asset.

Q: SF consists of a single point: the constrained minimum variance port-

folio. In this portfolio all weights are non-negative.

q: SF becomes an extended region: there are infinite many solutions to
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equations (1), (2) and (3), satisfying the inequality (4).7

In contrast to Kandel and Stambaugh (1995) who do not differentiate

between locations r and q (respectively, Q), the focus of our interest are

locations Q and q.

Knowing that for each location in the (σ, µ) plane such as q in figure

1 there exists an infinite number of feasible weight vectors, it is useful to

analyze a large number of feasible w vectors and to examine the resulting

distribution of R2
OLS values. More specifically, we will pick out solutions

with uniform probability density from the set SF. The yielding histogram

reveals how the location of positively weighted inefficient proxies affects the

distribution of R2
OLS. The method for determining the distribution of an

R2
OLS belonging to a specific (σ, µ) location is shown in the next section.

3 The Algorithm

The aim of this algorithm is to pick out feasible (non-negative) weight vectors

uniformly from SF(σq, µq), where Q is the constrained minimum variance

portfolio and q has the same expected return as Q (w′

qµ = µq = µQ).

Due to the positivity constraint the set SF(σq, µq) is in general not triv-

ial. Therefore, it is practically impossible to directly generate independent,

uniformly distributed weight vectors in this set. We achieve this goal by a

random walk in SF(σq, µq).
8 A solution to this problem is shown in appendix

7Although there are two more cases when moving rightwards in figure 1 we ignore them
in our analysis as they are irrelevant for our purposes.

8 A problem encountered in this procedure is that if we move beyond some value of σq

one meets, however, a new problem – the set SF(σq, µq) becomes disconnected. Starting
from a given point of SF the random walk will remain in the corresponding subset of SF,
i.e. the procedure is not ergodic. To overcome this problem we let the value of σq change
during the random walk in some interval σq ∈ [σ1, σ2] so that at the lower end of the
interval SF becomes a connected region. For the interval’s upper part this specification of
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A.

The random walk is implemented by a Metropolis algorithm. It has to

satisfy two basic properties: the probability for a new trial weight w′ from

the actual weight w has to be symmetric, pt(w → w′) = pt(w
′ → w), and pt

has to be ergodic – any state w can be reached from any other state in some

number of steps. These properties ensure that the resulting distribution will

be uniform in SF(σ, µ).

The Results

We run the algorithm for two scenarios. The empirical scenario is based

on data from the Dow Jones Industrial Average. In the second scenario we

change the expected returns used in the first scenario in a way such that the

unconstrained minimum variance portfolio is strictly positively weighted.

We call this scenario the CAPM scenario.

Empirical Scenario. Monthly returns from 30 stocks from the Dow Jones

Industrial Average between January 2001 and February 2006 are used as

input. The corresponding constrained and unconstrained minimum variance

frontiers are plotted in figure 2a.

When running the simulation at µQ = 0.015 and iterating 5 million

times, the random walk moves horizontally on a distance illustrated by the

dotted lines in figure 2a. The resulting histogram drawn from a simulation

of 5 million weight vectors is shown in figure 3a.

Note that in figure 2a the unique weight vector describing the constrained

minimum variance portfolio Q yields an R2
OLS of 0.1279. Moving rightwards

the algorithm connects all previously non-ergodic regions of SF(σ, µ). The exact procedure
is described in appendix A.
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SF becomes an extended region where an infinite number of proxies have

the same expected return and variance. However, in contrast to the findings

of Kandel and Stambaugh (1995), none of these proxies produces values of

R2
OLS close to 0 or 1. As shown in figure 3a the values of R2

OLS remain

within a small range when being close to the constrained minimum variance

portfolio Q. These results suggest that extreme values of R2
OLS are either

impossible or very unlikely.

Another feature apparent in figure 3a is that for µQ = 0.015 all distri-

butions lie in a range between 0.02 and 0.13. Notice that for this sample

the range of possible R2
OLS values cannot be strongly raised by an appro-

priate choice of µQ. As shown in the following section, the range of R2
OLS

values that belong to an expected return level µQ depends on the number of

non-zero weighted assets, k, of the respective constrained minimum variance

portfolio. Because k cannot exceed 10 in the Dow Jones sample9 containing

30 assets, no expected return levels exist where high values of R2
OLS are

likely to occur.

As the range in which the R2
OLS histograms lie strongly depends on k,

we shall examine a scenario with a high value of k, more specifically, where

k = n.

The CAPM scenario.10 In a world where the CAPM is true there must

be at least one strictly positively weighted market portfolio M . Market

equilibrium means for this case that k equals n. This property influences

the resulting R2
OLS distributions for positively weighted proxies with the

9This result can be explicitly shown by algorithms that compute all turning points of
the efficient frontier (compare Markowitz, Todd, and Sharpe (2000) and Niedermayer and
Niedermayer (2006)).

10In this scenario we consider the CAPM as being true.
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same expected return as M .

For constructing this scenario we use the covariance matrix from the Dow

Jones sample and define a vector of non-negative weight wM ≥ 0 describing

the ‘market portfolio’ M with w′

Mµ = µQ = 0.015 and chose arbitrarily

µO = 0.005 as the orthogonal portfolio’s expected return. When shifting all

assets’ expected returns (µi) to the security market line through (0, µO) and

(1,w′

Mµ) in the (βM , µ) plane, k will equal n for the market portfolio.11 In

such a setting we run the simulation with w′

Mµ = µQ = 0.015 and 5 million

iterations; the results are illustrated in figure 3b.

Not surprisingly, the value of R2
OLS is 1 when looking at the market port-

folio. When moving rightwards, R2
OLS falls gradually. Most importantly, for

proxies close to the market portfolio, R2
OLS remains high.

Before discussing the implications of this result it will be shown in the

following section that even for the empirical scenario with a low k/n ratio,

there is evidence for strong linearity among a subset of assets when inefficient

positively weighted proxies are used.

4 Adjusting the Goodness-of fit Measure

An explanation for the low values of R2
OLS in figure 3a can be found when

looking at figures 4a and 4b. Although portfolio q1 is located on the CMVF

but not on the unconstrained frontier, R2
OLS will not be 1 even if there is

an exact linear relation among the non-zero weighted assets in the (βq1 , µ)

plane.12 The black dots in figure 4b show those assets’ (βq1 , µ) locations

whose weights in q1 are not zero and the zero weighted assets in q1 are marked

11This procedure is similar to the one in Grauer (1999) which specifies a riskless asset.
12Assets with non-negative weights in a portfolio are said to be in the portfolio, other-

wise out of the portfolio (see e.g. Sharpe (1991) or Markowitz, Todd, and Sharpe (2000)).
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with a triangle in the (βq1 , µ) plane. An OLS fit that weights each asset

equally (shown by the dotted line in figure 4a) will produce a lower R2
OLS

(here: 0.756) than a fit that only takes account of the non-zero weighted

assets. In fact, the latter type of fit must produce an exact linear relation

among the non-zero weighted assets in q1 since q1 is on the CMVF.

In order to understand the previous relationship, notice that the con-

strained optimization problem for n assets is equivalent to the unconstrained

optimization for the reduced system where all assets with ωq,i
= 0 are

dropped. The quadratic optimization problem can be modified into a sim-

ple optimization problem without short selling restrictions by dropping all

assets i with ωq,i = 0 from the original set of n assets. Crossing out the

respective rows and columns from the covariance matrix and vector of ex-

pected returns, the resulting (unconstrained) optimal weight vector ω∗

q at

an expected return level µq will lead to the same results as in the constrained

case.13 Then the k positively weighted assets will be efficient in the modified

set and the corresponding R2
OLS must be 1. Therefore, those k assets must

be located on a straight line in the (βq1 , µ) plane such as shown in figure

4b. Note further, that the n − k unused assets – marked with a triangle –

must lie below this line. This comes directly from their property of having

a lower marginal utility than the assets in the portfolio.14

Moreover, when moving rightwards from q1 to q2 in figure 4a, we hope

to obtain solutions where the non-zero weighted assets (black dots) do not

13ωq is marked with an asterisk since it will be of lower dimension than the original
weight vector. Notice that ω′

qΣ and Σωq correspond to the crossing-out of the covariance
matrix’ respective rows and columns and ω′

qµ corresponds to the elimination of the unused
assets in µ.

14For a detailed treatment of this topic see Sharpe (1991, p. 501f).
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deviate too much from the fit as long as q2 is close enough to the CMVF.

Such a situation is plotted in figure 4c. Even if an OLS fit (dotted line)

yields a relatively low R2
OLS (here: 0.708) the R2 measure of a fit over the

non-zero weighted assets will be still high (in this case 0.997).

In the following we correct for this distortion of R2
OLS caused by assets

that are outside of the portfolio. The standard R2
OLS is derived from a linear

regression model

µ = γ11 + γ2βq + ε , (5)

by minimizing ε′ε, where γ1, γ2 are the intercept and slope coefficients of the

linear fit, βq is equal to (Σwq)/(w′

qΣwq) and ε is an n vector containing

the deterministic deviations from the fitted line.

We introduce an (n×n) weighting matrix Ω and minimize with respect

to γ1, γ2 the expression

ε′Ωε = (Xγ − µ)′Ω(Xγ − µ) where γ =

(

γ1

γ2

)

and X = [1 βq] .

The solution for γ1 and γ2 is

γ = (X′ΩX)−1X′Ωµ .

When setting Ω = I the fit corresponds to an OLS fit and when setting

Ω = Σ−1 the fit describes exactly a GLS fit. As shown by Kandel and

Stambaugh (1995) the latter case leads to an R2
PWA (here: equal to R2

GLS)

distribution that is focussed on exactly one value; the distribution’s standard

deviation is zero.

In order to focus the analysis only on the positive, non-zero weighted

assets we specify Ω in a way that ignores those assets of a portfolio q whose
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weights are zero in the corresponding constrained minimum variance portfo-

lio Q of the same expected return level µq. Therefore the weighting matrix

Ω contains zeros as off-diagonal elements and as diagonal elements a 1 if the

corresponding asset was in portfolio Q and 0 otherwise.

Let our corrected goodness-of-fit value, R2
PWA (portfolio weight adjusted

R2) be defined as

R2
PWA ≡ 1 −

ε′Ωε

δ′Ωδ

where δ corresponds to the residuals from a linear fit by a horizontal line.

Notice that the specification of Ω depends on a proxy’s expected return

level. When examining proxy locations between two neighboring turning

points15 the same weighting matrix Ω is applied. Therefore, it is straight-

forward to introduce the term turning point zone.

A turning point zone describes a region where an R2
PWA measure exam-

ines the same subset of assets. Let t1 and t2 be two neighboring turning

points on the CMVF. As all portfolios on the CMVF between t1 and t2 have

zero weights at the same positions, the weighting matrix Ω is the same for

all portfolios with an expected return level in the open set of (µt1 , µt2).
16

Thus, in order to interpret R2
PWA of an inefficient portfolio q, the turning

point zone that belongs to q must be found. Then the subset of the exam-

ined assets is determined.

The pleasant feature of achieving goodness-of-fit measures of 1 when the

15Defined as constrained minimum variance portfolios in whose vicinity other con-
strained minimum variance portfolios contain a different number of non-zero weighted
assets.

16Notice that a portfolio q with µq = µt1 (or µq = µt2) does not belong to the turning
zone (t1, t2) but to the turning point ‘zone’ (t1) (or (t2)). Of course this is not a real zone
but an expected return level. Since the case where a portfolio q is exactly on the expected
return level of a turning point is the special case, we consider the term turning point zone
still as adequate.
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examined location is on the CMVF cannot be separated from two disadvan-

tages. First, the subset of assets changes when looking at proxies in different

turning point zones. In this case a direct comparison of R2
PWA should not

be done. Second, inefficient portfolios inside certain turning point zones will

describe the (µ, βq) relation based on very few assets. In extreme cases a

linear fit over two assets takes place and the value of R2
PWA is 1.17 Despite

these inconveniences this way of defining R2
PWA makes it possible to use a

simple OLS framework with results easy to interpret.

Applying this adjustment to the Dow Jones sample, we run a Monte

Carlo simulation with 5 million iterations. Figure 5 shows the results for

the expected return, µQ = 0.015. Notice that the corresponding turning

point zone describes a subset of the assets 6, 16, 21, 25 and 30 (CAT, JNJ,

MO, PG and XOM). Figure 5 reveals that the R2
PWA that describes the

relation among these assets is very high compared to the unadjusted R2. In

fact, all distributions within 0.034 and 0.038 have a median of at least 0.95.

5 Conclusion

This paper numerically analyzes the relation between expected returns and

betas when the proxy portfolio is restricted to positive weights. Two cases

are examined: The empirical case is based on monthly returns of Dow Jones

Industrial Average stocks from 2001 to 2006; the second, theoretical case is

based on the assumption that the CAPM holds, i.e. the market portfolio is

efficient and contains only strictly positively weighted assets.

17Notice, that in general it is not possible to obtain a subset belonging to a portfolio q’s
location that contains only one asset. Such locations would be at the expected return level
of the CMVF’s highest or lowest point where the constrained minimum variance portfolio
consists only of the respective asset. However, such a positively weighted portfolio q does
not exist since it is not possible to find feasible solutions rightward from the CMVF’s
highest or lowest points.
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Our key findings differ from those of Kandel and Stambaugh (1995).

We show that slightly inefficient positively weighted proxies produce similar

cross-sectional R2
OLS values as if closely located constrained minimum vari-

ance portfolios are used. As a consequence of this observation, in a scenario

where the CAPM is true, positively weighted proxies close to the market

portfolio will produce an almost linear relation between expected returns

and betas. Most importantly, an almost linear relation is a pure conse-

quence of mean variance mathematics and does not rely on an assumption

about capital market equilibrium.

These results might help to interpret the findings of Fama and French

(1992) who show that the cross-sectional average return - beta relationship

has disappeared in the period between 1963 and 1990.18 According to our

results one of the following three cases could explain this observation:

1. The market proxy used by Fama and French (1992) is located too far

away from the CMVF.

2. The market proxy is located in a turning point zone (expected return

range) where only few assets are strictly positively weighted in the

corresponding constrained minimum variance portfolio.

3. ‘Bad luck’: One of the unlikely observations at the frequency distribu-

tion’s lower tail was realized.

These results show that if, in general, constrained minimum variance

portfolios contain many non-zero weights - respectively, if the CAPM is (al-

most) true - the choice of the benchmark proxy is an absolutely crucial task

18Fama and French (1992) investigated the data of nonfinancial firms obtained from the
Center for Research in Security Prices (CRSP).

16



for detecting a high cross-sectional expected return - beta relation. How-

ever, if all constrained minimum variance portfolios have a high number of

zero weighted assets, none of the positively weighted proxies produces a high

cross-sectional R2
OLS value. Moreover, it was shown that it can be mislead-

ing to search for a linear relationship among all assets. For example, in our

Dow Jones sample, no strictly positively weighted minimum variance port-

folio exists on the unconstrained frontier. Therefore, high R2
OLS values for

positively weighted, inefficient proxies cannot be found. But mean-variance

portfolio theory states more; portfolios on the constrained frontier produce

an exact linear relation among those assets included in the portfolio. When

assessing the implications of positively weighted proxies for the distributions

of R2
OLS values, the right benchmark should be located on the constrained

frontier. This is intuitively clear because unconstrained minimum variance

portfolios often contain economically unrealistic negative weights, and there-

fore, the constrained and unconstrained frontiers differ.

We have demonstrated that for a given universe of assets, positively

weighted proxies provide a stronger linear expected return - beta relation-

ship among specific subsets of assets than among the entire set. Comparing

an asset’s performance with a benchmark and relying on the expected return

- beta linearity is especially useful when the examined asset is in the con-

strained minimum variance portfolio that has the proxy’s expected return.

This type of adjustment substantially improves the benchmark properties

of market proxies. Knowing that the set of analyzed portfolios consists of

positively weighted proxies, and after adjusting the linearity measure as pro-

posed in this paper, we find that the inefficiency of a proxy does not break

down the expected return - beta relationship entirely. Thus, in a constrained

portfolio setting the statement that ‘if the market return is even slightly in-
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efficient, covariances with the market return can generate arbitrary pricing

errors’ (Cochrane and Saa-Requejo (2000, p.83)) is not supported by our

findings.

The scenario in figure 2b which represents the case where the CAPM

is true shows that slightly inefficient proxies must still produce an almost

linear relationship between expected returns and betas. Therefore, if there is

a positively weighted efficient market portfolio such as stated by the CAPM,

the notion of expected return - beta linearity is still valid even if slightly

inefficient benchmark proxies are used.

A The Monte Carlo Algorithm

A Monte Carlo algorithm that covers an n-dimensional connected surface

can be quite easily formulated. When searching in the vicinity of an initial

solution by choosing the step size appropriately a sufficiently high acceptance

rate19 for finding a new solution can be achieved. However, if the surface

is disconnected, it becomes virtually impossible to find a solution on the

disconnected region (especially with problems with high dimensionality). In

such a case the algorithm is not ergodic and the stationary distribution is

not unique (it depends on the starting point). In the following using an

example with 4 assets we show that the problem of disconnected surfaces

arises when σ becomes too large and we demonstrate a way of solving this

difficulty.

Consider a universe of 4 assets. Solving the two linear constraints, w′1 =

1 and µ′w = µq for w1 and w2 and plugging w3 = 0 and w4 = 0 into the

solution yields two lines in the (w1, w2) plane. As shown in figure 6, the

19However, a too small step size implying an acceptance rate close to 1 would be inap-
propriate because it would require too many steps to cover the whole feasible region.
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four lines, w1 = 0, w2 = 0, w3 = 0 and w4 = 0 border the feasible region,

i.e. weights in the shaded area belong to positively weighted portfolios with

expected return level µq.

Moreover, those values of (w1, w2) that produce a certain σ and sat-

isfy the two linear constraints plot an ellipse in the (w1, w2) plane. The

part of the ellipse that lies within the feasible region represents solutions

of w′Σw = σ2, w′1 = 1 and w′µ = µq where w ≥ 0. If σ is chosen to

be sufficiently small (e.g. σ = σa in figure 6), the solutions of this prob-

lem lie on a connected curve. However, when increasing σ over a certain

value σ∗, the curve becomes disconnected leading to the discussed problem

of non-ergodicity.

In order to overcome this difficulty, we allow σ to change. As on page 7

we define SF(σ, µ) as the set of feasible weights belonging to a (σ, µ) position,

SF(σq, µq) =
{

w |w′1 = 1, w′µ = µq, w′Σw = σ2
q , w ≥ 0

}

.

When letting σ change during the random walk the newly obtained set

is given by an expected return value µq

SF(µq) =
⋃

σ

SF(σ, µq) with σ ∈ [σa, σb] ,

where the surface of SF(σa, µq) is connected.

Generating a random vector δw(i) with properties 1′δw(i) = 0, µ′δw(i) =

0 allows for moving randomly from w(i) to w(i+1) = w(i) +δw(i) where w(i),

w(i+1) ∈ SF(µq).
20

Moreover, randomly generating all elements of δw(i) within a symmetric

interval [−ε, ε] so that P(δw(i)) = P(−δw(i)) ensures that the transition

20Therefore, |δw(i)| must be sufficiently small.
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probabilities W (w → w′) satisfy the detailed balance condition for the uni-

form stationary distribution, i.e. W (w → w′) = W (w′ → w).21 This

condition and ergodicity are sufficient for the stationary distribution to be

unique and uniform.

When running this algorithm, one additional problem arises. For small

and large values of σ the surfaces describing set SF(σ, µq) are too small and

thus, these σ values are rarely visited in the Markov chain. As a consequence,

one obtains too low statistics to determine the distribution of R2
OLS for these

values of σ. One can overcome this problem by artificially changing the

probability distribution: instead of a uniform distribution P(w) = const we

can specify a distribution with probability density

P(w) ∝ f(σ(w))

with an appropriately chosen weight function f(σ). This will influence the

relative probabilities to have different σ values but it will not change the

distribution within a fixed value of σ, in particular, the R2
OLS distributions

we are interested in.

This modified distribution can be obtained by introducing an extra ac-

ceptance probability in the Metropolis algorithm: one accepts the change

w → w′ (where w′ is feasible) with a probability of

Wacc(w → w′) = min

{

1,
f (σ (w′))

f (σ (w))

}

.

This satisfies the detailed balance with the stationary distribution P(w) ∝

f(σ(w)), i.e.

P(w)Wacc(w → w′) = P(w′)Wacc(w
′ → w) .

21For convenience, we will use w for w(i) and w′ for w(i+1) in the following.
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At this point, the remaining step is to specify the weight function f(σ).

An appropriate choice of the weight function can be obtained by the fol-

lowing strategy: one divides the range [σa, σb] into many bins and simulates

the system (without the weight function f(σ)) allowing to move only within

one bin. Then one chooses f(σ) in a way to obtain an approximately flat

distribution within this bin. Repeating this in all bins one can determine a

continuous function f(σ) for the whole range [σa, σb].

We have chosen the following parametrization:

f(σ) = Aie
γi(σ−σi) for σ ∈ [σi, σi+1]

where i = 0, 1 . . . N − 1 and σ0 = σa, σN = σb .

The amplitudes Ai are chosen to achieve continuity of f(σ):

Ai+1 = Aie
γi(σi+1−σi) ,

A0 = 1 ,

where the γi’s are determined by the simulation within the corresponding

bin.

Finally, simulating the system in the range [σa, σb] will allow for covering

the whole range in σ. This procedure avoids the problem of disconnected

regions at larger values of σ (as in figure 6 where σ > σ∗). During the

simulation the system can move down to lower values of σ (i.e. σ < σ∗)

where the region is connected and move up into another disconnected region.

By this way we ensure ergodicity and maintain a uniform distribution in

SF(σ, µq).
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Figure 2: Panel (2a) shows monthly data from the Dow Jones Industrial
Average from 2001 to 2006. Panel (2b) depicts a scenario where the CAPM
is true. Here, the market proxy M does not contain negative weights.
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Figure 3: Figure 3a: R2
OLS histogram for the Dow Jones Industrial Average

where µp = 0.015. The values of σ are given by the distance shown by the
dotted arrow in figure 2a. The number of iterations for the simulation was
set to 5 million. The black shaded squares contain densities of over 90% of
the distribution’s maximum density. The brightest squares contain densities
below 10% of the distribution’s maximum density.
Figure 3b: Shows the histograms that belong to the dotted arrow in figure
2b. where the proxy has only non-negative weights.
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Figure 4: Portfolio q1 in figure 4a lies on the CMVF and there is an exact
linear relation between the non-zero weighted assets in portfolio q1 (as shown
in figure 4b). Portfolio q2 in figure 4a has the same expected return level
as q1 but is inefficient. However, the linear relation among the originally
examined assets is still very strong (see figure 4c).

26



1

0.9

0.8

0.7

0.6

0.5

R
2 P

W
A

0.035 0.038 0.041 0.044 0.047 0.050 0.053
σ

Figure 5: Distributions of R2
PWA for the same µq = 0.015 and for different

σq are plotted horizontally.

27



(6a)

w1

w2

w3 = 0w4 = 0

w1

w2

σa σ∗

σb

(6b)

disconnected
segments

Figure 6: Example with 4 assets; as shown in panel (a) the feasible region
where w ≥ 0 and where both linear constraints are satisfied is shown by the
shaded area. Panel (b) shows ellipses describing the solutions for w′Σw =
σ2, w′1 = 0, w′µ = µq for different values of σ. If σ < σ∗, the solutions
form a connected line (i.e. segment of an ellipse). If σ > σ∗ the solutions
are on disconnected line segments.
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