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ABSTRACT 

An institute’s economic capital allocation taking efficiency aspects into account requires the coexistence of a 

certain centralisation and delegation. On the one hand information pooling concerning portfolio optimization 

kind considerations is afforded. On the other hand exclusively possessed knowledge by decentralized entities has 

to be used through delegation of decision rights. Information asymmetries cause a lack of reliable performance 

expectations which represent an important input factor concerning an optimization like allocation of economic 

capital. The model describes a bank dealing in Dow Jones Industrial Average stocks over a certain time period. 

The model bank applies an economic capital allocation with benchmark character equating to a pure optimiza-

tion problem. Information asymmetries are overcome to a certain degree through Bayesian inference. The model 

is meant to be used for numerical comparative analyses providing an informative basis concerning the impact of 

different economic capital allocation’s efficiency increasing efforts. 
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1. INTRODUCTION 

Concerning the allocation of economic capital several fundamental kinds of approaches can 

be found in literature. Froot/Stein (1998) provides a comprehensive risk management model 

with the focus on interdependencies between capital structure, capital allocation and hedging 

transactions. As an important conclusion the flow of information between decentral entities 

and a central planner is identified as vital in order to maximize shareholder value. Referring to 

Froot/Stein (1998) the required degree of centralization and delegation is still insufficiently 

analysed through research. Stoughton/Zechner (2004) in a sense continues these considera-

tions by focusing on shareholder value maximization through economic capital (EC) alloca-

tion. In this context the optimal amount of EC is also an issue as well as possibilities of how 

to determine hurdle rates of certain institute’s divisions. As a maximizing allocation mecha-

nism finally an internal capital market and additionally an incentive scheme to ensure truthful 

reporting are identified. 

In contrast there are less comprehensive analytical approaches focusing on the optimization 

problem behind the EC allocation issue. So does Burmester/Hille/Deutsch (1999) which pro-

vides a general definition of this optimization problem. A further analytical approach with the 

same focus basing on Burmester/Hille/Deutsch (1999) is presented by Straßberger (2002). 

Despite several improvements the approach’s attribute of being analytical seems to be of limi-

tative impact concerning its conclusions. In order to enable the application of Lagrangian 

function only certain polynomials can be considered as EC addressees’ return functions which 

is quite smattering. 

Concerning several issues from the field of EC allocation the use of numerical methods seem 

to be quite adequate. Dresel/Härtl/Johanning (2001) and (2002) analyse the impact of correla-

tions’ instability resulting from traders’ independent decision making while their probabilities 

of success are identical. A further issue are possibilities of increasing value at risk (VAR) 

limits’ utilization ratio. Bühler (2002) also focuses on correlations’ instability by analysing its 

influence on the EC’s amount that finally can be allocated if diversification aspects are taken 

into account. The phenomenon of herding among traders and its impact on VAR limit systems 

is in the focus of Burghof/Sinha (2005) while Beek/Johanning/Rudolph (1999) analyse the 

conversion of annual VAR limits into limits for shorter time periods and the impact of fixed, 

dynamic and loss restricting limits. 



 3

The present work integrates the problematic of information asymmetries between a central 

planner and decentral decision makers represented through traders varying in their probabili-

ties of success. In a sense the mentioned particular conclusions of Froot/Stein (1998) in a way 

define the analyses’ range. In contrast to Stoughton/Zechner (2004) the modelling of an intri-

cate incentive system ensuring truthful reporting is avoided through providing a Bayesian 

inference mechanism. Furthermore hurdle rate considerations as aspects concerning the opti-

mal bank’s overall amount of EC are neglected. In order to define a benchmark method of EC 

allocation a model bank is introduced which applies an allocation equating to a pure optimiza-

tion problem. Since EC finally represents a scarce resource to be allocated in an optimal man-

ner the optimization point of view seems to be essential for EC allocation considerations. The 

benchmark case includes correlations’ instability resulting from the traders’ independent deci-

sion making. The model1 is meant to serve as a basis for several comparing numerical analy-

ses through which particular efficiency increasing efforts concerning an EC allocation can be 

measured. Through adjustments of the benchmark configuration cases which represent banks 

with less sophisticated allocation methods can be derived. The modelling and coding respec-

tively is kept flexible in order to also allow the implementation of all kinds of already ana-

lysed issues which can be found in literature. Their efficiency impacts can then be compared 

in an identical experimental surrounding. Since an analytical approach seems to be less de-

monstrative for comparative purposes a numerical is chosen. The following chapters give a 

description of the benchmark case. 

 

2. THE MODEL 

The bank is designed as a group of thirty traders. Its daily business volume and ability to take 

risks respectively is restricted by a given amount of EC which is at the same time the bank’s 

daily value at risk limit. By assigning certain value at risk limits to each trader the EC is allo-

cated throughout the institute. These limits define the traders’ maximum exposures. The allo-

cation of EC and value at risk limits respectively is executed by considering correlations and 

the adherence to the daily overall limit of the bank. The allocating entity is characterised as 

the management. 
                                                 

1  The model is programmed in Excel VBA. As pseudo random number generator the Rnd-function of Excel 
2003 was used. 
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The model’s movements in stock prices are given by the discrete daily returns of the thirty 

stocks of the Dow Jones Industrial Average (DJIA) collected for the year 2003. The DJIA was 

chosen to provide the model with well-known data and has no further meaning. The trading 

activity is modelled as follows. At the beginning of each day a trader has to decide whether to 

go long or short. The choice concerning which security he should trade in is neglected. Every 

trader is assigned to one specific DJIA-stock. The trade volumes are given by the traders’ 

value at risk limits which are always used to full capacity. Infinite divisibility of shares is as-

sumed. At the end of the trading day the position is closed in any case. Hence other trading 

strategies e.g. holding a position for several days or making no investment are excluded. 

Similarities concerning the bank’s and the traders’ design can be found in Beeck/ 

Johanning/Rudolph (1999), Dresel/Härtl/Johanning (2001) and (2002). 

Concerning VAR computation the delta-normal method is applied throughout the model. As-

suming jointly normal distributed returns secures VAR being a coherent2 risk measure. Using 

the delta-normal method yields a drastically eased portfolio VAR computation which saves 

simulation time for the key aspects of the present analysis. A further simplification is gained 

through generally assuming means of zero. Jorion (2001: 219 et seqq., 255 et seqq.) gives a 

detailed insight to delta-normal method. 

In a firstly considered case with benchmark character a new allocation of the EC takes place 

in front of every trading day. Provided that adherence to the bank’s and the traders’ VAR lim-

its is given the maximized bank’s expected return indicates which size the value at risk limits 

allocated among the traders should correspond to in specific. Influencing factors concerning 

each allocation’s shape are on the one hand the expectations concerning the upcoming day’s 

standard deviations and correlations3 estimated through an exponentially weighted moving 

average (EWMA) with a parameter configuration accordant to JPMorgan/Reuters (1996: 75 

et. Seqq.). But on the other hand in the present model also the management’s estimations con-

cerning the skills of its traders play a certain role. Those estimations base upon a Bayesian 

inference process which requires further modelling 

The prior used by the management concerning the occurrence of skills in the model world is 

identical with the model’s actual occurrence of skills among all traders. This fact just implies 

                                                 

2 See Artzner (1999) for coherency issues. 
3 See Alexander (1998) for issues on volatility and correlation measurement. 
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a very good guess by the bank managers concerning the distribution of skills and eases the 

modelling by avoiding further bias. The skills of a trader are represented by a specific prob-

ability of success p. The distribution of skills p is described through the transformation of the 

generalized beta density function according Johnson et al. (1999: 210, 211). 

Formula 1: 

1

11

)(
)()(

) ,(
1)( −+

−−

−

−−
= βα

βα

βα pp
pppp

B
pf  whereas 0 , ; >≤≤ βαppp  

In the model the function is shaped by the parameters  1=α  and 9=β . It is defined on the 

interval ]1 ,5,0[ . Insertion in the formula above yields the following density function. 

Formula 2: 

8)1(4608)( ppf −=  whereas 9 ;1 ;15,0 ==≤≤ βαp  

 

 

 

 

 

 

 

Figure 1:  Actual and prior probability distribution of skills )9,1(~  Bp  whereas 15,0 ≤≤ p ,  

55,0=µ  and 0,045σ =  

In the model values of 5,0<p  remain disregarded since such values imply a trader making 

wrong decisions deliberately which should not be part of the present analysis. In contrast the 

scenario of a trader without a clue whether to go long or short is strongly represented since 

the distribution’s mode is 0,5. The chosen distribution meets the demand of being not entirely 

implausible. This is sufficient since it just has to yield a selection of traders which differ in 

0

5

10

15

20

0,5 0,6 0,7 0,8 0,9 1

p

f(p)



 6

their skills. Finally through all later comparative analyses of different cases the identical 

skills’ distribution is used. Hence the exact distribution form is not vital concerning the future 

conclusions. Each trader of the model bank is determined through a draw )9 ,1(~ Bpi  

whereas ( 30,,1   …=i ) and 15,0 ≤≤ ip . These draws’ outcomes will be used in the bench-

mark case as through all other later analyses. 

 

 
 
 
 
 
 
 
Table 1:  The banks’ employees/traders represented by the outcomes of the draws 

)9,1(~  Bpi  whereas ( 30,,1   …=i ), 15,0 ≤≤ ip  and 5458,0≈bankµ  

Since the specific values of ip  are unknown to the management it has to estimate those pa-

rameters as already mentioned above. This process is modelled through Bayesian updating. 

Thereby the estimates’ accuracy develops according to the law of large numbers. In the model 

the Bayesian updating represents a certain learning ability of the management. 

The management distinguishes between 1000=n  types of traders. Hence the interval ]1 ,5,0[  

of all possible p  values is divided into n equal segments on the scale of 0005,0=∆p . The 

prior probabilities jθ  ) , ,1( nj …=  concerning the occurrences of the specific types of traders 

are computed via the cumulative beta distribution function according to Johnson et al. (1999:  

211) which is introduced firstly. 

Formula 3: 

( )1 1 ( 1)( ) ( ) ( )

( )
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p
α β α β

p

p p p p p p dp

F p
B α β

− − − + −− − −

=
∫

 whereas 0 , ; >≤≤ βαppp  

Insertion of 9 and 1 ,1 ,5,0 ==== βαpp leads to the following term. 

 

0,54020,5849 0,5058 0,57750,59550,513 0,71130,5362 0,6123 0,5234  
30 29 28 27 26 25 24 23 22 21 trader 

0,59690,5760 0,5094 0,505 0,582 0,54050,55490,5188 0,5219 0,6321  
20 19 18 17 16 15 14 13 12 11 trader 

0,51470,53 0,5465 0,51730,59860,56060,50650,5895 0,5101 0,5465  
10 9 8 7 6 5 4 3 2 1 trader 

ip ≈

ip ≈

ip ≈
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Formula 4: 

9)22(1)( ppF −−=  

 

 

 

 

 

 

 

Figure 2:  Cumulative distribution function of skills )9,1(~  Bp  whereas 15,0 ≤≤ p  

Through customization of the function )(pF  the occurrences jθ  of the traders’ types can be 

computed. 

Formula 5:  
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1
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j
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The types’ specific probabilities of success jp  are represented through the centres of the n  

intervals determined through p∆ . 

Formula 6: 
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The graph below illustrates the knowledge of the bank management concerning each trader at 

the beginning of the first trading day. Hence it knows only the occurrences jθ  of the several 

types of traders which serve as prior probabilities for the start of the Bayesian inference proc-

0

0,25

0,5

0,75

1

0,5 0,6 0,7 0,8 0,9 1

p

F(p)



 8

ess and their corresponding probabilities of success jp . Consider P and L denoting the events 

“profit” and “loss”. 

 

Figure 3: The probabilities’ structure of each trader at the beginning of the first trading day 

which is known to the management 

At the end of the first day there is new information regarding which trader made a profit or a 

loss. In a first step this information allows inferences concerning the type a trader belongs to. 

In order to give a detailed example this process is shown by picking one trader who generated 

a profit. In this case every jθ  in the structure is adjusted by the following two terms which are 

based on Bayes’ theorem. 

Formula 7: 
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In contrast if the trader caused a loss, the term changes. 

Formula 8: 
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Thus the formulas yield the probabilities concerning a trader of belonging to type j  under the 

condition that this trader made a profit or a loss. Since in the model there is new information 

every day these computations can take place in an according frequency while the input value 

for the shown adjustment process is always its outcome of the day before. Concerning the 

example the input values of the second day are represented through 
n

j
j

Pjprob
1

)(
=

 and 

n

j
j

Ljprob
1

)(
=

 respectively. 

The focus is again on the picked profit generating trader i. The estimate’s computation con-

cerning his probability of success e
ip  is achieved by using 

n

j
j

Pjprob
1

)(
=

. Finally the products’ 

sum of all adjusted occurrences in the structure with the types’ probabilities of success is 

built. 

Formula 9: 
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If the trader causes a loss the term changes as shown subsequently. 

Formula 10: 
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According to the law of large numbers this Bayesian inference process approaches probability 

jp  of type j  which is closest to the trader’s actual probability of success ip . Hence the accu-

racy of the estimates rises with the number of days and inferences respectively and with the 

size of the variable n standing for the number of distinguished types of traders. Since the in-

ference process begins with the start of a simulation the analysed bank always corresponds 

with a just founded one. This fact could be mitigated by randomly replacing traders through 
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further draws from (1, 9) B  after also randomly chosen time periods. The following gives an 

impression of the Bayesian inference mechanism’s functionality. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Exemplary results of Bayesian inference 

After a certain number of days a ranking among the traders corresponding to their e
ip  values 

becomes apparent. Bayesian inference reproduces the traders’ ranking which is based on their 

actual probabilities of success ip . Are further random draws neglected which could represent 

a certain fluctuation among the bank’s employees this ranking’s accuracy depends simply on 

the number of trading days the simulation runs. 
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3. OPTIMIZATION PROBLEM: EXPECTED RETURN 

Finally the present optimization problem is solved through sample average approximation4 

(SAA) also known as the sample path or the stochastic counterpart method. More generally 

speaking Monte Carlo sampling and the field of stochastic programming5 are applied. The 

SAA is used in connection with the so called exterior method. Hence during one optimization 

process always the same Monte Carlo sample is accessed if random data is required. To be 

precise in the model such a sample is produced once a day for the simulation of the upcoming 

one. The basic ambition is to model a bank’s every day business processes. Compared to a 

purely my-sigma driven Markowitz6 kind optimization approach this requires integration of 

traders’ position taking and moreover their skills and the according management’s estimators 

respectively. In order to integrate all influences in an optimization yielding an adjusted VAR 

limit allocation SAA is an appropriate method. In a closing remark concerning SAA there has 

to be indicated that it represents a simplification of the true optimization problem which is 

necessary for computational reasons and hence more precisely SAA finally just provides a 

solutions estimator. 

The difficulties provided by the problem’s nonlinearity are endurable since a found optimal 

solution in the present setting is always at the same time a global optimum. This stems from 

the underlying correlation matrices being positive definite which describes the case of com-

mon portfolio optimization if derivatives are excluded. Hence the VAR constraint is convex 

and also the objective function is of simplifying concaveness and does not provide local 

maxima.7 Since the used objective function’s outcomes are expected profit a maximization 

approach is applied. 

The following remarks can be interpreted as the description of a benchmark case and hence 

the description of a bank behaving optimal from an entirely theoretical point of view. An ex-

ample for the theoretical orientation is the assumption of a day to day EC allocation which is 

                                                 

4  See Shapiro (2003: 353 et seqq.) for a general description of the sample average approximation (SAA)-
method. 

5  For stochastic programming in general see Birge/Louveaux (1997), Marti (2005) and Ruszczynski/Shapiro 
(2003). 

6  See Markowitz (1959) for considerations on portfolio optimization. 
7  See Fylstra (2005) for an overview concerning convexity aspects’ impact on actual optimization research. 

Rockafellar (1993) originally emphasized the importance for optimization issues of whether convexity holds 
or not. 
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less realistic. The objective concerning each allocation is the maximisation of the bank’s ex-

pected profit concerning the upcoming trading day. 

Formula 11: 

 

 

 

 

 

Note that vectors and matrices are not italicized. Bold face indicates vectors and matrices as a 

whole. Otherwise their single elements are meant. Small letters denote vectors while capital 

letters indicate matrices. The bank’s expected return ( )[ ]1tvl ++1tRE  depends on vector 1tvl +  

which contains the VAR-limits )n ..., 1,i( vli =  of the traders. *
t+1vl  denotes the limit alloca-

tion maximizing the banks expected return. The amount of EC  determines the bank’s daily 

overall VAR-limit VL  and hence the constraint to the bank’s expected value at risk which is 

just allowed to be caused by any allocation 1tvl + . In doing so EC  provides the constraint re-

garding the optimization problem. The term ( )E ⎡ ⎤⎣ ⎦t+1 t+1var vl  denotes the vector of expecta-

tions regarding the traders’ caused value at risks which depend on the allocated limits 1tvl +  as 

well. Hence finally the expectations concerning the bank’s return 1tR +  refer to the return the 

traders are able to gain with a certain VAR-limit allocation. The following gives information 

about how the traders’ market anticipation is modeled and simulated. To give a better insight 

the vector notation is abandoned. 

Formula 12: 
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Note that control variable mh  ..., ,1=  stands for the m simulations of the forthcoming trading 

day where ni  ..., ,1=  denotes the n traders and traded stocks respectively. Take 1+tR  for the 

bank’s overall return and 1,, +tihR  for the return of trader i during simulation iteration h. In con-

trast 1, +i,thr  denotes each stock’s rate of return. It stems from a discrete geometric Brownian 

motion hence the multiplication of the particular stock’s actual standard deviation 1+i,tσ , a 

multivariate standard normal distributed random number 1,, +tihε  and the square root of the cor-

responding time increment. As mentioned the model’s assumption of normally distributed 

rates of return enables the application of the Delta-Normal-Method for VAR-computation. 

Hence a transformation of the VAR computing term yields the market value , , 1h i tV +  referring 

to the maximum trading position each trader is allowed to hold. It is determined by the VAR-

limit in the numerator and the standard deviation as the quantile )(1, α,Sz i,th +  in the denomina-

tor. The quantile’s absolute value ),(1, Sz i,th α+  depends on the underlying confidence level 

α−1 . For the present analyses a confidence level of 99 percent is applied leading to a quan-

tile’s absolute value of 33,2),(1, ≈α+ Sz i,th . In contrast the quantile’s sign changes in depend-

ence of different states S which finally depend on several random numbers’ interaction de-

scribed subsequently. 

Formula 13: 

 

 

 

 

1, +i,thζ  as ,i tψ denote uniform distributed random numbers. While the first mentioned deter-

mines whether a certain trader generates a profit or loss throughout the m simulations the sec-

ond one decides whether the trader generates a profit or loss during the models “real” trading 

action. Since the real trading’s earnings drive the skills’ estimators values e
tip 1, +  these depend 

at the same time on ,i tψ . The operator ∨  separates two constellations. Both lead to the same 

quantile sign but once the result is a profit and once a loss. 

profit loss

, 1 , , 1 , 1 , 1 , , , 1 , 1 , 1 ,

profit

, 1 , , 1 , 1 , 1 ,

( , ) 0 0 ( ) 0 ( ) ,

( , ) 0 0 ( )

         

        

e e
h i,t h i t h i,t i t i t h i t h i,t i t i t

e
h i,t h i t h i,t i t i t

z α S S ε ζ p ψ ε ζ p ψ

z α S S ε ζ p ψ

+ + + + + + +

+ + + +

< ∀ > ∧ < ∨ < ∧ >

> ∀ < ∧ <

������������ ������������

���� � loss

, , 1 , 1 , 1 ,

, 1 ,

0 ( ) ,

whereas  and ~ (0, 1)   

e
h i t h i,t i t i t

h i,t i t

ε ζ p ψ

ζ ψ U

+ + +

+

∨ > ∧ >
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The generation of the random data which impacts SAA can be interpreted as spanning up a 

probability space ( , , )PΩ Α . See e.g. Birge/Louveaux (1997: 49 et seqq.) for probability 

space issues. This random data’s elementary origins are denoted through ω ω∈Ω  while 

{ }ωΩ = . Hence SAA’s specifically distributed data ε(ω)  as well as ζ(ω)  depends on those 

origins. Note that ψ  and hence ep (ψ)  only represents random data if the whole model is con-

sidered. To a particular SAA in the model the corresponding estimators’ values are determi-

nistic data. Α  describes a collection of random events which in turn are subsets of Ω . In the 

present work’s context single events’ examples are Α ε 0= >  or  eA ζ p (ψ)= <  whereas a 

collection’s example is A = eε 0 ζ p (ψ)> ∧ < = profit. Hence according to Formula 9 the pre-

sent probability space implicates four event collections. Two result in a profit and two in a 

loss. To each event A∈A  a probability (A)P  can be associated while 0 (A) 1P≤ ≤ , 

( ) = 0P ∅ , ( ) = 1P Ω , 1 2 1 2(A A ) = (A ) (A )P P P∪ +  if 1 2A A =∩ ∅ . 

Characteristically SAA implicates the discretization of the spanned up ( , , )PΩ Α  for count-

ability reasons which causes the mentioned fact concerning the present problem being just 

approximatively. As determined by Formula 12 the described optimization problem in the 

present work requires m vectors of the length n concerning the particularly distributed random 

data ε(ω)  and ζ(ω)  as random sample per SAA. Hence the corresponding discrete probability 

space can be denoted through ,( , , )m nPΩ Α . Since the focus of the present analyses is not on 

the difference between the solutions estimator and the true problem’s solution the value of m 

is primarily derived from computational time issues. For m→∞  the approximation would 

turn into the true problem’s solution. Detailed SAA’s accuracy and stopping criteria remarks 

provides Shapiro (2003: 357 et seqq.). Since furthermore the sample is generated exteriorly 

the optimization problem finally shrinks to a deterministic one. Hence for its solution a de-

terministic algorithm can be applied which will be described during the subsequent section. 

 

4. SUBPROBLEM: EXPECTED RORAC 

It is assumed that *
t+1vl  maximizes the relation of expected bank’s return per expected bank’s 

VAR. This relation just describes the expectation concerning the widely spread ratio return on 



 15

risk adjusted capital (RORAC). Referring to *
t+1vl  the ratio’s maximization has a sufficient 

condition’s character. Hence in order to find *
t+1vl  the following subproblem has to be solved. 

Formula 14: 

 

 

 

For technical reasons the constraints of the superior optimization problem are firstly ignored. 

To give a better insight vector notation is again abandoned in the following. 

Formula 15: 

 

 

 

 

Through firstly factoring out constraints a certain discrete algorithm can be used to extract the 

subproblem’s solution. In order to provide a neat explanation the algorithm is graphed subse-

quently. 

 

 

 

 

 

 

Figure 5: The functionality of the subproblem’s discrete solving algorithm 
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Every square element denotes a trader’s VAR limit. Compared to the model the description’s 

number of traders is reduced to five. The allocation above the dotted line in the left upper cor-

ner represents the starting point. Through adding the striped limit extensions in the described 

manner five new allocations are generated. Subsequently each resulting allocation is tested in 

connection with ,( , , )  m nPΩ Α concerning which of them yields the highest expected RORAC. 

In the example the framed allocations include this attribute and hence serve as input data for 

the subsequent optimization iteration while every column denotes one iteration. If the firstly 

used limit extension of size ∆vl  (here ∆vl 250.000 USD= ) does not result in at least one al-

location outperforming the inputted one ∆vl  is adjusted through simple bisection. The bisec-

tion is continued until a certain stopping criteria is reached (here ∆vl 1.000 USD< ). Note that 

in order to approach the true problem’s solution additionally to the above mentioned require-

ments ∆vl 0→  would be necessary. As stopping criteria concerning the optimization algo-

rithm itself an expected RORAC’s improvement rate smaller then a thousandth part is used. 

Note that the several values base on experiences and are not gathered from optimization proc-

esses themselves. Finally they result from accuracy-time-trade off considerations. In the 

model’s benchmark case this optimization procedure is executed once in front of every trad-

ing day. The graph below represents the optimization results concerning six days which to-

gether needed 191 optimization iterations. 

 

 

 

 

 

 

 

Figure 6: Exemplary results of the subproblem’s discrete solving algorithm 
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Furthermore to identify *
t+1vl  a particular scalar ** *

1 1t+ t+ =D Dλ λ t+1 t+1vl vl  has to be identified. To 

track down 1t+
Dλ  binary chop in connection with the interval (0, 2) is applied. Finally a search 

problem of the following kind exists. 

Formula 16: 

 

 

 

During the search the interim solutions 1t+λ  are tested through simulation. 

Formula 17: 

 

 

 

 

 

To give an impression concerning the model’s mechanisms’ functionality the following dia-

gram presents some results of the repeated EC assignments to the traders. 
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Figure 7: Exemplary illustration concerning the limit allocation during simulation 

The diagram shows relatively high VAR limits during the first fifty days in context with 

trader number thirty which is surprising since he is just provided with an average probability 

of success. His limits’ size stems from the fact that he was quite successful during the first 

fifty days which resulted in relatively high estimators 30
ep  as could be seen in figure four. 

Hence in his case the optimization process yielded high limits while top trader number twenty 

four did not yet entirely reach his skills’ corresponding rank in the allocation process. 

 

5. CONCLUSIONS 

Through adjustments concerning the configuration of the above described benchmark model 

several cases can be derived which represent banks with less sophisticated allocation methods 

concerning EC. In order to prevent avoidable bias which impairs the comparability of the nu-

merical analyses’ results the analyses base on an identical row of pseudo random numbers and 

probability space ( , , )modelPΩ Α  respectively. Furthermore every bank deals on DJIA’s stock 

price movements of the year 2003. 

At least five major fields concerning potential analyses can be identified. Firstly tests will be 

undertaken in order to measure the impact of the Bayesian inference on allocations’ effi-

ciency. Is ex ante information in the form of expected performances as vital as it seems at first 

sight? How important is this kind of information compared with other input factors of the 
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allocation optimization process? Do homogeneity and heterogeneity aspects concerning the 

EC’s addressees play a crucial role in this context? 

Another field is represented through the forms of correlations’ integration. Completely ne-

glecting them appears to be out of the question. However to small institutes this might be the 

preferred strategy for convenience reasons. How bad is this solution compared to others? And 

how strong are efficiency gains of additionally considering correlations’ instability resulting 

from addressees’ decision making through the optimization process? 

The allocations’ and optimizations’ frequency is a further range of potential research. A daily 

execution surely is far from practice. From a practical point of view an annual allocation of 

limits appears possible since this surely represents the state of the art regarding most of the 

bigger institutes. How high are efficiency decreases to be accepted if the frequency is dis-

tinctly lowered compared to the benchmark case? 

Further questions rank around the allocation of profits and losses. Should they immediately 

increase and decrease the corresponding VAR limit? How strong is the impact on efficiency 

compared to configuration adjustments from other mentioned fields? 

In order to close this collection of ideas heuristic allocation methods can be named which 

could be used instead. Can a uniform allocation of the model bank’s EC among its traders 

compete with more sophisticated solutions? For example a RORAC or earnings based ranking 

of the traders could be used as an indication which trader should get the biggest and lowest 

VAR limit respectively. How does a random allocation perform and should underperforming 

traders be excluded from trading? 

Structuring and executing these kinds of thoughts should lead to a data collection which al-

lows drawing some relevant conclusions concerning what could and what should be consid-

ered by institutes in order to reach a certain efficiency degree regarding their use of the scarce 

resource EC. 
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