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Abstract

This paper implements a pricing procedure for commodity options, taking into account the stochastic
nature of spot prices, currency exchange rates and convenience yields. Interest rate risk is also mentioned,
but is not included in the numerical implementation. The analytic framework is heavily inspired by
Miltersen&Schwartz(1998); however, while they allow the interest rate to be stochastic they do not
consider exchange rate risk. Furthermore, our work differsfrom theirs by extending the analysis to
derivatives, where the underlying energy commodity is allowed to be either a portfolio of single-delivery
contracts or a flow forward. The numerical implementation isan adaptation of the stochastic duration
approach in Munk(1999), and we find that this numerical method produces results quite close to the
“true” prices found through Monte Carlo simulation.

Key words: Stochastic exchange rates, forward and futures prices, convenience yields, options,
portfolios of single-delivery contracts, flow forwards, stochastic duration.



1 Introduction

It is a delicate matter to trade spot products and financial derivatives in energy markets. Opposite to bond
and stock markets, the underlying assets arereal products, and a significant part of the demand for them
represents areal need for the products, which can only be substituted away with some difficulties; or,
in some cases, only in a prohibitively costly manner. This isparticularly true in the spot market, where
the demand is almost always met, but where the spot price processes can be quite different from the spot
price processes conventionally used in the pricing of derivatives. This pattern of real demand is also the
main reason for the existence of the well-known convenienceyield in energy markets.

Convenience yields exist in most commodity markets which are not primarily driven by speculation, cf.
Brennan (1991). A popular and widely used definition of net convenience yield of a commodity is given
in Brennan (1991) as

“the flow of services that accrues to the holder of a physical commodity, butnot to the owner
of a contract forfuturedelivery− measured per unit time and unit of the commodity.”

In order to explain what convenience yield implies for the pricing and hedging of energy derivatives,
convenience yield is often compared to (continuously paid)dividends on common stocks. This is a
good first explanation. However, the dynamics of convenience yields in energy markets is typically
very different from the modest dynamics of stock dividends,where an assumption about a constant
continuously paid dividend rate or discretely paid fixed amounts is often sufficient to make a derivatives
pricing model work well. Opposite to this, modeling of convenience yields on energy commodities
requires a more sophisticated approach, because empiricalevidence clearly states that convenience yields
are stochastic. Furthermore, it shows the existence of a significant term structureof convenience yields.
This calls for a modeling approach in the spirit of Heath, Jarrow, and Morton (1992), abbreviated HJM,
where the spot price and the initial term structure of futures prices are taken as given. Based on this the
drift of the convenience yield under an equivalent martingale measure is derived.

Obviously, the spot prices of energy has to be modeled as a stochastic process too. Furthermore, the
introduction of a stochastic exchange rate is important forenergy investors in almost any other country
than the US, the prime example being crude oil and oil products that are almost exclusively traded in
US dollars. Unless otherwise stated it is understood that energy commodities are internationally traded
commodities with identical exchange rate adjusted spot prices in different markets. This is no restriction
whenever the different currencies are used solely as units of account. But whenever the use of different
currencies are used to compare spot prices in geographically separated areas it is no longer obvious
that the exchange rate adjusted spot prices are identical. Transportation costs and delivery time (e.g. oil
and related products), physical constraints in transmission capacity or the entire lack of such capacity
(e.g. natural gas, electricity) and even politically determined flow constraints (e.g. oil export tariffs from
Russia) are frictions that may cause markets to separate such that the exchange rate adjusted prices can
no longer be assumed identical. However, such frictions dueto thereal nature of the commodities are
not modeled within this paper. On the other hand, even with frictionless conversions of spot prices across
currencies the analogous conversion of forward and futuresprices is not entirely straightforward. This
also goes for the relation between the convenience yields across currencies. We derive these relations in
this paper.

The electricity market is the prime example where some of thebasic assumptions and properties under-
lying conventional derivatives pricing models do not apply. This is due to the lack of storeability outside
the hydropower based markets. Hence, neither the conventional hedging techniques for the pricing of
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financial derivatives nor the ability to learn about an appropriate equivalent martingale measure from the
spot market apply. Similarly, it is meaningless to interpret the convenience yield as a flow of services
to an investor from holding an inventory. In this case one can, of course, always give up the usual
interpretation of the convenience yield anddefine it in a backwards manner such that the usual no
arbitrage based pricing relations are valid. On the other hand, electricity is also an example of a real
good that can be transported instantly over long distances,provided the relevant transmission lines have
been established.

This paper implements a pricing procedure for commodity options, taking into account the stochastic
nature of spot prices, currency exchange rates and convenience yields. Interest rate risk is also mentioned,
but is not included in the numerical implementation. The analytic framework is heavily inspired by
Miltersen and Schwartz (1998); however, while they allow the interest rate to be stochastic they do not
consider exchange rate risk. Furthermore, our work differsfrom theirs by extending the analysis to
derivatives, where the underlying energy commodity is allowed to be either a portfolio of single-delivery
contracts or a flow forward.

A flow forward is an agreement to deliver a commodity continuously through some specified period as
opposed to the standard single-delivery energy commodity like crude oil or cracked oil products, where
the delivery of the entire bulk takes place at a single point in time. The relevant energy commodities
with flow feature are electricity and natural gas. Our approach to cope with the flow feature is to view
the contract as an indivisible portfolio of periodical (weekly or daily) single-delivery forwards. This is
analogous to a coupon bond, in which the cash flows occur at a number of times. We apply variants of
the technique developed in Munk (1999) for pricing options on coupon bonds in multi-factor models.
This technique replaces the underlying bond by a pure discount bond with the same stochastic duration
and provides an approximate pricing method; however, MonteCarlo simulation results show that this
approximation method is indeed quite accurate.

The paper is organized as follows. Section 2 outlines the set-up and section 3 describes our basic model
for energy options, where the underlying is allowed either to be a portfolio of single-delivery futures or
forwards with a flow feature (flow forwards). Potential applications to two different energy markets is
discussed in section 4. Section 5 describes our results fromcomparing the approximate pricing method
with the results from a Monte Carlo simulation which produces “close to theoretically correct” prices
that are not obtainable in analytical form. Concluding remarks end the paper in section 6.

2 The set-up of the general model

A similar description of the model setup used here can be found in Miltersen and Schwartz (1998).
However, considering only the one country/currency case they do not incorporate a stochastic exchange
rate in their model.

2.1 The stochastic processes

The current time is 0 and we assume a finite investment horizonis T. The relevant filtered probability

space upon which the objective probability measureP works is denoted
(

Ω,F ,{Ft}{0≤t≤T},P
)

. This
probability space carries ad-dimensional Wiener processWu, and we assume that the filtration is the one
generated by this Wiener process:Ft =σ

(
Wu | 0≤ u≤ t

)
.
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We assume that the trading of energy commodities− spot and forward/futures− takes place in another
currency domiciled in another country than the one used in the country where the energy derivatives in
question are being priced and traded. The former country is denoted theforeign country and the latter
the domesticcountry. Thus, the situation is seen from the point of view ofthe domestic country. All
foreign variables are written with superscript∗ as commonly used in two country models in economic
literature to identify the foreign country. The domestic spot priceSt and the foreign spot priceS∗t are
assumed to be directly related through the spot exchange rate xt , i.e. St =xtS∗t . Hence, as mentioned in
the introduction, we disregard frictions ofreal nature in the spot markets, which otherwise would call
for yet another source of risk to be modeled.

The following stochastic processes are defined on the probability space
(

Ω,F ,{Ft}{0≤t≤T},P
)

:

• the spot price processes of the underlying energy commodity, St andS∗t

• the spot interest rate processes,rt andr∗t , and the families of zero-coupon bond prices,P(t,T) and
P∗(t,T)

• the spot exchange rate processxt

• the futures price processes,F(t,T) andF∗(t,T)

• the forward price processes,G(t,T) andG∗(t,T)

• the forward convenience yield processes,δ (t,s) andδ ∗(t,s)

• the futures convenience yield processes,ε(t,s) andε∗(t,s)

For technical reasons all processes are required to beH2(P) processes, meaning that all the stochastic
integrals w.r.t. the Wiener process are not only well-defined, but areP-continuous square integrable
martingales1.

In accordance with standard assumptions in the literature we assume the existence of the usual equivalent
martingale measures,Q in the domestic country with the bank accountβt ≡exp(

∫ t
0 rsds) as the numeraire

andQ∗ in the foreign country with the bank accountβ ∗
t ≡exp(

∫ t
0 r∗sds) as the numeraire.

The continuously compoundedforward interest rates, f (t,s) and f ∗(t,s), are defined by

P(t,T) = EQ[e−
∫ T
t rsds | Ft ] = e−

∫ T
t f (t,s)ds (2.1)

P∗(t,T) = EQ∗
[e−

∫ T
t r∗sds | Ft ] = e−

∫ T
t f ∗(t,s)ds (2.2)

The continuously compoundedforward convenience yields, δ (t,s) andδ ∗(t,s), are defined in a similar
manner by the forward prices as

G(t,T) =
St

P(t,T)
e−

∫ T
t δ (t,s)ds = Ste

∫ T
t ( f (t,s)−δ (t,s))ds (2.3)

G∗(t,T) =
S∗t

P∗(t,T)
e−

∫ T
t δ ∗(t,s)ds = S∗t e

∫ T
t ( f ∗(t,s)−δ ∗(t,s))ds (2.4)

1H2(P) is the space of progressively measurable real processes such that EP[
∫ t
0Y2

s ds]<∞ ∀t∈ [0,T].
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while continuously compoundedfutures convenience yields, ε(t,s) andε∗(t,s), are defined by the futures
prices as

F(t,T) =
St

P(t,T)
e−

∫ T
t ε(t,s)ds = Ste

∫ T
t ( f (t,s)−ε(t,s))ds (2.5)

F∗(t,T) =
S∗t

P∗(t,T)
e−

∫ T
t ε∗(t,s)ds = S∗t e

∫ T
t ( f ∗(t,s)−ε(t,s)∗)ds (2.6)

The standard boundary conditions,f (t, t)= rt for all t andG(t, t)=F(t, t)=St for all t, apply.

The economic interpretation of the continuously compounded forward convenience yields is that they
represent a “non-pecuniary dividend yield”, cf. Brennan (1991), as mentioned in the introduction. There
is no similar easy interpretation of the futures convenience yields, because of the continuous resettlement
payment structure for futures contracts. However, when interest rates are deterministic the forward
prices and the futures prices are identical; hence, the two convenience yield curves in each currency are
necessarily also identical. The difference arises solely from the interaction of the continuous resettlement
feature with the stochastic variation in the interest rate process. It is a pure definition, although a very
useful one. Due to the martingale property of the futures pricesF(t,T) w.r.t. to theQ measure it is easier
to develop models for the stochastic dynamics of futures prices than for similar forward prices.

2.2 The dynamics

The model is based on the dynamics for the spot price of the underlying energy commodity, the term
structure of futures convenience yields and the term structure of forward interest rates. This choice is
explained by the experience from the HJM analysis, which shows that it is appropriate to initiate the
building of the model for zero-coupon bond prices from the dynamics of the forward interest rates.
Similarly, the futures prices are most appropriately modeled from the dynamics of the futures conveni-
ence yields. Because the objective of the analysis is to price derivatives we start the specification of the
model directly under the equivalentQ measure.

The spot commodity price is assumed to follow the SDE

St = S0 +

∫ t

0
Su (ru− ε(u,u))du+

∫ t

0
SuσS(u) ·dWQ

u (2.7)

with the usual convenience yield adjusted drift. The spot exchange rate is assumed to follow the SDE

xt = x0 +

∫ t

0
xu(ru− r∗u)du+

∫ t

0
xuσx(u) ·dWQ

u (2.8)

where the drift is given by the usual uncovered parity relation underQ.

The family of SDEs for the continuously compounded futures convenience yields is given by

ε(t,s) = ε(0,s)+
∫ t

0
µε(u,s)du+

∫ t

0
σε(u,s) ·dWQ

u (2.9)

and the family of SDEs for the continuously compounded forward interest rates is given by

f (t,s) = f (0,s)+

∫ t

0
µ f (u,s)du+

∫ t

0
σ f (u,s) ·dWQ

u (2.10)

Any possible correlation between the three processes is specified through the diffusion terms. At this
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point of the analysis the drift and diffusion terms are not specified further, except for the fact that they
must fulfill certain regularity conditions in order to ensure the existence of strong solutions to the SDEs.
So, in the general case, stochastic/state dependent diffusion terms and correlation between the processes
is possible.

Under theQ measure the drift terms of the continuously compounded forward interest rates as well as
the convenience yields are completely determined by the diffusion terms. This is one of the main lessons
from the HJM methodology. More specifically, from Heath, Jarrow, and Morton (1992) we have

µ f (t,T) = σ f (t,T) ·
∫ T

t
σ f (t,v)dv (2.11)

and in Miltersen and Schwartz (1998), Appendix A, it is shownthat the drift of any of the continuously
compounded futures convenience yield processes underQ is given by

µε (t,T) = σ f (t,T) ·
∫ T

t
σ f (t,v)dv+

(
σ f (t,T)−σε(t,T)

)
·
(

σS(t)+
∫ T

t
(σ f (t,v)−σε(t,v)

)
dv (2.12)

2.3 Cross-currency relations

Intuitively, forward convenience yields, being rates analogous to dividend yields, should be identical in
the foreign and the domestic country. This is proven as the following Theorem 1. However, the futures
dividend yields processes, reflecting a possible correlation pattern between the price of the underlying
asset and the interest rate process, will in general be different processes.

We apply the notationEt [X] to denote the conditional expected value ofX given theσ -algebraFt .
Similarly, we denote the Radon-Nikodym derivative, relative to theσ -algebraFt , between two equivalent
probability measuresP andQ as dQ

dP |Ft .

Theorem 1 Forward convenience yields as defined in equations (2.3) and(2.4) are identical. When the
futures price processes and the forward price processes areidentical the futures convenience yields, as
defined in equations (2.5) and (2.6), are identical and identical to the forward convenience yields.

When the futures price processes and the forward price processes differ the futures convenience yields
will only be identical by coincidence.

Proof First, consider a situation where an arbitrageur enters into two opposite forward positions, one
in domestic currency and another in foreign currency. Each of these contracts have zero present value,
hence the portfolio of opposite positions also has zero present value. The final settlement payment,
expressed in domestic currency, is

xTG∗(t,T)−G(t,T) (2.13)

The zero present value of this position leads to the relations

EQ
t

[
e−

∫ T
t rsds(xTG∗(t,T)−G(t,T))

]
= 0 ⇔ (2.14)

EQ
t

[
xTe−

∫ T
t rsds

]
G∗(t,T) = G(t,T)P(t,T) ⇔ (2.15)

xtP
∗(t,T)G∗(t,T) = G(t,T)P(t,T) ⇔ (2.16)

xtS
∗
t e−

∫ T
t δ ∗(t,s)ds = Ste

−
∫ T

t δ (t,s)ds ⇔ (2.17)
∫ T

t
δ ∗(t,s)ds=

∫ T

t
δ (t,s)ds (2.18)
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Since this holds for all T we conclude thatδ (t,T)=δ ∗(t,T) for all T . Alternatively stated, the domestic
forward price is the foreign forward price converted at the forward exchange rate:

G(t,T) =

(
xt

P∗(t,T)

P(t,T)

)
G∗(t,T) (2.19)

For futures contracts recall the well known fact that the futures price F(t,T) is a Q-martingale and,
analogously, that the futures price F∗(t,T) is a Q∗-martingale. The Radon-Nikodym derivative, cf.
Andreasen (1995), is

dQ
dQ∗

∣∣∣
Ft

=
xt

xT
e
∫ T
t (rs−r∗s)ds (2.20)

Identical futures convenience yields is equivalent to having (2.16) fulfilled for the futures prices, i.e.

xtP
∗(t,T)F∗(t,T) = P(t,T)F(t,T) (2.21)

This is equivalent to

EQ∗
t

[
xtP

∗(t,T)
ST

xT

]
= EQ

t

[
P∗(t,T)e

∫ T
t (r∗s−rs)dsST

]
= EQ

t [P(t,T)ST ] (2.22)

This will only be fulfilled by coincidence. If forward and futures prices only differ in one currency, e.g.
because the interest rate is only stochastic in one country,it is clearly impossible to have (2.21) fulfilled.

As another example, consider the widely used specification of the exchange rate process as a process
with a constant or deterministic drift; i.e. rs−r∗s is deterministic, cf. (2.8). In that case the fulfillment of
(2.22) boils down to whether the exchange rate processxT

xt
is (Q-)uncorrelated with the domestic discount

factor:

P∗(t,T) = EQ∗
t

[
e−

∫ T
t r∗sds

]
= EQ∗

t

[
e−

∫ T
t (r∗s−rs)dse−

∫ T
t rsds

]

= e−
∫ T
t (r∗s−rs)dsEQ

t

[
xT

xt
e
∫ T
t (r∗s−rs)dse−

∫ T
t rsds

]

= e−
∫ T
t (r∗s−rs)dsP(t,T)+CovQ

t (
xT

xt
,e−

∫ T
t rsds) (2.23)

As usual in this area it is difficult to have an intuitive feeling for such covariance properties under Q; but
under the physical measure, at least, it is unlikely that this covariance term vanishes.

Remark 1 While the relation between the forward prices is both well known in the literature and very
simple to derive, the relation between the futures prices has not to our knowledge been spelled out
previously.

3 Energy options

3.1 Options on a single-delivery futures contract

Our first objective is to price a strike-K call option on one single-delivery futures contract at date0. The
option expires at datet and the price of the futures contract with expiry at dateT > t is given byF(t,T).
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0 t T

Figure 1:Time line showing the time of option pricing (current time 0), the option expiration time t and
the expiration time T of the underlying futures contract.

The pricing procedure involves a standard change of probability measure fromQ to Qt , the t-forward
measurewith the price process for thet-maturity zero-coupon bond as numeraire process. We denotethe
price of the option byCF(0;t,T,K). By standard change of numeraire calculations we get the following
pricing equation:

CF(0;t,T,K) = EQ
0

[ [F(t,T)−K]+

β (t)

]
= EQ

0

[(F(t,T)−K)1{F(t,T)≥K}
β (t)

]

= EQ
0

[F(t,T)1{F(t,T)≥K}
β (t)

]
−KEQ

0

[1{F(t,T)≥K}
β (t)

]

= P(0, t)EQt

0

[
F(t,T)1{F(t,T)≥K}

]
−P(0, t)KEQt

0

[
1{F(t,T)≥K}

]
(3.1)

This pricing equation holds in any case. But, in order to arrive at an operational closed-form Black-
Scholes like expression for the option price, we restrict ourselves to the Gaussian case and assume that
the diffusion terms aredeterministicfunctions. The problem then is to work out standard calculations
with truncated lognormal distributions. From Appendix A inMiltersen and Schwartz (1998) we know
that the dynamics for the futures price process, which is a martingale underQ, is given by

dF(u,T) = F(u,T)s̃F(u,T) ·dWQ
u (3.2)

where

s̃F(u,T) = σS(u)+
∫ T

u
(σ f (u,s)−σε(u,s))ds= σS∗(u)+ σx(u)+

∫ T

u
(σ f (u,s)−σε(u,s))ds (3.3)

The dynamics for the zero-coupon bond expiring at datet is given by

dP(u, t) = P(u, t)rudu−P(u, t)sP(u, t)dWQ
u (3.4)

where

sP(u, t) =
∫ t

u
σ f (u,s)ds (3.5)

The dynamics of the futures price process underQt is found by a standard transformation, cf. e.g.
Proposition 24.5 from Björk (2004):

dF(u,T) = F(u,T)
(
− s̃F(u,T) ·sP(u, t)

)
du+F(u,T)s̃F(u,T) ·dWQt

u (3.6)

implying that

F(u,T) = F(0,T)e−
∫ u

0 s̃F (v,T)·sP(v,t)dv− 1
2

∫ u
0 ‖s̃F (v,T)‖2dv+

∫ u
0 s̃F(v,T)·dWQt

v (3.7)
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For notational simplicity defineΣFP andΣ̃2
F , respectively, as

ΣFP =
∫ t

0
s̃F(v,T) ·sP(v, t)dv, Σ̃2

F =
∫ t

0
‖ s̃F(v,T) ‖2 dv (3.8)

Now we are able to compute the pricing formula (3.1):

EQt

0

[
1{F(t,T)≥K}

]
= Qt

(
F(0,T)e−ΣFP− 1

2 Σ̃2
F+
∫ t

0 s̃F(v,T)·dWQt
v ≥ K

)

= Qt
(
−
∫ t

0
s̃F(v,T) ·dWQt

v ≤ log
(F(0,T)

K

)
−ΣFP−

1
2

Σ̃2
F

)

= Φ
( log

(
F(0,T)

K

)
−ΣFP− 1

2Σ̃2
F

√
Σ̃2

F

)
(3.9)

whereΦ(·) denotes the standard normal cumulative distribution function. Analogously, by standard
calculations the first term is

P(0, t)EQt

0

[
F(t,T)1F(t,T)≥K

]
= P(0, t)F(0,T)EQt

0

[ F(t,T)

F(0,T)
1{F(t,T)≥K}

]
=

P(0, t)F(0,T)EQt

0

[
e−ΣFP− 1

2 Σ̃2
F+
∫ t
0 s̃F(v,T)·dWQt

v 1{F(t,T)≥K}

]
=

P(0, t)F(0,T)e−ΣFPΦ
( log

(
F(0,T)

K

)
−ΣFP + 1

2Σ̃2
F

√
Σ̃2

F

)
(3.10)

Collecting terms the final result is

CF(0;t,T,K) = P(0, t)F(0,T)e−ΣFPΦ
( log

(
F(0,T)

K

)
−ΣFP + 1

2Σ̃2
F

√
Σ̃2

F

)

−P(0, t)KΦ
( log

(
F(0,T)

K

)
−ΣFP− 1

2Σ̃2
F

√
Σ̃2

F

)
(3.11)

This provides a closed-form expression for the price at date0 of a strike-K call with maturity datet >0
written on a futures contract with maturity dateT≥t. In Miltersen and Schwartz (1998), Appendix B, the
authors derive the same price equation for a similar call option, but in a different way without explicitly
introducing the change of measure fromQ to Qt . The procedure used here is considerably shorter and
simpler.

An almost identical analysis would show that the pricePF(0;t,K) at date of a similar strike-K put option
with maturity datet on a futures contract with maturity dateT≥ t is given by

PF(0;t,K) = P(0, t)KΦ
( log

(
F(0,T)

K

)
−ΣFP− 1

2Σ̃2
F

−
√

Σ̃2
F

)

−P(0, t)F(0,T)e−ΣFPΦ
( log

(
F(0,T)

K

)
−ΣFP + 1

2Σ̃2
F

−
√

Σ̃2
F

)
(3.12)
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. . . . . . . . .0 t T1 Ti Tn= T̄

Figure 2:Time line showing the time of option pricing (current time) t0, the option expiration time t and
the expiration times{Ti}{1≤i≤n} of the underlying single-delivery futures contracts.

Relevant sensitivity parameters, i.e. theGreekslike delta, gamma etc., can now be found by standard
methods. Observe from (3.7) that the processF(u,T)e

∫ u
0 s̃F(v,T)·sP(v,t)dv is aQt-martingale:

F(u,T)e
∫ u

0 s̃F(v,T)·sP(v,t)dv = F(0,T)e−
1
2

∫ u
0 ‖s̃F (v,T)‖2dv+

∫ u
0 s̃F(v,T)·dWQt

v (3.13)

Hence, the result in (3.1) can be restated as

CF(0;t,T,K) = P(0, t)F(0,T)e−ΣFPEQT

0

[
1{F(t,T)≥K}

]
−P(0, t)KEQt

0

[
1{F(t,T)≥K}

]
(3.14)

where theT−futures measureQT is defined fromQt by

dQT

dQt

∣∣∣
F0

= e−
1
2

∫ t
0‖s̃F (v,T)‖2dv+

∫ t
0 s̃F (v,T)·dWQt

v (3.15)

If interest rates are assumed to be deterministic, i.e.σ f (u,s) = 0 for all (u,s), the call price (3.11)
simplifies to

CF(0;t,T,K) = P(0, t)

(
F(0,T)Φ

( log
(

F(0,T)
K

)
+ 1

2Σ̃2
F

√
Σ̃2

F

)
−KΦ

( log
(

F(0,T)
K

)
− 1

2Σ̃2
F

√
Σ̃2

F

))
(3.16)

3.2 Options on a portfolio of futures

The pricing technique for options on single-delivery futures from the previous subsection makes it
possible to price an option on a portfolio of futures contracts. Define the price of the whole contract
with expiry at dateT as

H(t) ≡
n

∑
i=1

αiF(t,Ti) (3.17)

wheret ≤Ti ≤Ti+1≤T for all i =1, . . . ,n−1 andTn=T. Theαi ’s are numbers that indicate how many
single-delivery contracts the investor holds for every delivery date. In the case, where theαi ’s are all
equal and theTi ’s equidistant, it means that the portfolio is a contract forconstant delivery throughout
the period[T1,Tn]. Figure 2 illustrates the location of the relevant points intime. For notational simplicity
we omit the explicit mentioning of the time argumentsTi and the volume argumentsαi in the specification
of H. Denote the price of the option byCH(0;t,K). Analogous to the pricing relation developed above
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we have that

CH(0;t,K) = EQ
0

[ [H(t)−K]+

β (t)

]
= EQ

0

[(H(t)−K)1{H(t)≥K}
β (t)

]

= EQ
0

[H(t)1{H(t)≥K}
β (t)

]
−KEQ

0

[1{H(t)≥K}
β (t)

]

= P(0, t)EQt

0

[
H(t)1{H(t)≥K}

]
−P(0, t)KEQt

0

[
1{H(t)≥K}

]

= P(0, t)
n

∑
i=1

αiF(0,Ti)E
QTi

0

[
1{H(t)≥K}

]
−P(0, t)KEQt

0

[
1{H(t)≥K}

]
(3.18)

So in principle we have found the price of the option. In orderto make this pricing equation applicable in
practice, it is necessary to find the probabilities of the event {H(t) ≥ K} under theQt andQTi measures.
However, it is not obvious how to find these, becauseH(t) is a sum of log-normally distributed variables,
so whenn≥ 2 it is not log-normally distributed itself.

Jamshidian (1989) and Longstaff (1993) show how to cope withthis problem and obtain a closed-form
solution when pricing European coupon bond options in the Vasiček and CIRone-factorinterest rate
models, respectively. The Jamshidian approach can be extended to all one-factor models, where the
relative price volatilityσ(t,T) at timet of a zero-coupon bond with maturity dateT can be factored as
σ(t,T)= (g(T)− g(t))h(t), whereg andh satisfy certain regularity conditions. This is known as the
condition under which the process for the short term rate of interest is Markovian, cf. Carverhill (1994).2

The basic methodology rests on the perception of thecoupon bondas aportfolio of zero-coupon bonds.

When it comes to bond option pricing inmulti-factormodels, several models offer a closed-form solution
for the price of European options on zero-coupon bonds. All multi-factor exponential affine term
structure models offer closed-form solutions for zero-coupon bond option prices. However, no closed-
form solutions are known for European coupon bond option prices in multi-factor models. In order to
cope with this problem, Munk (1999) suggested a fast and precise numerical method. The idea is to
approximate the coupon bond option price by a multiple of theprice of a European option on a zero-
coupon bond with a time to maturity equal to the stochastic duration of the coupon bond.

We shall apply this approach when pricing options on portfolios of futures and look into the details in
the next section. A single-delivery futures is analogous toa zero-coupon bond; hence, a portfolio of
single-delivery futures is analogous to a coupon bond. We approximate the option price by the price of
a European option on a single-delivery futures with a time tomaturity equal to the so-called stochastic
duration of the futures portfolio.

An alternative approach to pricing European coupon-bond options has been proposed in Singleton and
Umantsev (2002) for the case of affine term structure models,i.e. where bond prices are affine functions
of the state variables.3 The idea is to approximate the option’s optimal exercise boundary by a hyperplane
in R

m, wherem equals the number of factors in the model. This approximation makes it possible
to calculate the probability of the bond being in the money atthe option expiration date under the
relevant probability measures. This reduces to calculating the sum ofn+1 probabilities of a zero-coupon
bond being in the money, wheren equals the number of remaining bond payments after the option’s
expiration date. Knowledge of the conditional characteristic function for the state variables and the

2More precisely,g is aC 1(R,R+) function andh is aC (R,R+) function.
3This is not the only alternative approach to Munk (1999) to befound in the literature. Other approaches are suggested in

e.g. Collin-Dufresne and Goldstein (2002) and, more recently, in Schrager and Pelsser (2006); however, we have not tried to
compare our approach with the suggestions in these papers.

10



fact that the zero-coupon bond prices are exponential affinefunctions of the state variables is sufficient
to derive closed form solutions, cf. e.g. section 2 in Singleton and Umantsev (2002). Longstaff and
Schwartz (1992) is a two state variable example of this. All relevant option sensitivity parameters can in
principle be calculated along the same lines.

Examples provided by Singleton and Umantsev (2002) indicate that this approach is more precise than
the stochastic duration approach and that the pricing erroris independent of the moneyness of the option.
However, this precision comes at a cost. The approach is muchmore complicated to implement, and the
calculations are more time consuming. Calculating the price of a bond option with only two remaining
payments at option expiry takes almost six times longer thanusing the stochastic duration approach
according to an example provided by Singleton and Umantsev (1.42 seconds compared to 0.24 seconds).
As the computing time increases linearly in the number of remaining payments, which in our case
corresponds to delivery times, and can be much higher than the number of coupon payments usually
found in the bond market, one can easily image a situation where this approach spends unacceptable
long time to perform the calculation compared to the stochastic duration approach. Thus, despite its
theoretical appeal and the higher degree of precision, we shall not deal further with this approach in the
paper.

3.2.1 Pricing the option by approximation

Given that the pricing is considerably easier for a single-delivery futures one could consider different
ways of approximating the dynamics of the futures portfolioby the dynamics of a single-delivery futures
with maturity T. This could be in a myopic sense by replicating the infinitesimal volatility term of the
portfolio, but it could equally well be an attempt to replicate some of the distributional characteristics of
the portfolio at the expiration datet of the option.

We shall stick to the nomenclature in Munk (1999) and denote the relative diffusion coefficients of the
futures price process assFj (u,T), j = 1, . . . ,d, for factor sensitivities. So thej ’th factor sensitivity is a
relative futures price diffusion coefficient with respect to one single source of uncertainty, namely the
j ’th component of thed-dimensional process(WQ

u ). Note that in most cases when the text readssFj (u,T)

it is understood that it is for an arbitraryj ∈{1, . . . ,d}. We rewrite the dynamics of the single-delivery
futures price in a way that emphasizes the dependency of ad-dimensional Wiener process:

dF(u,T) = F(u,T)sF(u,T) ·dWQ
u = F(u,T)

d

∑
j=1

sFj (u,T)dWQ
j (u) (3.19)

wheresF(u,T)= (sF1(u,T), · · · ,sFd(u,T))T andWQ
u = (WQ

1 (u), · · · ,WQ
d (u))T with (·, · · · , ·)T denoting

the transpose of a row vector. Similarly the dynamics for theportfolio position is given by

dH(u) =
n

∑
i=1

αidF(u,Ti)

=
n

∑
i=1

αiF(u,Ti)
d

∑
j=1

sFj (u,Ti)dWQ
j (u)

= H(u)
( n

∑
i=1

w(u,Ti)
d

∑
j=1

sFj (u,Ti)dWQ
j (u)

)

= H(u)
( n

∑
i=1

d

∑
j=1

w(u,Ti)sFj (u,Ti)dWQ
j (u)

)
(3.20)
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wherew(u,Ti) are portfolio weights given byw(u,Ti)=
αiF(u,Ti)

∑n
i=1 αiF(u,Ti)

= αiF(u,Ti)
H(u) .

The idea behind the approximation of the option price with the portfolio as underlying is to replace the
true portfolio of futures with an appropriately chosen single-delivery future. This approximation is given
by

CH(0;t,K) ≈ ϕCF(0;t,T,
K
ϕ

) (3.21)

whereT ∈ [t,T] is some chosen maturity of an approximating single-delivery futures and the scaling
factorϕ is given by

ϕ =
H(0)

F(0,T)
(3.22)

The approximation for a similar put option on the futures portfolio is given by

PH(0;t,K) ≈ ϕPF(0;t,T,
K
ϕ

) (3.23)

For an arbitrary maturity dateT of the approximating single-delivery futures the approximation error
εH(T) in the call case can be evaluated under theT-futures measureQT with F(u,T) as the numeraire
process. The case of a put option is similar. Recall that all gain processes in the economy as well as
futures price processes relative to the numeraire processF(u,T) areQT-martingales. Then

εH(T) = F(0,T)EQT

0

[max{H(t)−K,0}
F(t,T)

]
− H(0)

F(0,T)
F(0,T)EQT

0

[max{F(t,T)−K F(0,T)
H(0) ,0}

F(t,T)

]

= F(0,T)EQT

0

[
max{ H(t)

F(t,T)
− K

F(t,T)
,0}−max{ H(0)

F(0,T)
− K

F(t,T)
,0}
]

where

EQT

0

[ H(t)
F(t,T)

]
=

H(0)

F(0,T)
, EQT

0

[ K
F(t,T)

]
=

K
F(0,T)

(3.24)

For a call option deeply in the money, both maximum terms are given by the first (non-zero) argument
by a probability close to one, so by equation (3.24) we see that the difference between the two terms and
hence the approximation errorεH(T) is close to zero. For call options deeply out of the money, both
maximum terms are zero with a probability close to one, so similarly εH(T) is close to zero.

Only when one of the maximum terms yields zero and the other one non-zeroεH(T) is affected more
substantially. This is the case, whenKF(t,T) is between H(t)

F(t,T) and H(0)
F(0,T) at timet. Therefore, to keep the

errorεH(T) on a minimal level,T should be chosen such thatH(t)
F(t,T) stays close toH(0)

F(0,T) .

3.2.2 Stochastic duration

For a futures portfolio we define thestochastic durationδ H(0) at time 0 as the time to maturity of the
single-delivery futures with the same relative price volatility as the portfolio. I.e.,δ H(0) is defined by
the equation

d

∑
j=1

sFj (0,δ H(0))2 =
d

∑
j=1

( n

∑
i=1

w(0,Ti)sFj (0,Ti)
)2

(3.25)

The usual concept of duration in fixed income analysis is a risk measure gauging the entire relative
price reaction to a change in the yield− or in more general models the entire relative price reaction
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to a change in some common exogenous variable. The present definition relates only to the volatility
term. However, it shares a basic property with the usual duration measure; the definition implies that
the stochastic duration of a single-delivery futures equals its time to maturity just as the duration of a
zero-coupon bond equals its time to maturity.

By the very definition of the stochastic duration, choosingT =δ H(0) assures that the relative changes in
F(·,T) andH(·) at time 0 are close to each other over the next infinitesimal time interval. Hence, the
approximation is a myopic one, and whether they are actuallyequal depends on the size of the drift of
the two price processes underQT . On the other hand, in many models it is an “easy to compute” measure
and, as will be shown subsequently, it has a reasonably good fit when compared to option prices found
by Monte Carlo simulation.

An alternative choice4 is to measure the cumulative variance of the portfolio over the entire remaining
lifetime of the option, i.e. over the interval[0, t], and find a representative single futures that has the
same accumulated variance over this interval. Based on these considerations we define an alternative
stochastic durationδ H

A (0) for the portfolio from the following (approximate) equality:

∫ t

0

d

∑
j=1

sFj (u,δ H
A (0))2du=

∫ t

0

d

∑
j=1

( n

∑
i=1

w(0,Ti)sFj (u,Ti)
)2

du (3.26)

≈ EQ

[∫ t

0

d

∑
j=1

( n

∑
i=1

w(u,Ti)sFj (u,Ti)
)2

du | Ft

]
(3.27)

In section 5.1 we report on Monte Carlo simulations and compare the pricing errors with this measure to
the myopic stochastic duration.

3.2.3 Basic properties of stochastic duration

We omit most details in this section; in most cases they can befound in section 1.2 in Munk (1999) in
the case of coupon bonds. The stochastic duration measure has the following properties, most of them
obvious or very simply proven:

• If the factor sensitivitiessFj (0,T) are either positive and increasing inT or negative and decreasing
in T, then∑d

j=1sFj (0,T)2 is increasing inT. If the factor sensitivitiessFj (0,T) are either positive and
decreasing or negative and increasing inT, then∑d

j=1sFj (0,T)2 is decreasing inT.

• If the factor sensitivitiessFj (0,T) are either all increasing or all decreasing inT for all j and at least
one of them is strictly increasing respectively decreasing, then a unique solutionδ H(0) to equation
(3.25) exists in the intervalT1 ≤ δ H(0) ≤ Tn.

There is also a parallel to the well-known Fisher-Weil duration applied in the analysis of coupon bonds.
The Fisher-Weil duration is a weighted average of the times to maturity of the bond’s payments, weighted
with the portfolio weights of the individual payments when calculated in accordance with the existing
zero-coupon term structure. In the context of futures the duration measure is similar, but we shall call it
the Fisher-Weil futures duration.

4Yet another candidate was suggested in Munk (1999), namely to incorporate explicitly the drift and look forT ′ =

argminTVarQ
T

0

({
drift+diffusion ofF(u,T)

F(u,T) − drift+diffusion ofF(u,T)

F(u,T)

}∣∣∣
u=0

)
. As Munk (1999) argues,T ′ and δ H(0) will be equal

for all one-factor models, whereas they may differ in multi-factor models. However, according to the numerical resultsreported
in Munk (1999) for two-factor models, including a two-factor HJM model, this did not improve the pricing accuracy.
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Definition 1 The Fisher-Weil futures durationδ H
FW is defined by

δ H
FW =

∑n
i=1 αiF(0,Ti)(Ti)

∑n
i=1αiF(0,Ti)

=
n

∑
i=1

w(0,Ti)(Ti) =
n

∑
i=1

w(0,Ti)Ti (3.28)

where w(0,Ti)=
αiF(0,Ti)

∑n
i=1 αiF(0,Ti)

are positive weights and∑n
i=1 w(0,Ti)=1.

The following proposition deals with a situation, where thestochastic duration and the Fisher-Weil
futures duration are identical. This is the case for the special class of models with so-called linear
factor sensitivities, i.e. when

sFj (u,T) = (T −u)b j(u) ∀ j (3.29)

for some smooth maturity-independent functionsb j for all j.

Proposition 1 If the factor sensitivities sFj (0,T) are linear for all j, then the stochastic durationδ H(0)

is uniquely determined and identical with the Fisher-Weil futures durationδ H
FW(0).

Proof Linear factor sensitivities imply∑n
i=1w(0,Ti)sFj (0,Ti)=sFj

(
0,∑n

i=1 w(0,Ti)Ti
)

for all j. Hence,

∑d
j=1

(
∑n

i=1 w(0,Ti)sFj (0,Ti)
)2

=∑d
j=1

(
sFj (0,∑n

i=1 w(0,Ti)Ti)
)2

.

By the definition of the stochastic durationδ H and the Fisher-Weil futures durationδ H
FW the LHS of the

last expression equals∑d
j=1 sFj (0,δ H(0))2, while the RHS is equal to∑d

j=1

(
sFj (0,δ H

FW(0))
)2

. Further-

more, the LHS is an increasing function in the variableδ H(0), which is to be determined; the partial

derivative is2∑d
j=1δ H(0)b j(0)2 and hence positive. Consequentlyδ H(0)=δ H

FW(0).

Thus, in the special case where all factor sensitivities arelinear, the simple Fisher-Weil futures duration
is indeed a valid risk measure for the futures portfolioF(0,T) and is identical to the risk measure implied
by the stochastic duration. Conversely, for one-factor models where the factor sensitivity has the same
sign for all maturities the implication in the proof of proposition 1 turns into a biimplication and the
converse to the proposition is true: If the stochastic duration and the Fisher-Weil futures duration are
equal, then the factor sensitivity is linear. For multi-factor models it is not so straightforward and the
reverse of proposition 1 is not true in general. Stronger assumptions on the factor sensitivity are needed
for this.

3.3 Options on flow forward contracts

3.3.1 Pricing flow forward contracts

Flow forward contracts can be regarded as a finite sum ofn (properly discounted) single-delivery for-
wards. The discounting is done in order to take into consideration when the forward payments are
actually made. If the flow forward is a contract for1

n unit of the energy commodity per sub-period, i.e.
one unit over the whole period, and the whole forward paymentis done upfront, then the value of the
flow forwards is simplyJ(t)≡ 1

n ∑n
i=1G(0,Ti).

Inspired by the payment structure at the Nordic power forward market, where a flow forward contract is
settled through daily payments, we investigate the case where the forward priceJ(t) of the entire flow
contract is paid sequentially as a constant fraction ofJ(t)/n during the delivery period[T1,Tn]. By a
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simple discounting argument one gets that

J(t)
n

=
n

∑
i=1

(
e−

∫ Ti
t f (t,s)ds

∑n
i=1 e−

∫ Ti
t f (t,s)ds

)
G(t,Ti)

n
≡

n

∑
i=1

γiG(t,Ti) (3.30)

So the forward priceJ(t) may be interpreted as a weighted average of single-deliveryforward prices
over the delivery period[T1,Tn], where the weights are determined by a discounting reflecting the term
structure of interest rates and the difference in delivery dates of the single-delivery contracts.

In the following we will limit ourselves to the case of deterministic interest rates. This implies that
the weightsγi are deterministic, enabling us to define the stochastic duration of a flow forward in
the following section. We will furthermore motivate this choice in section 4, where we present two
concretely specified examples of models using our numericalapproach.

3.3.2 The stochastic duration of a flow forward

Given that theγi ’s are deterministic throughout the period of interest[0, t] we define the stochastic
duration δ J(0) of a flow forward at time 0 similar to the stochastic duration for a futures portfolio;
i.e. as the time to maturity of the single-delivery forward with the same relative price volatility as the
flow forward. This means thatδ J(0) is defined by the equation

d

∑
j=1

sFj (0,δ J(0))2 =
d

∑
j=1

( n

∑
i=1

v(0,Ti)sFj (0,Ti)
)2

(3.31)

where

v(0,Ti) =
γiG(0,Ti)

∑n
i=1 γiG(0,Ti)

=
γiG(0,Ti)

J(0)
(3.32)

We see that the only difference between the two stochastic durationsδ J andδ H comes via differences
in the portfolio weights− the v’s and thew’s, respectively. Consequently, the properties ofδ J are as
described forδ H in section 3.2.3.

3.3.3 Pricing the flow option

The price approximation for the flow forward option follows the same line as for the option on a
futures portfolio. LetCG(0;t,T,K) be the price at time 0 of a strike-K European call option maturing
at time t on a single-delivery forward maturing at timeT. And let CJ(0;t,K) be the price at time 0
of a strike-K European call option maturing at timet on a flow forward maturing at timeT and with
J(0)=∑n

i=1 γiG(0,Ti) denoting the price of the flow forward at time 0, The approximation is then given
by

CJ(0;t,K) ≈ ρCG(0;t,δ G(0),
K
ρ

) (3.33)

whereδ G(0) is the stochastic duration at time 0 of the flow forward and thefactorρ is given by

ρ =
J(0)

G(0,δ G(0))
(3.34)
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The approximation for the price of a similar put option is given by

PJ(0;t,K) ≈ ρPG(0;t,δ G(0),
K
ρ

) (3.35)

Remark 2 A portfolio of flow forwards does not principally differ fromone single flow forward in the
sense that both simply can be regarded as a sum (or indivisible portfolio) of single-delivery forwards.
Thus, the stochastic duration for a portfolio of flow forwards is defined in exactly the same way as for
one flow forward. Similarly, the pricing formula for optionswritten on a portfolio of flow forwards is
identical to the pricing formula for a single flow forward.

4 Application to crude oil and electricity markets

We consider two different markets. The crude oil market and the electricity market. In the crude oil
market oil is delivered in the normal way for commodities, i.e. as discrete separated bulks. This is
opposed to the electricity market where the commodity is delivered as a continuous flow. So, the
electricity market is exactly an example where the flow feature of the forward contracts becomes relevant.
The natural gas market has the same flow feature as the electricity market, and the demand pattern for the
two commodities exhibit a similar degree of seasonal variation, so one could expect that a model suited
for the electricity market would be suited for the natural gas market as well. However, this is not pursued
further within the limitations of this paper.

4.1 The crude oil market

The model is inspired by the three-factor model used in Schwartz (1997) and re-used in Miltersen and
Schwartz (1998) in a different setting. Our model has three factors as well, but the difference from the
original model is that we model a stochastic exchange rate instead of stochastic interest rates. In order
not to expand the number of factors we believe that the exchange risk is a more important risk factor
than the interest rate risk in the oil market. Moreover, in the formulation of the diffusion term for the
convenience yield we have added a constantη ≥ 0 to an exponential function, which ensures that the
convenience yield volatility will converge towardsη and not necessarily towards zero for the maturity
date converging towards infinity, cf. the specification ofσε below. Specifically, we assume the following
diffusion terms in our three-factor Gaussian model.

σS(t) = σS




1
0
0


 , σx(t) = σx




ρSx
√

1−ρ2
Sx

0


 (4.1)

and

σε(t,s) = σε
(
e−κε (s−t) + η

)




ρsε

ρxε−ρSxρSε√
1−ρ2

Sx√
1−ρ2

Sε −
(ρxε−ρSxρSε )2

1−ρ2
Sx




(4.2)
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Written as quadratic variation and mixed variation terms this means that the diffusion terms are given by

d〈S〉t = σ2
SS2

t dt (4.3)

d〈x〉t = σ2
x x2

t dt (4.4)

d〈ε(·,s)〉t = σ2
ε
(
e−κε (s−t) + η

)2
dt (4.5)

d〈S,x〉t = ρSxσSσxStxtdt (4.6)

d〈S,ε(·,s)〉t = ρSεσSσεSt
(
e−κε (s−t) + η

)
dt (4.7)

d〈x,ε(·,s)〉t = ρxε σxσεxt
(
e−κε (s−t) + η

)
dt (4.8)

Thus, using equation (3.3) one gets that

sF(u,T) = σS




1
0
0


+ σx




ρSx√
1−ρ2

Sx

0


+

σε

(
1
κε

(
e−κε (T−u) −1

)
−η(T−u)

)



ρsε
ρxε−ρSxρSε√

1−ρ2
Sx√

1−ρ2
Sε −

(ρxε−ρSxρSε )2

1−ρ2
Sx




(4.9)

and

‖ sF(u,T) ‖2 =‖ σS(u)+ σx(u)−
∫ T

u
σε(u,s)ds‖2

= σ2
ε

( 1
κ2

ε

(
1+e−2κε (T−u)−2e−κε (T−u)

)
+ η2(T −u)2 +

2η
κε

(
1−e−κε (T−u)

)
(T −u)

)

−2
(

ρSεσSσε + ρxε σxσε

)( 1
κε

(
1−e−κε (T−u)

)
+ η(T −u)

)
+ σ2

S + σ2
x +2ρSxσSσx

(4.10)

This implies that

Σ2
F =

∫ t

0
‖ sF(u,T) ‖2 du

= σ2
ε

{
1

κ2
ε

(
t +V2κε (t)−V2κε (0)−2

(
Vκε (t)−Vκε (0)

))

− 1
3

η2
(
(T − t)3−T3

)
+

2η
κε

(
1
2

T2− 1
2
(T − t)2 +Yκε (0)−Yκε (t)

)}

−2
(

ρSε σSσε + ρxε σxσε

){ 1
κε

(
t +Vκε (0)−Vκε (t)

)
− η

2

(
(T − t)2−T2

)}

+
(

σ2
S + σ2

x +2ρSxσSσx

)
t (4.11)
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whereVa andYa for notational convenience are defined for a general constant a by

Va(u) ≡ 1
a

e−a(T−u), Ya(u) =
1
a2

(
e−a(T−u) +a(T −u)e−a(T−u)

)
(4.12)

Given the eight parameters of the model, listed in Table 1, itis now possible to price single-delivery
futures (or forward) European options by equations (3.16) and European options on a futures portfolio
by equation (3.21). Or stated in an other way: given observedmarket prices on options on single-delivery
futures it is possible to find approximate prices on futures portfolios via equation (3.21).

[INSERT Table 1]

4.2 The electricity market

This model is an extended version of a model introduced by Bjerksund, Rasmussen, and Stensland (2000).
Their model is used as a description of the (risk neutral) dynamics for futures and forward contracts
on the Norwegian electricity market. The model has been implemented in Elviz, a risk management
software marketed by the Norwegian company Viz Risk Management Services AS. To replicate their
model in our setting we describe it as a two-factor model withthe two factors equalling the spot price
and the forward convenience yield, but with perfect positive correlation between the two factors. A one-
dimensional Wiener process underQ is the driving process. Using the notation from the originalpaper
we can formulate the model in terms of the diffusion terms as

σS(t) =
(

c+
a
b

)(
1
)

and σε(t,s) = a(s− t +b)−2
(

1
)

(4.13)

This is slightly different from the way Bjerksund, Rasmussen and Stensland formulate their model. They
start by explicitly stating the volatilitysF(t,T) of the prise process for the futures with maturityT. But
the volatility can be calculated easily from the diffusion terms above as

sF(t,T) = σS(t)−
∫ T

t
σε(t,s)ds= c+

a
b
−a

∫ T

t
(s− t +b)−2ds= c+a

( 1
T − t +b

)
(4.14)

ForT = t one gets that the volatility forσF(t, t), i.e. the spot price process, isc+ a
b, which indeed is how

σS(t) is specified above. For a generalT ≥ t the SDE governing(F(t,T))underQ is given by

dF(t,T) = sF(t,T)dWQ
t =

(
c+

a
T − t +b

)
dWQ

t , t ≤ T (4.15)

Before extending the model we state it in terms of our own notation with σS≡ c+ a
b, σε ≡ a andb≡ σε

σε−c

as

σS(t) = σS and σε(t,s) = σε

(
s− t +

σε

σε −c

)−2
= σε(s− t +b)−2 (4.16)

The model is now extended by introducing exchange rate risk and the possibility of an arbitrary correla-
tion between the spot price and the futures convenience yield along the lines of the Miltersen and
Schwartz model. With this extension the driving process is now a three-dimensionalQ-Wiener process
and we again allow for a possibly non-zero constantη ≥ 0 in the formulation ofσε . Specifically we
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assume the following diffusion terms

σS(t) = σS




1
0
0


 , σx(t) = σx




ρSx

√
1−ρ2

Sx

0


 (4.17)

and

σε(t,s) = σε

(
(s− t +b)−2 + η

)




ρsε

ρxε−ρSxρSε√
1−ρ2

Sx√
1−ρ2

Sε −
(ρxε−ρSxρSε )2

1−ρ2
Sx




(4.18)

Written as quadratic variation and mixed variation terms this means that the diffusion terms are given by

d〈S〉t = σ2
SS2

t dt (4.19)

d〈x〉t = σ2
x x2

t dt (4.20)

d〈ε(·,s)〉t = σ2
ε

(
(s− t +b)−2+ η

)2
dt (4.21)

d〈S,x〉t = ρSxσSσxStxtdt (4.22)

d〈S,ε(·,s)〉t = ρSε σSσεSt

(
(s− t +b)−2 + η

)
dt (4.23)

d〈x,ε(·,s)〉t = ρxε σxσεxt

(
(s− t +b)−2 + η

)
dt (4.24)

Thus, by using equation (3.3), one gets that

‖ sF(u,T) ‖2 =‖ σS(u)+ σx(u)−
∫ T

u
σε(u,s)ds‖2

= σ2
S + σ2

x +2ρSxσSσx + σ2
ε

(
[(s−u+b)−1]Tu −η(T −u)

)2

+2
(
[(s−u+b)−1]Tu −η(T −u)

)(
ρSε σSσε + ρxεσxσε

)

= σ2
S + σ2

x +2ρSxσSσx + σ2
ε

(
(T −u+b)−2+b−2−2

(
b(T −u+b)

)−1
)

+ σ2
ε

(
η2(T −u)2−2η(T −u)

(
(T −u+b)−1−b−1

))

+2
(
(T −u+b)−1−b−1−η(T−u)

)(
ρSε σSσε + ρxεσxσε

)
(4.25)
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This implies that

Σ2
F =

∫ t

0
‖ sF(u,T) ‖2 du

=
(

σ2
S + σ2

x +2ρSxσSσx

)
t + σ2

ε

(
[(T −u+b)−1]t0 +b−2t +

2
b
[log(T −u+b)]t0

)

−σ2
ε

(
η2

3

(
(T − t)3−T3

)
+2η [−(T −u)+blog(T −u+b)]t0 +

η
b

(
(T − t)2−T2

))

−2(ρSε σSσε + ρxεσxσε)

(
1
b

t +[log(T −u+b)])t
0−

η
2

(
(T − t)2−T2

))
(4.26)

Given the eight parameters of the model, listed in Table 2 below, it is now possible to price single-delivery
forwards (or futures) European options by equations (3.16)and European options on flow forwards by
equations (3.33) and (3.35). Assume that a single-deliveryforward is defined as a forward for delivery
on one single future day. This implies that all forward contracts with a delivery period extending one
day is defined as a flow forward. As most electricity forwards have delivery periods equalling week(s),
month(s) or quarter(s) of a year it is obvious that most forwards are, by this assumption, flow forwards.
This naturally implies that most exchange traded electricity options are options with a flow forward
as underlying contract. Thus, in the electricity market onewould use equations (3.33) and (3.35) the
opposite way compared to the oil market: In the oil market onewould price options on futures portfolios
based on the prices of single-delivery futures, while in theelectricity market one would have market
prices on flow forward options as the basis. And from this basis it is possible to price OTC single-
delivery forwards and thus also OTC flow forward options.

[INSERT Table 2 ]

5 Monte Carlo simulation

5.1 Monte Carlo simulation and price comparison

In order to investigate the precision of the approximation approach for valuing options on futures portfo-
lios we have performed Monte Carlo simulation5 to find the prices of 11 call and 11 put options with the
same underlying portfolio as in section 4.1, i.e. the three factor model with a futures portfolio consisting
of 6 Brent crude futures with monthly delivery through the period October 2003−March 2004. The
prices are calculated as of 30th May, 2003 (0), with the options expiring at 10th September, 2003 (t).
The options only differ by the strike level which, as a percentage of the ATM strike level (157.46 DKK),
belongs to the set{70%,80%,85%,90%,95%,100%,105%,110%,115%,120%,130%}.

We have considered approximate option prices with three different durations for the representative single-

delivery futures, namelyδ H , δ H
A and the simple average of the twoδ H+δ H

A
2 . These prices are denoted by

C[δ H ], C[δ H
A ] andC[

δ H+δ H
A

2 ], respectively, in the call case and analogously byP[δ H ], P[δ H
A ] andP[

δ H+δ H
A

2 ]

in the put case. Moreover, we have considered the arithmeticaverage between the prices obtained by
δ H andδ F

A . This price average exploits the observed fact that theδ H-method has a negative price bias
whereas theδ H

A -method has a positive price bias.

550,000 pairs of antithetic sample paths have been simulatedby an Euler approximation of the underlying futures’ SDEs to
price each of the options. The length of the time step was one calendar day. The calculations are performed in MAPLE.
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At last, after having simulated and calculated all prices, we ran a simple OLS regression by regressing
the whole sample of 22 MC prices on the corresponding pricesC[δ F ] andC[δ F

A ] for the call prices and
P[δ H ] andP[δ H

A ] for the put prices. Denoting the OLS parameter belonging to the [δ H ]-variable ([δ H
A ]-

variable) byv1 (v2) we found the OLS estimates to be ˆv1=0.436 and ˆv2 =0.573. Thus, more weight is
attached to the[δ H

A ]-variable. However, the hypothesis6 H0 : v1=v2=0.5 of equal weights could not be

rejected. It was accepted with a test probability of 1−FF(2,20)

(
(0.1110−0.1045)/2

0.1045/20

)
=0.55. In practice the

interest is mainly in options that are close to being at-the-money. All methods, except theδ H-method,
appear to perform with a desirable accuracy in this region.

It is obvious that the prices given by our approximate optionpricing formula is a non-linear function of
the portfolio’s stochastic durationδ H or δ H

A . Hence, one could also suspect that the linear relationship
among the variables in the above OLS regression is not valid.However, we found neither signs of
misspecification (applying Ramsey’s RESET test), residualautocorrelation (applying Harvey’s F-test
for first-order autocorrelation) nor residual conditionalheteroscedasticity (applying Engel’s F-test for
first-order ARCH). Consequently, the linear relationship seems applicable for practical purposes. Taking
the call case as an example, we conclude that it appears reasonable to maximize the precision of the
approximate option pricing formula by a direct convex combination ofC[δ H ] andC[δ H

A ] instead of
searching for an optimal convex combination ofδ H and δ H

A that could be used in theC[·] function
as the “optimal” approximate option price. According to ourresults, cf. Tables 3 and 4 and the test of
H0, choosing the convex combinationv1=v2=0.5 as default is not a bad choice.

[INSERT Table 3]

[INSERT Table 4 ]

Additionally, it is a useful guide that theδ H-method seems to produce prices that are too low while the
δ H

A -method seems to produce prices that are too high.

5.2 Details about the example

The assumed portfolio consists of the 6 futures contracts for delivery of 1
6 barrel in either of the months

October, November, December 2003 and January, February andMarch 2004. Thus, a total of 1 barrel
is delivered during the period October 2003−March 2004. The exercise price, expressed in DKK, is
set equal to the futures price of the contract with time to maturity equal to the stochastic duration of
the portfolio. By doing so the option is by construction at the money when the investor initially enters
into it. The basic IPE data for the example are presented in Table 5. The contracts numbered 4,5, . . . ,9
constitute the portfolio.

Additional information needed is taken from the Danish Central Bank (Nationalbanken) and the US
Central Bank (Federal Reserve) according to whom the official exchange rate as of 30th May 2003 was
628.02 DKK/100 USD, the 6-month CIBOR interest rate was 2.30% p.a. and the 6-month Eurodollar
interbank interest rate was 1.15% p.a. These 6-months rateshave been used as flat rates throughout the
whole period of interest, thus assuming constant interest rates in this period.

The parametersσS,σε ,ρSε ,κε and η have been estimated implicitly by finding the combination of
parameter values that minimizes the sum of squared deviations between squared annual model volatility

6Clearly, we are aware that the use of standard statistical tools in this setting is to be interpreted with considerable care.
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(i.e.
Σ2

Fi
ti

for i = 1,2, . . . ,11) and squared observed implied annual option volatility for the 11 observed
implied option volatilities reported in Table 5. The resulting parameter estimates are given in Table 6.

[INSERT Table 5]

[INSERT Table 6]

6 Conclusion

In the first part of the paper we showed cross currency relations for forward and futures prices as well as
convenience yields. We showed that whenever the forward price and the futures price deviate in one of
the countries there is no simple currency translation between the futures prices. This holds a fortiori when
the forward prices and the futures prices deviate in both countries. Under the same circumstances, futures
convenience yields deviate, whereas forward convenience yields are always identical across currency
denominations.

In the second part of the paper we showed how to find the stochastic duration of energy futures portfolios
and flow forwards and how to approximately price European options with them as underlying instruments,
also when the options are denominated in another currency than the trading currency for the underlying
instrument. This has been done in a HJM framework which is well suited for modeling the term structure
in energy futures markets. Making assumptions about log-Gaussian spot prices and exchange rates
and Gaussian convenience yields, we found explicit pricingformulas for the futures portfolio and flow
forward options. Suitable models for the crude oil and electricity markets were used as examples for
implementation of the suggested numerical approach.

The framework is quite general and still analytically tractable. The generality is underpinned by the
fact that prices on forwards and futures do not have to followa log-Gaussian process, as they do in our
examples. As long as they follow a process where it is possible to price European options on single-
delivery forwards or futures analytically, it allows application of our option pricing approximation to
options on a (flow) forward or a futures portfolio. Thus, prices can be allowed to follow e.g. a CIR-like
process, giving rise to non-centralχ2 distributed prices, or exponential affine term structure models that
are well-known from the fixed income literature.

Thus, it is possible to extend the framework to a multi-commodity situation with several energy commo-
dities. In this situation it is of course still essential to be able to calculate the duration of any (multi-
commodity) portfolio as a combined risk measure for the portfolio. It could be calculated in an extended
model compared to our model in this paper, but still along exactly the same lines outlined here. Option
sensitivity parameters, which are highly relevant for practical hedging purposes, could still be easily
calculated due to the analytical tractability of the model.Moreover, it would be possible to value
single-commodity and cross-commodity energy options in the same model, which is an attractive and
consistency-procuring feature.
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Table 1: The eight parameters for the oil market model classified after if they can be estimated by
inference based on observed variables. In this case the parameter is marked by a† as Observable.
Otherwise it is marked as Non-observable.

Parameter Observable Non-observable
σS †
σx †
ρSx †
σε †
κε †
ρSε †
ρxε †
η †

Table 2:The eight parameters for the electricity market model classified after if they can be estimated
by inference based on observed variables. In this case the parameter is marked by a♦ as Observable.
Otherwise it is marked as Non-observable.

Parameter Observable Non-observable
σS ♦
σx ♦
ρSx ♦
σε ♦
b ♦

ρSε ♦
ρxε ♦
η ♦

Table 3: Results of MC simulating the values of call options on the futures portfolio, consisting of six
Brent oil futures of different maturities, from section 2.5. 11 Different strike prices have been used,
ranging from 70% to 130% of the ATM strike level (157.46 DKK).v̂1 = 0.426andv̂2 = 0.573.

Strike Call price Price deviation

MC C[δ H ] C[δ H
A ] C[

δ H+δ H
A

2 ]
C[δ H ]+C[δ H

A ]
2 ] v̂1C[δ H ]+ v̂2C[δ H

A ]

70% 46.66 0.14 0.03 0.08 0.09 0.03
80% 31.63 0.02 -0.01 0.00 0.02 -0.02
85% 24.74 -0.07 -0.03 -0.06 -0.05 -0.06
90% 18.50 -0.08 0.05 -0.03 -0.02 -0.02
95% 13.32 -0.19 0.01 -0.11 -0.09 -0.09
100% 9.12 -0.20 0.04 -0.10 -0.08 -0.07
105% 5.84 -0.06 0.18 0.04 0.07 0.08
110% 3.72 -0.15 0.08 -0.06 -0.04 -0.02
115% 2.06 0.05 0.23 0.13 0.15 0.16
120% 1.11 0.09 0.23 0.14 0.16 0.17
130% 0.35 0.00 0.06 0.03 0.03 0.03
SSD 0.146 0.154 0.077 0.077 0.080
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Table 4: Results of MC simulating the values of put options on the futures portfolio, consisting of six
Brent oil futures of different maturities, from section 2.5. 11 Different strike prices have been used,
ranging from 70% to 130% of the ATM strike level (157.46 DKK).v̂1 = 0.426andv̂2 = 0.573.

Strike Put price Price deviation

MC P[δ H ] P[δ H
A ] P[

δ H+δ H
A

2 ]
P[δ H ]+P[δ H

A ]
2 ] v̂1P[δ H ]+ v̂2P[δ H

A ]

70% 0.04 0.01 0.02 0.01 0.01 0.01
80% 0.53 0.02 0.11 0.06 0.06 0.07
85% 1.49 -0.10 0.07 -0.03 -0.03 -0.01
90% 3.11 -0.16 0.09 -0.05 -0.04 -0.02
95% 5.73 -0.25 0.07 -0.11 -0.09 -0.07
100% 9.35 -0.25 0.11 -0.09 -0.07 -0.05
105% 14.05 -0.27 0.10 -0.11 -0.09 -0.07
110% 19.52 -0.13 0.22 0.03 0.05 0.05
115% 25.90 -0.14 0.16 -0.01 0.01 0.01
120% 32.72 -0.05 0.21 0.06 0.08 0.07
130% 47.53 -0.07 0.12 0.02 0.02 -0.01
SSD 0.280 0.185 0.045 0.034 0.025

Table 5: Futures and option data from 30th May 2003 from IPE used for calculating the price of
European options on a futures portfolio consisting of contracts No.4,5, . . . ,9. Prices are in USD.

i Contract Price Strike Call price Put price Imp. vol.,% p.a. Option expiry ti Futures expiryTi

1 Jul 2003 26.32 26.50 0.69 0.87 40.66 10/06 2003 13/06 2003
2 Aug 2003 26.00 26.00 1.23 1.23 34.56 11/07 2003 16/07 2003
3 Sep 2003 25.74 25.50 1.61 1.37 32.33 11/08 2003 14/08 2003
4 Oct 2003 25.51 25.50 1.66 1.65 30.50 10/09 2003 15/09 2003
5 Nov 2003 25.28 25.50 1.72 1.94 29.49 13/10 2003 16/10 2003
6 Dec 2003 25.04 25.00 1.99 1.95 29.40 10/11 2003 13/11 2003
7 Jan 2004 24.77 25.00 1.97 2.20 28.68 11/12 2003 16/12 2003
8 Feb 2004 24.52 24.50 2.16 2.14 27.87 12/01 2004 15/01 2004
9 Mar 2004 24.29 24.50 2.02 2.23 26.10 09/02 2004 12/02 2004
10 Apr 2004 24.08 24.00 2.22 2.14 25.68 11/03 2004 16/03 2004
11 May 2004 23.88 24.00 2.18 2.30 25.29 08/04 2004 15/04 2004
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Table 6: Estimates of the parameters of the oil market modelσS,σε ,ρSε ,κε ,η ,σx and ρSx. ρxε has
been set to zero. For comparison, estimated values forσS,σε ,ρSε ,κε for NYMEX crude oil futures from
Schwartz (1997) are reported too. Also the SSD between observed squared annual implied IPE option
volatility and squared annual model volatility is reported(it relates to the first five parameters only).

Parameter estimateEstimated value Schwartz (1997)
σ̂S 0.4409 0.344
σ̂ε 1.7923 0.372
ρ̂Sε 0.9850 0.915
κ̂ε 8.5172 1.045
η̂ 0 -
σ̂x 0.1104 -
ρ̂Sx -0.0015 -
ρ̂xε 0 -
SSD 6.88·10−5 -
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