Options on Energy Portfolios in an HIM Framework

EFMA Classification: 400, 410, 440

Thomas Lyse Hansérand Bjarne Astrup Jensén

This version:
January 14, 2007

1SNG Consult, (tth@sng-raadgivning.dk)

’Department of Finance, Copenhagen Business School, 8pliéads 3, DK-2000 Frederiksberg.
(ba.fi@cbs.dk). We thank for comments on earlier versionsnfiTomas Bjork, Jgrgen Aase Nielsen and
participants in the Arne Ryde workshop at Lund Universitg &mernational Conference in Finance, University
of Copenhagen. Bjarne Astrup Jensen gratefully acknovedéidgncial support from the Danish Social Research
Council.



Abstract

This paper implements a pricing procedure for commodityonmgt taking into account the stochastic
nature of spot prices, currency exchange rates and comgenyéelds. Interest rate risk is also mentioned,
but is not included in the numerical implementation. Thelgiaframework is heavily inspired by
Miltersen&Schwartz(1998); however, while they allow theerest rate to be stochastic they do not
consider exchange rate risk. Furthermore, our work diffese theirs by extending the analysis to
derivatives, where the underlying energy commaodity isvedld to be either a portfolio of single-delivery
contracts or a flow forward. The numerical implementatioarisadaptation of the stochastic duration
approach in Munk(1999), and we find that this numerical meitpimduces results quite close to the
“true” prices found through Monte Carlo simulation.

Key words: Stochastic exchange rates, forward and futures pricesgo@nce yields, options,
portfolios of single-delivery contracts, flow forwardspehastic duration.



1 Introduction

Itis a delicate matter to trade spot products and financilateses in energy markets. Opposite to bond
and stock markets, the underlying assetsreaéproducts, and a significant part of the demand for them
represents aal need for the products, which can only be substituted awaly sdme difficulties; or,

in some cases, only in a prohibitively costly manner. Thigadicularly true in the spot market, where
the demand is almost always met, but where the spot pricegses can be quite different from the spot
price processes conventionally used in the pricing of déxigs. This pattern of real demand is also the
main reason for the existence of the well-known convenisfigld in energy markets.

Convenience yields exist in most commodity markets whiehrent primarily driven by speculation, cf.
Brennan (1991). A popular and widely used definition of netvemience yield of a commodity is given
in Brennan (1991) as

“the flow of services that accrues to the holder of a physicaimodity, butnot to the owner
of a contract foffuture delivery — measured per unit time and unit of the commodity.”

In order to explain what convenience vyield implies for thieipg and hedging of energy derivatives,
convenience yield is often compared to (continuously pdididends on common stocks. This is a
good first explanation. However, the dynamics of convergeyields in energy markets is typically
very different from the modest dynamics of stock dividendsiere an assumption about a constant
continuously paid dividend rate or discretely paid fixed ante is often sufficient to make a derivatives
pricing model work well. Opposite to this, modeling of conience yields on energy commodities
requires a more sophisticated approach, because empwidaince clearly states that convenience yields
are stochastic. Furthermore, it shows the existence ofréfisiantterm structureof convenience yields.
This calls for a modeling approach in the spirit of Heathralay and Morton (1992), abbreviated HIM,
where the spot price and the initial term structure of futysgces are taken as given. Based on this the
drift of the convenience yield under an equivalent martiegaeasure is derived.

Obviously, the spot prices of energy has to be modeled aschasttic process too. Furthermore, the
introduction of a stochastic exchange rate is importanefargy investors in almost any other country
than the US, the prime example being crude oil and oil pradtiat are almost exclusively traded in
US dollars. Unless otherwise stated it is understood thatggncommodities are internationally traded
commaodities with identical exchange rate adjusted spoeprin different markets. This is no restriction
whenever the different currencies are used solely as uh#samunt. But whenever the use of different
currencies are used to compare spot prices in geographigliarated areas it is no longer obvious
that the exchange rate adjusted spot prices are identicahsportation costs and delivery time (e.g. oil
and related products), physical constraints in transorissapacity or the entire lack of such capacity
(e.g. natural gas, electricity) and even politically detered flow constraints (e.g. oil export tariffs from
Russia) are frictions that may cause markets to separaletisatthe exchange rate adjusted prices can
no longer be assumed identical. However, such frictionstdukereal nature of the commodities are
not modeled within this paper. On the other hand, even witttidnless conversions of spot prices across
currencies the analogous conversion of forward and futpriees is not entirely straightforward. This
also goes for the relation between the convenience yieldsacurrencies. We derive these relations in
this paper.

The electricity market is the prime example where some obtsc assumptions and properties under-
lying conventional derivatives pricing models do not apfliiis is due to the lack of storeability outside
the hydropower based markets. Hence, neither the conwahtieedging techniques for the pricing of



financial derivatives nor the ability to learn about an appiaie equivalent martingale measure from the
spot market apply. Similarly, it is meaningless to intetgh® convenience yield as a flow of services
to an investor from holding an inventory. In this case one, @drcourse, always give up the usual

interpretation of the convenience yield addfineit in a backwards manner such that the usual no
arbitrage based pricing relations are valid. On the othadhalectricity is also an example of a real

good that can be transported instantly over long distaqesjded the relevant transmission lines have
been established.

This paper implements a pricing procedure for commodityonmgt taking into account the stochastic
nature of spot prices, currency exchange rates and comganygelds. Interest rate risk is also mentioned,
but is not included in the numerical implementation. Thelgiaframework is heavily inspired by
Miltersen and Schwartz (1998); however, while they allow iiiterest rate to be stochastic they do not
consider exchange rate risk. Furthermore, our work diffesm theirs by extending the analysis to
derivatives, where the underlying energy commaodity isvedld to be either a portfolio of single-delivery
contracts or a flow forward.

A flow forward is an agreement to deliver a commaodity contimlyp through some specified period as
opposed to the standard single-delivery energy commaéiyckude oil or cracked oil products, where
the delivery of the entire bulk takes place at a single painime. The relevant energy commodities
with flow feature are electricity and natural gas. Our appho® cope with the flow feature is to view
the contract as an indivisible portfolio of periodical (WwBeor daily) single-delivery forwards. This is
analogous to a coupon bond, in which the cash flows occur atrdeuof times. We apply variants of
the technique developed in Munk (1999) for pricing optionscoupon bonds in multi-factor models.
This technique replaces the underlying bond by a pure digdmend with the same stochastic duration
and provides an approximate pricing method; however, M@#do simulation results show that this
approximation method is indeed quite accurate.

The paper is organized as follows. Section 2 outlines thegeind section 3 describes our basic model
for energy options, where the underlying is allowed eitlodbe a portfolio of single-delivery futures or
forwards with a flow feature (flow forwards). Potential apptions to two different energy markets is
discussed in section 4. Section 5 describes our results dmnparing the approximate pricing method
with the results from a Monte Carlo simulation which produtelose to theoretically correct” prices
that are not obtainable in analytical form. Concluding rekaand the paper in section 6.

2 The set-up of the general model

A similar description of the model setup used here can bedaorMiltersen and Schwartz (1998).
However, considering only the one country/currency casg tlo not incorporate a stochastic exchange
rate in their model.

2.1 The stochastic processes

The current time is 0 and we assume a finite investment hoiiz®n The relevant filtered probability
space upon which the objective probability meadeirgorks is denote Q,ﬂ,{%}{ogtgﬂ, P). This
probability space carriesdxdimensional Wiener proce¥¥,, and we assume that the filtration is the one
generated by this Wiener procesg =0 (W, |0 <u<t).



We assume that the trading of energy commoditiespot and forward/futures- takes place in another
currency domiciled in another country than the one usedarctuntry where the energy derivatives in
question are being priced and traded. The former countrgnei@d theforeign country and the latter
the domesticcountry. Thus, the situation is seen from the point of vievihef domestic country. All
foreign variables are written with superscripas commonly used in two country models in economic
literature to identify the foreign country. The domestiosprice§ and the foreign spot pric§ are
assumed to be directly related through the spot exchange;rate. § =xS'. Hence, as mentioned in
the introduction, we disregard frictions mfal nature in the spot markets, which otherwise would call
for yet another source of risk to be modeled.

The following stochastic processes are defined on the pilajpapace (Q,ﬂ AS Y} (0<t<T)s P):

¢ the spot price processes of the underlying energy comm&liagnd S

e the spot interest rate processgsandr;’, and the families of zero-coupon bond pricBt,T) and
P*(t,T)

¢ the spot exchange rate process
e the futures price processds(t, T) andF*(t,T)
e the forward price processes(t, T) andG*(t,T)

e the forward convenience yield processé{, s) andd*(t,s)

e the futures convenience yield processds,s) ande*(t,s)

For technical reasons all processes are required t&#4®) processes, meaning that all the stochastic
integrals w.r.t. the Wiener process are not only well-defjnigut areP-continuous square integrable
martingales.

In accordance with standard assumptions in the literaterassume the existence of the usual equivalent
martingale measure® in the domestic country with the bank accof= exp(fé rsds) as the numeraire
andQ* in the foreign country with the bank accoyfit=exp( fyrids) as the numeraire.

The continuously compoundddrward interest ratesf (t,s) and f*(t,s), are defined by
P(t,T) =E° [e*ftT rds| Z] = e KT fs)ds 2.1)
P* (t,T) = EQ* [e_ ftT réds | J@t] P ftT f*(t,9)ds (2-2)

The continuously compoundédrward convenience yield$(t,s) andd*(t,s), are defined in a similar
manner by the forward prices as

T T

G(t,T)= %e—ft o(t,9)ds Seft (f(t,5)—d(t,s))ds 2.3)
T sx Toes e

G'(t,T) = %ek S*(t,s)ds _ Ske/t (*(t,9—0%(t,9))ds (2.4)

L#,(P) is the space of progressively measurable real processestaic® | [3 Y2dg < Vi [0, T].



while continuously compoundddtures convenience yields(t,s) ande*(t, s), are defined by the futures
prices as

F(t,T)= %ejf g(t.s)ds _ Sejf(f(ps)—e(ns))ds (2.5)
F*(t’T) = %e_ ftT g*(t,s)dS: S‘eftT(f*(t,S)—E(t,S)*)dS (26)

The standard boundary conditiorfgt,t) =r; for all t andG(t,t) =F(t,t) =S for all t, apply.

The economic interpretation of the continuously compodnideward convenience yields is that they
represent a “non-pecuniary dividend yield”, cf. Brenna®@9q1), as mentioned in the introduction. There
is no similar easy interpretation of the futures convergeyields, because of the continuous resettlement
payment structure for futures contracts. However, wheer@st rates are deterministic the forward
prices and the futures prices are identical; hence, the omeenience yield curves in each currency are
necessarily also identical. The difference arises soteiynfthe interaction of the continuous resettlement
feature with the stochastic variation in the interest ratess. It is a pure definition, although a very
useful one. Due to the martingale property of the futuresasf (t, T) w.r.t. to theQ measure it is easier

to develop models for the stochastic dynamics of futureseprthan for similar forward prices.

2.2 The dynamics

The model is based on the dynamics for the spot price of thenyidg energy commaodity, the term

structure of futures convenience yields and the term straadf forward interest rates. This choice is
explained by the experience from the HIM analysis, whictwshihat it is appropriate to initiate the

building of the model for zero-coupon bond prices from th@aiyics of the forward interest rates.
Similarly, the futures prices are most appropriately meddtrom the dynamics of the futures conveni-
ence yields. Because the objective of the analysis is t@ plicivatives we start the specification of the
model directly under the equivale@t measure.

The spot commodity price is assumed to follow the SDE
t t
S = so+/o Su(ru—e(u,u))dqu/o S0s(u) - dWQ @.7)
with the usual convenience yield adjusted drift. The speharge rate is assumed to follow the SDE
t t
X =Xo+/0 xu(ru—rfj)du+/0 XuOx(U) - AW (2.8)

where the drift is given by the usual uncovered parity refatinderQ.

The family of SDESs for the continuously compounded futuresvenience yields is given by
t t
£(t,s) = €(0,s) +/ ug(u,s)du+/ 0:(u,s) - dWR (2.9)
0 0
and the family of SDEs for the continuously compounded fodanaterest rates is given by

t t
f(t,s) = f(O,s)+/o uf(u,s)du+/o ot (u,s) - dWR (2.10)

Any possible correlation between the three processes @figgbthrough the diffusion terms. At this



point of the analysis the drift and diffusion terms are nacfied further, except for the fact that they
must fulfill certain regularity conditions in order to ensuhe existence of strong solutions to the SDEs.
So, in the general case, stochastic/state dependentialifitesms and correlation between the processes
is possible.

Under theQ measure the drift terms of the continuously compounded daivinterest rates as well as
the convenience yields are completely determined by tHiesililn terms. This is one of the main lessons
from the HIM methodology. More specifically, from Heathrdar and Morton (1992) we have

]
e (t,T) = Uf(t,T)-/t ot (t,v)dv 2.11)

and in Miltersen and Schwartz (1998), Appendix A, it is shahait the drift of any of the continuously
compounded futures convenience yield processes @degiven by

e (6, T) zof(t,T)-/tT o1 (t,v)dv-+ (Uf(t,T)—ag(t,T)) . (as(t)+/tT(0f(t,v)—ag(t,v))dv (2.12)

2.3 Cross-currency relations

Intuitively, forward convenience yields, being rates agalus to dividend yields, should be identical in
the foreign and the domestic country. This is proven as thewog Theorem 1. However, the futures
dividend yields processes, reflecting a possible corwglgbattern between the price of the underlying
asset and the interest rate process, will in general beeliffgorocesses.

We apply the notatiork;[X] to denote the conditional expected valueXofgiven the o-algebra.Z.
Similarly, we denote the Radon-Nikodym derivative, refatio theo-algebra%, between two equivalent
probability measureB andQ asg—g |7 -

Theorem 1 Forward convenience yields as defined in equations (2.3X24 are identical. When the
futures price processes and the forward price processesdargical the futures convenience yields, as
defined in equations (2.5) and (2.6), are identical and ighto the forward convenience yields.

When the futures price processes and the forward price paeediffer the futures convenience yields
will only be identical by coincidence. |

Proof First, consider a situation where an arbitrageur entersoitdvo opposite forward positions, one
in domestic currency and another in foreign currency. Eatthese contracts have zero present value,
hence the portfolio of opposite positions also has zerogmesalue. The final settlement payment,
expressed in domestic currency, is

xrG*(t,T) —G(t,T) (2.13)

The zero present value of this position leads to the relation

EQ [e*fiT "0 (e G*(t, T) — G(t,T))] =0 = (2.14)
EQ [xTe—ftT fst] G'(tT)=GLTPLT) < (2.15)
xP*(t,T)G*(t,T) =Gt T)PL,T) < (2.16)

xSe o tIds _ g otsds o (2.17)

/tT 5 (t,s)ds— /tT 5(t,9)ds (2.18)



Since this holds for all T we conclude thait, T)=0"(t, T) for all T. Alternatively stated, the domestic
forward price is the foreign forward price converted at tlevard exchange rate:

G(t,T) = <xt F;ﬁ@) G'(t,T) (2.19)

For futures contracts recall the well known fact that theufes price Ft, T) is a Q-martingale and,
analogously, that the futures price*,T) is a Q*-martingale. The Radon-Nikodym derivative, cf.
Andreasen (1995), is

dQ | _ X fT(rerp)ds
o5 = (2.20)

Identical futures convenience vyields is equivalent to hgy2.16) fulfilled for the futures prices, i.e.

%P (t, T)F*(t,T) = P(t, T)F(t,T) (2.21)
This is equivalent to
EX [xtP*(t,T)%} = E2 [P*(t,T)eﬁT(r;’rS)dSSr = E2[P(t,T)Sr] (2.22)

This will only be fulfilled by coincidence. If forward anddus prices only differ in one currency, e.g.
because the interest rate is only stochastic in one counisy/clearly impossible to have (2.21) fulfilled.

As another example, consider the widely used specificaficheoexchange rate process as a process
with a constant or deterministic drift; i.es+rg is deterministic, cf. (2.8). In that case the fulfillment of

(2.22) boils down to whether the exchange rate proc—;‘gsis (Q-)uncorrelated with the domestic discount

factor:

p* (t,T) — EtQ* |:ef jtT r;ds] _ EtQ* |:ei j{T(réfrs)dsef jtT rsds]
=€ ftT(rg—rs)dSEtQ [X_TeftT(rg—rs)dse— 5 rsds]
Xt

— e Hrrsdspt ) +cOVP<XXt_T,e— T 15 (2.23)

As usual in this area it is difficult to have an intuitive fegjifor such covariance properties under Q; but
under the physical measure, at least, it is unlikely thad ttovariance term vanishes. |

Remark 1 While the relation between the forward prices is both wetiwkn in the literature and very
simple to derive, the relation between the futures prices hat to our knowledge been spelled out
previously. |

3 Energy options

3.1 Options on a single-delivery futures contract

Our first objective is to price a strikg-call option on one single-delivery futures contract at datéhe
option expires at dateand the price of the futures contract with expiry at datet is given byF (t,T).
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Figure 1:Time line showing the time of option pricing (current timet@g option expiration time t and
the expiration time T of the underlying futures contract.

The pricing procedure involves a standard change of préityabieasure fronQ to Q', thet-forward
measurewith the price process for thematurity zero-coupon bond as numeraire process. We démote
price of the option byC™ (0;t, T,K). By standard change of numeraire calculations we get thexfivlg
pricing equation:

CF(0;t,T,K) = EOQ [M] _ EOQ [(F(th) - K)l{F(t,T)zK}}

B(t) B(t)
o FOT)LEeT)=K) ol LFaT)=K)
_EOQ[ B(t) }_KEO[ B(t) ]
= PO.OES [F(tT)Lrmzk) | — POOKES [Lrrn (3.1)

This pricing equation holds in any case. But, in order tovarat an operational closed-form Black-
Scholes like expression for the option price, we restrigselves to the Gaussian case and assume that
the diffusion terms aréeterministicfunctions. The problem then is to work out standard calauiat

with truncated lognormal distributions. From Appendix ANfiltersen and Schwartz (1998) we know
that the dynamics for the futures price process, which is dingale undegQ), is given by

dF(u,T) =F(Uu,T)&(u,T)-dwW? (3.2)
where
~ T T
& (u,T) =os(u) +/ (07 (u,s) — 0¢(u,8))ds= 05 (u) +0X(u)+/ (ot (u,s) — 0¢(u,9))ds  (3.3)
u u
The dynamics for the zero-coupon bond expiring at dagegiven by
dP(u,t) = P(u,t)rydu— P(u,t)sp(u,t)dWo (3.4)

where .
sp(ut) = / ot (u,9)ds (3.5)

The dynamics of the futures price process un@éris found by a standard transformation, cf. e.g.
Proposition 24.5 from Bjork (2004):

dF(u,T) = F(u,T)(—’s]:(u,T) -SP(u,t))du+ F(U,T)&(u,T)-dwQ (3.6)

implying that :
F(u,T) = F(0,T)e /o S (MT)se(utdv—3 JoS (uT) Pdve-Jg & (WT)-dW? (3.7)



For notational simplicity defin&gp andz2, respectively, as
t < t )
Seo= | ST seluow 5= [ )& uT) Fay (3.8)
Now we are able to compute the pricing formula (3.1):
~ _ t
ES [Lrarsk)) =Q (F(0,T)e_zFP_%z%+'fésF(v’T)'d\A’“Q > K)
t F(O,T) 1<
t t > 2
= — . < _ _ =
Q ( /OSF(VaT) dw® _|09< K ) 2rp ZZF)

_q)<|og (@) —Z,:p—%f,%)

(3.9)

52

where ®(-) denotes the standard normal cumulative distribution fonct Analogously, by standard
calculations the first term is

Qt . Qt F(t,T) o
P(0,t)E; F(th)lF(t,T)zK} =P(0,t)F(0,T)E; [7F(O,T) {F(t,T)zK}} =
- ~ t
P(0,t)F(0,T)ES [e_ZFP_%ZE+'f55F(V’T)'dWQ 1{F(t,T>2KJ -

log ( £OT) —Trp+ 232
P(0,)F (0, T)e 2 ap( () :

= ) (3.10)

Collecting terms the final result is

|
CF(0;t, T,K) = P(O,I)F(O,T)e*ZFPq)< Og(

) (3.11)

This provides a closed-form expression for the price at Gaika strikeK call with maturity date >0
written on a futures contract with maturity date>t. In Miltersen and Schwartz (1998), Appendix B, the
authors derive the same price equation for a similar calbapbut in a different way without explicitly
introducing the change of measure fr@no Q. The procedure used here is considerably shorter and
simpler.

An almost identical analysis would show that the piRE&0;t, K) at date of a similar striké& put option
with maturity datd on a futures contract with maturity date>t is given by

FRU) —zep— 452

L%

F(%T)) —2Fp+ %5,2:

PF(0;t,K) = P(O,t)K<D<Iog(

_ P(O,t)F(O,T)e_ZFP¢<|Og( ) (3.12)
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Figure 2: Time line showing the time of option pricing (current timg)the option expiration time t and
the expiration timeg T }(1<j<n Of the underlying single-delivery futures contracts.

Relevant sensitivity parameters, i.e. tBeeekslike delta, gamma etc., can now be found by standard
methods. Observe from (3.7) that the prodegs, T)elo S MT)-s(w)dv is 3 f-martingale:

|:(u7-|-)ef'o“’s“F(\4T)~sP(v7t)dV — |:(o,T)e*%fo“\lé(v,T)HZdVHO“’s“F(v,T)~dV\1¢Qt (3.13)
Hence, the result in (3.1) can be restated as
T t
CF(0;t,T,K) = P(0,t)F (0, T)e ZF°EQ [1{F(H)2K}] — P(0,)KEQ [1{FM)ZK}] (3.14)

where theT —futures measureQ' is defined fromQ" by

dqQ’

P R t
0 — o 3 JolIS (WT) Pdv fg & (wT)-dWf2 (3.15)

Fo

If interest rates are assumed to be deterministic,ds€u,s) =0 for all (u,s), the call price (3.11)
simplifies to

F(0,T < F(0,T <
) +332 ) -5

CF(O;t,T,K):P(O,t)(F(O,T)cD(Iog( \/i )_Kq>(|°g< _ )) (3.16)

3.2 Options on a portfolio of futures

The pricing technique for options on single-delivery fesirfrom the previous subsection makes it
possible to price an option on a portfolio of futures cornsadefine the price of the whole contract

with expiry at dateT as
n

=3 aF(t.T) (3.17)

wheret <T,<Ti 1 <T foralli=1,...,n—1andT,=T. Thea;’s are numbers that indicate how many
single-delivery contracts the investor holds for everyiviel date. In the case, where thgs are all
equal and thd;’s equidistant, it means that the portfolio is a contractdonstant delivery throughout
the period Ty, Ty]. Figure 2 illustrates the location of the relevant pointsrime. For notational simplicity
we omit the explicit mentioning of the time argumefitaind the volume arguments in the specification

of H. Denote the price of the option 16§/ (0;t,K). Analogous to the pricing relation developed above



we have that

cH(oit.k) = e3[HO KL “;G)K] | —eg[HU- ()ﬁ{H =
g9 (t);{(Ht) 2] _KEQ[l{Hu? )
= P(O,0ES' [H (O L=k | — PO.OKES 1=k
:P(O,t)_i FO,T)EY" [1{H K}] P(0,t)KES' [1{H()>K}] (3.18)

So in principle we have found the price of the option. In ortdemake this pricing equation applicable in
practice, it is necessary to find the probabilities of theneyel (t) > K} under theQ! andQT measures.
However, it is not obvious how to find these, becadse) is a sum of log-normally distributed variables,
so whenmn > 2 it is not log-normally distributed itself.

Jamshidian (1989) and Longstaff (1993) show how to cope thithproblem and obtain a closed-form
solution when pricing European coupon bond options in theifék and CIRone-factorinterest rate
models, respectively. The Jamshidian approach can bededeio all one-factor models, where the
relative price volatilityo(t,T) at timet of a zero-coupon bond with maturity dafecan be factored as
o(t,T)=(g(T)—9g(t))h(t), whereg and h satisfy certain regularity conditions. This is known as the
condition under which the process for the short term ratatefést is Markovian, cf. Carverhill (1992).
The basic methodology rests on the perception otthgon bondas aportfolio of zero-coupon bonds

When it comes to bond option pricingmulti-factormodels, several models offer a closed-form solution
for the price of European options on zero-coupon bonds. Alltiffactor exponential affine term
structure models offer closed-form solutions for zerogmubond option prices. However, no closed-
form solutions are known for European coupon bond optiooggrin multi-factor models. In order to
cope with this problem, Munk (1999) suggested a fast andiggemumerical method. The idea is to
approximate the coupon bond option price by a multiple ofgtiee of a European option on a zero-
coupon bond with a time to maturity equal to the stochastratitan of the coupon bond.

We shall apply this approach when pricing options on pddfobf futures and look into the details in
the next section. A single-delivery futures is analogous tero-coupon bond; hence, a portfolio of
single-delivery futures is analogous to a coupon bond. Vieaqimate the option price by the price of
a European option on a single-delivery futures with a timenadurity equal to the so-called stochastic
duration of the futures portfolio.

An alternative approach to pricing European coupon-bortiog has been proposed in Singleton and
Umantsev (2002) for the case of affine term structure modelsihere bond prices are affine functions
of the state variable$ The idea is to approximate the option’s optimal exercisendany by a hyperplane
in R™, wherem equals the number of factors in the model. This approximatiakes it possible
to calculate the probability of the bond being in the moneyhat option expiration date under the
relevant probability measures. This reduces to calcgdtie sum oh+1 probabilities of a zero-coupon
bond being in the money, whereequals the number of remaining bond payments after theréptio
expiration date. Knowledge of the conditional characteriunction for the state variables and the

2More preciselyg is a¢’}(R, R ) function anchis a%'(R, R ) function.

SThis is not the only alternative approach to Munk (1999) tddamd in the literature. Other approaches are suggested in
e.g. Collin-Dufresne and Goldstein (2002) and, more régeint Schrager and Pelsser (2006); however, we have nat toie
compare our approach with the suggestions in these papers.

10



fact that the zero-coupon bond prices are exponential dfimetions of the state variables is sufficient
to derive closed form solutions, cf. e.g. section 2 in Sitggieand Umantsev (2002). Longstaff and
Schwartz (1992) is a two state variable example of this. &#tvant option sensitivity parameters can in
principle be calculated along the same lines.

Examples provided by Singleton and Umantsev (2002) in€litizt this approach is more precise than
the stochastic duration approach and that the pricing erindependent of the moneyness of the option.
However, this precision comes at a cost. The approach is moch complicated to implement, and the
calculations are more time consuming. Calculating theepoica bond option with only two remaining
payments at option expiry takes almost six times longer tging the stochastic duration approach
according to an example provided by Singleton and Umantiséd2 econds compared to 0.24 seconds).
As the computing time increases linearly in the number ofai@ing payments, which in our case
corresponds to delivery times, and can be much higher trmmuimber of coupon payments usually
found in the bond market, one can easily image a situatiorrevtieés approach spends unacceptable
long time to perform the calculation compared to the staibbhakiration approach. Thus, despite its
theoretical appeal and the higher degree of precision, &k bt deal further with this approach in the
paper.

3.2.1 Pricing the option by approximation

Given that the pricing is considerably easier for a singlvery futures one could consider different
ways of approximating the dynamics of the futures portfolyadhe dynamics of a single-delivery futures
with maturity T. This could be in a myopic sense by replicating the infinitedivolatility term of the
portfolio, but it could equally well be an attempt to reptiegsome of the distributional characteristics of
the portfolio at the expiration dateof the option.

We shall stick to the nomenclature in Munk (1999) and denmter¢lative diffusion coefficients of the
futures price process &g (u,T), j = 1,...,d, for factor sensitivities. So thgth factor sensitivity is a
relative futures price diffusion coefficient with respestdne single source of uncertainty, namely the
j’'th component of thel-dimensional proces®\/2). Note that in most cases when the text regoa, T)

it is understood that it is for an arbitrafye {1,...,d}. We rewrite the dynamics of the single-delivery
futures price in a way that emphasizes the dependencylafimensional Wiener process:

dF(u,T)=F(uT)se(u,T) -dW® =F(u,T) i (u, T)dWR (u) (3.19)

wheres (U, T) = (s (U, T), -, 55, (U, T)T andWR = (W2(u),--- ,W2(u))T with (-,---,-)T denoting
the transpose of a row vector. Similarly the dynamics forgbefolio position is given by

n

dH(u) :_ZloridF(u,Ti)

:i i uT.dW (u)
—H(u (n i (U, T)AWR(u ))

w(u,Ti)se, (U T)AWR () (3.20)



aiF(uT) _ oF(uT)
S aiF(UT) T H()

The idea behind the approximation of the option price with portfolio as underlying is to replace the
true portfolio of futures with an appropriately chosen $éadelivery future. This approximation is given
by

wherew(u, T;) are portfolio weights given bw(u,T)) =

K
5) (3.21)

whereT € [t,T| is some chosen maturity of an approximating single-delietures and the scaling
factor ¢ is given by

cH(0;t,K) ~ ¢CT (0:t, T,

H(0)

= 22
?=Fomn (3:22)

The approximation for a similar put option on the futurestfwdio is given by
PH(0;t,K) ~ ¢PF (0:t, T, E) (3.23)

¢

For an arbitrary maturity daté of the approximating single-delivery futures the apprciion error
eH(T) in the call case can be evaluated underThiitures measur®" with F(u, T) as the numeraire
process. The case of a put option is similar. Recall thatait grocesses in the economy as well as
futures price processes relative to the numeraire prdeasd ) areQ'-martingales. Then

T . F(t,T)—KkEQT o
e"(T) =F(0.T)Eg [maX{E((tt,)T)K’O}] FTS?))F(O’T)ES [max{ . ()t,T) " }}
; H(t) K H(0) K
=F(OT)E [maX{F(t,T) “Fen Y M Eg T - F(t,T)’O}}
where o[ HO | HO o K K .20
[F(t,T)} ~ F(O,T)” ° [F(t,T)] ~ F(0,T) '

For a call option deeply in the money, both maximum terms arengby the first (non-zero) argument

by a probability close to one, so by equation (3.24) we seglileadifference between the two terms and
hence the approximation erref'(T) is close to zero. For call options deeply out of the moneyh bot
maximum terms are zero with a probability close to one, sdlaity €7 (T) is close to zero.

Only when one of the maximum terms yields zero and the othermam-zerce" (T) is affected more
substantially. This is the case, whgﬁﬁ is between% and '?( )) at timet. Therefore, to keep the

erroreH(T) on a minimal levelT should be chosen such th%T) stays close tqﬁ.

3.2.2 Stochastic duration

For a futures portfolio we define trstochastic duratiord™ (0) at time 0 as the time to maturity of the
single-delivery futures with the same relative price \ititatas the portfolio. l.e.,6" (0) is defined by
the equation

ZsF (0,3"(0 Z(Zon OT.)) (3.25)

The usual concept of duration in fixed income analysis is la mgasure gauging the entire relative
price reaction to a change in the yield or in more general models the entire relative price reaction
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to a change in some common exogenous variable. The predanitide relates only to the volatility
term. However, it shares a basic property with the usualtauraneasure; the definition implies that
the stochastic duration of a single-delivery futures egjital time to maturity just as the duration of a
zero-coupon bond equals its time to maturity.

By the very definition of the stochastic duration, choosing 6" (0) assures that the relative changes in
F(-,T) andH(-) at time O are close to each other over the next infinitesima iinterval. Hence, the
approximation is a myopic one, and whether they are actegjiyal depends on the size of the drift of
the two price processes und@f. On the other hand, in many models it is an “easy to computeisme
and, as will be shown subsequently, it has a reasonably goathdin compared to option prices found
by Monte Carlo simulation.

An alternative choickis to measure the cumulative variance of the portfolio olierdntire remaining
lifetime of the option, i.e. over the intervd,t], and find a representative single futures that has the
same accumulated variance over this interval. Based or ttmssiderations we define an alternative
stochastic duratiori,t' (0) for the portfolio from the following (approximate) equatit

/ s (u, 08 (0 2du_/ z ZWOT uT.))Zdu (3.26)

n

~ EQ [/t S (Zqu. s (u, T.)) du|Jt] (3.27)

O]l

In section 5.1 we report on Monte Carlo simulations and camp# pricing errors with this measure to
the myopic stochastic duration.

3.2.3 Basic properties of stochastic duration

We omit most details in this section; in most cases they cdodred in section 1.2 in Munk (1999) in
the case of coupon bonds. The stochastic duration meassithd&ollowing properties, most of them
obvious or very simply proven:

e If the factor sensitivities, (0, T) are either positive and increasingTnor negative and decreasing
inT, thenz?:lspj (0,T)?is increasing irT . If the factor sensitivitiese, (0, T) are either positive and
decreasing or negative and increasing'inhenz‘j’zlspj (0,T)? is decreasing if .

o If the factor sensitivitiesr, (0,T) are either all increasing or all decreasingfirfior all j and at least
one of them is strictly increasing respectively decreasingn a unique solutiod (0) to equation
(3.25) exists in the interval; < 67 (0) < T,.

There is also a parallel to the well-known Fisher-Weil disratapplied in the analysis of coupon bonds.
The Fisher-Weil duration is a weighted average of the timn@sdturity of the bond’s payments, weighted
with the portfolio weights of the individual payments whemdaulated in accordance with the existing
zero-coupon term structure. In the context of futures thatin measure is similar, but we shall call it
the Fisher-Weil futures duration.

4Yet another candidate was suggested in Munk (1999), nanselpcorporate explicitly the drift and look fof’ =

. T ( { drift-+diffusion of F(uT)  drift-diffusion of F (uT .
argminy Varg <{ it 'E?'u‘??)o (uT) _ drift+di ;ﬂ?'uo%o C )Hu:o)' As Munk (1999) arguesT’ and & (0) will be equal

for all one-factor models, whereas they may differ in mtdtitor models. However, according to the numerical resafisrted
in Munk (1999) for two-factor models, including a two-factéJM model, this did not improve the pricing accuracy.
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Definition 1 The Fisher-Weil futures duratiodt}, is defined by

Ho_ 2 GiFO,T)(T) & 4
= =3 wOT)(T) =S wO,T)T; 3.28
= 2o T~ MO = S wOTT (3.28)
where WO, Tj) = zijii(g’(T(il)Ti) are positive weights an§ti’_, w(0, T;) =1. |

The following proposition deals with a situation, where #stechastic duration and the Fisher-Weil
futures duration are identical. This is the case for the isp@tass of models with so-called linear
factor sensitivities, i.e. when

S (U, T) = (T —ubj(u) Vj (3.29)

for some smooth maturity-independent functidmgor all j.

Proposition 1 If the factor sensitivitiesgs(0, T) are linear for all j, then the stochastic duratiadt* (0)
is uniquely determined and identical with the Fisher-Welufes durationdt, (0). 1

Proof Linear factor sensitivities implg L, w(0,Ti)sr (0, Ti) =, (0,5, w(0,Ti)T;) for all j. Hence,
2 2
Y1 (ZLaw(0,T)sr (0,T)) "= 3 (87 (0 T L WO, T)T:)) "

By the definition of the stochastic duratidfl and the Fisher-Weil futures duratiadt!, the LHS of the
last expression equals®_; s, (0,5 (0))2, while the RHS is equal t§¢_; (s (0, 8H,(0)))?. Further-
more, the LHS is an increasing function in the variané(O), which is to be determined; the partial
derivative is2y{_, 6" (0)b;(0)? and hence positive. Consequerdly(0) = ot (0). I

Thus, in the special case where all factor sensitivitiediaear, the simple Fisher-Weil futures duration
is indeed a valid risk measure for the futures portf&i®, T ) and is identical to the risk measure implied
by the stochastic duration. Conversely, for one-factor e®@here the factor sensitivity has the same
sign for all maturities the implication in the proof of praggtion 1 turns into a biimplication and the
converse to the proposition is true: If the stochastic domaand the Fisher-Weil futures duration are
equal, then the factor sensitivity is linear. For multittacmodels it is not so straightforward and the
reverse of proposition 1 is not true in general. Strongeuraggions on the factor sensitivity are needed
for this.

3.3 Options on flow forward contracts
3.3.1 Pricing flow forward contracts

Flow forward contracts can be regarded as a finite sum (@foperly discounted) single-delivery for-
wards. The discounting is done in order to take into conaitter when the forward payments are
actually made. If the flow forward is a contract f%?runit of the energy commodity per sub-period, i.e.
one unit over the whole period, and the whole forward paynsedbne upfront, then the value of the
flow forwards is simphyd(t) == 5L, G(0,Ti).

Inspired by the payment structure at the Nordic power fodwaarket, where a flow forward contract is
settled through daily payments, we investigate the caseenthe forward pricel(t) of the entire flow
contract is paid sequentially as a constant fractiod(bf/n during the delivery periodTy, Ty]. By a
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simple discounting argument one gets that

o KT fts)ds

—_Zl< e e ) (t, i) _i Gt,T) (3.30)

So the forward pricel(t) may be interpreted as a weighted average of single-delifigevyard prices
over the delivery periodiT;, T,|, where the weights are determined by a discounting refeptkia term
structure of interest rates and the difference in delivextgsl of the single-delivery contracts.

In the following we will limit ourselves to the case of detenistic interest rates. This implies that
the weightsy, are deterministic, enabling us to define the stochastictidaraf a flow forward in
the following section. We will furthermore motivate thisaibe in section 4, where we present two
concretely specified examples of models using our numegjgatoach.

3.3.2 The stochastic duration of a flow forward

Given that they’s are deterministic throughout the period of inter@t| we define the stochastic
duration 57(0) of a flow forward at time O similar to the stochastic duratiam & futures portfolio;
i.e. as the time to maturity of the single-delivery forwardhathe same relative price volatility as the
flow forward. This means that’ (0) is defined by the equation

o

d n

S 0.80)72= (Zv(o,mspj (O,'ﬁ))z (3.31)

= =1 i=
where
¥G(O.T) _ ¥G(O.T)
We see that the only difference between the two stochastatidns &’ and " comes via differences

in the portfolio weights— the v's and thew's, respectively. Consequently, the propertiesdofare as
described fol" in section 3.2.3.

v(0,T) = (3.32)

3.3.3 Pricing the flow option

The price approximation for the flow forward option followiset same line as for the option on a
futures portfolio. LetC®(0;t,T,K) be the price at time 0 of a striké-European call option maturing

at timet on a single-delivery forward maturing at tinfe And let C’(0;t,K) be the price at time O

of a strikeK European call option maturing at timieon a flow forward maturing at tim& and with

J(0)=31, %G(0,T;) denoting the price of the flow forward at time 0, The approxiorais then given
by

C’(0;t,K) ~ pC®(0;t, 5%(0), %) (3.33)

whered©(0) is the stochastic duration at time 0 of the flow forward andféogor p is given by

J(0)

= 76(0, 55(0)) (3.34)
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The approximation for the price of a similar put option isegivby

PY(0;t,K) ~ pP®(0;t,5%(0), %) (3.35)

Remark 2 A portfolio of flow forwards does not principally differ froome single flow forward in the
sense that both simply can be regarded as a sum (or indigigibrtfolio) of single-delivery forwards.
Thus, the stochastic duration for a portfolio of flow forwsuid defined in exactly the same way as for
one flow forward. Similarly, the pricing formula for optiomgitten on a portfolio of flow forwards is
identical to the pricing formula for a single flow forward. |

4 Application to crude oil and electricity markets

We consider two different markets. The crude oil market dddlectricity market. In the crude olil
market oil is delivered in the normal way for commoditie®. i.as discrete separated bulks. This is
opposed to the electricity market where the commodity isveiedd as a continuous flow. So, the
electricity market is exactly an example where the flow featf the forward contracts becomes relevant.
The natural gas market has the same flow feature as the elkyatnarket, and the demand pattern for the
two commodities exhibit a similar degree of seasonal viarniatso one could expect that a model suited
for the electricity market would be suited for the naturas gaarket as well. However, this is not pursued
further within the limitations of this paper.

4.1 The crude oil market

The model is inspired by the three-factor model used in Sdaw&997) and re-used in Miltersen and
Schwartz (1998) in a different setting. Our model has thastofs as well, but the difference from the
original model is that we model a stochastic exchange rateaa of stochastic interest rates. In order
not to expand the number of factors we believe that the exgghaisk is a more important risk factor
than the interest rate risk in the oil market. Moreover, ia tbrmulation of the diffusion term for the
convenience yield we have added a constant O to an exponential function, which ensures that the
convenience Yield volatility will converge towardsand not necessarily towards zero for the maturity
date converging towards infinity, cf. the specificatioroptbelow. Specifically, we assume the following
diffusion terms in our three-factor Gaussian model.

1 pSX
os(t)=0s| O [, oxt)=0x| \/1-pg (4.1)
0 0
and
Pse
Pxe —PsxPse
Oc(t,s) = op (€715 4 17) Vi-r3, (4.2)
_ 2
\/1_ pée _ (szlfls)g&)
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Written as quadratic variation and mixed variation terms theans that the diffusion terms are given by

d(S) = 2S?dt (4.3)
d(X) = (4.4)
d(e(-, ) = ( e k(U 4 )%t (4.5)
d(S X)t = PsxTsOxSxdt (4.6)
d(Se(-,9) = sg(IngS( —Ke(s1) —I—I‘I)dt 4.7)
d(x, () = PreOx0ex (6“5 + ) dit (4.8)

Thus, using equation (3.3) one gets that

l pSX
s(uT)=0s| 0 |+ o0 \/1_p§x +
0
0
Pse
1 - Pxe —PsxPse
¢ (K—e (eke(T-W 1) —n(T - u)) V1-p% (4.9)
2 _ (Pe—PsxPs:)?
(1Pl e
and
T
| se(u,T) |1 =| Gs(U)+0x(U)—/ 0 (u,9)ds |?
u
= 0 (iz (1+ g 2Ke(T-u) _ 2e*Kf(T’”)) +n%(T —u+ 2n (1- e’KE(T*“)) (T-— u))
K2 Ke

— Z(psfosag + pxsaxas) (Ki (1—e*eTW) 4 (T - U)) + 0§+ 0% + 2Ps,050x

&

(4.10)
This implies that
t
2 _ 2
22— [ s |2du
= 0} { Kl < + Vo, (t) — Vo, (0) — Z(VKE (t) — Vi (O))>

1 2 1

- énz((T —07-T) + K—'Z <2T2 S(T=1?+Y(0) —YKe(t)> }

~2(Ps: 050 + P03 {Kig (t4Vie(0) Ve () = T (T 12— 7?) }

+ <0§ +05 + ZPSXUSUx>t (4.11)

17



whereV;, andY; for notational convenience are defined for a general conathn

— 1 —a(T—u) _ 1 —a(T—u) —a(T—u)
Va(u) = 3¢ , Ya(u) = 2 (e +a(T—u)e ) (4.12)
Given the eight parameters of the model, listed in Table I5 itow possible to price single-delivery
futures (or forward) European options by equations (3.18) Buropean options on a futures portfolio
by equation (3.21). Or stated in an other way: given obsemadket prices on options on single-delivery
futures it is possible to find approximate prices on futurefplios via equation (3.21).

[INSERT Table 1]

4.2 The electricity market

This model is an extended version of a model introduced bgkBjad, Rasmussen, and Stensland (2000).
Their model is used as a description of the (risk neutral)adyics for futures and forward contracts
on the Norwegian electricity market. The model has beenemphted in Elviz, a risk management
software marketed by the Norwegian company Viz Risk Managgn®ervices AS. To replicate their
model in our setting we describe it as a two-factor model whthtwo factors equalling the spot price
and the forward convenience vyield, but with perfect positierrelation between the two factors. A one-
dimensional Wiener process undgris the driving process. Using the notation from the originaper

we can formulate the model in terms of the diffusion terms as

os(t) = (c+g) ( 1 ) and og(t,s) :a(s—t+b)’2( 1 ) (4.13)

This is slightly different from the way Bjerksund, Rasmusaed Stensland formulate their model. They
start by explicitly stating the volatility= (t, T) of the prise process for the futures with matuflty But
the volatility can be calculated easily from the diffusienrhs above as

a

. (4.14)

.
a/ (s—t+b) %ds=c+a(
t

SF('[,T):Us(t)—/tTas(taS)dSZC+ T—::—l—b)

For T =t one gets that the volatility fao(t,t), i.e. the spot price process,ds- §, which indeed is how
Os(t) is specified above. For a geneflal> t the SDE governingF (t, T))underQ is given by

a
dF(t,T) =s(t,T)dW~ = —)d t<T 4.15
1) =5 T = (et 5 )ME, t< (4.15)
Before extending the model we state it in terms of our owntimtavith os= c+ 2, o, =aandb= o—fic
as 72
os(t) = os and ag(t,s):ag(s—tJr O ) = 0g(s—t+b)? (4.16)
O:—C

The model is now extended by introducing exchange rate ridkttae possibility of an arbitrary correla-
tion between the spot price and the futures convenience ykng the lines of the Miltersen and
Schwartz model. With this extension the driving processois a three-dimension&-Wiener process
and we again allow for a possibly non-zero constant 0 in the formulation ofo,. Specifically we
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assume the following diffusion terms

1 Psx

os(t)=0s| 0 |, ox(t)=o0x 1—p2, (4.17)
0
0
and
Pse
Pre —PsxPse

02(t,5) = 0 ((s—t-+b) 21 Viel (4.18)

Written as quadratic variation and mixed variation ternis theans that the diffusion terms are given by

d(St = o Szdt (4.19)

d(xX)t = Oy (4.20)
d(e(-,9)) = 0 ((s t+b)” +n)2dt (4.21)
d(S X)t = PsxTsOxS % dt (4.22)
d(s, s(,s))t:p&asags<(s—t+b)‘2+n dt (4.23)

~—

dix,£(-,9)) :pxgaxagxt((s—t—Fb)’ern dt (4.24)

Thus, by using equation (3.3), one gets that
2 T 2
| 57 (U, T) [|* = os(u) + ox(u) —/ ge(U,s)ds |
u
2
= 02+ 02+ 2054050 + as([(s— utb) Yl - n(T - u))
+2([(s=u+b) T = n(T ~ V) ) (P05 + Pre s
-1
= 05+ 05 + 205,050 + 0§<(T —u+ b)*2+b*2—2(b(T - u+b)) )
+03<n2(T —u?-2n(T - u)((T - u+b)‘1—b‘1)>

+2((T = u+b) ™ b= (T = u)) (s 050z + Pe <) (4.25)
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This implies that

1
2= [ Is(wT) P du
2
- <0§ o2t 2p5xasax>t + og([(T —ub) b2+ Zlog(T —u+ b)]g)

- 03(%2 ((T —t)3—T3) +20[—(T —u) + blog(T —u+b)], + % ((T —t)Z—T2)>

~2(ps 050t + precis) -+ log(T —u+ b))y - (T -1 72)) (4.26)

Given the eight parameters of the model, listed in Table @agt is now possible to price single-delivery
forwards (or futures) European options by equations (3ab@) European options on flow forwards by
equations (3.33) and (3.35). Assume that a single-delif@myard is defined as a forward for delivery
on one single future day. This implies that all forward caots with a delivery period extending one
day is defined as a flow forward. As most electricity forwardsehdelivery periods equalling week(s),
month(s) or quarter(s) of a year it is obvious that most fedsare, by this assumption, flow forwards.
This naturally implies that most exchange traded eletyrioptions are options with a flow forward
as underlying contract. Thus, in the electricity market armaild use equations (3.33) and (3.35) the
opposite way compared to the oil market: In the oil marketwoeld price options on futures portfolios
based on the prices of single-delivery futures, while in electricity market one would have market
prices on flow forward options as the basis. And from this $itsis possible to price OTC single-
delivery forwards and thus also OTC flow forward options.

[INSERT Table 2]

5 Monte Carlo simulation

5.1 Monte Carlo simulation and price comparison

In order to investigate the precision of the approximatippraach for valuing options on futures portfo-
lios we have performed Monte Carlo simulafido find the prices of 11 call and 11 put options with the
same underlying portfolio as in section 4.1, i.e. the thesdr model with a futures portfolio consisting
of 6 Brent crude futures with monthly delivery through theipé October 2003 March 2004. The
prices are calculated as of 30th May, 2003 (0), with the ostiexpiring at 10th September, 20Q3 (
The options only differ by the strike level which, as a petage of the ATM strike level (157.46 DKK),
belongs to the s€t70% 80%, 85% 90% 95% 100% 105% 110% 115% 120% 130%}.

We have considered approximate option prices with thrderdifit durations for the representative single-
delivery futures, namelg™, 85 and the simple average of the t\ﬁg;—@b. These prices are denoted by

C[o"], C[af] andC[‘SH;‘S}‘4 ], respectively, in the call case and analogousiPRy"], P[oK'] andP[éHzép]

in the put case. Moreover, we have considered the arithragticage between the prices obtained by
oM anddf. This price average exploits the observed fact thatfienethod has a negative price bias

whereas theS)\*—method has a positive price bias.

550,000 pairs of antithetic sample paths have been simutgter Euler approximation of the underlying futures’ SDEs to
price each of the options. The length of the time step was aflendar day. The calculations are performed in MAPLE.
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At last, after having simulated and calculated all prices,ran a simple OLS regression by regressing
the whole sample of 22 MC prices on the corresponding p@é§] andC[df] for the call prices and
P[8"] andP[6}!] for the put prices. Denoting the OLS parameter belongingiédd]-variable (34']-
variable) byv; (v») we found the OLS estimates to ke=0.436 andv; =0.573. Thus, more weight is

attached to thd}!]-variable. However, the hypotheSilly : v; =v,=0.5 of equal weights could not be

rejected. It was accepted with a test probability efF: 2 20, (%) —0.55. In practice the

interest is mainly in options that are close to being atrtiwey. All methods, except th#!-method,
appear to perform with a desirable accuracy in this region.

It is obvious that the prices given by our approximate oppdning formula is a non-linear function of
the portfolio’s stochastic duratiod™ or 6X‘. Hence, one could also suspect that the linear relationship
among the variables in the above OLS regression is not validwever, we found neither signs of
misspecification (applying Ramsey’s RESET test), residuabcorrelation (applying Harvey's F-test
for first-order autocorrelation) nor residual conditiomgteroscedasticity (applying Engel's F-test for
first-order ARCH). Consequently, the linear relationshépras applicable for practical purposes. Taking
the call case as an example, we conclude that it appearsneddedo maximize the precision of the
approximate option pricing formula by a direct convex comaltion of C[6"] and C[5f'] instead of
searching for an optimal convex combination &t and 85 that could be used in th€[-] function

as the “optimal” approximate option price. According to eesults, cf. Tables 3 and 4 and the test of
Ho, choosing the convex combination=v,=0.5 as default is not a bad choice.

[INSERT Table 3]
[INSERT Table 4]

Additionally, it is a useful guide that thé™-method seems to produce prices that are too low while the
6X‘—method seems to produce prices that are too high.

5.2 Details about the example

The assumed portfolio consists of the 6 futures contractddbvery of(—l3 barrel in either of the months
October, November, December 2003 and January, Februarilarch 2004. Thus, a total of 1 barrel
is delivered during the period October 2003arch 2004. The exercise price, expressed in DKK, is
set equal to the futures price of the contract with time toumit equal to the stochastic duration of
the portfolio. By doing so the option is by construction a thoney when the investor initially enters
into it. The basic IPE data for the example are presentedliteTa The contracts numbereds4.. . ;9
constitute the portfolio.

Additional information needed is taken from the Danish CanBank (Nationalbankeh and the US
Central Bank Federal Resernjeaccording to whom the official exchange rate as of 30th M&3820as
628.02 DKK/100 USD, the 6-month CIBOR interest rate was %30a. and the 6-month Eurodollar
interbank interest rate was 1.15% p.a. These 6-monthshatesbeen used as flat rates throughout the
whole period of interest, thus assuming constant inteegssiin this period.

The parameter®is, ¢, pse, Ke and n have been estimated implicitly by finding the combination of
parameter values that minimizes the sum of squared dewvgatietween squared annual model volatility

6Clearly, we are aware that the use of standard statistios to this setting is to be interpreted with considerabieca
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(i.e. TF' fori=1,2,...,11) and squared observed implied annual option volatibitythe 11 observed
implied option volatilities reported in Table 5. The regujt parameter estimates are given in Table 6.

[INSERT Table 5]

[INSERT Table 6]

6 Conclusion

In the first part of the paper we showed cross currency relsitior forward and futures prices as well as
convenience yields. We showed that whenever the forwaoe aimd the futures price deviate in one of
the countries there is no simple currency translation betviiee futures prices. This holds a fortiori when
the forward prices and the futures prices deviate in botimiz@s. Under the same circumstances, futures
convenience Yields deviate, whereas forward convenieraldsyare always identical across currency
denominations.

In the second part of the paper we showed how to find the stoclsasation of energy futures portfolios
and flow forwards and how to approximately price Europeaiooptwith them as underlying instruments,
also when the options are denominated in another curreaeyttie trading currency for the underlying
instrument. This has been done in a HIM framework which i$ sugled for modeling the term structure
in energy futures markets. Making assumptions about logs§&an spot prices and exchange rates
and Gaussian convenience yields, we found explicit priéimqulas for the futures portfolio and flow
forward options. Suitable models for the crude oil and eleity markets were used as examples for
implementation of the suggested numerical approach.

The framework is quite general and still analytically tedite. The generality is underpinned by the
fact that prices on forwards and futures do not have to followg-Gaussian process, as they do in our
examples. As long as they follow a process where it is pasgiblprice European options on single-
delivery forwards or futures analytically, it allows apgation of our option pricing approximation to
options on a (flow) forward or a futures portfolio. Thus, pgaan be allowed to follow e.g. a CIR-like
process, giving rise to non-centraf distributed prices, or exponential affine term structurelet® that
are well-known from the fixed income literature.

Thus, it is possible to extend the framework to a multi-cordityosituation with several energy commo-

dities. In this situation it is of course still essential te &ble to calculate the duration of any (multi-
commaodity) portfolio as a combined risk measure for thefpbiot It could be calculated in an extended
model compared to our model in this paper, but still alongcéydhe same lines outlined here. Option
sensitivity parameters, which are highly relevant for ficat hedging purposes, could still be easily
calculated due to the analytical tractability of the mod@lloreover, it would be possible to value

single-commodity and cross-commodity energy options exghme model, which is an attractive and
consistency-procuring feature.
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Table 1: The eight parameters for the oil market model classifiedr aftehey can be estimated by
inference based on observed variables. In this case thenpeter is marked by & as Observable.
Otherwise it is marked as Non-observable.

Parameter Observable Non-observable
Os T
Ox T
Psx T
O¢
Ke
Pse
Pxe
n

—+ —+ =+ —+ —+

Table 2: The eight parameters for the electricity market model dfeskafter if they can be estimated
by inference based on observed variables. In this case tfaer is marked by & as Observable.
Otherwise it is marked as Non-observable.

Parameter Observable Non-observable

Os %

jo)
®
SO

Table 3: Results of MC simulating the values of call options on therés portfolio, consisting of six
Brent oil futures of different maturities, from section .2.51 Different strike prices have been used,
ranging from 70% to 130% of the ATM strike level (157.46 DKK)= 0.426andv, = 0.573

Strike | Call price Price deviation
MC [cle¥] clof] c[®3%] FELCE] g,clet] +uc(ay]

70% 46.66 0.14 0.03 0.08 0.09 0.03
80% 31.63 0.02 -0.01 0.00 0.02 -0.02
85% 24.74 | -0.07 -0.03 -0.06 -0.05 -0.06
90% 1850 | -0.08 0.05 -0.03 -0.02 -0.02
95% 13.32 -0.19 0.01 -0.11 -0.09 -0.09
100% 9.12 -0.20 0.04 -0.10 -0.08 -0.07
105% 5.84 -0.06 0.18 0.04 0.07 0.08
110% 3.72 -0.15 0.08 -0.06 -0.04 -0.02
115% 2.06 0.05 0.23 0.13 0.15 0.16
120% 1.11 0.09 0.23 0.14 0.16 0.17
130% 0.35 0.00 0.06 0.03 0.03 0.03
SSD 0.146 0.154 0.077 0.077 0.080
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Table 4: Results of MC simulating the values of put options on thedstportfolio, consisting of six
Brent oil futures of different maturities, from section .2.51 Different strike prices have been used,
ranging from 70% to 130% of the ATM strike level (157.46 DKK)= 0.426andv, = 0.573

Strike | Put price Price deviation
MC | P Plaf] PIE5%] PELPAL g,p(at] +0P(o]

70% 0.04 0.01 0.02 0.01 0.01 0.01
80% 0.53 0.02 0.11 0.06 0.06 0.07
85% 1.49 | -0.10 0.07 -0.03 -0.03 -0.01
90% 3.11 | -0.16 0.09 -0.05 -0.04 -0.02
95% 573 | -0.25 0.07 -0.11 -0.09 -0.07
100% 9.35 | -0.25 0.11 -0.09 -0.07 -0.05
105% | 14.05 | -0.27 0.10 -0.11 -0.09 -0.07
110% | 19.52 | -0.13 0.22 0.03 0.05 0.05
115%| 25.90 | -0.14 0.16 -0.01 0.01 0.01
120% | 32.72 | -0.05 0.21 0.06 0.08 0.07
130% | 47.53 | -0.07 0.12 0.02 0.02 -0.01
SSD 0.280 0.185 0.045 0.034 0.025

Table 5: Futures and option data from 30th May 2003 from IPE used fdcuating the price of
European options on a futures portfolio consisting of caats No.4,5,...,9. Prices are in USD.

i Contract Price Strike Call price  Putprice Imp.vol.,% p.a. Optioniexpy  Futures expiryT;
1 Jul2003 | 26.32 26.50 0.69 0.87 40.66 10/06 2003  13/06 2003
2 Aug2003| 26.00 26.00 1.23 1.23 34.56 11/07 2003  16/07 2003
3 Sep2003| 25.74 2550 1.61 1.37 32.33 11/08 2003  14/08 2003
4 Oct2003 | 25.51 25,50 1.66 1.65 30.50 10/09 2003  15/09 2003
5 Nov2003| 25.28 2550 1.72 1.94 29.49 13/10 2003  16/10 2003
6 Dec2003| 25.04 25.00 1.99 1.95 29.40 10/11 2003 13/11 2003
7 Jan 2004 | 24.77 25.00 1.97 2.20 28.68 11/12 2003  16/12 2003
8 Feb2004| 2452 2450 2.16 2.14 27.87 12/01 2004 15/01 2004
9 Mar2004|24.29 2450 2.02 2.23 26.10 09/02 2004 12/02 2004
10 Apr2004 | 24.08 24.00 2.22 2.14 25.68 11/03 2004 16/03 2004
11 May 2004| 23.88 24.00 2.18 2.30 25.29 08/04 2004 15/04 2004
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Table 6: Estimates of the parameters of the oil market magiglo;, psc, Ke, N, 0x and psyx.  pxe has
been set to zero. For comparison, estimated values$owo,, ps., K. for NYMEX crude oil futures from
Schwartz (1997) are reported too. Also the SSD betweenwdaquared annual implied IPE option
volatility and squared annual model volatility is reportétrelates to the first five parameters only).

Parameter estimateEstimated value Schwartz (1997)
Os 0.4409 0.344
O¢ 1.7923 0.372
Pse 0.9850 0.915
Ke 8.5172 1.045
n 0 -
Ox 0.1104 -
Psx -0.0015 -
Pre 0 -
SSD 6.88-10°° -
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