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1 Introduction

The design of fund management compensation schemes has elicited interest amongst both prac-

titioners and researchers. The focus of the academic literature has been on how incentives a¤ect

performance and risk-taking behavior of managers. A number of theoretical papers have studied

the e¤ect of a performance-related incentive fee on managers�incentive to search for private in-

formation (see, for example, Bhattacharya and P�eiderer (1985), Stoughton (1993), Heinkel and

Stoughton (1994) and Gómez and Sharma (2006)). Another strand of literature addresses issues

related to the design of incentive fee. Adamati and P�eiderer (1997) and Dybvig, Farnsworth

and Carpenter (2001), among others, have discussed the convenience of absolute versus relative

(benchmarked to a given portfolio) incentive fees.1

With respect to risk, Roll (1992) was the �rst to illustrate the undesirable e¤ect of relative

(i.e., benchmarked) portfolio optimization in a partial equilibrium, single-period model. In par-

ticular, he shows that the active portfolio has systematically higher risk than the benchmark.

Despite this adverse risk incentive, relative performance evaluation measures such as the In-

formation Ratio have become standard in the industry. In a static framework, several papers

have studied how di¤erent constraints on the portfolio�s total risk (Roll (1992)), tracking error

(Jorion (2003)), and Value-at-Risk (VaR) (Alexander and Baptista (2006)), may help to reduce

excessive risk taking. In a dynamic setting, Basak, Shapiro, and Tepla (2006) study the optimal

policies of an agent subject to a benchmarking restriction. Basak, Pavlova and Shapiro (2006)

analyze the e¤ect of an exogenous benchmark restriction on the manager�s risk-taking behavior.

Their model shows that an exogenous benchmark restriction may ameliorate the adverse risk

incentives induced by the manager�s compensation. Brennan (1993), Cuoco and Kaniel (1993)

and Gómez and Zapatero (2003) study the asset pricing implication of relative incentive fees.

The extant literature discussed above investigates the issue of fund manager compensation

in a setting where the manager is unrestricted in her portfolio choice (for an interesting excep-

tion see Gómez and Sharma (2006)). However, in practice, fund managers face various portfolio

constraints. For example, Almazan, Brown, Carlson and Chapman (2004) document that ap-

proximately 70% of mutual funds explicitly state (in Form N-SAR submitted to the SEC) that

short-selling is not permitted. This �gure rises to above 90% when the restriction is on margin

purchases. Surprisingly, given the widespread existence of constraints, the literature has not

addressed the implication of such constraints on fund manager�s incentives.2

This paper�s contribution is to incorporate exogenous portfolio constraints into the analysis

of linear incentive fees for e¤ort inducement. This allows us to focus on how the provision of

incentives to induce manager�s e¤ort are a¤ected by the interaction between the benchmark

composition and the manager�s incentive fee. In our model, the manager�s incentives are ex-

1A further line of discussion concerns whether, if benchmarked, the incentive fee should be �convex� (i.e.
asymmetric), implying that the manager only participates in the upside and su¤ers no penalty for underperforming
the benchmark, or, as prescribed by the Securities and Exchange Commission (SEC) for mutual funds, a �fulcrum�
(symmetric) type of fee. See, for example, Das and Sundaram (2002) and Ou-Yang (2003).

2Portfolio constraints have been discussed in the literature in other contexts. For example, Almazán et al.
(2004) present evidence that portfolio constraints are devices to monitor the manager�s e¤ort. Grinblatt and
Titman (1989) and Brown et al. (1996) argue that cross-sectional di¤erences in constraint adoption might be
related to characteristics that proxy for managerial risk aversion.
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plicit: they arise from the design of the optimal compensation contract.3 We propose a simple

two-period, two-asset (the market and a risk-less bond) model. The manager is o¤ered a com-

pensation package that includes a �at fee and a performance-tied incentive fee, possibly bench-

marked to a given portfolio return. Both the incentive fee and the benchmark composition are

determined endogenously.

A number of new insights arise after introducing portfolio constraints. First, looking at

the manager�s e¤ort and portfolio choice problem, we show that her e¤ort decision (hence, her

timing ability) depends on both the incentive fee and the benchmark composition. The rela-

tionship between the manager�s e¤ort and the incentive fee has been documented by Gómez and

Sharma (2006). The relationship between the e¤ort decision and the benchmark composition,

however, contrasts with the well-known �irrelevance result� in Admati and P�eiderer (1997):

the manager�s e¤ort is independent of the benchmark composition; it only depends on the man-

ager�s e¤ort disutility. We derive explicitly the e¤ort maximizing benchmark�s composition as

a function of the market moments, the portfolio constraints, and the manager�s risk-aversion

coe¢ cient. The benchmark is shown to be independent of the manager�s disutility of e¤ort.

The irrelevance result in Admati and P�eiderer (1997) arises in the limit, when the portfolio

constraints vanish.

To understand the model�s intuition, consider a manager who is totally constrained in her

ability to sell short and purchase at margin. Under moral hazard, the manager�s optimal portfolio

can be decomposed in two components: her unconditional risk-diversi�cation portfolio plus her

timing portfolio. The timing portfolio depends on the manager�s costly e¤ort to improve her

timing ability through superior information. For a uninformed manager, this portfolio would be

zero. For a hypothetical perfectly informed manager, it would push the optimal total portfolio

to either boundary: 100% in the risky asset if the market risk premium is forecasted to be

positive; 100% in the bond otherwise. Now, assume that the unconditional portfolio consists

of 30% invested in the risky market portfolio. For this perfectly informed manager, any timing

portfolio that involves shorting the market by more than 30% or investing more than 70% in the

market will hit the portfolio boundaries. Anticipating this and taking into account her e¤ort

disutility, the manager will decide her optimal e¤ort expenditure.

Imagine now that the same manager is given a benchmarked contract. The benchmark

consists of 20% in the market portfolio and 80% in the bond. The manager adjusts her optimal

portfolio. Relative to the benchmark, the unconditional optimal portfolio is still 30% long in the

market. The manager has to beat the benchmark for the incentive fee to kick in. Therefore, her

total market investment will be now 50% of her portfolio: 20% to replicate the benchmark plus

the optimal risk-diversi�cation 30%. Holding the portfolio constraints constant, this implies

that if the market premium is predicted to be negative, the manager�s timing portfolio can now

go short up to 50% in the market, 20% more than in the absence of the benchmark. This

will increase the manager�s utility from e¤ort, thereby improving the incentives for sharpening

her timing ability. At the same time, if the market premium is predicted to be positive, the

3 In our model, the fund�s net asset value is given. We abstract from the implicit incentives arising from the
convex �ow-performance relation documented in the literature (see, for instance, Gruber (1996), Sirri and Tufano
(1998), Chevalier and Ellison (1997), Del Guercio and Tkac (2000) and Basak, Pavlova and Shapiro (2007)).
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manager�s timing portfolio can go long in the market only 50%, 20% less than before the

benchmark was introduced. This has the opposite e¤ect on the e¤ort inducement: the manager

will have less incentives to exert costly e¤ort. Taking into account this trade-o¤, the benchmark

is chosen such that the manager�s unconditional portfolio (benchmark replication plus optimal

risk-return trade-o¤) is equally distant from both portfolio boundaries. Such a benchmark would

provide the manager with the highest incentives for e¤ort exertion. The intuition is simple: such

a benchmark leaves the manager marginally indi¤erent between hitting the short-selling or the

margin purchase constraint. When the portfolio space is unconstrained, so is the timing portfolio.

Benchmarking the manager�s incentive fee fails to provide any incentive for e¤ort expenditure.

Second, looking at the investor�s problem, he has to decide the benchmark composition and

the fee structure. We obtain two conclusion. First, we show that in the absence of moral

hazard between the investor and the fund manager, the optimal incentive fee coincides with the

Pareto-e¢ cient risk allocation fee. In addition, we show that the optimal benchmark is the risk-

free asset. This is not totally surprising: in the absence of moral hazard, the manager�s e¤ort is

independent of the incentive fee and the benchmark composition. The only role for the incentive

fee is to split the risk between the investor (the principal) and the manager (the agent). Hence,

the �rst best split remains optimal. As for the benchmark, any deviation from the risk-free asset

(uncorrelated with the market portfolio) will distort the principals optimal portfolio. This result

extends the unconstrained contract of Ou-Yang (2003) into the constrained scenario: with or

without constraints, the investor�s optimal benchmark when e¤ort is publicly observable is the

risk free asset.

This does not necessarily hold in the presence of moral hazard between the investor and

the manager. Under portfolio constrains and moral hazard, the manager�s e¤ort depends on

the incentive fee and the benchmark composition. On the one side, increasing the incentive fee

gives the manager more incentives to improve her timing ability (by putting more e¤ort); the

downside is that the compensation becomes more onerous for the investor. With respect to the

benchmark, the risk free asset may not be optimal anymore: making the benchmark more risky

may induce higher e¤ort on the manager. On the other side, any benchmark other than the risk-

free asset will a¤ect the investor�s optimal risk-return tradeo¤. Moreover, these double tradeo¤

considerations (for the incentive fee as well as for the benchmark composition), are interrelated.

We show analytically that, in presence of moral hazard and portfolio constraints, the in-

centive fee contract under no moral hazard is not optimal. Numerical results show that the

optimal incentive fee is higher than in the no moral hazard case. Moreover, contrary to the

unconstrained case in Ou-Yang (2003), the optimal benchmark is di¤erent from the risk-free

asset. More concretely, the optimal benchmark proportion invested in the market increases with

the managers risk aversion and decreases with the investor�s risk aversion. In other words, when

managers are constrained in their portfolio choice, tying their compensation to their portfolio

performance and benchmarking their incentive fee relative to the market will result in higher

e¤ort expenditure and, hence, better timing ability. Benchmarked incentive fees are expected

to be more prominent among more aggressive (less risk-averse) funds.

The model has readily testable empirical implications and, in this regard, our paper is related

to the literature on mutual fund performance evaluation. Golec (1992) and Elton, Gruber and
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Blake (2003) document that the number of mutual funds that explicitly use incentive fees is

relatively small in comparison with the pervasive use of a ��at� fee (a �xed percentage of the

fund�s net asset value).4 Further, Elton, Gruber and Blake (2003) �nd that funds which use

incentive fees have superior performance relative to those that do not. In their conclusions, they

claim that �while at this time funds with incentive fees seem to o¤er superior performance relative

to other actively managed funds, we don�t know whether this is true because of the motivation

supplied by incentive fees or because skilled managers adopt incentive fees to advertise their skills

to the public.�Our model shows that under portfolio constraints and moral hazard, portfolio

managers who are o¤ered a benchmarked incentive fee are more motivated than equally skilled

managers whose compensation is not performance-linked.

In a related paper, Becker et al. (1999) test for market timing ability and benchmarking.

However, in their empirical model, the manager faces no portfolio constraints. According to our

results, in such a setting, the optimal benchmark is the risk free asset (e¤ectively, no benchmark-

ing). Consistent with this, they �nd no support for the use of benchmarks in an unconditional

setting. However, after conditioning for public information, they �nd an economic meaningful

estimate for benchmarking, albeit the overall performance of the model remains quite poor. The

empirical implications of our model o¤er guidance on how to extend the tests in Becker et al.

(1999) into a framework that accounts explicitly for the presence of short selling and margin

purchase constraints, prevalent across the mutual fund industry.

The rest of the paper is organized as follows. Next we introduce the model. The standard

unconstrained results are refreshed in Section 2.1. The e¤ect of portfolio constraints are analyzed

in section 2.2. In section 3, we derive the composition of the e¤ort-maximizing benchmark

portfolio. Section 4 studies the principal�s problem. A numerical solution to the constrained

manager�s e¤ort is presented in Section 5. The paper concludes with Section 6. All proofs are

presented in the Appendix. Tables and �gures are to be found after the Appendix.

2 The model

A typical fund sponsor will inform the customer that managers (who are involved in investment

research) are responsible for choosing each fund�s investments. Customers are also informed

about how the advisory management company (responsible for choosing and monitoring the

managers) is compensated. This is known as the advisory fee. Customers typically ignore how

managers are compensated. Given this information, the customer decides how much to invest

in the fund. In this paper, we shall abstract from the decision problem of the consumer and the

relationship between the fund sponsor and the management company.5 Instead, we shall focus

on the determination of the manager�s compensation scheme by the fund management company.

Slightly abusing terminology, we call the management company the investor.

The manager and the investor have preferences represented by exponential utility functions:

4Agarwal, Daniel and Naik (2006) �nd that even for hedge funds, the call-option-like incentive fee contract
provides incentives to deliver superior performance. In particular, they �nd that funds with higher delta have
better future performance.

5For recent empirical studies of fund advisory fees see, for instance, Deli (2002) and Warner and Wu (2005).
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Ua(W ) = �exp(�aW ) and Ub(W ) = �exp(�bW ), respectively. Throughout the paper we

will use a > 0 (b > 0) to denote the manager (investor) as well as her (his) absolute risk

aversion coe¢ cient. The investment opportunity set consists of two assets. A risk-free asset

with gross return R and a stock with stochastic excess return x normally distributed with mean

excess return � > 0 and volatility �. These two assets can be interpreted as the usual �timing

portfolios� for the active manager: the bond and the market portfolio (or any other stochastic

timing portfolio).

The investment horizon is one period. Payo¤s are expressed in units of the economy�s only

consumption good. All consumption takes place in period-end. The manager�s compensation is

set as a percentage of the fund�s average net asset value over the period, W . The percentage

has two components: a �xed basic fee F and an incentive (performance-tied) fee. The incentive

fee is calculated as a percentage � 2 (0; 1] of the fund�s end of the period return, possibly net of
a benchmark return.

After learning the contract, the manager decides whether to accept it or not. If rejected, the

manager gets her reservation value. If she accepts the contract, then she puts some (unobserv-

able) e¤ort e > 0 in acquiring private information (not observed by the fund�s investor) that

comes in the form of a signal

y = x+
�p
e
�;

partially correlated with the stock�s excess return. The noise term has a standard normal

distribution � � N (0; 1). For simplicity, we assume

Assumption (S1) E(x�) = 0.

The higher the e¤ort the more precise the manager�s timing information. Conditional on

the manager�s e¤ort, the stock�s excess return is normally distributed with conditional mean

return E(xjy) = �+ey
1+e and conditional precision Var�1(xjy) = 1

�2
(1 + e). Hence, e can also

be interpreted as the percentage (net) increase in precision induced by the manager�s private

information. Notice that, in case e = 0, the conditional and unconditional distributions coincide:

there is no relevant private information.

E¤ort is costly. The monetary cost of e¤ort disutility is a percentage V (D; e) of the fund�s

net asset value W . D > 0 represents a disutility parameter. The function V is increasing in D

and homogenous of degree one with respect to D. Moreover, for all e > 0, V satis�es:6

Assumption (S2) V (D; 0) = Ve(D; 0) = V (0; e) = 0;

Assumption (S3) Ve(D; e) > 0;

Assumption (S4) Vee(D;e)
Ve(D;e)

> 1
1+e .

2.1 Unconstrained Portfolio Choice

Based on the conditional moments, the manager makes her optimal portfolio decision: she will

invest a percentage �(y) in the stock and the remaining 1��(y) in the risk-free bond. Therefore,
6The subscripts e and ee denote, respectively, �rst and second derivative with respect to e¤ort.
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the portfolio�s return will be Rp = R + �x. De�ne the benchmark�s return as Rh = R + hx

with h as the benchmark�s policy weight : the proportion in the benchmark portfolio invested

in the risky stock. The portfolio�s net return is given by Rp � Rh = ��x with �� = � � h, the
net (over the benchmark) investment in the risky stock. If h = 0, the benchmarked return is

Rp � Rh = �x, the excess return. Since the risk-free return is a constant, from the point of

view of the manager, this case is equivalent to no benchmarking. Notice that h can be also

interpreted as a the benchmark�s beta on the market portfolio.

Given a contract (F; �; h), the conditional end-of-the-period wealth is given as a percentage

'a, for the manager, and 'b, for the investor, of the fund�s net asset value, W :

'a(
��) = F + ���x; (1)

'b(
��) = Rh + (1� �)��x� F; (2)

with �� = ��(y) and x = x(y), functions of the signal realization y. If the manager chooses

the benchmark portfolio then �� = 0; the manager receives no incentive fee (only the �xed fee

F ) and the investor�s payo¤ is the benchmark�s return net of the �xed fee.

After these de�nitions, the conditional utility function for the manager and the investor can

be expressed, respectively, as7

Ua
�
'a(
��)
�
= �exp

�
�a'a(��)W + V (D; e)W

�
;

Ub
�
'b(
��)
�
= �exp

�
�b'b(��)W

�
:

In this setting, the Arrow-Pratt risk premium for the manager will be, �W a�W
2
��
2
�2. Thus,

a�W represents the manager�s relative risk aversion coe¢ cient. For simplicity, and without loss

of generality, we normalize W = 1.

We shall proceed backwards. First, we will obtain the optimal portfolio choice �. Then, after

recovering the manager�s indirect utility function, we will tackle the manager�s e¤ort decision.

The unconstrained manager�s optimal net portfolio solves

��(y) = argmax
��

�
E('a(

��))� (a=2)Var('a(��))
	
;

which yields the optimal portfolio

�(y) = h+
�

a��2
+

ey

a��2
: (3)

The manager�s optimal portfolio has three components: the benchmark�s investment in the

risky stock, h; the unconditional optimal risk-return trade-o¤, �
a��2

and, depending on the

manager�s signal y and her e¤ort expenditure, e, the timing portfolio, ey
a��2

.

7Notice that, since V is homogenous of degree one with respect to D, we can always write aV (D0; e) = V (D; e)
with D = aD0. Hence the parameter D is a (increasing) function of the manager�s risk aversion among other
factors.
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Replacing �(y) in the manager�s expected utility function and integrating over the signal y

we obtain the manager�s (unconditional) expected utility:

EU('a(e)) = �exp (�(1=2)(�2=�2)� aF + V (D; e)) g(e); (4)

with g(e) =
�

1
1+e

�1=2
. At the optimum, the e¤ort marginal utility must be equal (�rst-order

condition) to its marginal disutility:

Ve(D; eSB ) =
1

2(1 + eSB )
: (5)

We call this solution the second best e¤ort.8 Assumptions (S2) and (S3) guarantee that the

necessary condition (5) is also su¢ cient for optimality. Clearly, the manager�s second best

e¤ort choice (hence the quality of her private information) is independent of the benchmark�s

composition, h. This is the same result as in Admati and P�eiderer (1997). E¤ort only depends

on the manager�s disutility coe¢ cient, D.

2.2 Constrained Portfolio Choice

We now introduce the main theoretical contribution of the paper. Assume that the manager

is constrained in her portfolio choice in that she cannot short-sell or purchase on margin. Let

m � 1 denote the maximum trade on margin the manager is allowed: m = 1 means that the

manager is not allowed to purchase the risky stock on margin; for any m > 1 the manager can

borrow and invest in the risky stock up to m � 1 dollars per dollar of the fund�s current net
asset value. Let s � 0 denote the short-selling limit: s = 0 means that the manager cannot

sell short the risky stock; for any s > 0 the manager can short up to s dollars per dollar of the

fund�s current net asset value. According to the SEC regulation, the maximum initial margin

for leveraged positions is 50%, which implies that m � 2 and s � 1.9 In terms of the manager�s
portfolio choice problem, this implies m � � � �s or, equivalently, m� h � �� � �(h+ s).

The manager then solves the following constrained problem

��(y) = arg max
m�h�����(h+s)

�
E('a(

��))� (a=2)Var('a(��))
	
:

Call �m � 0 and �s � 0 the corresponding Lagrange multipliers, such that �m(m � h � ��) =
�s(��+h+ s) = 0. There are three solutions. If neither constraint is binding, �m = �s = 0, then

the interior solution follows: ��(y) = �+ey
a��2

. Alternatively, there are two possible corner solutions:

�rst, if the short-selling limit is binding, �m = 0 and �s = E(xjy) + a�(h+ s)Var(xjy) < 0. In
such a case, �� = �(h + s). In the second corner solution, the margin purchase bound is hit:
�s = 0 and �m = �E(xjy) + a�(m� h)Var(xjy) < 0. In such a case, �� = m� h.

Solving for the optimal portfolio �(y) as a function of the signal realization we obtain that,

in the case of no timing ability (e = 0), � = h + �
a��2

provided �
�
s+ �

a��2

�
� h � m � �

a��2
.

8The �rst best e¤ort is the e¤ort the unconstrained manager would exert under no asymmetric information,
that is, in the absence of moral hazard.

9Of course, investors can e¤ectively leverage their portfolios above those limits by investing in derivatives.
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For the case when e > 0 we obtain:

�(y) =

8>>>>>><>>>>>>:

�s if y < ��
eLs

h+ �
a��2

+ ey
a��2

otherwise

m if y > �
eLm:

(6)

We call

Ls(h) = 1 + (h+ s)
� �

a��2

��1
Lm(h) = (m� h)

� �

a��2

��1
� 1

the leverage ratios. These ratios represent the net (relative to the benchmark) maximum leverage

from selling short (h+ s) or trading at margin (m�h) as a proportion of the manager�s optimal
unconstrained portfolio when e = 0 and h = 0.

Looking at the way the leverage ratios change with benchmarking, we observe that @
@hLs =� �

a��2

��1
> 0 and @

@hLm = �
� �
a��2

��1
< 0. That is, Ls (Lm) increases (decreases) with h.

Moreover, given the (risk-adjusted) market premium �=�2, the marginal change in Ls (Lm)

increases (decreases) with the manager�s relative risk aversion a�.

Equation (6) shows how the constraints and benchmarking interact to provide incentives for

e¤ort expenditure. To see the intuition, let us focus �rst on the short-selling constraint. Let us

assume for the moment that there exist no limit to margin purchases (m ! 1) and that no
short position can be taken (s = 0). Under these assumptions, and after putting some e¤ort e,

the manager receives a signal y and makes her optimal portfolio choice:

�(y) =

8><>:
0 if y < ��

eLs

h+ �+ey
a��2

otherwise;

with Ls = 1 + h
� �
a��2

��1. When h = 0, all signals y < ��
e lead to short-selling. Imagine now

that the manager is o¤ered a benchmarked contract, with h > 0 the benchmark�s proportion

invested in the risky stock. In this case, the short-selling bound is only hit for smaller signals

y < ��
eLs. In general, increasing h leads to a �wider range�of implementable signals relative

to the case of no benchmarking (h = 0). Since the e¤ort decision is taken prior to the signal

realization, the fact that more signals are implementable under benchmarking (h > 0) increases

the marginal expected utility of e¤ort. The size of this incremental area grows with ha�. Hence,

we expect the impact of benchmarking to be relatively higher for more risk averse investors.

Alternatively, assume there is no benchmarking (h = 0) but the short-selling limit is ex-

panded from s = 0 to s = h. Figure 1 shows that, ceteris paribus, the e¤ort choice of the

manager will coincide with the e¤ort put under benchmarking: given that s = 0, benchmarking

the manager�s portfolio return (h > 0) is, in terms of e¤ort inducement, equivalent to relaxing

the short-selling bound from 0 to h. In other words, in the absence of margin purchase con-
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straints, the manager�s e¤ort depends on s+ h; benchmarking the manager�s performance and

relaxing her short-selling constraints are perfect substitutes for e¤ort inducement. The higher s

the lower the marginal expected utility of e¤ort induced by benchmarking. In the limit, when

the short-selling bounds vanish (s!1), we converge to the unconstrained scenario in Section
2.1 where benchmarking was shown to be irrelevant for the manager�s e¤ort decision.

Let us focus now on the margin purchase constraint. Assume s ! 1 and m = 1. This

implies that the manager can short any amount but cannot trade on margin: for �very good�

signals the manager can only invest up to 100% of the fund�s net asset value in the risky stock.

Her optimal portfolio (as a function of the signal) will be:

�(y) =

8><>:
1 if y > �

eLm,

h+ �+ey
a��2

otherwise,

with Lm = (1 � h)
� �
a��2

��1 � 1. Lm is decreasing in h. Decreasing h in the manager�s com-

pensation just makes the portfolio constraint �less binding,�i.e., binding for bigger signals. For

instance, moving from a benchmarked contract (h > 0) to a non benchmarked contract (h = 0)

would increase the manager�s e¤ort: signals that were not implementable under benchmark-

ing become now feasible. Symmetrically to the short-selling constraint, the expected impact

on e¤ort expenditure would be analogous if benchmarking were not removed (h > 0) and the

constraint on margin purchases made looser: from m = 1 to m = 1 + h. Therefore, in the

absence of short selling constraints, the manager�s e¤ort depends on m� h: benchmarking the
manager and tightening the margin purchase constraint are perfect substitutes for the manager�s

e¤ort (dis)incentive. Again, the impact of benchmarking increases, in absolute terms, with the

manager�s relative risk aversion, a�. In the limit, when the manager faces no margin purchase

constraint (m!1) the benchmark composition is irrelevant for the manager�s e¤ort decision.
In summary, by modifying the benchmark portfolio composition we observe two opposing

e¤ects: for the short selling constrained manager, increasing the benchmark�s percentage invested

in the risky stock (h) induces the manager to put more e¤ort. On the other side, for the manager

constrained in her ability to purchases at margin, increasing that percentage lowers the e¤ort

incentives. Thus, when (as for most mutual fund managers) both short selling and margin

purchase are constrained, the trade-o¤ between these two e¤ects yields the optimal benchmark

composition. This is the question we investigate in the next section.

3 The optimal benchmark portfolio composition

To address this question, we proceed as follows. Proposition 1 introduces the manager�s uncon-

ditional expected utility under short selling (0 � s < 1) and margin purchase (1 � m < 1)
constraints for all possible values of h in the real line. In Proposition 2 we show that Assumptions

(S2)-(S4) are su¢ cient for the existence of a continuous and di¤erentiable e¤ort function, e(h),

that yields a unique e¤ort choice for each value of h. The function attains a global maximum

at h� = m�s
2 � �

a��2
:
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Before introducing the constrained manager�s unconditional expected utility we need some

notation. Let �(�) denote the cumulative probability function of a Chi-square variable with one
degree of freedom: �(x) =

R x
0 �(z) dz; with

�(z) =

(
1p
2�
z�1=2 exp(�z=2) when z > 0;

0 otherwise.

Proposition 1 Given the �nite portfolio constraints s � 0 and m � 1, the risk-averse man-

ager�s expected utility is EUa ('a(e)) = �exp(�(1=2)�2=�2� aF + V (D; e)) � g(e; Ls; Lm) with
g(e; Ls; Lm) = (1=2)�

exp
�
(��Ls)

2

2

�h
1 + �

�
1+e
e

��
�Ls

�2�i
+

�
1
1+e

�1=2 �
�

�
(��Lm)

2

e

�
� �

�
(��Ls)

2

e

��
+

exp
�
(��Lm)

2

2

�h
1� �

�
1+e
e

��
�Lm

�2�i
(7)

if h < �
�
s+ �

a��2

�
;

exp
�
(��Ls)

2

2

�h
1� �

�
1+e
e

��
�Ls

�2�i
+

�
1
1+e

�1=2 �
�

�
(��Ls)

2

e

�
+�

�
(��Lm)

2

e

��
+

exp
�
(��Lm)

2

2

�h
1� �

�
1+e
e

��
�Lm

�2�i
(8)

if �
�
s+ �

a��2

�
� h � m� �

a��2
;

exp
�
(��Ls)

2

2

�h
1� �

�
1+e
e

��
�Ls

�2�i
+

�
1
1+e

�1=2 �
�

�
(��Ls)

2

e

�
� �

�
(��Lm)

2

e

��
+

exp
�
(��Lm)

2

2

�h
1 + �

�
1+e
e

��
�Lm

�2�i
(9)

if h > m� �
a��2

:

Equations (7), (8) and (9) are weighted sums of the manager�s unconstrained expected utility

(4), independent of h, and her expected utility function when the portfolio hits either the short-
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selling constraint bound, exp
�
(��Ls)

2

2

�
, or the margin purchase bound, exp

�
(��Lm)

2

2

�
. When

the manager is constrained, the benchmark�s composition (i.e., the value of the parameter h)

a¤ects the quality of the timing signal through the e¤ort choice.

Corollary 1 The �rst derivative ge(e; Ls; Lm) = �1
4

�
1
1+e

�3=2
��

�

�
(��Lm)

2

e

�
� �

�
(��Ls)

2

e

��
if h < �

�
s+ �

a��2

�
�
�

�
(��Ls)

2

e

�
+�

�
(��Lm)

2

e

��
if �

�
s+ �

a��2

�
� h � m� �

a��2

�
�

�
(��Ls)

2

e

�
� �

�
(��Lm)

2

e

��
if h > m� �

a��2
;

is decreasing with respect to e.

Notice that functions g(e; Ls; Lm) and ge(e; Ls; Lm) are symmetric with respect to h around

h� = m�s
2 � �

a��2
, the center of the interval [�(s+ �

a��2
);m� �

a��2
]. To see this, let � represent

the deviation in the benchmark portfolio�s percentage invested in the risky asset above (� > 0)

or below (� < 0) the reference value h�. It can be shown that Ls(h� + �) = Lm(h� � �) for all
� 2 <. Replacing the later equality in the functions g and ge the symmetry is proved.

We call eTB the third best e¤ort that maximizes the constrained manager�s expected utility

function in Proposition 1:

eTB = argmaxe�(1=2)exp(�(1=2)�2=�2 � aF + V (D; e)) � g(e; Ls; Lm): (10)

From the previous equation, it is obvious that, unlike in the unconstrained scenario, the

manager�s optimal e¤ort depends on h (through Ls and Lm). We want to study how the third

best e¤ort changes with h, more concretely, whether there exists an optimal (e¤ort maximizing)

benchmark.

The following proposition presents general conditions on the e¤ort disutility function and

the range of the benchmark parameter h for which there exists a well behaved e¤ort function,

that is, a function that yields, for each benchmark portfolio h, the utility maximizing third best

e¤ort (10). More importantly, the same conditions are shown to be su¢ cient for the existence

of a benchmark portfolio h� that elicits the highest e¤ort from the manager. The value of h�

is explicitly derived as a function of the manager�s portfolio constraints on short selling, s, and

margin purchase, m; her relative risk aversion, a�; and the market portfolio moments, � and

�2.

Proposition 2 Assume (S2)-(S4) hold. For all h 2 [�(s+ �
a��2

);m� �
a��2

] there exists a unique

function e(h), continuous and di¤erentiable, such that e(h) = eTB . Let h
� = m�s

2 � �
a��2

. Then,

e(h�) > e(h) for all h 6= h� 2 [�(s+ �
a��2

);m� �
a��2

]:

Corollary 2 Assume (S2)-(S4) hold. Provided it exists, the e¤ort function e(h) is increasing
in h for all h < �(s + �

a��2
) and decreasing in h for all h > m � �

a��2
. Moreover, the e¤ort

function is symmetric in h around h�, i.e., e(h� + �) = e(h� � �) for all � 2 <.
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From proposition 2 and corollary 2, it is clear that the manager�s e¤ort function attains

a global maximum at h� = m�s
2 � �

a��2
. The intuition for this result is as follows: on the

one hand, increasing benchmarking (i.e., higher h) lowers the likelihood of hitting the short

selling constraint; on the other hand, it increases the probability of hitting the margin purchase

constraint. The e¤ect of decreasing benchmarking (i.e. lower h) is just symmetric. The trade-o¤

of these two opposite e¤ects yields the e¤ort-maximizing value of the benchmark composition, h�.

In other words, the benchmark portfolio h� makes the manager, in expected terms, indi¤erent

between hitting either constraint (short selling and margin purchase).

This intuition is illustrated in �gure 2. The manager has to decide her e¤ort and her

optimal portfolio. The graph represents the unconditional portfolio (independent of the signal y).

Assume the manager is constrained. For instance, 0 � � � 1 (zero leverage). If the benchmark
coincides with the risk free asset, the manager will chose the tangent portfolio on the �absolute�

capital market line that maximizes her expected utility. In the example, this portfolio holds less

than 50% in the market. If the manager is given a benchmark h� > 0 then she will choose a

tangent portfolio �� = � � h in the �relative�capital market line that trades o¤ excess expected
return ��� against tracking error standard deviation. Notice that given the portfolio constraints,

for h = h� the manager�s optimal unconditional portfolio is equidistant from either boundary.

The manager�s e¤ort choice maximizes her unconditional expected utility before receiving the

signal. The benchmark composition h� allows, ex-ante, more extreme signals to be implemented,

increasing e¤ort�s marginal utility and, ultimately, the manager�s e¤ort choice.

The e¤ort choice for the constrained manager is smaller than for the unconstrained manager.

In the next corollary we formalize this intuition.

Corollary 3 For any given contract (F; �; h) and �nite manager�s risk aversion, a, the con-
strained manager�s third best e¤ort eTB < eSB . In the limit, when the portfolio constraints

vanish, the third best e¤ort and the second best e¤ort coincide.

We conclude this section by studying to especial cases of the more general constrained prob-

lem. As illustrated in the examples in section 2.2, when the manager is only short selling con-

strained (i.e., unlimited margin purchases), increasing the benchmark investment in the risky

asset, h, gives the manager more incentives to put higher e¤ort. In the case of unlimited short

selling and constrained margin purchases, the result is symmetric: e¤ort decreases with h. In

either case, there is no optimal benchmark composition. The following corollary summarizes

these �ndings.

Corollary 4 When the manager can purchase at margin with no limit but faces a short selling
bound, the e¤ort function is monotonous increasing in h. Symmetrically, when the manager can

sell short with no restriction but faces limited margin purchase, the e¤ort function is monotonous

decreasing with h.

4 The principal�s problem

The investor�s optimal contract (F; �; h) maximizes his expected utility subject to the manager�s

incentive compatibility and participation constraints. For simplicity, and without loss of gener-
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ality, we normalize the manager�s reservation value to �exp(�(1=2)�2=�2). For a given contract
(F; �; h), the manager�s (conditional) wealth is given as a percentage, equation (2), of the fund�s

net asset value.

The constrained manager, after accepting the contract, decides how much e¤ort to put.

Then, she receives the signal y and invest a proportion �(y) as in (6) in the risky asset.

Let t(�) = b(1��)
a� and T (�) = (2 � t(�))t(�). The investor�s expected utility is introduced

in the following proposition.

Proposition 3 Let a�eb > 0 and a�+eb (1� �(2� t(�))) > 0. Given the portfolio constraints
s � 0 and m � 1, the expected utility of the risk-averse investor is EUb('b(e)) = �exp(b(F �
R)� (1=2)�2=�2)� f(e; Ls; Lm) with f(e; Ls; Lm) = (1=2)�

exp

0@�
�
�
(1+t(�)(Ls�1)�bh�

2

�
)

�2
2

1A�1 + �� 1+e
e

�
�
�
(1 + 1+t(�)e

1+e
(Ls � 1)� e

1+e
bh�

2

�
)
�2��

+

exp
�
1
2

1
1+e

�
�
�

�
t(�)� 1 + bh�2

�

��2�
exp

0@ �2

2�2
e

1+e

�
T (�)�1�bh(t(�)�1)�

2

�

�2
1+eT (�)

1A� 1
1+T (�)e

�1=2
�
�

�
1+e

e(1+T (�)e)

�
�
�

�
1+T (�)e
1+e

(1 + Lm)� 1� e
1+e

bh(t(�)� 1)�2
�

��2�
�

�

�
1+e

e(1+T (�)e)

�
�
�

�
1 + 1+T (�)e

1+e
(Ls � 1) + e

1+e
bh(t(�)� 1)�2

�

��2��
+

exp

0@�
�
�
(t(�)(1+Lm)�1+bh�

2

�
)

�2
2

1A�1� �� 1+e
e

�
�
�
( 1+t(�)e

1+e
(1 + Lm)� 1 + e

1+e
bh�

2

�
)
�2��

:

if h < �
�
sa�+eb(1��)

�(a�eb) + (1 + e) �
�(a�eb)�2)

�
;

exp

0@�
�
�
(1+t(�)(Ls�1)�bh�

2

�
)

�2
2

1A�1� �� 1+e
e

�
�
�
(1 + 1+t(�)e

1+e
(Ls � 1)� e

1+e
bh�

2

�
)
�2��

+

exp
�
1
2

1
1+e

�
�
�

�
t(�)� 1 + bh�2

�

��2�
exp

0@ �2

2�2
e

1+e

�
T (�)�1�bh(t(�)�1)�

2

�

�2
1+eT (�)

1A� 1
1+T (�)e

�1=2
�
�

�
1+e

e(1+T (�)e)

�
�
�

�
1+T (�)e
1+e

(1 + Lm)� 1� e
1+e

bh(t(�)� 1)�2
�

��2�
�

�

�
1+e

e(1+T (�)e)

�
�
�

�
1 + 1+T (�)e

1+e
(Ls � 1) + e

1+e
bh(t(�)� 1)�2

�

��2��
+

exp

0@�
�
�
(t(�)(1+Lm)�1+bh�

2

�
)

�2
2

1A�1� �� 1+e
e

�
�
�
( 1+t(�)e

1+e
(1 + Lm)� 1 + e

1+e
bh�

2

�
)
�2��

:

if �
�
sa�+eb(1��)

�(a�eb) + (1+e)�

�(a�eb)�2)

�
� h < �

�
sa�+eb(1��)(2�t(�))
a�+eb(1��(2�t(�))) +

(1+e)�

(a�+eb(1��(2�t(�))))�2

�
;
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exp

0@�
�
�
(1+t(�)(Ls�1)�bh�

2

�
)

�2
2

1A�1� �� 1+e
e

�
�
�
(1 + 1+t(�)e

1+e
(Ls � 1)� e

1+e
bh�

2

�
)
�2��

+

exp
�
1
2

1
1+e

�
�
�

�
t(�)� 1 + bh�2

�

��2�
exp

0@ �2

2�2
e

1+e

�
T (�)�1�bh(t(�)�1)�

2

�

�2
1+eT (�)

1A� 1
1+T (�)e

�1=2
�
�

�
1+e

e(1+T (�)e)

�
�
�

�
1 + 1+T (�)e

1+e
(Ls � 1) + e

1+e
bh(t(�)� 1)�2

�

��2�
+

�

�
1+e

e(1+T (�)e)

�
�
�

�
1+T (�)e
1+e

(1 + Lm)� 1� e
1+e

bh(t(�)� 1)�2
�

��2��
+

exp

0@�
�
�
(t(�)(1+Lm)�1+bh�

2

�
)

�2
2

1A�1� �� 1+e
e

�
�
�
( 1+t(�)e

1+e
(1 + Lm)� 1 + e

1+e
bh�

2

�
)
�2��

:

(11)

if �
�
sa�+eb(1��)(2�t(�))
a�+eb(1��(2�t(�))) +

(1+e)�

(a�+eb(1��(2�t(�))))�2

�
� h < ma�+eb(1��)(2�t(�))

a�+eb(1��(2�t(�))) �
(1+e)�

(a�+eb(1��(2�t(�))))�2 ;

exp

0@�
�
�
(1+t(�)(Ls�1)�bh�

2

�
)

�2
2

1A�1� �� 1+e
e

�
�
�
(1 + 1+t(�)e

1+e
(Ls � 1)� e

1+e
bh�

2

�
)
�2��

+

exp
�
1
2

1
1+e

�
�
�

�
t(�)� 1 + bh�2

�

��2�
exp

0@ �2

2�2
e

1+e

�
T (�)�1�bh(t(�)�1)�

2

�

�2
1+eT (�)

1A� 1
1+T (�)e

�1=2
�
�

�
1+e

e(1+T (�)e)

�
�
�

�
1 + 1+T (�)e

1+e
(Ls � 1) + e

1+e
bh(t(�)� 1)�2

�

��2�
�

�

�
1+e

e(1+T (�)e)

�
�
�

�
1+T (�)e
1+e

(1 + Lm)� 1� e
1+e

bh(t(�)� 1)�2
�

��2��
+

exp

0@�
�
�
(t(�)(1+Lm)�1+bh�

2

�
)

�2
2

1A�1� �� 1+e
e

�
�
�
( 1+t(�)e

1+e
(1 + Lm)� 1 + e

1+e
bh�

2

�
)
�2��

:

if ma�+eb(1��)(2�t(�))
a�+eb(1��(2�t(�))) �

(1+e)�

(a�+eb(1��(2�t(�))))�2 � h < m
a�+eb(1��)
�(a�eb) � (1+e)�

�(a�eb)�2 ;

exp

0@�
�
�
(1+t(�)(Ls�1)�bh�

2

�
)

�2
2

1A�1� �� 1+e
e

�
�
�
(1 + 1+t(�)e

1+e
(Ls � 1)� e

1+e
bh�

2

�
)
�2��

+

exp
�
1
2

1
1+e

�
�
�

�
t(�)� 1 + bh�2

�

��2�
exp

0@ �2

2�2
e

1+e

�
T (�)�1�bh(t(�)�1)�

2

�

�2
1+eT (�)

1A� 1
1+T (�)e

�1=2
�
�

�
1+e

e(1+T (�)e)

�
�
�

�
1 + 1+T (�)e

1+e
(Ls � 1) + e

1+e
bh(t(�)� 1)�2

�

��2�
�

�

�
1+e

e(1+T (�)e)

�
�
�

�
1+T (�)e
1+e

(1 + Lm)� 1� e
1+e

bh(t(�)� 1)�2
�

��2��
+

exp

0@�
�
�
(t(�)(1+Lm)�1+bh�

2

�
)

�2
2

1A�1 + �� 1+e
e

�
�
�
( 1+t(�)e

1+e
(1 + Lm)� 1 + e

1+e
bh�

2

�
)
�2��

:
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if h > ma�+eb(1��)
�(a�eb) � (1+e)�

�(a�eb)�2 ;

The investor must choose the optimal linear contract, which includes the optimal �xed and

incentive fees, F and �, respectively, and the optimal benchmark, h, subject to the participation

constraint �(1=2)exp(�(1=2)�2=�2�aF+V (a; e))�g(e; Ls; Lm) � �exp(�(1=2)�2=�2): Clearly,
neither e¤ort nor h or � are a function of F . This, along with the fact that the left-hand

side is increasing in F and the investor�s utility is decreasing in F , implies that under the

optimal contract the participation constraint is binding. So, the investor�s expected utility can

be expressed a function of the contract (�; h), and the manager�s level of e¤ort, e:

EUb('b(e)j�; h) = �exp(�bR� (1=2)�2=�2 + (b=a)V (D; e))� g(e; Ls; Lm)b=af(e; Ls; Lm): (12)

We want to study how the portfolio constraints and the presence of moral hazard a¤ect the

investor�s choice. We distinguish two cases: �rst, when e¤ort is publicly observable; second,

under moral hazard. Moreover, the manager could be constrained or unconstrained in her

portfolio choice.

Assume �rst that the manager�s e¤ort decision is observable. In this case the investor

maximizes his expected utility with respect to �, h and e¤ort.

In the absence of short-selling and margin purchase constraints, we show that the optimal

contract is given by the �rst best incentive fee, �FB , and zero benchmarking, h = 0. The

function f(e; Ls; Lm) becomes g(e). The investor chooses the �rst best e¤ort level, eFB , that

maximizes EUb('b(e)j�FB ; 0) = �exp
�
�(1=2)(�=�)2 + (b=a)V (D; e)

�
g(e)

a+b
a :

Ve(D; eFB ) =
1 + b=a

2(1 + eFB )
:

When the manager�s portfolio choice is constrained, we show that the contract (�FB ; 0) is

still optimal. The function f(e; Ls; Lm) becomes g(e; Ls(0); Lm(0)). In this constrained �rst

best scenario the investor chooses the constrained �rst best e¤ort level, ec
FB
, that maximizes

EUb('b(e)j�FB ; 0) = �exp
�
�(1=2)(�=�)2 + (b=a)V (D; e)

�
g(e; Ls(0); Lm(0))

a+b
a :

Ve(D; e
c
FB
) = (1 + b=a)

ge
g
(ec

FB
; Ls(0); Lm(0)):

Notice that, as expected, portfolio constraints decrease the optimal e¤ort choice: eFB > e
c
FB
.

On the other hand, when the manager�s e¤ort decision is not observable, the investor�s

problem consists in �nding the optimal split that maximizes (12) subject to the manager�s

optimal e¤ort condition.

Assume �rst that there exit no portfolio constraints. We call this scenario the second best.

As shown in section 2.1, the manager�s second best e¤ort, eSB , is independent of � and h. This

result is in agreement with Stoughton (1993) and Admati and P�eiderer (1997). The investor

will choose the same contract than in the unconstrained, public information case: (�FB ; 0). The

second best e¤ort satis�es the optimality condition (5).

Assume now that the manager�s portfolio choice is constrained. We call this scenario the third
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best. The manager�s third best e¤ort satis�es (10). Section 2.2 shows that e¤ort is increasing in

� and, given �, reaches an absolute maximum at h�. The contract (�FB ; 0) is no longer optimal.

These results are presented in the following proposition.

Proposition 4 Absent any portfolio constraint, the contract (�FB ; 0) is optimal, both for the
public information case as well as under moral hazard.

Under portfolio constraints and no moral hazard, the contract (�FB ; 0) is still optimal. When

the e¤ort decision is not observable by the investor, the contract (�FB ; 0) is suboptimal.

In spite of the simpli�cations, we cannot solve analytically for the general optimal contract

under moral hazard and portfolio constraints. In the next section we present some numerical

results.

5 A numerical solution of the third best contract

Due to the complexity of the manager�s expected utility function in Proposition 1, we cannot

solve analytically for the optimal third best contract. We can, however, solve the problem

numerically. We propose the function V (e) = D
2 e

2 with disutility parameter D = 1.

Throughout the numerical analysis, we take the market excess return � = 6% and the market

volatility � = 18%, both on an annual basis. The principal�s absolute risk aversion take values

b = 4 and b = 8. The manager�s absolute risk aversion parameter takes values a = f4; 8; 16; 20g.
We consider di¤erent degrees of portfolio constraints: s = 0 and m = 1 is the zero leverage

base-case. We then allow for short selling (s = 1 and s = 2) and margin purchases (m = 2

and m = 3). For each combination (a; b) and (m; s) we calculate the manager�s e¤ort and the

investor�s expected utility (12) for a grid of values for alpha and h around the �rst best contract

(�FB(a; b); 0). � changes from 70% � �FB(a; b) to 130% � �FB(a; b), at intervals of length
5%�FB(a; b). Likewise, h changes from �30% to 30% at intervals of length 5%. In the absence

of moral hazard, for each contract (�; h) the manager puts the constrained �rst best e¤ort that

maximizes the investor�s expected utility in (12). Under moral hazard, for each contract (�; h)

the manager puts the third best e¤ort in (10).

Figures 3 and 4 introduce the base case under total constraints (m = 1 and s = 0) and

for two values the investor�s expected utility: b = 4 and b = 8, respectively. Two scenarios are

considered: Panel A presents the optimal contract in the absence of moral hazard (the manager�s

e¤ort decision is publicly observable), i.e., the constrained �rst best scenario; Panel B represents

the optimal contract under moral hazard, i.e., the third best scenario. The investors expected

utility is concave in � and h. In Panel A, we observe that, as predicted in proposition 4, in the

absence of moral hazard, the investor�s maximum expected utility is attained at the �rst best

contract (�FB ; 0) with zero benchmarking.

The �gures in Panel B show con�rm the prediction in proposition 4: the �rst best contract

is no longer optimal in the presence of moral hazard. In concrete, the incentive fee increases

from 50% to 52.5% (a = b = 4) and 55% (a = b = 8); from 33% to 46% (a = 8,b = 4) and 41%

(a = 16, b = 8). The benchmark becomes more risky: the percentage invested in the market
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portfolio rises from zero to 15% for a = 8 and b = 4; in the case b = 8 the percentage increases

from zero to 5% for a = 8 and 10% for a = 16.

Figures 5 through 10 represent the investor�s expected utility under moral hazard for di¤erent

values of the portfolio constraints, m and s, and the risk aversion coe¢ cients for the investor

(b) and the manager (a). Table 1 summarizes the optimal contracts (�; h). We observe the

following.

Holding the manager�s short selling constraint at s = 0, the optimal benchmark composition

h increases with m, the margin purchase limit. This is in agreement with the partial equilibrium

intuition in section 2.2: as the margin purchase constraint is relaxed, increasing h induces higher

e¤ort on the manager. Moreover, the marginal e¤ort increase is higher for more risk averse

managers. This has to be traded-o¤ against the optimal risk split between the principal and the

agent. We observe that the increase in h is higher (relative to the unconstrained case) the lower

the investor�s risk aversion (b) and the higher the manager�s risk aversion (a). In concrete, when

the manager is more risk averse than the investor, the optimal contract substitutes a more risky

benchmark (higher h) for a lower incentive fee (lower �) as m increases. For instance, when

b = 4, for the total constrained case (m = 1 and s = 0), � decreases from 52.5% to 27.5% when

a increases from 4 to 20. Simultaneously, h increases from 0 to 20%. When we relax the margin

purchase constraint, for instance m = 3, � decreases from 50%to20% while h increases from 15

to 20%. When b = 8, � decreases more than in the case of b = 4; on the other side, h increases

less than in the case of b = 4.

The result is symmetric when the constraint on margin purchases is held constant at m = 1

and the bound on short sells is relaxed. For b = 4 and a = 8, moving from zero short selling

(s = 0) to 100% of the original wealth endowment (s = 1) the optimal benchmark moves from

h = 15% down to zero (the risk free asset). In the short selling bound increases by another

100%, the optimal benchmark should short the market by 5%. The benchmark sensitivity to

changes in s decreases as the investor becomes more risk averse (from b = 4 to b = 8) or when

the manager becomes more risk tolerant: from a = 20 to a = 4.

Finally, when both constraints are relaxed the optimal contract converges towards the �rst

best contract (�FB ; 0). This convergence is faster the more risk averse the investor is. In

concrete, when b = 4, m = 3 and s = 2, the �rst best contract is optimal for a = 20. When

b = 8, m = 2 and s = 1 the �rst best contract is optimal both for a = 8 and a = 16.

6 Conclusions

This paper investigates the e¤ort inducement incentives of (potentially benchmarked) linear

incentive fee contracts. Incentives arise explicitly via the compensation of the manager. The

investor has to decide simultaneously the incentive fee (the manager�s participation in the dele-

gated portfolio�s return) and the benchmark composition.

The contribution of our paper to the literature on management compensation comes from

the fact that we incorporate portfolio constraints in our model. These constraints are exogenous

in our model and could be motivated by regulation or, as suggested by Almazan et al (2004), as

alternative monitoring mechanism in a broader equilibrium model.
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b = 4

s n m a 1 2 3

0
4
8
20

(52.5,0)
(46,15)
(27.5,20)

(55,10)
(40,15)
(21,20)

(55,15)
(36,15)
(20,20)

1
4
8
20

(55,0)
(40,0)
(21,0)

(55,5)
(35,5)
(19,5)

2
4
8
20

(55,0)
(38,-5)
(20,-5)

(55,5)
(35,5)
(16,0)

b = 8

s n m a 1 2 3

0
8
16

(55,5)
(41,10)

(52.5,5)
(38,10)

(52.5,5)
(38,10)

1
8
16

(52.5,0)
(35,0)

(50,0)
(33,0)

2
8
16

(52.5,0)
(35,0)

(50,0)
(33,0)

Table 1: Optimal contract (�; h) for di¤erent values of the maximum long (m) and short (s)
position on the market portfolio allowed to the manager. � is the percentage incentive fee; h is
the percentage of the benchmark portfolio invested in the market portfolio. m = 1 and s = 0
imply zero leverage. b (a) represents the investor�s (manager�s) risk aversion coe¢ cient. The
�rst best incentive fee is �FB = 50% for a = b = 4 and a = b = 8; �FB = 33% for a = 8; b = 4
and a = 16; b = 8; �FB = 16% for a = 20; b = 4.

Under portfolio constraints and moral hazard, our model predicts that portfolio manager�s

should be o¤ered an incentive fee benchmarked against a portfolio that combines the risky

market portfolio and the risky asset. Numerical exercises suggest that, in contrast with the pre-

dictions from the unconstrained setting in Ou-Yang (2003), the risk-free asset is not the optimal

benchmark. When portfolio constraints are removed, the model predicts that the manager�s

e¤ort is unrelated to the incentive fee and the benchmark composition, a well-known result in

the literature.

These predictions are consistent with the prevalence of absolute return (non-benchmarked)

compensation schemes among hedge fund managers, arguably much less constrained than mutual

fund managers. Moreover, it o¤ers a theoretical foundation for the observed out-performance of

mutual funds who o¤er incentive fee compensation as documented by Elton, Gruber and Blake

(2003). The model implies new empirically testable implications. Concretely:

1. When the manager is not constrained, the optimal benchmark is the risk free asset.

2. For constrained managers, the proportion of the optimal benchmark invested in the tim-

ing portfolio increases (decreases) when the margin purchase (short selling) constraint is

removed. In other words, managers who cannot sell short but can purchase at margin

should be compensated relative to higher beta benchmarks while manager�s who cannot
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purchase at margin but can sell sell short should be rewarded relative to lower beta bench-

marks. When the manager is constrained both on selling short and margin purchases, the

benchmark�s beta should lie between to two partially constrained betas.

3. This pattern should be more evident among aggressive market timers than among more

conservative funds. Additionally, benchmarking the manager is more e¤ective when the

manager is more risk averse.

4. If portfolio restriction are independent of e¤ort incentives, e¤ort (hence, timing ability)

should be inversely related to constrains: more constrained managers should perform worse

than unrestricted managers.
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Appendix

Proof of Proposition 1

Replacing (6) in the manager�s utility function:

EU ('a(y)) = �exp(�aF + V (D; e)) �8>>>>>><>>>>>>:

exp
�
(h+ s)a�E(xjy) + (1=2)((h+ s)a�)2Var(xjy)

�
if y < ��

eLs

exp
�
�(1=2)E2(xjy)=Var(xjy)

�
otherwise

exp
�
�(m� h)a�E(xjy) + (1=2)((m� h)a�)2Var(xjy)

�
if y >�

eLm:

Multiplying the previous expression by the density function of the signal variable, y, we

obtain:
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�exp(�(1=2)(�2=�2)� aF + V (D; e))
�

e

1 + e

�1=2 1p
2��

�8>>>>>>>>>><>>>>>>>>>>:

exp
�
(��Ls)

2

2

�
exp

�
�(1=2) e

1+e

� y
� �

�
�Ls

�2� if y < ��
eLs

exp
�
�(1=2)e

� y
�

�2� otherwise

exp
�
(��Lm)

2

2

�
exp

�
�(1=2) e

1+e

� y
� +

�
�Lm

�2� if y >�
eLm:

Replace k = e
1+e

� y
� �

�
�Ls

�2 if y < ��
eLs; k =

e
1+e

� y
� +

�
�Lm

�2 if y > �
eLm, and k = e

� y
�

�2
otherwise. Integrating over k and given the de�nition of �(�), the unconditional utility function
follows. QED

Proof of Corollary 1

By de�nition, jLmj > jLsj for all�1 < h < �
�
s+ �

a��2

�
such that

�
�

�
(��Lm)

2

e

�
� �

�
(��Ls)

2

e

��
>

0; likewise jLsj > jLmj for all 1 > h > m� �
a��2

such that
�
�

�
(��Ls)

2

e

�
� �

�
(��Lm)

2

e

��
> 0.

QED

Proof of Proposition 2

Let us de�ne J (e; Ls; Lm) = Ve(D; e)� g(e; Ls; Lm)+ ge(e; Ls; Lm): The function J 2 C1 for all
(e; h). The third best e¤ort in (10) satis�es:

J (eTB ; Ls; Lm) = 0; (A1)

Je(eTB ; Ls; Lm) > 0: (A2)

The implicit function theorem allows us to solve �locally�the equation; that is, for all (ê; ĥ)

that satisfy (A1) and (A2), e¤ort e can be expressed as a function of h in a neighborhood of

(ê; ĥ).

More formally: for all (ê; ĥ) that satisfy (A1) and (A2) there exists a function e(h) 2 C1 and
an open ball B(ĥ), such that e(ĥ) = eTB and J (e(h); Ls; Lm) = 0 for all h 2 B(ĥ).

Taking the derivative of J (eTB ; Ls; Lm) with respect to h:10

eh(h) = �Jh(eTB ; Ls; Lm)� J �1e (eTB ; Ls; Lm):

Taking the second derivative of (8) with respect to e:

10The subscript h denotes �rst derivative with respect to h. The subscript eh denotes cross derivative with
respect to e and h.
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gee(e; Ls; Lm) =
1

2

�
1

1 + e

�3=2(3
2

�
1

1 + e

�"
�

 ��
�Ls

�2
e

!
+�

 ��
�Lm

�2
e

!#
+

1

e2

"
�

 ��
�Ls

�2
e

!
�
��
�
Ls

�2
+ �

 ��
�Lm

�2
e

!
�
��
�
Lm

�2#)
> 0:

Condition (A2) can be written as Vee(D; e) > �ge
g (e; Ls)�Ve(D; e)�

gee
g (e; Ls): �

ge
g (e; Ls) <

1
2(1+e) and

gee
g (e; Ls) � 0. Then, (S4) implies (A2) for all h 2 [�

�
s+ �

a��2

�
;m� �

a��2
].

The sign of eh(h), therefore, depends on the sign of Jh(e; Ls; Lm) = Ve(D; e)�gh(e; Ls; Lm)+
geh(e; Ls; Lm).

From (S3), Ve(D; e) > 0. From Corollary 1,

geh(e; Ls; Lm) = �
�

1

1 + e

�3=2
e�1=2

a��p
2�

�
exp
�
�(��Ls)

2

2e

�
� exp

�
�(��Lm)

2

2e

��
(A3)

for all h 2 <.
Let us de�ne the gamma function �(u) =

R1
0 tu�1exp(�t)dt for u > 0. The incomplete

gamma function is given by �(u; v) =
R1
v tu�1exp(�t)dt for v > 0. From (8),

gh(e; Ls; Lm) =

a��p
�
�

�
1

2
;
1 + e

e

��
Lsexp

�
(��Ls)

2

2

�
� Lmexp

�
(��Lm)

2

2

��
� (A4)�

e

1 + e

�1=2 2a��p
2�

�
exp
�
�(��Ls)

2

2e

�
� exp

�
�(��Lm)

2

2e

��
:

By de�nition, Ls(h� + �) = Lm(h
� � �), for all � 2 <. For all 0 < � < m+s

2 , Ls(h� � �) <
Lm(h

���) and Ls(h�+�) > Lm(h�+�). Let L�s = Ls(h�) and L�m = Lm(h�). For � = 0, L�s = L�m.
Therefore, eh(h) > 0 for all �

�
s+ �

a��2

�
� h < h� and eh(h) < 0 for all h� < h � m � �

a��2
;

eh(h
�) = 0. Since the function e(h) is continuous and di¤erentiable, it follows that h� is a local

maximum in the interval
�
�
�
s+ �

a��2

�
;m� �

a��2

�
. Q.E.D.

Proof of Corollary 2

Let h < �
�
s+ �

a��2

�
. Then, Ls < 0 and Lm > 0 and jLsj < jLmj. From (7),
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gh(e; Ls; Lm) =

a��Lsexp

 ��
�Ls

�2
2

!�
1 + �

�
1 + e

e

��
�
Ls

�2��
�

a��Lmexp

 ��
�Lm

�2
2

!�
1� �

�
1 + e

e

��
�
Lm

�2��
� (A5)

�
e

1 + e

�1=2 2a��p
2�

�
exp
�
�(��Ls)

2

2e

�
� exp

�
�(��Lm)

2

2e

��
< 0

From (A3), geh(e; Ls; Lm) < 0. Given (S3), it follows that eh(h) > 0 for all h < �
�
s+ �

a��2

�
.

Let h > m� �
a��2

. Then, Ls > 0 and Lm < 0 and jLsj > jLmj. From (9),

gh(e; Ls; Lm) =

a��Lsexp

 ��
�Ls

�2
2

!�
1� �

�
1 + e

e

��
�
Ls

�2��
�

a��Lmexp

 ��
�Lm

�2
2

!�
1 + �

�
1 + e

e

��
�
Lm

�2��
�

�
e

1 + e

�1=2 2a��p
2�

�
exp
�
�(��Ls)

2

2e

�
� exp

�
�(��Lm)

2

2e

��
> 0:

From (A3), geh(eTB ; Ls; Lm) > 0. Given (S3), it follows that eh(h) < 0 for all h > m�
�

a��2
.

Q.E.D.

Proof of Corollary 3

Let h 2
�
�
�
s+ �

a��2

�
;m� �

a��2

�
. We re-write the function J (e; Ls; Lm) as:

J (e; Ls; Lm) =
�
Ve(D; e)�

1

2(1 + e)

��
1

1 + e

�1=2 "
�

 ��
� (Ls)

�2
e

!
+�
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� (Lm)

�2
e

!#

+Ve(D; e)

(
exp

 ��
� (Ls)

�2
2

!
�
"
1� �

 ��
� (Ls)

�2
e

(1 + e)

!#

+exp

 ��
� (Lm)

�2
2

!
�
"
1� �

 ��
� (Lm)

�2
e

(1 + e)

!#)
:

Evaluating this function at the second best e¤ort and given (5) we obtain
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J (eSB ; Ls; Lm) =

Ve(D; eSB )

(
exp

 ��
� (Ls)

�2
2

!
�
"
1� �

 ��
� (Ls)

�2
eSB

(1 + eSB )

!#
(A6)

+exp

 ��
� (Lm)

�2
2

!
�
"
1� �

 ��
� (Lm)

�2
eSB

(1 + eSB )

!#)
> 0:

This implies that EeUa('a(eSB )) = �exp(�(1=2)�2=�2�aF+V (D; eSB ))�J (eSB ; Ls; Lm) <
0:

Therefore, for the constrained manager, the marginal utility of e¤ort at eSB is negative. Since

eTB is unique and the function is continuous in e, given conditions (A1) and (A2), it follows

that eSB > eTB for all h 2
�
�
�
s+ �

a��2

�
;m� �

a��2

�
. Given Corollary 2 this result holds for all

h 2 <. Next we show that

lim
z!1

�
exp (z=2)�

�
1� �

�
z
1 + e

e

���
= 0: (A7)

Re-writing (A7) and applying L�Hôpital�s rule we get:

lim
z!1

1� �
�
z 1+ee

�
exp (�z=2) = lim

z!1
exp(�z=e)

z
= 0:

Therefore, given (A6) and (A7), J (eSB ; Ls; Lm) tends to zero when m and s tend to in�nity.

In the limit, the constrained manager�s marginal expected utility of e¤ort becomes zero at eSB ,

EeUa('a(eSB )) = 0. Q.E.D.

Proof of Corollary 4

Lemma 1 For all 0 < x <1, 12 (1� �(x))� �(x) < 0.

Proof: See Lemma 1 in Gómez and Sharma (2006)

Let m ! 1 and 0 � s < 1. We call gh(e; Ls) = limm!1 gh(e; Ls; Lm) and geh(e; Ls) =

limm!1 geh(e; Ls; Lm). From (A5), gh(e; Ls) < 0 for h < �
�
s+ �

a��2

�
. For h > �

�
s+ �

a��2

�
,

gh(e; Ls) = 2a�Ls � exp
�
(��Ls)

2

2

�n
1
2

h
1� �

�
1+e
e

��
�Ls

�2�i
��
�
1+e
e

��
�Ls

�2�o
< 0; given Lemma 1.

Therefore, gh(e; Ls) < 0 for all h 2 <. From (A3), geh(e; Ls) < 0 for all h 2 <. Thus,
eh(h) > 0 for all h 2 <. Following the same procedure, it is trivial to show that eh(h) < 0 for
all h 2 < when s!1 and 1 � m <1. Q.E.D.

Proof of Proposition 3

Replacing (6) in the investor�s utility function:
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EU ('b(y)) = �exp(b(F �R)) �8>>>>>>><>>>>>>>:

exp
�
�b(h� (1� �)(s+ h))E(xjy) + (b2=2)(h� (1� �)(s+ h))2Var(xjy)

�
if y < ��

eLs

exp
�
�b
�
h+ (1� �)�+ey
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�
E(xjy) + (b2=2)

�
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�2
Var(xjy)

�
otherwise

exp
�
�b(h+ (1� �)(m� h))E(xjy) + (b2=2)(h+ (1� �)(m� h))2Var(xjy)

�
if y >�

eLm:

Multiplying the previous expression by the density function of the signal variable y, we

obtain:

EU ('b(y)) = �exp(b(F �R)� (1=2)�2=�2)
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�
�

�
t(�)� 1 + bh�2�

��2�
exp

 
�2

2�2
e
1+e

�
T (�)�1�bh(t(�)�1)�

2

�

�2
1+eT (�)

!
�

�
1

1+T (�)e

�1=2
exp

0@� e(1+eT (�))
2(1+e)

 
y
� +

�
�

T (�)�1�bh(t(�)�1)�
2

�

1+eT (�)

!21A otherwise

exp

 �
�
�
(t(�)(1+Lm)�1+bh�

2

�
)
�2

2

!
�

exp
�
� e
2(1+e)

�
y
� +

�
�

�
t(�)(1 + Lm)� 1 + bh�

2

�

��2�
if y >�

eLm:

Replace k = e
1+e

8>>>>>><>>>>>>:

�
y
� �

�
�

�
1 + t(�)(Ls � 1)� bh�

2

�

��2
if y < ��

eLs

(1 + eT (�))

 
y
� +

�
�

T (�)�1�bh(t(�)�1)�
2

�

1+eT (�)

!2
otherwise�

y
� +

�
�

�
t(�)(1 + Lm)� 1 + bh�

2

�

��2
if y >�

eLm:

Integrating over k and given the de�nition of �(�), the unconditional utility function follows.
Q.E.D.

Proof of Proposition 4

We �rst need some partial derivatives of function f and g with respect to � and h. Taking the

derivative of (11) with respect to h and evaluating it at the contract (�FB ; 0) yields:
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fh(e; Ls; Lmj�FB ; 0) = �2
b2

a+ b
�(

exp

 ��
�Ls(0)

�2
2

!
Ls(0)��

1

2

�
1� �

�
1 + e

e

��
�
Ls(0)

�2��
� �

�
1 + e

e

��
�
Ls(0)

�2��
+

exp

 ��
�Lm(0)

�2
2

!
Lm(0)��

1

2

�
1� �

�
1 + e

e

��
�
Lm(0)

�2��
� �

�
1 + e

e

��
�
Lm(0)

�2���
:

Equation (A4) evaluated at (�FB ; 0) becomes:

gh(e; Ls; Lmj�FB ; 0) = 2
ab

a+ b
�(

exp

 ��
�Ls(0)

�2
2

!
Ls(0)��

1

2

�
1� �

�
1 + e

e

��
�
Ls(0)

�2��
� �

�
1 + e

e

��
�
Ls(0)

�2��
+

exp

 ��
�Lm(0)

�2
2

!
Lm(0)��

1

2

�
1� �

�
1 + e

e

��
�
Lm(0)

�2��
� �

�
1 + e

e

��
�
Lm(0)

�2���
:

Taking the derivative of (11) with respect to � and evaluating it at the contract (�FB ; 0) we

obtain:

f�(e; Ls; Lmj�FB ; 0) =

�2bs�exp
 ��

�Ls(0)
�2

2

!
Ls(0)��

1

2

�
1� �

�
1 + e

e

��
�
Ls(0)

�2��
� �

�
1 + e

e

��
�
Ls(0)

�2��
�2bm�exp

 ��
�Lm(0)

�2
2

!
Lm(0)��

1

2

�
1� �

�
1 + e

e

��
�
Lm(0)

�2��
� �

�
1 + e

e

��
�
Lm(0)

�2��
:

Equation (A4) at (�FB ; 0) can be rewritten as follows:
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g�(e; Ls; Lmj�FB ; 0) =

2as�exp

 ��
�Ls(0)

�2
2

!
Ls(0)��

1

2

�
1� �

�
1 + e

e

��
�
Ls(0)

�2��
� �

�
1 + e

e

��
�
Ls(0)

�2��
+

2am�exp

 ��
�Lm(0)

�2
2

!
Lm(0)��

1

2

�
1� �

�
1 + e

e

��
�
Lm(0)

�2��
� �

�
1 + e

e

��
�
Lm(0)

�2��
:

Assume �rst that the manager�s e¤ort choice is publicly observable. The investor chooses

the contract (�; h) that satis�es the �rst order optimality condition:

@

@i
EUb('b(e)j�; h) = �exp

�
�(1=2)(�=�)2 + (b=a)V (D; e)

�
��

b

a
g(e; Ls; Lm)

b=a�1gi(e; Ls; Lm)f(e; Ls; Lm) + g(e; Ls; Lm)
b=afi(e; Ls; Lm)

�
= 0;

for i = f�; hg. We distinguish two cases: with and without portfolio constraints.
Without portfolio constraints, s ! 1 and m ! 1. The manager�s expected utility (4) is

independent of � and h. Given (A7) and the partial derivatives for f , it follows immediately

that, lims;m!1 fi(e; Ls; Lmj�FB ; 0) = 0; for i = f�; hg. Hence, the contract (�FB ; 0) is optimal.
With portfolio constraints, notice �rst that g(e; Ls; Lmj�FB ; 0) = f(e; Ls; Lmj�FB ; 0). Evalu-

ating the optimality condition at (�FB ; 0) and given the partial derivatives for f and g, it follows

that the contract (�FB ; 0) satis�es the �rst order optimality condition in the absence of moral

hazard.

We turn now to the case of moral hazard. Without portfolio constraints (second best sce-

nario), the manager�s e¤ort (5) is independent of � and h. Hence, the contract (�FB ; 0) is

optimal. Under portfolio constraints (third best scenario), the third best e¤ort, eTB , is a func-

tion of � and h. The �rst order condition for optimality requires that

@

@i
EUb('b(eTB )j�; h) =

@

@i
EUb('b(e)j�; h) +

@

@e
EUb('b(e)j�; h)

@

@i
eTB (�;h) = 0;

for i = f�; hg: Given the partial derivatives above, @@iEUb('b(e)j�FB ; 0) = 0. By de�nition,
@
@e EUb('b(e)j�FB ; 0)je=eTB =

�exp
�
�(1=2)(�=�)2 + (b=a)V (D; e)

�
g(eTB ; Ls(0); Lm(0))

b=age(eTB ; Ls(0); Lm(0)) > 0

and @
@�eTB (�; 0) = �J�(eTB ; Ls(0); Lm(0)) � J

�1
e (eTB ; Ls(0); Lm(0)) > 0, for all � 2 (0; 1].
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From Proposition 2 and Corollary 2, for all � 2 (0; 1], @
@heTB (�; h) > 0 (< 0) for h < h

� (h > h�);
@
@heTB (�; h) = 0 for h = h

�. Hence, in general, the contract (�FB ; 0) is suboptimal. Q.E.D.
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Figure 1: We assume that short-selling is totally forbidden (s = 0) and there is no limit to margin
purchase (m!1). For simplicity, let � = 1. After putting e¤ort e the manager receives a signal
y and makes her optimal portfolio �. When h = 0 (bottom portfolio line), all signals y < ��

e
lead to short-selling. When h > 0 (upper portfolio line), the short-selling bound is hit for signals
y < ��

eLs: In both cases, the region of these non-implementable portfolios is marked by the
thick line. Under benchmarking (h > 0) there is an incremental area for implementable signals
relative to the case of no benchmarking. The size of this area, ha

e=�2
; increases with benchmarking

(h) and the manager�s risk aversion (a); it has probability mass equal to the shaded area in the
density function plot.
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Figure 2: The graph represents the unconditional portfolio (independent of the signal y). Assume
the manager is constrained. For instance, 0 � � � 1 (zero leverage). If the benchmark coincides
with the risk free asset, the manager will chose the tangent portfolio on the �absolute�capital
market line that maximizes her expected utility. In the example, this portfolio holds less than
50% in the market. If the manager is given a benchmark h� > 0 then she will choose a tangent
portfolio �� = � � h in the �relative�capital market line that trades o¤ excess expected return
��� against tracking error standard deviation. Notice that given the portfolio constraints, for
h = h� the manager�s optimal unconditional portfolio is equidistant from either boundary.
The manager�s e¤ort choice maximizes her unconditional expected utility before receiving the
signal. The benchmark composition h� allows, ex-ante, more extreme signals to be implemented,
increasing e¤ort�s marginal utility and, ultimately, the manager�s e¤ort choice.
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Figure 3: The manager is totally constrained in her portfolio choice: m = 1 and s = 0. The
vertical axis in each �gure represents the investor�s expected utility when the manager�s e¤ort
choice is observable (Panel A) and under moral hazard (Panel B). The maximum and minimum
expected utility within the values of the contract represented are reported. The horizontal
axes represent the incentive fee, �, and the percentage in the benchmark portfolio invested in
the market, h, respectively. The three-dimensional cross identi�es the optimal contract. b (a)
denotes the investor�s (manager�s) risk aversion coe¢ cient.
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Figure 4: The manager is totally constrained in her portfolio choice: m = 1 and s = 0. The
vertical axis in each �gure represents the investor�s expected utility when the manager�s e¤ort
choice is observable (Panel A) and under moral hazard (Panel B). The maximum and minimum
expected utility within the values of the contract represented are reported. The horizontal
axes represent the incentive fee, �, and the percentage in the benchmark portfolio invested in
the market, h, respectively. The three-dimensional cross identi�es the optimal contract. b (a)
denotes the investor�s (manager�s) risk aversion coe¢ cient.
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Figure 5: The manager�s portfolio constraints are m = 2 and s = 0. The vertical axis in each
�gure represents the investor�s expected utility under moral hazard. The maximum and mini-
mum expected utility within the values of the contract represented are reported. The horizontal
axes represent the incentive fee, �, and the percentage in the benchmark portfolio invested in
the market, h, respectively. The three-dimensional cross identi�es the optimal contract. b (a)
denotes the investor�s (manager�s) risk aversion coe¢ cient.
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Figure 6: The manager�s portfolio constraints are m = 3 and s = 0. The vertical axis in each
�gure represents the investor�s expected utility under moral hazard. The maximum and mini-
mum expected utility within the values of the contract represented are reported. The horizontal
axes represent the incentive fee, �, and the percentage in the benchmark portfolio invested in
the market, h, respectively. The three-dimensional cross identi�es the optimal contract. b (a)
denotes the investor�s (manager�s) risk aversion coe¢ cient.
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Figure 7: The manager�s portfolio constraints are m = 1 and s = 1. The vertical axis in each
�gure represents the investor�s expected utility under moral hazard. The maximum and mini-
mum expected utility within the values of the contract represented are reported. The horizontal
axes represent the incentive fee, �, and the percentage in the benchmark portfolio invested in
the market, h, respectively. The three-dimensional cross identi�es the optimal contract. b (a)
denotes the investor�s (manager�s) risk aversion coe¢ cient.
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Figure 8: The manager�s portfolio constraints are m = 1 and s = 2. The vertical axis in each
�gure represents the investor�s expected utility under moral hazard. The maximum and mini-
mum expected utility within the values of the contract represented are reported. The horizontal
axes represent the incentive fee, �, and the percentage in the benchmark portfolio invested in
the market, h, respectively. The three-dimensional cross identi�es the optimal contract. b (a)
denotes the investor�s (manager�s) risk aversion coe¢ cient.
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Figure 9: The manager�s portfolio constraints are m = 2 and s = 1. The vertical axis in each
�gure represents the investor�s expected utility under moral hazard. The maximum and mini-
mum expected utility within the values of the contract represented are reported. The horizontal
axes represent the incentive fee, �, and the percentage in the benchmark portfolio invested in
the market, h, respectively. The three-dimensional cross identi�es the optimal contract. b (a)
denotes the investor�s (manager�s) risk aversion coe¢ cient.
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Figure 10: The manager�s portfolio constraints are m = 3 and s = 2. The vertical axis in each
�gure represents the investor�s expected utility under moral hazard. The maximum and mini-
mum expected utility within the values of the contract represented are reported. The horizontal
axes represent the incentive fee, �, and the percentage in the benchmark portfolio invested in
the market, h, respectively. The three-dimensional cross identi�es the optimal contract. b (a)
denotes the investor�s (manager�s) risk aversion coe¢ cient.
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