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Abstract

This paper models the dynamic behavior of future bond returns. Using a
no-arbitrage approach, we predict joint dynamics of future bond returns at all
maturities using both term-structure and macro variables. The dimensionality
reduction is achieved by composing index factors of the underlying variables.
The modeling flexibility is preserved without specifying the functional form for
the model dependence on the index factors. We develop a semi-parametric
estimation scheme in Generalized Method of Moments (GMM) framework. We
show that model based on both term-structure and macro variables is superior
to model using only the term-structure variables in predicting future bond
returns at all maturities. Moreover, it is shown that the index model can
better forecast bond returns at longer time horizons.

JEL Classifications: C5, E4, GO.
Keywords: no-arbitrage, pricing kernel, semi-parametric. non-parametric,

GMM.



1. Introduction

In recent years, a vast literature has modeled term structure dynamics as well as
developed econometric tools for estimation. Most term-structure models have focused
on fitting the yield curve, but relatively little attention has been paid on the forecast
in yield changes over time. Although the expectations hypothesis (hereafter EH)
implies that excess returns on zero-coupon bonds follow a white noise process, a series
of classic regression analysis in Fama and Bliss (1987), Campbell and Shiller (1991),
Cochrane and Piazzesi (2005), and many others have revealed evidences against EH
and this result has motivated search for the underlying factors that forecast future
movements in bond returns.

Cochrane and Piazessi (2005) found that the same linear combination of forward
rates predicts 1-year-ahead excess returns at all maturities. This paper extends their
work in investigating the return-forecasting ability of the common factors. Using no-
arbitrage approach, we are able to model the joint dynamics of future bond returns
at all maturities. Besides using yields and forward rates as the underlying variables,
we include both real and macro variables to study their implications of the return
forecasts.

This paper develops a semi-parametric estimation method to conduct our model
estimation. Under the arbitrage-free assumption, the pricing kernel is projected onto
a few index factors formed by the economic variables without specifying any functional
form for the projection. One advantage of the proposed index factor model is that
it allows us to predict all future bond returns based on only a few factors without
imposing restrictive assumptions on the model specification. Our empirical study
shows that the proposed index factor model is more flexible than a linear model in
forecasting bond returns at all maturities.

We propose and estimate one- and two-index factor models to determine whether
macro variables offer any incremental return-forecasting power in the presence of
yields and forward rates. Our results show that by incorporating macro variables,
the model produces better forecasts than its counterpart using only the information
in term-structure variables. We also explore the index model’s predictability for bond
returns at long forecasting horizons. Similar to the finding in Diebold and Li (2006),
our result indicates that the model has superior return-forecasting performance at
longer horizons.

The rest of the paper is organized as follows. Section 2 provides a detailed de-
scription of the modeling framework and econometric method. Section 3 describes
the data. Section 4 reports our empirical findings and relates it to preceding works.
Section 5 concludes.



2. Model and econometric method

In this section, we develop a non-parametric kernel-based approximation to the
pricing kernel using a no-arbitrage asset pricing approach. Section 2.1 describes the
basic idea of the no-arbitrage condition. Section 2.2 introduces a kernel-based pricing
kernel estimator in GMM framework. Section 2.3 gives details of a low-dimensional
index modeling approach due to the curse of dimensionality problem in general non-
parametric econometric methods.

2.1 A nonlinear arbitrage pricing model

The basic idea in the arbitrage pricing theory (hereafter, APT) by Ross (1976) is
to assume that the markets are arbitrage-free and that the dynamics of asset payoffs
are linear in a few state variables of the economy. The linearity assumption and the
no-arbitrage restriction lead to a linear relationship between the pricing kernel (or
state-price deflator) and the underlying state variables.

However, Bansal and Viswanathan (1993) and Chapman (1997) argued that the
linearity assumption in APT can be relaxed by allowing the asset payoffs to be non-
linear in the underlying state variables. They model the pricing kernel using polyno-
mials of a small number of the state variables, so that the pricing kernel is capable of
explaining nonlinear payoffs.

An an alternative approach, which we pursue in this paper, is to approximate
the pricing kernel using a kernel-based non-parametric method. Under no-arbitrage
opportunity assumption, we project the pricing kernel onto a set of state variables
representing the current economic information set and estimate the pricing kernel
based on the joint density of the underlying state variables. Let F; be the information
set up to time ¢, and denote m;,; be a pricing kernel for a set of asset payoffs P; 1
to be realized at time £+ 1. The no-arbitrage assumption gives the following moment
condition:

=] -1 ()

One can also express the above restriction in terms of the holding-period returns

_ Piya,
Rt-l—l - P -

Em Ry — 1| F] =0 (2)

For illustration, consider the pricing kernel m;,; = m to be constant at the moment.
In a general GMM settings, the sample moment condition se(m) according to the
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Euler condition (2) can be formd by the law of iterated expectations:

se(m) = 7 3 [(mRuy 1) © 7] 3)

t=1

where 7, is a set of instrumental variables that represent the information content of
Fi.

Denote X; to be a d-dimensional vector of all the economic state variables under-
lying the pricing kernel m. One can obtain kernel-based non-parametric estimates of
the pricing kernel by replacing the instrumental variables Z; in equation (3) with a
joint kernel density of X;:

se(m) = %Z

t=1

(4)

(MRt — VK (Xt — “3)

h

The kernel density function in equation (4) can be taken as a t-measurable R? — R
instrumental variable that summarizes all the information in X;. A series of dynamic
estimates on the pricing kernel can be obtained by iterating the following GMM
estimator through ¢t =1,...,T":

xr = Xt: tzl,,T

m = argminse(m) Wy se(m),
st. m>0.

where Wy is a weighting matrix discussed in Hansen and Singleton (1992).

2.1.2 Kernel density and bandwidth selection

The kernel density function of X; in equation (4) is assumed to be equal to the
product of the univariate kernel density of each variable in X;. In general, as long as
the kernel density function is bounded and symmetric, the choice of functional form
is not as crucial as selecting the bandwidth h. In this paper, we use the Gaussian
density function for the kernel density of X;:

Xt—x d X't—.T‘
K = 7 L
( h ) 1;[1 < hj )

k(u) =




Selecting bandwidth includes a trade-off between bias and variance - a large A means
local averaging over more data points, which reduces the variance of the estimates, but
introduces bias in the estimator. On the other hand, a small A makes the estimator
capable of capturing more local behaviors in the data, but it increases the variance.
Following Silverman (1986) and Carroll, Fan, and Wand (1995), we use a simple
plug-in rule for selecting h:

by = Ao T, =1, 5)

Recall that d is the number of the state variables in X; and the term T_MIT‘D indicates
that as d gets large, one needs to tune up the size of the window around x in order to
include enough data points to analyze the local behaviors of X;. o; is the standard
deviation of the j-th series in X;. A is a tuning parameter, controlling the smoothness
of the estimator m. Since there is no conventional rule for selecting A, particularly
when our data is not serially independent, we use a trial and error approach suggested
in Chaudhuri and Marron (1999) and settle with A = 1.0 in our empirical analysis .

One distinct advantage of this non-parametric approach is that it allows a more
flexible projection of the pricing kernel on the state variables and lends the model to
capture more of the dynamics in asset payoffs. Another advantage of this method is
that since the kernel density K(%4~2) is a bounded function for any z given h > 0,
it avoids some over-fitting problems that arise in some parametric approximation
methods.

2.2  Index factor analysis

Due to the ”curse of dimensionality” problem inherited in most non-parametric
econometric methods, it is difficult to model the joint dynamics of future bond returns
when the dimension of the underlying d is large. That is to say, as the number of
state variables increases, the rate for the the pricing kernel estimator converging to
its asymptotic distribution becomes exponentially low. To tackle this problem, we
adopt a semi-parametric scheme by assuming that the pricing kernel m only depends
on some linear combination of the underlying state variables and the functional form
of this dependency stays unrestricted.

Modeling the pricing kernel based on composite indices of the state variables is
motivated by the projection pursuit regression model by Friedman, et. al. (1981).
The basic idea of projection pursuit is to find the projections (directions) from high-
to low-dimensional space that reveal the most details about the structure of the data

!"'We verify that the estimated factor loadings are fairly close in a range of A = [0.7,1.2].



set. Our index approach is also supported by Cochrane and Piazzesi (2004), which
shows that a linear combination of the forward rates is a common factor for forecasting
future excess returns on bonds at all maturities.

For conducting the model estimation, we extend the idea in Ait-Sahalia and
Brandt (2001) and develop an estimation procedure that simultaneously estimates
the index coeflicients and the associated pricing kernel by iterating through the fol-
lowing estimators:

m = argmin T se;(m)Wirse;(m), t=1,..T. (6)
st. m>0.
g = argmin T sey(B) Wor seq(B) (7)
st |18l =1. (8)
Where

T T _
seam) = S (R - k(I
and
T
sea(B) =T m(XiB)Rep1 — 1] @ Z, 9)
t=1

The discussion in Section 2.1 illustrates that for a given set of values on index co-
efficients 3, one can obtain a series of dynamic estimates of the pricing kernel by
equation (6) for each t = 1,...,7. This procedure is then repeated at each GMM
iteration of equations (7)-(8) until the convergence criterion? is met. To simplify the
estimation procedure, we fix the weighting matrix Wi in equation (6) to an identity
matrix, so that all the sample moments in se;(m) are treated as equally important.
For the estimation of 3, we account for heteroskedastity and serial correlation of the
sample moments in equation (7) by adopting the optimal weighting matrix War as
discussed in Hansen and Singleton (1992):

Wop = S
J
S = 8,+Y w8 +5]
j=1

2We set our convergence tolerance to be 1.e-10 in our empirical work.
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sen(f) = [m(Xtﬁ)RtH — 1] ® Z;

where w(j) is a Parzen kernel weighting function (see Gallant, 1987) with J as the
pre-determined lag truncation parameter.

3. Data

In this section, we discuss the data used in our empirical analysis.

3.1 Holding period returns, yields, and forward rates

According to Knez, Litterman, and Scheinkman (1994), the total variation in the
interest rates can be decomposed by the ”level”, ”spread”, and ”curvature”, which are
often regarded as some linear combinations of the yields themselves. Knez, Litterman,
and Scheinkman (1994) also suggests that the "level” factor alone can explain up to 90
percent of the total variation. The regression analysis in Fama and Bliss (1987) and
Campbell and Shiller (1991) show that a linear combination of the yields or forward
rates can explain the dynamics of future bond returns quite well. Moreover, Cochrane
and Piazzesi (2004) shows that forward rates are useful for predicting future bond
returns. In light of all these previous studies, we include 1-year yield and forward
rates as the term-structure variables for predicting future bond returns.

All the data on holding period returns, yields, and forward rates are constructed
from the US government bond prices®, which contains monthly-sampled bond prices
with maturity varying from 1 to 5 years. The sample covers from January, 1960 to
December, 2003, resulting in 528 monthly observations in each bond return series*.
Figure 1 plots the standardized 1-year yield and 2-5 year forward rates over time.

Let pg ") denote the log price of n-year discount bond at time ¢, where n measures
the time to maturity in years and ¢ is measured in months correspondmg to our sample
frequency. Thus, the n-year yield yt ) and forward rate f?t at ¢ can be defined as
follows:

m _ _1 m
Yi npt
;O = )l

3We use the unsmoothed Fama-Bliss data.
4The data is retrieved from CRSP.



Also let Tt(z)u denote the 1-year holding period return, from buying a n-year bond
at time ¢ and selling it as a n — 1-year bond a year later at time ¢ + 12:

rithe = pitn’ - ol (10)

Table 1 reports the sample statistics of the 1-year holding period returns 7,15 at all
maturities. Cochrane and Piazzesi (2004) indicates that although both yields and
forward rates should span the same space for bond prices, their empirical evidence
suggests that a linear combination of the forward rates outperforms its counterpart
using the yields in predicting future bond returns. Moreover, by looking directly
at 1-year forecasting horizon, one can recover the return-forecasting ability of the
forward rates. However, if looking at a higher frequency of monthly- or daily-horizon,
this return-forecasting ability is likely to be concealed by measurement errors. We
first adopt regression analysis to check if this common-factor feature for the expected
return also exists in our data sample:

7“18212 = [17 yrgl)a ft]’Y(J) + 6%{24—127 .7 = 27 37 47 5 (11)
where

ft = [ft(2)7 ft(3)a ft(4)a ft(5)]a

YD = [, A, §=2,3,4,5.

Figure 2 graphs the estimated regression coefficients 4 across different terms to
maturity. The sample R? is 0.8075, 0.6183, 0.542, and 0.473 respectively for the
maturity of 2-5 years. The tent-like pattern shown in Cochrane and Piazzesi (2004)
is replicated here and it confirms that there is a common factor of the forward rates
underlying the predictability of future bond returns at all maturities in our sample.

3.2 Macro variables

Although it is quite common to use factors like yields or forward rates to explain
term structure dynamics, these factors do not lend themselves to understanding the
economic conditions, if any, that interacts with the term structure dynamics. To
better relate economic conditions to term structure, recent studies used macro vari-
ables to explain the movements in bond prices and found that some macro variables
do have influences on the dynamic behavior of the term structure. Examples in-
clude, (a) consumer pricing index for all urban consumers (CPI, Hardouvelis, 1988);
(b) producer price index for finished goods (PPI, Dwyer and Hafer, 1989; McQueen
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and Roley, 1993; Piazzesi, 2000); (c¢) M2 money stock (M2, Ghysels and Ng, 1998);
(d) industrial production index (IP, McQuenn and Roley, 1993; Roley et al., 1983,
Ghysels and Ng, 1998); (e) non-farm payroll employment (EMPLOY, McQueen, and
Roley, 1993; Piazzesi, 2000); (f) real personal consumption (PCE, Hardouvelis, 1983);
and (g) housing starts (HS, Ghysels and Ng, 1998). As suggested in these preceding
literature, we use CPI, PPI, and M2 as our nominal macro variables and IP, EM-
PLOY, PCE, and HS as the real macro variables for predicting future movements in
bond prices. All the macro series used in our analysis are seasonally adjusted and
retrieved from Federal Reserve Economic Data (FRED). We take each macro variable
as the annual growth rate of the macro series, where the growth rate is measured as
the difference in logs of the series levels at time ¢t and ¢ — 12. We then standardize
each constructed macro data series and use them as the underlying predictors in our
empirical study. Figure 3 plots the time series of the macro variables.

Let S = [CPI,PPI,M2,IP,EMPLOY, PCE, HS] be the collection of all the
macro variables mentioned above. To study the causal relation between the current
economic conditions and future bond returns, we project ry 12 onto S;:

Tgi)u = [1,St]a(j) + €gj,g+12a J=2,3,4,5. (12)
where
o9 = (o) o)), j=2345 (13

Figure 4 plots the coefficients estimates & with the maturity. The sample R? is 0.3712,
0.2463, 0.196, and 0.175 respectively for 2-5 year bonds. Although the pattern is
no longer tent-shaped, it suggests that a linear combination of the macro variables
forecasts bond returns at all maturities. The above interpretation of the plot in
Figure 4 is based on observing that the coefficient estimates &Z@ associated with
each macro variable has the same sign and is monotonic in j - bond returns with
longer maturities have greater loadings on the same linear combination of the macro
variables. A comparison of the sample R? illustrates that the regression model with
the macro variables is not as nearly impressive as the model with the term-structure

variables for explaining the total variations in future bond returns.

For a clarification of some notations used in the next section, let X; contain all
the observations on the selected state variables at time ¢; namely,

Xo= [y 12, 10, 50, 1,81 (14)

Also, we set the instrumental variables Z; equal to X; augmented by a constant term
in all the following GMM estimations.
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4.  Empirical Results

This section discusses our empirical findings. Section 4.1 shows the forecasting
performance based on each variable in X;. Section 4.2 compares the return-forecasting
abilities of a one- and two-index factor models. Section 4.3 revisits the issue of the
linearity assumption in APT. Section 4.4 applies the index factor model to forecast
long-horizon holding period returns.

4.1 Forecasting performance with univariate time series

We first evaluate the return-forecasting performance for 1-year-ahead bond re-
turns. Figure 5 plots the return-forecasting dynamics of the pricing kernel based on
each series in X;. Table 2 presents the prediction errors (in root mean square er-
rors, hereafter RMSE) associated with the pricing kernels plotted in Figure 5. Each
prediction error is computed as follows:

e =m(Xj)Ryy1o—1, j=1,...,12. t=1,..,5I6. (15)

Not to our surprise, the model based on the term-structure variables is superior to the
one with the macro variables in predicting 1-year-ahead bond returns at all maturities.
A comparison to the standard deviations reported in Table 1 illustrates the point that
any term-structure variable alone can predict about 50, 40, 30, and 25 percent of the
total variations of 1-year-ahead bond returns at respectively 2, 3, 4, and 5 years to
the maturity. However, the prediction power of any given macro variable is much less
impressive: each macro variable can only contribute, on average, no more than 20
percent of the total variation of each return series.

In a search for an ”adequate” bandwidth A required in our model estimation, we
detect a trade-off between the forecasting abilities for the short- and long-term bond
returns. This trade-off is due to the bandwidth size h in equation (4). Specifically,
within a certain range, a large h generates a smooth dynamic estimates on the pricing
kernel, hence, it reduces the prediction errors of the short-term bond returns while
inducing prediction errors for the long-term bonds. On the other hand, a small A
reduces the prediction errors for the long-term bonds by incorporating more dynamics
in the pricing kernel, but simultaneously creating more errors in predicting short-term
bond returns. This observation not only reflects the statistical fact that holding-
period returns on long-term bonds are more volatile than the short-term bonds, but
it also suggests that a single common factor is not good enough to simultaneously
capture the dynamics of the bond returns at all maturities.
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4.2 Forecasting performance with index factor

To explore the return-forecasting ability of the index factor model, we follow the
estimation procedures described in Section 2 to obtain GMM estimates on the index
loadings . Since the estimator B is dependent on another non-parametric estimator
m, when computing the standard error of the estimates on 3, the uncertainty in m
should be taken in account. Details of the asymptotic results are provided in Appendix
A. Despite the existence of a non-parametric component 7 in the estimator of 3,
is shown to be consistent and achieves its asymptotic normal distribution at the
convergence rate of v/7.

Table 3 reports our GMM estimates on index loadings of a two-index model.
One can judge the importance of each index component’s from its standard error
reported in the parenthesis. In the first composite index, both 2- and 5-year forward
rates are shown to be significant for predicting 1-year-ahead bond returns. For the
second composite index, only non-farm payroll employment (EMPLQY) appears to
be a significant predictor among all the selected macro variables. The contemporary
correlation of the indices is -0.33222 and Figure 6 shows the time series plot of each
index factor. Figure 7 plots the estimated pricing kernel over time based on both
composite indices (in solid line).

To examine the return-forecasting ability of the two-factor model with both term-
structure and macro variables, we estimate a one-index model based on the term-
structure variables alone. The prediction errors (in RMSE) in Table 4 indicate that
the pricing kernel implied by the two-index model outperforms its one-index counter-
part. Moreover, Table 4 shows that the two-index model can reduce, on average, 50
percent of the total variations in bond returns at all maturities. To further contrast
the forecasting abilities of the models, we adopt the forecast accuracy test proposed
by Diebold and Mariano (1995). Let dj; = €3, ;—€3,,, j = 2,3,4,5 denote the differ-
ence in squared prediction errors at time ¢ across different maturities, where e;;; and
ejt2 are each attributed to the one- and two-index models, respectively. According
to Diebold and Mariano (1995):

d

=~ N(0,1),

v

T

A — A J A A~

Vd) = o+ wl) [Vi+ V],
j=1

5Due to the property of the kernel density function, the positivity restriction imposed on the
pricing kernel m > 0 is never bounded in our estimation. Therefore, we regard it as an unconstrained
optimization problem when we estimate m in this paper.
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. 1 Z
Vi = 7 Y (di—d)(dy—j — d)
t=j+1

where w(.) is a decaying function in j with J as the truncation parameter®.

The test result is reported in Table 4 and it favors the two-index model in pre-
dicting the 1-year-ahead bond returns at all maturities.

4.3 Linearity assumption in no-arbitrage pricing model

Despite the fact that the main focus of this paper is to explore the return-
forecasting power of a nonlinear no-arbitrage pricing model, it is still an open question
whether linearity is a valid assumption in the application of forecasting in bond re-
turns. For the answer to this question, we re-model the relationship between the
pricing kernel and the underlying X; in accordance with a linearity constraint and
solve the following optimization problem”:

~

0 = S€3(5)I WgT 863(5), (16)
863(5) = T_l i [(Zéé) Rt+12 - 1] ® Zt (17)

The pricing kernel in equation (15) is modeled as a linear function of the state variables
X; added by a constant. Table 3 indicates that all the term-structure and real macro
variables have significant contributions to the return-forecasting model. This result
implies that the term-structure and the nominal macro variables may share similar
information contents regarding the future movements in bond returns. Table 4 shows
that the forecast accuracy test rejects the linear model in favor of the two-index
nonlinear model, and the test results are even more significant with the long-term
bonds (maturity of 3-5 years). Figure 7 plots the pricing kernel estimated over time
based on the linear model (in dotted line).

4.4 Forecasting long-horizon bond returns

We discuss forecasting ability of a nonlinear no-arbitrage model in Section 4.2. In
this section, we turn to explore the index factor model’s return-forecasting ability at
longer horizons.

6In our empirical study, we use Parzen kernel in Gallant (1987) and set J = 12
"This is an unconstrained optimization problem, since the positivity constraint for the pricing
kernel is never bounded in our estimation procedure.
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Let Ry 194 denote a 3 by 1 vector of 2-year holding period returns on 3-5 year
bonds. Similarly, Ry, 36 is denoted as a 2 by 1 vector containing 3-year holding period
returns on 4-5 year bonds:

3 4 5
Rijos = [Tt(+)247 T7§+)24a T7§+)24]a
4 5
Rz = [Tt(+)3677“ t(+)36]
where

@ _
Tiios =
@ _
Tii3e =

(Y2 —pPY /2, j=3,4,5
@ —p)/3, j=4,5

Similar to the steps taken in Section 4.2, here we compare the forecasting abilities
of both one- and two-index models for 2- and 3-year-ahead bond returns. Table 4
reports the prediction errors (in RMSE) associated with each index model. The ratios
of the prediction errors and the corresponding sample statistics (standard deviations
are reported in Table 1) indicate that at 2-year forecasting horizon, the two-index
model predicts respectively 68, 65, and 56 percent of the total variations of 3-, 4-,
and 5-year bond returns. At the horizon of 3 years, the two-index model can explain
up to 76 and 67 percent of the total variations of the returns on long-term bonds.
Therefore, we find that the two-index model can better forecast bond returns at longer
horizons. This suggestion is in line with Cochrane and Piazzesi (2004) and Diebold
and Li (2006), who find that term-structure factors have better forecasting power for
longer horizon yields.

Since the no-arbitrage model is generally used to fit a cross section of asset payoffs
at any point in time, which, by construction, constrains its ability to explain the
dynamics of each payoff over time, we worry that in a no-arbitrage setting, the superior
forecasting performance for the long-horizon returns is mainly due to the fact that
the dimensions of R4 or R; 36 are lower than that of R; 12, and makes the model
less restricted to track the dynamics of each return over time. To justify this concern,
we run an experiment by re-estimating the two-index model at a 1-year forecasting
horizon, but only for the long-term bonds (4- and 5-year bonds). The estimation result
(not reported) shows that the two-index model accounts for less than 50 percent of
the total variations of the long-term bonds at 1-year forecasting horizon. The result of
this experiment suggests that the model does offer a better fit for the long forecasting

horizons.8.

8The estimated return-forecasting pricing kernel can only capture 49 and 43 percent of the total
variations in 4- and 5-year bonds.
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Despite being insignificant for the 2-year forecast of the 3-year bond return, the
test result in Table 4 shows that the two-index model is superior to its one-index coun-
terpart in forecasting long-horizon bond returns. This implies that macro variables
do help in predicting future dynamics of the holding period returns.

5 Conclusion

In this paper, we explored the in-sample forecasting performance of a no-arbitrage
model for holding period returns on zero-coupon bonds at different horizons. We take
yields, forward rates, and macro variables as the underlying predictors and evaluate
their return-forecasting power. The dimensionality reduction is achieved by assuming
that the return-forecasting pricing kernel is dependent on a few index factors formed
by the underlying economic predictors, and yet the functional form of the dependency
is left unspecified.

In methodology, we propose a semi-parametric econometric method to simulta-
neously identify the index factors and the associated dynamic pricing kernel in an
iterative GMM estimation framework. The proposed estimation method is shown to
be able to enhance modeling flexibility for capturing the dynamic behavior of future
bond returns at all maturities.

Despite detecting a rather unimpressive performance in fitting future dynamics
of the bond returns based on macro variables alone, we show that an index factor
composed of the macro variables improves the term structure model’s forecasting
ability at different time horizons. This index-factor model performs even better in
forecasting bond returns at longer horizons.

One possible future research direction is to extend this work and investigate the
model’s return-forecasting ability over the entire yield curve, as the current return
data used in this paper only covers a portion of the whole term structure dynamics.
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Appendix A

This section provides a technical support on deriving the asymptotic distribution
of the index coefficient estimates in equations (6)-(8).

Take X; = [X1;, Xo] and § = [y, B2]. The asymptotics of 3 = [y, Bs] follow from
a series of Taylor expansions of the GMM moments (6) and (7):

Fort=1,..,T
dseq(m a(fritﬂ ﬂ)) Wlsel(m(Xtﬁ;B)) = 0 (18)
[88626(7”(@) afgé@] Wasea((B)) = 0 19)

First, we expand the term sey (mB) in equation (7) around Sy:

2 OMAT i e + 2D )] o

where 5* € [8y, A].
Let

Q= El lasez((;’;ro;(ﬁo)) 3m§éﬁo)]IW2 3562((;7:2(50)) 3m{;éﬁo)] (21)

and expand the term sey((5p)) in equation (19) around my(X;B; 5o), we get

0ses (g:r(;(ﬁo» amgéﬁo)] W, lseg(mo (Bo)) +

BB = —Q‘ll

Tlilatm@zt] (R (X o) — m()(Xtﬁo;ﬁo))](Hop(l)) (22)

Given [y, expand se; (m(X;5o; Bo)) in equation (6) around mg(X;50; Bo):

8861( (Xtﬁo,ﬁo))
am W1 lsel(mo(XtBO))
asel(m*a(itﬂo;ﬁo))[m(Xtﬁo;ﬁo)—mo(Xtﬂo;ﬁo)]] = 0 (23)
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and now denote

dseq (mo(XBo: Bo))' W dse1 (mo(Xifo; Bo))

A= om ' om (24)
m(X:Bo; Bo) — mo(XeBo; Bo) = _A13861(moéi:50;ﬂ0)) W, x
se1 (mo(X¢fo; Bo)) (1 + 0p(1)) (25)
According to Section 2.2:
T —
sel(mO(Xtﬁm 50)) = ﬁ Z(moRst — 1)]§(X15510 " Xpﬁlo) %
s=1
k(X23520 h—2 X2t520) 26)

Substitute equation (24) into the second term of equation (21), and define

_, 0se1(mo(X:60; Bo))’
R Z) AT =
[Rit12 ® Zy] om

XIS/BH) - Xltﬁlo )
hy

) (27)

Pr1z,s+12( Xy, X)) = Wi x

" hihe
(moRyst12 — 1)k(

X25ﬁ20 - X2t1320
hay

k(

Notice that pyy12,5+12(Xt, Xs) # Dst124+12(Xs, Xt), and in order to write the second
term in equation (21) using U-statistics representation, we define a function ¢(.) which
is symmetric in ¢ and s:

Pet12,5+12( Xty Xs) + Psr12,e+12(Xs, Xi)

Q12,5112 X, Xs) = 5 (28)
Thus, the second term in equation (21) can be rewritten as:
= Z[Rt+12 ® Zy](m(XBo; o) — mo(X:Bo; Bo))
=
) T T
= T_Z Z Gr12,5412(Xe, Xo) [ (14 0,(1)) (29)
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The bracket term in equation (28) is a representation of U-statistics, and by
following the asymptotic behavior of U-statistics in Powell, Stock, and Stoker (1989),
one can show that v/T(8 — fy) has a limiting normal distribution.

Moreover, let r(X;) = Elgri12,s+12(Xe, X5) | X4],

dsea(mo(fo)) 8m0(50)] W, lﬁseg(mo(ﬂo)) +

VI(B-p) = -Q l

om op
1 L ]
— r(Xy)| + 0,(1 30
72X £ (1) (30)
Denote
dseq(mo(Bo)) Omo (o)
_ 1
¢ om op (31)
and since
1 T
sea(mo(fo)) Z mo(X11810, XotB20)Reg12 — 1) ® Zy (32)
Ti=
and one can verify that:
E [C'Wa(mo(X1tP10, XotBoo)Ret12 — 1) ® Zy] = 0; (33)
E[C'War(Xy)] = 0 (34)
Finally, we show that
\/T(/B — Bo) ~ N (0, Q" IC'WLEWLCQ™);
where
1 T
Y = Cov |VTses(mo(Bo)) + Vo > r(Xy) (35)
t—1
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Table 1: Sample Statistics of US Zero-Coupon Bond Returns

Maturity(yr.) Mean Std.Dev. Skewness Kurtosis

1-year Horizon

2 1.0681  0.0349 1.2223 4.8539

3 1.0714  0.0449 1.1131 4.7272

4 1.0733  0.0555 0.9665 4.4198

3 1.0730  0.0647 0.8730 4.2530
2-year Horizon

3 1.0702  0.0317 1.0752 3.9077

4 1.0726  0.0384 1.0342 3.7456

3 1.0733  0.0449 0.9501 3.6334
3-year Horizon

4 1.0716  0.0300 0.9792 3.5500

5 1.0729  0.0349 0.8913 3.1764

Values shown are the sample statistics for the holding-period returns on 2-5 year bonds at 1-3 year
forecasting horizons. The holding-period returns are computed from the unsmoothed Fama-Bliss
Zero-coupon prices.
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Table 2: Prediction Errors for 1-year-ahead Bond Returns

2-year 3-year 4-year 5-year

Term-structure Variables
1-year yield 0.0166 0.0289 0.0405 0.0500
2-year forward rate 0.0148 0.0266 0.0378 0.0471
3-year forward rate 0.0164 0.0264 0.0362 0.0454
4-year forward rate 0.0180 0.0290 0.0398 0.0485
5-year forward rate 0.0153 0.0257 0.0367 0.0453

Nominal Macro Variables

CPI 0.0271 0.0370 0.0471 0.0560
PPI 0.0304 0.0397 0.0498 0.0586
M2 0.0309 0.0393 0.0498 0.0575

Real Macro Variables

IP 0.0306 0.0390 0.0488 0.0574
EMPLOY 0.0322 0.0405 0.0501 0.0586
PCE 0.0316 0.0405 0.0504 0.0589
HS 0.0303 0.0396 0.0499 0.0587

Shown are the prediction errors in RMSE for 1-year-ahead bond returns at 2-5 years of maturity.
Each pricing error is computed as the difference between the actual and the model-based bond return
by each of the underlying state variables. The details of the computation is given in Section 4.1.
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Table 3: GMM Estimates on Index Coeflicients for Return-forecasting Models

Two-index Factor Model Linear Model

Forecasting Horizon 1-yr. 2-yr. 3-yr. 1-yr.
Const. 0.9367
(0.0008)
1-year yield 0.0694 -0.1615 -0.0614 0.0180
(0.6747) (0.3241) (1.3558) (0.0039)
2-year forward 0.0787  0.7427  0.5111 -0.0393
(1.1769) (0.9747) (3.8458) (0.0060)

3-year forward 0.8090 0.3628 0.7166 -0.034
(0.2665) (0.7973) (3.3188) (0.0042)
4-year forward 0.2595 0.3523 0.24 -0.0106
(0.7087) (1.3216) (1.6461) (0.0032)
5-year forward -0.5168  -0.4082  -0.4048 0.0319
(0.2241) (0.6575) (0.7647) (0.0025)
CPI -0.4837 -0.5192  -0.4826 0.0019
(0.6138) (0.3552) (2.3902) (0.0034)
PPI 0.2661 0.1987  0.1838 0.0025
(0.5514) (0.4936) (1.8274) (0.0031)
M2 -0.2379  -0.1624 -0.1124 0.0015
(0.3644) (0.2785) (0.9842) (0.0009)
IP 0.1824  0.1626  0.1618 -0.0046
(0.5143) (0.3201) (2.7580) (0.0017)
EMPLOY -0.7633  -0.7679  -0.799 0.0089
(0.4109) (0.2722) (1.2581) (0.0014)

PCE -0.0738 -0.0774  -0.0944 0.0041
(0.5915) (0.4941) (0.4502) (0.0016)
HS -0.1318  -0.2063 -0.2171 0.0044

(0.1479)  (0.2048) (0.7172)  (0.0011)

Column 1-3 report the coefficient estimates on a two-index factor model for predicting 1-, 2-, and
3-year-ahead bond returns. The last column shows the coefficient estimates on a linear model. All
models are estimated using GMM optimal weighting matrix for the heteroskedasticity and serial
correlation in the sample moments. The truncation lag parameter J = 12 in the weighting matrix.
A detailed description of the estimation procedures is given in Section 2.2.

24



Table 4: Forecasting Performances for 1-year-ahead Bond Returns

Maturity 1

2-year  0.0161
3-year  0.0288
4-year  0.0405
5-year  0.0500

Model
2

0.0157
0.0208
0.0299
0.0391

3

0.0173
0.0234
0.0324
0.0416

t-stat (1-2) t-stat (2-3)

0.0508 1.1096
4.1478%* 2.5311*
4.3054* 2.4213*
4.3096* 2.3816*

Column 2-4 show the prediction errors (in RMSE) of 3 models: a one-index model(Model 1), a
two-index model (Model 2), and a linear (Model 3) model. The pricing kernel in one-index model is

assumed only dependent on the term-structure variables. While the two-index and linear models in-
clude both term-structure and macro variables. Column 5 shows the Diebold-Mariano test statistics
on the forecasting powers of Model 1 and 2. The last column reports the test statistics for Model

2 and 3. The DM ¢ statistics are computed with the adjustment for heteroskedasticity and serial

correlation in the pricing errors.
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Table 5: Forecasting Performances for 2-year-ahead Bond Returns

Maturity One-index Model Two-index Model ¢-stat

3-year 0.0117 0.0103 1.2407
4-year 0.0201 0.0135 3.0755%
d-year 0.0274 0.0196 3.1385%

Column 1-2 show the prediction errors (in RMSE) based on one- and two-index models, respectively.
The one-index model is only dependent on the term-structure variables, and the two-index model
uses both term-structure and macro variables. Column 3 shows the Diebold-Mariano test statistics
on the forecasting powers of the models. The ¢ statistics is computed with the adjustment for

heteroskedasticity and serial correlation in the pricing errors.
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Table 6: Forecasting Performances for 3-year-ahead Bond Returns

Maturity One-index Model Two-index Model ¢-stat

4-year 0.0088 0.0056 2.1212%*
b-year 0.0145 0.0107 2.045*

Column 1-2 show the prediction errors (in RMSE) based on one- and two-index models, respectively.
The one-index model is only dependent on the term-structure variables, and the two-index model
uses both term-structure and macro variables. Column 3 shows the Diebold-Mariano test statistics
on the forecasting powers of the models. The ¢ statistics is computed with the adjustment for
heteroskedasticity and serial correlation in the pricing errors.
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Figure 1: Times Series of 1-year Yield and 2-5 Year Forward Rates
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Shown are the time series of the standardized 1-year yield and 2-5 forward rates during the sample
period of January 1960 to December 2003.
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Figure 2: Factor Loadings of the Term-structure Variables
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Shown are the OLS coefficients from the projections 2-5 year bond returns on 1-year yield and 2-5
year forward rates.
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Figure 3: Times Series of Macro variables
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Plotted are the time series of the nominal and real macro variables during the sample period of
January 1960 to December 2003.
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Figure 4: Factor Loadings of the Macro Variables

Shown are the OLS coefficients from the projections 2-5 year bond returns on the selected macro
variables.
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Figure 5: Pricing Kernels from Single-factor Nonlinear Pricing Models
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Plotted are the time series of the pricing kernels, estimated based on each of the underlying variables:
1-year yield, 2-5 forward rates, nominal, and real macro variables.
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Figure 6: Times Series of the Index Factors
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The first panel shows the term-structure index dynamics, and the second panel plots the macro
index dynamics. Both indices are simultaneously estimated from a two-index nonlinear model for

predicting future bond returns at all maturities.
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Figure 7: Pricing Kernels from Two-index and Linear Models
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The pricing kernel according to the two-index model is plotted in solid line. The dotted line is for
the pricing kernel from the model with the linearity constraint.
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