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Stock Market Momentum, Business Conditions, and GARCH Option Pricing 
Models 

 
 

Abstract 
 
This study investigates forecast performance of GARCH option pricing models under 
the market momentum perspective. Additionally, the possible impacts of financial 
crises and business conditions on forecast performance of GARCH option pricing 
models are examined as well. The empirical results demonstrate that market 
momentum has impacts on forecast performance of GARCH option pricing models. 
In particular, the EGARCH model performs better in downward market momentum 
while the standard GARCH performs better in upward market momentum. Further, 
parsimonious models generally perform much better than richly parameterized models. 
The findings above are robust to financial crises. Finally, the business conditions are 
shown to have influences on forecast performance of GARCH option pricing models. 
 
JEL: C52; C53; G13 
Keywords: GARCH, Option, Market Momentum, Business Condition, Financial 

Crisis 
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1. Introduction 

The dynamics of volatility play a very important role in option pricing models. 

Overwhelming empirical evidence shows that volatility is time varying, which leads 

to evaluation biases in the Black-Scholes formula with a constant volatility for option 

pricing. Several option pricing models incorporating non-constant volatility within 

discrete time and continuous time frameworks have been put forth. Under the discrete 

time framework, the family of GARCH has been extensively applied to return series 

in order to capture volatility characteristics, such as persistence, leptokurtosis and 

asymmetry, while the bivariate diffusion models for volatility were proposed under 

the continuous time framework. In practice, GARCH models can be easily 

constructed using historical data of underlying assets of traded options while diffusion 

models are hard to be implemented using discrete time observations. Additionally, the 

volatility models between discrete time and continuous time frameworks are not quite 

distinct from each other. 1  Consequently, option pricing models considering 

time-varying volatility in the discrete time framework are frequently constructed 

using the GARCH-family models. 

From the option pricing perspective, the GARCH option pricing models contain 

a risk premium and are not preference-free valuation formula (e.g., Amin and Ng 

(1993), and Duan (1995)). Extending the risk-neutralization in Rubinstein (1976) and 

Brennan (1979), Duan (1995) derived a locally risk-neutral valuation relationship for 

option pricing with the GARCH process in which the expected return of underlying 

assets equals the risk-free rate and the conditional volatility remains the same as in the 

preference setting. Empirical evidence regarding performance of GARCH pricing 

models showed that GARCH option pricing models have smaller valuation errors than 

the Black-Scholes model (e.g, Amin and Ng (1993), Heston and Nandi (2000), Duan 

and Zhang (2001), and Bauwens and Lubrano (2002)). Notably, Christoffersen and 

Jacobs (2004) examined GARCH option pricing models with different GARCH 

processes and concluded that the GARCH model simply containing the leverage 

effect perform not worse than more sophisticated GARCH models under 

                                                 
1 For example, Nelson (1991) demonstrated that volatility processes generated from some classes of 
GARCH models after appropriate reparameterization converged in distribution to bivariate diffusion 
processes. Duan (1997) analyzed the augmented GARCH processes in which multiplicative and 
additive shocks are taken into consideration and concluded that most of extant bivariate diffusion 
models can be represented as the limits of GARCH-family models. Duan, Ritchken, and Sun (2006) 
derived bivariate jump-diffusion limits of GARCH-Jump models. 
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out-of-sample forecasts even in-sample fitness weakly favors richly parameterized 

models. They also found out that densities implied by richly parameterized GARCH 

processes are not superior to that implied in the leveraged GARCH process, which 

leads them to suggest that the model adequacy for a GARCH option pricing model 

with a leverage effect deserves further investigation. Therefore, it is crucial to search 

for other perspectives to evaluate the performance of GARCH option pricing models. 

This paper aims to supplement the GARCH option pricing literature by 

empirically examining forecast performance of numerous GARCH option pricing 

models under the market momentum perspective. Past studies on GARCH option 

pricing models seldom consider the market momentum as the important factor 

affecting evaluation performance. However, it has long been recognized that there 

exist asymmetric responses in capital markets for upward and downward market 

trends. In general, negative returns generate higher volatility than positive returns 

(French, Schwert and Stambaugh (1987), Schwert (1989a, 1989b), and Engle and Ng 

(1993)). Meanwhile, Koutmos (1998) found that information efficiency is much better 

during the downward market than the upward market. Generally, volatility predicted 

by GARCH-family models can be related to investors’ psychological behavior. 

McQueen and Vorkink (2004) proposed that investors become more sensitive to news 

when negative shocks arrive and subsequently increase their risk aversion which leads 

to higher expected volatility. The impacts of negative shocks stay longer since 

increased sensitivity to news decays slowly. Consequently, volatility clustering and 

the asymmetric effect (leverage effect) predicted by the GARCH-family models result 

due to increases in sensitivity to bad news. Notably, Amin, Coval and Seyhun (2004) 

studied the relationship between option prices and past stock market movements and 

concluded that past stock market movements significantly raise the probability of 

violations of option price boundary conditions and implied volatility estimates 

increase when the stock market experiences downward movements. Consequently, it 

is worth studying the forecast performance of GARCH option pricing models under 

market momentum. 

Additionally, the evaluation of forecast performance of GARCH option pricing 

models is examined for financial turmoil events in this paper. It is noticed that the 

unusual financial event often causes stock price volatility to increase considerably. 

Schwert (1990) found that the monthly stock price volatility rose dramatically 
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following October 1987 crash in U.S. stock markets. Bates (1991) found that 

increasing option prices for out-of-the-money options drove implied volatility to 

increase before October 1987 crash. In addition, Bates (2000) investigated the 

evaluation performance of option pricing models with stochastic volatility and 

jump-diffusion processes for October 1987 crash in US. He found that the option 

pricing model with a jump-diffusion process matched observed option prices better 

than the option pricing model with a stochastic volatility process only. Studying 

Korean KOSPI 200 index option prices during 1997 Asian financial crisis, Bhabra, 

Gonzalez, Kim and Powell (2001) found that implied volatility of out-of-the-money 

options increased following the financial crisis. Duan and Zhang (2001) examined 

evaluation performance of NGARCH (nonlinear GARCH) option pricing model using 

Hang Seng Index Option traded in Hong Kong around the 1997 Asian financial crisis. 

They concluded that the NGARCH option pricing model outperforms the 

Black-Scholes option pricing model even after allowing a smile/smirk adjustment. 

Hence, it provides an opportunity of verifying consistent forecast performance of 

GARCH option pricing models by inspecting GARCH option pricing models in a 

turbulent financial environment. The relationship between forecast performance of 

GARCH option pricing models and macroeconomic factors is examined as well.  

Numerous financial studies have indicated that momentum trading strategies are 

able to generate profits. Jegadeesh and Titman (1993) first documented the 

profitability of momentum trading strategies. Jegadeesh and Titman (2001) reported 

that momentum trading profits continue to exist by examining nine more year data 

than Jegadeesh and Titman (1993). They also found long-term reversals in cumulative 

returns of momentum portfolios and suggested that investors’ delayed overreaction 

biases (Daniel, Hirshleifer and Subrahmanyam (1998), Barberis, Shleifer and Vishny 

(1998) and Hong and Stein (1999)) may explain the momentum trading profits instead 

of cross sectional dispersion in mean returns by Conrad and Kaul (1998). However, 

the momentum profits may not be an irrational anomaly. Johnson (2002) proposed a 

model which shows that past returns acting as an instrument for expected future major 

changes in business conditions could account for underreaction biases in momentum 

trading strategies. Chordia and Shivakumar (2002) showed empirical evidence of 

systematic relationship between momentum trading profits and business cycle 

variables. Although Cooper, Gutierrez Jr. and Hameed (2004) showed that it is market 

state instead of business cycle variables influencing momentum profits, Avramov and 
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Chordia (2006) further provided empirical evidence showing that momentum profits 

are related to asset pricing misspecification which strongly correlates with the 

business cycle. Consequently, business conditions may affect forecast performance of 

GARCH option pricing models due to momentum trading strategies. 

Empirical results show that market momentum has impacts on the forecast 

performance of GARCH option pricing models. When the market momentum goes 

downwards, the EGARCH model performs much better than the rest of models. The 

GARCH model outperforms other models when market momentum goes upwards. 

Therefore, the volatility model considering asymmetric effects is essential in option 

pricing model especially when the market goes downwards but becomes less 

important when the market goes upwards. Volatility models considering jumps do not 

consistently outperform other models without jumps. Therefore, results show that 

forecast performance of parsimoniously parameterized option pricing models 

performs much better than the richly parameterized GARCH option pricing model. 

This is consistent with findings in Christoffersen and Jacobs (2004). These findings 

are still robust when alternative bull/bear classification is adopted. 

A further investigation regarding forecast performance of GARCH option 

pricing models in financial crises shows that the forecast performance of GARCH 

option pricing models are inferior during the crash period to pre-crash and post crash 

periods. Additionally, the relationship between market momentum and forecast 

performance of GARCH option pricing models still shows that the EGARCH model 

performs better in the downward momentum and the GARCH model performs better 

in the upward momentum. Therefore, the relationship between market momentum and 

forecast performance of GARCH option pricing models is robust to financial crashes. 

In addition to impacts of market momentum and calibration factors within the 

Black-Sholes option pricing model, business conditions are shown to have effects on 

forecast errors of GARCH option pricing models as well. The GARCH, EGARCH, 

NGARCH, and TGARCH models perform better in recession while GJR-GARCH, 

NGARCH-Jump and TGARCH-Jump models perform better in expansion. 

The remainder of this paper is organized as follows. Section 2 presents GARCH 

options pricing models, estimation, and performance evaluation methods. The bull 

and bear market classification method by Lunde and Timmermann (2004) is 

introduced as well. Section 3 then describes the study data and associated data 
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characteristics. Subsequently, Section 4 outlines and discusses the empirical results of 

this study. Finally, Section 5 presents the conclusions. 

 

2. The Option Pricing Models with GARCH Processes 

2.1 The GARCH Models 

In general, there is no consensus about forecast performances of GARCH-family 

models. Studies by Engle and Ng (1993), Brailsford and Faff (1996), and Taylor 

(2004) favored GJR-GARCH to capture the asymmetric effect while studies by 

Heynen and Kat (1994), Awartani and Corradi (2005), and Stentoft (2005) support the 

asymmetric effect captured by the EGARCH. Christoffersen and Jacobs (2004) 

suggested that the option-based objective function is more likely to favor those 

models allowing for volatility clustering and the leverage effect. Consequently, the 

conditional variance models considered in this paper are those parsimonious GARCH 

models considering asymmetric and the leverage effect, namely EGARCH (Nelson 

(1991)), GJR-GARCH (Glosten, Jagannathan and Runkle (1993)), NGARCH (Engle 

and Ng (1993)), and TGARCH (Zakoian (1994)). The standard GARCH model is also 

considered here for the comparison purpose. Those models are listed as follows: 

GARCH  2
11110 −− ++= ttt hh εβαα , (1)

EGARCH ( )0 1 1 1 1 1 2 1ln 1 ln 2t t t th h v vα α α β β π− − −
⎡ ⎤= − + + + −⎣ ⎦ , (2)

GJR-GARCH [ ]0
2

12
2

11110 1<−−− −
+++=

t
Ihh tttt εεβεβαα , (3)

NGARCH ( )2111110 θβαα −++= −−− tttt vhhh , (4)

TGARCH )0,max( 1211110 −−− −+++= tttt εβεβφααφ , 2
tth φ= , (5)

where th  is the conditional variance at time t , 1α  is the GARCH coefficient, 1β  

is the ARCH coefficient, and 2β  and θ  represent asymmetric and leverage 

coefficients, respectively. Moreover, ttt hv=ε , where )1,0(~ Nv
d

t . [ ]01t
I <−ε  is an 

indicator variable with the value of one when 01 <−tε and the value of zero, 

otherwise. 

Fundamentally, compared with the ARCH model, the GARCH model is a more 

parsimonious model which can accommodate features of the fat tail and volatility 
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clustering commonly found in stock market returns. The EGARCH model proposed 

by Nelson (1991) exempts from the parameter positive constraint in the GARCH 

model by modeling logarithm of conditional volatility and can capture the leverage 

effect in stock market returns. That is, the EGARCH model allows negative return 

shocks to generate an exponential increase on volatility than positive return shocks. In 

the vein of modeling the leverage effect, the GJR-GARCH and NGARCH models 

take the leverage effect in a quadratic form on innovations. That is, the leverage effect 

magnitude in the GJR-GARCH model depends on the sign of the past innovation 

while the NGARCH uses a shift parameter to quantify the leverage effect magnitude. 

Finally, the TGARCH model, similar to the GJR-GARCH model, specifies the 

conditional volatility process instead of the conditional variance process in the 

GJR-GARCH model.  

Broadie, Chernov and Johannes (2007) studied risk premia associated with 

jumps in price and volatility of S&P futures options using diffusion models and found 

that jump risk premia in price and volatility can explain a considerable proportion of 

option pricing anomalies. Consequently, it is important to study the GARCH option 

pricing with jumps model in order to capture risk premia associated with jumps in 

price and volatility. Duan et al. (2006) have provided limiting jump-diffusion 

processes in both price and volatility for the NGARCH-Jump and TGARCH-Jump 

models. Therefore, the NGARCH-Jump and TGARCH-Jump models proposed by 

Duan et al. (2006) are studied in this paper as well. The dynamics of the 

NGARCH-Jump and TGARCH-Jump models are expressed as follows: 

NGARCH 

-Jump 

2

1 1
0 1 1 1 1

1

( )
( )

P
t t

t t t P
t

J E Jh h h
Var J

α α δ θ− −
− −

−

⎛ ⎞−⎜ ⎟= + + −
⎜ ⎟
⎝ ⎠

, 
(6)

TGARCH 

-Jump ( )
1 1 1

0 1 1 1 1 2 1

1

( ) ( )max ,0
( )

P P
t t t t

t t t t PP
tt

J E J J E J
Var JVar J

φ α α φ δ φ δ φ− − −
− − −

−

⎛ ⎞− −⎜ ⎟= + + + −
⎜ ⎟
⎝ ⎠

, 

and 2
tth φ= , 

(7)

where tJ  is a standard normal random number plus a Poisson random sum of normal 

random variables. In particular, ( ) ( )0
1

tN j
t t tj

J X X
=

= +∑ , where ( ) ( )0 ~ 0,1
d

tX N , 
( ) ( )2~ ,

d
j

tX N μ γ , and tN  is a Poisson random number with parameterλ  at time t . 
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1δ  is the jump coefficient, θ  is the leverage coefficient, and 2δ  is the threshold 

coefficient. μλ=)( t
P JE  and ( )221)( γμλ ++=t

P JVar  are the mean and variance, 

respectively, under physical probability measure P. The NGRCH-Jump model nests 

NGARCH model while the TGARCH-Jump model nests TGARCH. 

Under the local risk-neutral valuation relationship (LRNVR) by Duan (1995), 

the logarithm of stock returns in the mean equation for non-jump models, such as 

GARCH, EGARCH, GJR-GARCH, NGARCH, and TGARCH, under physical 

probability measure P  is formulated as follows: 

1

1ln
2

t
t t t t t

t

S rf h h v h
S

ψ
−

= − + + , (8)

where tS  is the asset price at time t, rf  is the risk-free rate, and ψ  is the risk 

premium factor. The asset pricing with jump processes in this paper follows the 

method by Duan et al. (2006). In particular, they assumed a pricing kernel, 

( )1 expt t tm m a bJ− = +  and an asset price process, ( )1/ expt t t tS S h Jα− = + , where 

a and b represent parameters related to mean and jump components in pricing kernel, 

α represents the mean parameter in the asset price, and tJ  and tJ  are the jump 

processes with a standard normal variable plus a Poisson random sum of normally 

distributed variables. Therefore, the mean equation for GARCH-Jump models under 

physical probability measure can be expressed as follows: 

    ( )( )
1

1ln 1
2

t
t t t t t t

t

S rf h h W h J
S

ψ λκ
−

= − + + − + , (9)

where tS  is the asset price at time t, rf  is the risk-free rate, λ is the Poisson 

parameter, and the risk premium factors of ψ , κ , and tW . The asset price process 

in equation (9) includes factors of the return drift, jump intensity, and jump risk 

premium.  

In this paper, the maximum likelihood estimation is employed to estimate the 

coefficients of mean and variance equations under the physical probability measure. 

The residuals are assumed following normality assumptions. Hence, the log likelihood 

functions (LLF) of GARCH, EARCH, GJR-GARCH, NGARCH, and TGARCH 

models are formulated as follows: 

( ) ( ) 2
1

2
-0.5 ln 2

T

T t t t
t

LLF ;ε , ,ε h ε hπ
=

⎡ ⎤= +⎣ ⎦∑…ω , (10)
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where ω  is the estimated coefficients vector of mean and conditional variance 

equations using the maximum likelihood function. The tε  and th in equation (10) 

are derived from mean equation (8) and variance equations from (1) to (5) 

respectively. The maximum likelihood functions of NGARCH-Jump and 

TGARCH-Jump models are given as follows: 

( ) ( )1
2 0

0 5 ln ,
iT

-λ
T i i i

t i

λLLF ;ε , ,ε - . e f u h
i!

∞

= =

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑…ω , (11)

where ( )if ⋅  is a normal distribution with a mean of iu  and a variance of ih  which 

are derived from mean equation (9) and the variance equations from (6) to (7). 

    Lamoureux and Lastrapes (1993) suggested that parameter estimates in 

GARCH-family models using the updating estimation approach perform better than 

those obtained using the rolling estimation approach. Therefore, we estimate 

parameters from physical probability measure using historical return series and update 

the coefficients annually by adding additional annual data to the estimation data as the 

estimation year dues.2  

 

2.2 The Asset Pricing and Option Pricing Methods 

Following the option pricing estimation approach adopted in Duan (1995) and 

Duan et al. (2006), we estimated coefficients of mean and variance equations using 

index return series under the physical probability measure to forecast volatilities 

under the risk-neutral probability measure. The change of the physical probability 

measure to the risk-neutral probability measure is performed by trimming down the 

risk premium and parameters of the jump process in GARCH-Jump models in 

innovations. These modifications make one period ahead conditional variance the 

same under both probability measures and keep the expected future return equal to the 

risk-free interest rate. The stock prices are obtained using Monte Carlo simulation 

with 20,000 sample paths and antithetic variates are employed to compute option 

prices. The process of asset prices with no jumps under the risk-neutral probability 

measure Q  is presented as follows:  

                                                 
2 We also used the rolling estimation approach method to estimate parameters in GARCH models and 
found that the estimation results are similar to those using the updating estimation approach. 
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, , 1 ,
1exp
2m t m t t t m t tS S rf h hξ−

⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 , =m 1,…,20,000, and Tt ,...,1= , (12)

where m  is sample path, ( )1,0~, Ntmζ  and tv  in equations from (1) to (5), and in 

equation (8) is replaced with  ,m tζ ψ−  to deriving the forecast variance at time t . 

The asset price process with jumps can be expressed as follows: 

( ), , 1
1exp 1
2m t m t t t t t tS S rf h W h Jλκ−

⎡ ⎤= − + − +⎢ ⎥⎣ ⎦
� , =m 1,…,20,000, and Tt ,...1= , (13)

where  tJ�  is the jump process under the risk-neutral probability measure Q . tJ  in 

equations (6) and (7) are replaced with ψ−tJ~  to deriving the forecast variance at 

time t. Therefore, the model price of a call option at time t  with maturity at time T , 

( ),GHC t T , is obtained using the expected value of the discounted payoff under the 

risk-neutral probability measure Q and given as follows: 

( ) ( )( ) ( ),, exp max ,0GH Q
m TC t T rf T t E S K⎡ ⎤= − − −⎣ ⎦ , (14)

where K  is the exercise price. The performance measure employed in this paper is 

the mean absolute dollar forecast error (MAE) which is calculated by averaging the 

absolute difference between observed option market prices and model prices of 

options and is defined as follows:3 

1 N
GH

i i
i

MAE C C
N

= −∑  (15)

where N  is the number of contracts, iC  is the market price of a call option i  and 
GH
iC is the associated model price. 

 

2.3 Bull and Bear Markets by Lunde and Timmermann (2004) 

In order to examine whether the findings are robust to classification of market 

trends using market momentum, we adopt an alternative approach proposed by Lunde 

and Timmermann (2004) to classify bull and bear markets. 4  Lunde and 

                                                 
3 The root mean squared errors are also performed and the same conclusions are reached. 
4 The approach proposed by Pagan and Sossounov (2003) was performed to identify the bull and bear 
market states as well. The identification results are similar to those using Lunde and Timmerman’s 
(2004) approach. 



 12

Timmermann’s (2004) approach is able to identify the bull and bear markets as 

systematic up and down movements rather than merely looking at short-term price 

movements. Assume that tBB  is a bull market indicator with the value of one if the 

stock market is in a bull state and of zero if the stock market in a bear state. The 

current price at time t is tP , 1λ is the price movement threshold triggering a switch 

from a bear market to a bull market, and 2λ is the price movement threshold triggering 

a switch from a bull market to a bear market. Furthermore, suppose that the stock 

market at current is at a local maximum, where tBB =1, and set the current maximum 

price max
tP = tP . The durations for a market price to exceed a local maximum price 

and for a market price passing through the lower barrier price are denoted as maxτ  

and minτ , respectively, which are defined as follows: 

( ) { }maxmax
max :inf1|, tttt PPtBBtP ≥+== +τττ . (16)

( ) ( ){ }max
22

max
min 1:inf1|,, tttt PPtBBtP λτλτ τ −<+== + . (17)

If minmax ττ < , then current bull market states remains unchanged and local 

maximum price is reset to be 
maxmax

max
ττ ++ = tt PP . On the other hand, if maxmin ττ < , the 

trend of the bull market ends and the stock price falls and crosses through the 

threshold barrier, ( ) max
21 tPλ−  at time minτ+t . Hence, the market state turns into a 

bear market in which a local minimum price is reached as 
minmin

min
ττ ++ = tt PP .  

When the market currently is at the bear state with 0=tBB , the duration 

variables of maxτ  and minτ are redefined as follows: 

( ) { }minmin
min :inf0|, tttt PPtBBtP ≤+== +τττ . (18)

( ) ( ){ }min
11

min
max 1:inf0|,, tttt PPtBBtP λτλτ τ +>+== + . (19)

Similarly, if maxmin ττ < , the trend of the bear market continues and the local 

minimum price is reset to be 
minmin

min
ττ ++ = tt PP . If minmax ττ < , the market state switches 

to a bull market at time maxt τ+  and the local maximum price is set to be 

max max

max
t tP Pτ τ+ += . This identification process continues until all data points are used up. 
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Figures 1 shows the identification of bull and bear markets for the daily S&P 

500 index data of 1996 to 2005 using the threshold values of 1λ  and 2λ equal to 20 

and 15, respectively.5  It is obvious that the identified states using Lunde and 

Timmerman’s approach match the observed pattern of S&P 500 index data very well. 

In general, the stock market experienced an upward trend pre-2000 and post-2002 

while it went through a two year downward trend during the periods of March 2000 to 

July 2002 even though a short market reversal was found after an U.S. 911 shock in 

2001. 

 

3. Sample Description 

The daily bid and ask prices of S&P 500 call options6 of all moneyness and with 

maturities between 10 and 180 days are retrieved through the database provided by 

the Chicago Board Options Exchange (CBOE). Options with maturity less than 10 

days are discarded for the possible liquidity-related bias problem. Basically, the S&P 

500 index options are European-style options. The midquotes of option prices are 

used as option prices in order to avoid upward biases in the day-end option prices 

owing to the bid-ask bounced influences. The midquotes of three-month Treasury bill 

rates as the surrogate for risk-free rates are obtained from the DataStream. The daily 

data of S&P 500 indices and associated dividends are obtained from the CRSP. The 

sample period extends from January 1990 to December 2005. Following Bakshi, Cao 

and Chen (1997), we obtain daily dividend-exclusive S&P 500 index series for later 

use in option price computation as follows:  

( ) ( ) ( ),

1
,

t
R t s s

s
D t e D t s

τ

τ
−

−

=

= +∑ . (20)

where D  is the present value of future cash dividends, ( ),R t s is s -period yield to 

maturity from date t , s  is the period between option trading date to ex-dividend 

date, and τ  is the maturity date. Regarding the moneyness dimension, sample data 

according to the current stock price, S, and exercise price, K, are classified into 

in-the-money (ITM, if ( ) / 3%S K K− ≥ ), near-the-money (NTM, if 

3% ( ) / 3%S K K− ≤ − < ), or out-of-the-money (OTM, if ( ) / 3%S K K− < − ). Table 1 

                                                 
5 We also tried other pair values of 1λ  and 2λ employed in Lunde and Timmerman (2004) and 

obtained the similar conclusions as presented here. 
6 We also performed analyses on put options and obtain similar results reported here. 
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presents summary statistics for number of contracts, average trading volume, average 

midquotes, average spreads, and average percentage spreads, and average implied 

volatilities for all categories of moneyness and maturities of S&P 500 index calls. As 

in Amin et al. (2004), the market momentum of a certain transaction day is calculated 

using cumulative returns of past sixty transaction days and five categories of 

cumulative past market returns are constructed.  

As shown in Table 1, the trading is much more intense in NTM options with 

nearby and medium maturities. Following next in trading volume is the OTM options 

since OTM options are cheaper in terms of hedging purpose.7 Options with nearby 

and medium maturities trade more frequently in comparison with long maturity 

options. ITM options have highest averages of midquotes and spreads but lowest 

average percentage spreads. Similar to ITM options, long maturity options have 

higher averages of midquotes and spreads and lower percentage spreads. Generally, 

short maturity options tend to have higher implied volatilities. Further, the implied 

volatilities are higher in ITM options and lower in OTM options. This negative slope 

pattern between moneyness and implied volatilities was also found in Bakshi, 

Kapadia and Madan (2003) and Bollen and Whaley (2004) when examining index 

options.8  

In terms of market momentum, trading is much more intensive for OTM options 

when past returns are less than -10% while trading activity becomes more intensive 

for NTM options when past returns are above -10%. This may indicate that investors 

tend to use OTM options as portfolio insurance when the market is deeply downward. 

Given a moneyness, the trading volume falls with increasing past returns for OTM 

options while the trading volume increases with increasing past returns for ITM 

options with nearby and long maturities. For NTM options, the trading volume has a 

hump when past returns are from -5% to 5%. Therefore, investors are likely to trade 

more in ITM options when past returns are high. Given a moneyness, the average 

midquote and average implied volatility show a mild U-shaped pattern as shown in 

Figure 2, which decreases first with increasing past returns but increases when past 

returns are larger than 10%. The patterns of average spreads and average percentage 

                                                 
7 Bollen and Whaley (2004) found large net buying pressure in out-of-money calls and puts and 
suggested that portfolio insurer may prefer these options. 
8 The reason for this negative relationship between moneyness and implied volatilities could be due to 
higher negative skewness of index options (Bakshi et al. (2003)) or net buying pressure (Bollen and 
Whaley (2004)). 
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spreads, given a moneyness, are declining with increasing past returns. Furthermore, 

the slope between moneyness and implied volatilities becomes more negative when 

past returns increases, which can be seen in Figure 3. In sum, the market momentum 

influences trading patterns and price characteristics of options. This reveals the 

important role of market momentum in option pricing. 

 

4. Empirical Analysis 

4.1 Forecast Performance under Market Momentum 

Table 2 shows estimated coefficients of mean and conditional variance equations 

and the values of the log likelihood function for each set of sequential years from 

1990 using the updating method under physical probability measure. It is found that 

persistence behavior, asymmetric effects, leverage effects, and jump effects are 

prevalent in all conditional variance models for all estimation periods. The in-sample 

fitness is better for those models considering asymmetric, leverage and jump effects 

since log-likelihood values of those GARCH models are much larger. 

Table 3 presents forecast performance results through MAEs for all models. 

Generally, the EGARCH model has much smaller forecast errors and performs much 

better than other models. Following next to the EGARCH model in forecast 

performance are the GARCH, the TGARCH, the NGARCH, and the GJR-GARCH 

models. Surprisingly, the NGARCH-Jump and the TGARCH-Jump models do not 

perform much better than other models. In comparison with other models, the 

GARCH model performs much better for ITM and NTM options while the EGARCH 

performs very well for OTM options. For OTM options with shorter maturity, the 

GJR-GARCH model performs relatively well. However, the forecast errors of the 

GJR-GARCH model dramatically become larger when time to maturity goes larger. 

Consequently, the findings here are consistent with findings in Christoffersen and 

Jacobs (2004) that the forecast performance of richly parameterized option pricing 

models does not perform much better than the option pricing model with simple 

GARCH process. 

The results also show that option pricing models with EGARCH, GJR-GARCH, 

TGARCH-Jump, and NGARCH-Jump processes have smaller forecast errors for the 

OTM options while option pricing models with NGARH and TGARCH processes 
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have smaller forecast errors for the ITM options. This pattern seems to be independent 

of maturities. This evidence is similar to findings in Bauwens and Lubrano (2002). 

They found that option pricing models considering asymmetric conditional volatility 

have a significant influence for ITM options. Consequently, richly parameterized 

option pricing models may provide gains on predicted option prices for ITM and 

OTM options. 

Table 4 reports empirical results for forecasting performance of distinct GARCH 

models under five categories of cumulative market returns. As in Amin et al. (2004), 

the market momentum of a certain transaction day is calculated using cumulative 

returns of past sixty transaction days. Panel A shows that the EGARCH model has the 

smallest overall MAE and perform much better than other models when past 

cumulative returns are less than -10%. Additionally, the TGARCH and 

NGARCH-Jump models perform next to the EGARCH model. The TGARCH model 

performs very well for ITM options while the NGARCH-Jump model performs well 

for OTM options with medium and long maturities. The GARCH model performs not 

very well when past returns are deeply negative. 

When past returns are from -10% to -5%, Panel B demonstrates that, as in Panel 

A, the EGARCH model still has the smallest MAE and the TGARCH model performs 

very well for ITM options. However, the NGARCH-Jump model performs not very 

well in comparison with its performance in Panel A. The forecast performance of the 

GARCH model improves in comparison with its performance in Panel A. 

When past returns are from -5% to 5% in Panel C of Table 4, the GARCH model 

starts to take its forecast performance dominance in NTM options, although the 

average performance of the EGARCH model is still better. As shown in Panels D and 

E of Table 4, the performance of the GARCH model dominates other models when 

past returns become larger. Therefore, empirical evidence indicates that the option 

pricing model with the EGARCH process perform much better under the downward 

market momentum while option pricing with the GARCH process is better for 

predicting option prices under the upward market momentum.  

 

4.2 Forecast Performance in Bull and Bear Markets by Lunde and Timmermann 

(2004) 
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Table 5 presents MAEs for estimation models under bull and bear markets using 

Lunde and Timmermann (2004) method. It is found that the option pricing using the 

EGARCH model performs much better than other models in bear markets while the 

GARCH model performs much better in bull markets. The TGARCH model performs 

well for the ITM options with medium to longer maturities in bull and bear markets. 

In contrast to the EGARCH model, the GJR-GARCH model has better forecast 

performance in bull markets than in bear markets. Similar to the GARCH 

performance in bull markets, the NGARCH and TGARCH models perform much 

better in bull markets than in bear markets. 

Consequently, findings here indicate a similar pattern in forecast performance as 

shown in Table 4. That is, the EGARCH model captures option prices much better in 

lower past returns while the GARCH model takes the lead in forecast performance in 

higher past returns. Furthermore, forecast performance of the GARCH option pricing 

models in bull markets is better than in bear markets. 

 

4.3 Forecast Performance in Financial Crises 

The impacts of financial turmoil events, namely Russian financial crisis, 9/11 

attacks, and the WorldCom scandal,9 on forecast errors are examined in this section. 

Table 6 reports the forecast performance of each model around financial turmoil 

events. For the pre-crash period, the EGARCH model has the much smaller MAE in 

comparison with other models while the GARCH model has forecast performance 

next to the EGARCH model. The TGARCH model performs very well for the ITM 

options. Furthermore, the GJR-GARCH model has smaller forecast errors for options 

with the short maturity. The NGARCH-Jump model performs very well for OTM 

options of medium and long maturities. Generally, these empirical findings are similar 

to those found in Section 4.1. 

During the crash period, the overall forecast performance of all models is inferior 

to the pre-crash period. On average, the EGARCH model still has well above forecast 

performance than the rest of models. On the other hand, following next in forecast 

                                                 
9 On July 21, 2002, the telecommunications giant, WorldCom, filed for the bankruptcy protection, 
which is the largest corporate insolvency ever in United States history. The pre-bankruptcy total asset 
of WorldCom is one and half larger than the Enron’s and the disclosed accounting fraud severely 
shocked business market. 



 18

performance is the TGARCH model instead of the GARCH model found in the 

pre-crash period. Additionally, the NGARGH-Jump model performs much better 

during the crash period. Therefore, the gains in forecast performance of option prices 

using richly parameterized option pricing models lie in the financial turmoil period. 

The results for the post-crash period show a similar pattern as in the pre-crash 

period. That is, the EGARCH still has it dominance over other models while the 

GARCH model performs very well next to the EGARCH model. Further, the 

TGARCH model still has a better forecast performance in ITM options. Consequently, 

the forecast performances of option pricing models with GARCH-family processes 

perform differently between pre-crash, during the crash, and post-crash periods. 

Since financial turmoil periods have impacts on model performances, it is crucial 

to understand if what we found regarding forecasting performance under market 

momentum post different patterns around the financial turmoil periods. Table 7 

reports empirical results for forecasting performances in the pre-crash period. The 

patterns of forecasting performances for all models are similar to what we found in 

Table 4. The EGARCH model performs much better under the downward market 

momentum while the GARCH model is better for predicting option prices under the 

upward market momentum. Shown in Tables 8 and 9, the forecast performances 

among models show the same pattern as in the pre-crash period whether during the 

crash or post-crash periods, except that forecast errors are generally much larger 

during the crash period in comparison with forecast errors in the other two periods. 

Therefore, forecast performances of option pricing models with GARCH-family 

processes under market momentum stay intact to financial turmoil periods.  

 

4.4 Forecast Performance and Business Conditions 

In this section, we examine whether macroeconomic factors influencing 

business conditions and momentum trading payoffs may explain portions of forecast 

errors generated by option pricing models with GARCH-family processes. Empirical 

results from previous sections reveal that market momentum has impacts on forecast 

errors of options pricing models with GARCH-family processes. Amin et al. (2004) 

showed that violations of the American put-call boundary conditions hinge on past 

stock market momentum and strongly positive past market returns raise up call option 
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prices. Chordia and Shivakumar (2002) showed that momentum trading payoffs 

according to market momentum are able to be predicted by adopted macroeconomic 

variables and the stock-specific factor is insignificant to momentum trading payoffs. 

Consequently, there may exist a relationship between business conditions and forecast 

errors. In order to search for the relationship between business conditions and 

forecasting performance, we first obtain adjusted absolute dollar forecast errors 

without any calibration effects within the option pricing model and then use adjusted 

absolute dollar forecast errors for further investigation. This approach enables us to 

construct a more precise relationship between business conditions and forecast 

performance. 

First, the absolute dollar forecast errors for each model are regressed on the 

market state and those calibration factors within the Black-Sholes option pricing 

model, namely implied volatility, time to maturity, moneyness, and interest rates using 

the follow regression: 

, 0 1 60, 1 2 , 3 , 4 5 ,
GH GHt i
i t t t i t i t t i t

i

S KAE w w RM w IMPLYvol w TM w w rf e
K− −

−
= + + + + + + , (17)

where ,
GH
i tAE  is the i -th option’s absolute dollar forecast error at time t, 1t60tRM −− ,  

is the cumulative past sixty-day index return, ,i tIMPLYvol  is the i -th option’s 

implied volatility at time t, which is obtained using the Black-Scholes model, ,i tTM  

is the time to maturity of option i  at time t, tS  is S&P 500 index at time t, iK  is 

the i -th option’s exercise price, ( ) iit KKS /− is the  i -th option’s moneyness at 

time t, and trf  is the midquote of three-month U.S. T-Bill rates at time t. The reason 

why we include the market state here is due to findings in Cooper et al. (2004) who 

showed that the market state is a major factor influencing momentum trading profits 

instead of macroeconomic variables related to business conditions. Therefore, it is 

better to take the market state effect into consideration before we take a further step. 

Table 10 reports the estimation results of equation (17). The market state does 

have significant impacts on forecasting performances of GARCH-family models. 

Same as found in previous sections, past returns have significant impacts on forecast 

errors. The EGARCH, GJR-GARCH, NGARCH-Jump and TGARCH-Jump models 

demonstrate a decrease in forecast errors when the market momentum goes downward. 

In contrast, the GARCH, NGARCH, and TGARCH models show a decrease in 

forecast errors when the market momentum goes upward. The forecast errors are 
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significantly and positively correlated with implied volatilities, time to maturity, and 

risk-free rates for all models while the relationships between moneyness and forecast 

errors are significant but alternates in signs among models. The GARCH, NGARCH 

and TGARCH perform well for ITM options while the EGARCH, GJR-GARCH, 

NGARG-Jump, and TGARCH-Jump models perform well for OTM options. 

After controlling effects of calibration factors in option pricing models on 

forecast errors, adjusted dollar forecast errors retrieved from residuals of equation (17) 

for each model are regressed against macroeconomic factors adopted in Fama and 

French (1989) and Chordia and Shivakumar (2002). The regression is formulated as 

the following equation: 

, 0 1 1 2 1 3 1 ,_ GH
i t t t t i tADJ AE c c DIV c DEF c TERM η− − −= + + + + , (18)

where ,_ GH
i tADJ AE  is i -th option’s adjusted dollar forecast error at time t, which is the 

residual from equation (17), 1tDIV − is the lagged dividend yield of S&P 500 index, 1tDEF −  

is the lagged default spread which is defined as yield spread between Moody’s Baa-rated 

bonds and Moody’s Aaa-rated bonds, and 1tTERM −  is the lagged yield spread between 

ten-year Treasury bonds and six-month Treasury bills. The dividend yield reflects the 

mean reversion in stock returns across several economic cycles and a proxy for the 

time-varying risk premium. The default spread aims to capture the default risk 

premium resulting from the credit risk. The yield spread between long-term and 

short-term yields reflects the short-term business cycles. Generally, values of dividend 

yield, default spread, and term spread are higher during recessions. 

 

Table 11 reports estimation results of relationships between adjusted dollar 

forecast errors, market trends, and macroeconomic factors. There is a significantly 

negative relationship between dividend yields (DIV) and adjusted forecast errors for 

all models. This shows that option pricing models considering time-varying volatility 

have better prediction capability as time-varying risk premiums are present. Once the 

credit risk (DEF) is present and significant, all models have inferior forecast 

performance since the relationship between DEF and forecast errors are significantly 

positive in all models. This means that all models cannot track option prices very well 

once the default risk premium is higher. As for the term structure effect (TERM), all 

models, except GJR-GARCH, NGARH-Jump, and TGARCH-Jump models, have a 
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negative relationship between term spreads and adjusted dollar forecast errors. This 

shows that higher term spreads reduce forecast errors in those models. This shows a 

decreasing pattern in forecast errors once the future short-term business condition is 

expected to be lower. 

Generally, empirical results shown on Table 11 suggest that the GARCH, 

EGARCH, NGARCH, and TGARCH models perform much better in option price 

forecasting in higher dividend yields, and higher term spreads. This means that these 

models provide better option price forecasts when business conditions are in recession. 

On the other hand, the GJR-GARCH, NGARCH-Jump and TGARCH-Jump models 

perform much better when business conditions are in expansion since option pricing 

models with jumps have better forecast power in lower values of default risk premium 

and term spreads. 

5. Conclusion 

Previous studies have shown the market momentum has impacts on violations of 

option boundary conditions. However, the issue regarding relationship between extant 

option pricing models and market momentum has not been extensively explored. 

Therefore, this paper is to examine the relationship between forecast performance of 

option pricing models with GARCH-family processes and market momentum. This 

relationship was examined under financial crisis periods as well. Further, the 

relationship between forecast performance of GARCH option pricing models and 

business cycle variables was examined in order to understand whether forecast 

performance of GARCH option pricing models would be affected by momentum 

trading behavior which varies with the business cycle. 

The empirical evidence shows that the market momentum has significant 

impacts on the forecast performance of different GARCH option pricing models. 

Generally, the EGARCH model performs much better when market momentum is 

downward while the standard GARCH model performs much better when market 

momentum is upward. Meanwhile, the forecast performance of richly parameterized 

option pricing models does not perform much better than the simple GARCH option 

pricing model, which is consistent with findings in Christoffersen and Jacobs (2004). 

The findings above are robust to the alternative bull/bear classification by Lunde and 

Timmermann (2004) method. Meanwhile, the relationship between market 

momentum and forecast performance of GARCH option pricing models also survives 
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in financial crash periods. The relationship between forecast performance of GARCH 

option pricing models and business cycle variables is shown to be significant as well. 
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Figure 1.  S&P 500 index levels and bull/bear periods. This figure displays the daily 
S&P 500 index levels from January1, 1996 – December 30, 2005. In addition, the bull and bear periods 
identified using the framework of Lunde and Timmermann (2004) with the price movement threshold 
of (20, 15). The shaded areas are bear markets while other periods are bull markets.  
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Figure 2.  Estimated Implied Volatilities of S&P 500 index call options from 
January 1, 1996 to December 30, 2005. This figure presents the relationship between the 
average implied volatilities of call options for three moneyness categories and the cumulative returns of 
past 60-day S&P 500 indices, RM(t-60, t-1). Call options are classified into three moneyness categories 
of (1) out-of-the-money (OTM, if <− KKS /)( -0.03), (2) near-the-money (NTM, if 
-0.03 <−≤ KKS /)( 0.03), and (3) in-the-money (ITM, if ≥− KKS /)( 0.03). The implied volatilities 
are derived using the Black–Scholes formula and are averaged based on RM with five categories of (1) 
RM<-10%, (2) -10%≤RM<-5%, (3) -5%≤RM<5%, (4) 5%≤RM<10%, and (5) 10%≤RM. 
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Figure 3.  Estimated Implied Volatilities of S&P 500 index call options from 
January 1, 1996 to December 30, 2005. This figure presents the relationship between the 
average implied volatilities of call options for five market momentum categories and three moneyness 
categories. Call options are classified into five market momentum categories based on the cumulative 
returns of past 60-day S&P 500 indices, RM(t-60, t-1). The five categories are (1) RM<-10%, (2) 
-10%≤RM<-5%, (3) -5%≤RM<5%, (4) 5%≤RM<10%, and (5) 10%≤RM. The implied volatilities 
are derived using the Black–Scholes formula and are averaged based on three moneyness categories: (1) 
out-of-the-money (OTM, if <− KKS /)( -0.03), (2) near-the-money (NTM, if -0.03 <−≤ KKS /)( 0.03), 
and (3) in-the-money (ITM, if ≥− KKS /)( 0.03). 
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Table 1 
Sample Statistics of S&P 500 Index Call Options 

The sample contains S&P 500 index call options traded on the CBOE from January 1996 to December 2005. Sample 
data in which maturity days are less than 10 days or greater than 180 days are excluded. The number of call contracts is 
114,214 in the period of 2,519 trading days. Call options are classified into three days-to-maturity categories of 10-29, 
30-89, and 90-180 days, and three moneyness categories of out-of-the-money (OTM, if <− KKS /)( -0.03), 
near-the-money (NTM, if -0.03 <−≤ KKS /)( 0.03), and in-the-money (ITM, if ≥− KKS /)( 0.03). We also classify the 
sample period into the five categories of market momentum using cumulative returns of past 60-day S&P 500 indices, 
RM(t-60, t-1). This table shows the number of contracts, average trading volume per day, average midquotes, average 
spreads, average percentage spreads, and average implied volatilities. The midquote is the midpoint of daily last bid/ask 
quotes in a trading day. The spread indicates the differences between bid and ask prices. The percentage spread is the 
spread divided by the associated midquote. The implied volatility is derived using the Black–Scholes formula. 
Days to Maturity  10 - 29 30 - 89 90-180  

Moneyness OTM NTM ITM OTM NTM ITM OTM NTM ITM ALL

No. of contracts 6,355 14,919 9,905 22,104 24,402 14,221 10,864 6,415 5,029 114,214 

Average Trading volume per day         
 RM <-10% 6,103 5,965 873 8,610 7,348 1,088 3,381 1,562 272 35,202 
 -10%≤ RM <-5% 4,095 5,775 801 8,179 8,249 1,220 1,732 1,371 296 31,719 
 -5%≤ RM < 5% 2,437 8,948 889 5,388 9,476 976 1,623 1,657 318 31,710 
 5%≤ RM <10% 2,055 8,282 1,177 3,859 8,792 1,185 1,453 1,347 624 28,772 
 10%≤ RM 1,660 5,939 1,102 3,957 7,209 1,354 1,758 1,274 559 24,812 

Average Midquotes          
 RM <-10% $5.67 $26.53 $104.84 $11.65 $44.98 $120.77 $18.56 $65.89 $157.18 $42.95 
 -10%≤ RM <-5% 4.97 25.04 115.50 11.13 43.72 138.88 21.50 69.04 166.19 48.98 
 -5%≤ RM < 5% 3.83 18.52 102.14 8.29 29.85 122.23 17.29 51.77 162.54 44.81 
 5%≤ RM <10% 3.51 17.49 97.97 7.66 27.67 108.14 16.13 47.25 141.96 45.56 
 10%≤ RM 3.73 20.19 104.70 9.58 34.26 130.07 20.45 56.86 160.91 59.01 

Average Spreads           
 RM <-10% $0.82 $1.80 $2.10 $1.30 $2.26 $2.29 $1.61 $2.36 $2.57 $1.71 
 -10%≤ RM <-5% 0.71 1.63 2.04 1.14 2.06 2.18 1.55 2.12 2.21 1.62 
 -5%≤ RM < 5% 0.59 1.23 1.88 0.88 1.58 1.90 1.26 1.81 1.96 1.41 
 5%≤ RM <10% 0.48 1.10 1.70 0.76 1.42 1.75 1.13 1.60 1.75 1.31 
 10%≤ RM 0.51 1.16 1.65 0.87 1.48 1.70 1.19 1.61 1.69 1.36 

Average Spreads (%)           
 RM <-10% 19.03 7.43 2.61 17.31 5.44 2.39 14.92 3.77 2.03 11.05 
 -10%≤ RM <-5% 19.25 7.48 2.39 15.30 5.25 2.11 12.09 3.32 1.69 9.37 
 -5%≤ RM < 5% 19.34 8.41 2.53 15.43 6.33 2.14 11.86 4.01 1.65 8.45 
 5%≤ RM <10% 16.97 7.84 2.46 13.90 6.04 2.13 10.88 3.77 1.61 7.16 
 10%≤ RM 17.21 6.80 2.19 13.08 4.85 1.82 9.06 3.19 1.37 6.10 

 Average Implied Volatilities          
 RM <-10% 0.274 0.296 0.365 0.258 0.288 0.341 0.237 0.271 0.320 0.281 
 -10%≤ RM <-5% 0.228 0.245 0.324 0.218 0.247 0.315 0.215 0.246 0.289 0.246 
 -5%≤ RM < 5% 0.181 0.169 0.250 0.165 0.174 0.238 0.172 0.190 0.245 0.188 
 5%≤ RM <10% 0.170 0.167 0.247 0.162 0.171 0.227 0.168 0.185 0.230 0.186 
 10%≤ RM 0.174 0.189 0.264 0.183 0.201 0.262 0.187 0.208 0.259 0.214
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Table 2 Parameter Estimation of GARCH models 
The parameter estimates for each model are obtained using the maximum likelihood estimation method on an annual updating base. Daily closing S&P 500 indices from 
January 1996 to December 2005 are used as input data. LLF represents the log likelihood values.  *, **, and *** represent significance levels at 10%, 5%, and 1%, respectively. 

Mean equation ttttt hhrfSS εψ ++−=− 21ln 1
. GJR-GARCH [ ]01

2
12

2
11110 <+++= −−−− ttttt Ihh εεβεβαα . 

GARCH 2
11110 −− ++= ttt hh εβαα . NGARCH ( )2111110 θβαα −++= −−− tttt vhhh . 

EARCH ( )0 1 1 1 1 1 2 1ln 1 ln 2t t t th h vα α α βν β π− − −
⎡ ⎤= − + + + −⎣ ⎦ . TGARCH )0,max( 1211110 −−− −+++= tttt εβεβφααφ , 2

tth φ= . 

Estimation Period 1990-1995 1990-1996 1990-1997 1990-1998 1990-1999 1990-2000 1990-2001 1990-2002 1990-2003 1990-2004 
 LLF 5,420 6,305 7,070 7,833 8,603 9,322 10,040 10,730 11,530 12,425 

 ψ 0.049* 0.056** 0.064*** 0.074*** 0.072*** 0.064*** 0.060*** 0.053*** 0.058*** 0.058*** 
GARCH α0 1.7E-07*** 3.6E-07*** 2.7E-07*** 5.9E-07*** 5.3E-07*** 4.4E-07*** 5.6E-07*** 6.1E-07*** 5.5E-07*** 5.2E-07*** 
 α1 0.973*** 0.963*** 0.962*** 0.937*** 0.942*** 0.944*** 0.936*** 0.932*** 0.936*** 0.939*** 
  β1 0.022*** 0.029*** 0.033*** 0.055*** 0.051*** 0.052*** 0.058*** 0.063*** 0.059*** 0.057*** 

 LLF 5,426 6,317 7,088 7,860 8,633 9,356 10,086 10,786 11,586 12,482 
 ψ 0.032 0.039*  0.042*  0.045** 0.046** 0.034* 0.027   0.018   0.024    0.025  
EGARCH α0 -9.694*** -9.734*** -9.539*** -9.428*** -9.394*** -9.273*** -9.258*** -9.193*** -9.207*** -9.247*** 
 α1  0.986***    0.978***    0.978***    0.979***    0.981***   0.981***   0.979***    0.980***   0.982***   0.982***  
  β1 -0.039***  -0.053***  -0.063***  -0.074***  -0.074***  -0.083***  -0.090***  -0.094***  -0.089***  -0.086***  
 β2   0.074***    0.095***    0.118***    0.127***   0.123***    0.125***    0.125***    0.122***    0.116***   0.112***  

 LLF 5,427 6,313 7,078 7,851 8,623 9,346 10,074 10,773 11,572 12,469 
 ψ  0.043*    0.047*    0.053**    0.055**    0.055***    0.044**    0.033*    0.023    0.030*    0.030*  
GJR-GARCH α0 1.4E-07*** 6.2E-07*** 8.1E-07*** 1.1E-06*** 1.0E-06*** 1.0E-06*** 1.1E-06*** 1.2E-06*** 1.0E-06*** 1.0E-06*** 
 α1   0.984***    0.955***    0.938***    0.922***   0.929***   0.929***   0.924***    0.923***    0.929***    0.932***  
 β1   0.000    0.012*   0.019**   0.017**   0.015**    0.013*   0.010    0.008    0.007    0.006  
  β2  0.022***    0.038***    0.057***   0.084***    0.083***   0.092***    0.105***    0.114***    0.105***    0.100***  

 LLF 5,427 6,315 7,082 7,854 8,627 9,352 10,081 10,782 11,583 12,480 
 ψ   0.041   0.042*    0.046**   0.048**   0.048**   0.035*    0.026   0.016   0.022    0.022  
NGARCH α0 4.0E-07*** 9.4E-07*** 9.8E-07*** 1.0E-06*** 9.3E-07*** 9.7E-07*** 1.1E-06*** 1.2E-06*** 1.1E-06*** 1.1E-06*** 
 α1   0.953***   0.918***    0.907***    0.896***    0.902***    0.897***    0.885***   0.879***   0.886***   0.888***  
 β1   0.025***    0.039***    0.053***    0.059***    0.056***   0.058***    0.061***    0.06***   0.057***    0.055***  
  θ  0.703***    0.784***    0.680***    0.718***    0.738***    0.788***    0.851***    0.918***    0.916***    0.934***  

 LLF 5,427 6,317 7,088 7,860 8,634 9,357 10,086 10,786 11,587 12,483 
 ψ  0.035    0.041*    0.043**    0.045**    0.046**    0.032*    0.025    0.016    0.022    0.024  
TGARCH α0 9.5E-05*** 1.5E-04*** 1.4E-04*** 1.5E-04*** 1.4E-04*** 1.5E-04*** 1.6E-04*** 1.7E-04*** 1.5E-04*** 1.5E-04*** 
 α1   0.958***   0.941***   0.934***  0.930***    0.933***   0.932***    0.930***    0.931***    0.935***   0.937***  
 β1   0.014*  0.018**    0.026***   0.025***    0.023***   0.020***   0.017**    0.014**   0.013**    0.012**  
  β2 0.044***    0.059***    0.070***    0.083***    0.083***    0.091***    0.099***    0.104***    0.099***   0.095***  
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Table 2 (continued) 
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Estimation Period   1990-1995   1990-1996   1990-1997   1990-1998   1990-1999   1990-2000   1990-2001   1990-2002   1990-2003   1990-2004  
 LLF 5,470 6,363 7,140 7,916 8,685 9,416 10,145 10,840 11,640 12,537 

 ψ 0.045*  0.042**  0.034**  0.068***  0.061*** 0.062***  0.032**  0.045**  0.031***  0.030***  
 α0 8.2E-08**  1.2E-07*** 1.0E-07*** 1.7E-07** 1.9E-07** 2.8E-07*** 2.5E-07** 4.9E-07*** 1.7E-07*** 2.2E-07***  
 α1 0.936*** 0.932*** 0.932*** 0.911*** 0.915*** 0.908*** 0.900*** 0.888*** 0.893*** 0.893*** 
NGARCH- β1   0.033***    0.040***    0.044***    0.054***  0.051***   0.054***    0.056***    0.057***    0.055***    0.053***  
Jump θ 0.784***    0.590**    0.569***    0.696***  0.691***   0.775***    0.821***    0.914***    0.912***    0.935***  
 μ  -0.028  -0.040  -0.056  -0.080  -0.083 -0.144**  -0.124**  -0.175**  -0.097**  -0.115**  
 γ    1.754***   1.705***   1.714***   1.516***  1.370***  1.283***   1.292***    1.185***    1.369***   1.227***  
 λ   1.594***   1.504***   1.637***    1.374***  1.291***   0.842**    1.260**    0.590**    2.141***    1.749***  
  κ   0.535***    0.736***   0.844***    0.559***  0.630***   0.582***    0.786***    0.593***    0.740***    0.795***  

 LLF 5,465 6,360 7,136 7,906 8,672 9,393 10,117 10,803 11,599 12,496 
 ψ 0.034** 0.059**  0.027* 0.039*** 0.009  0.070***  0.057***  0.075***  0.026***  0.041***  
 α0 5.5E-05** 9.4E-05** 9.9E-05*** 1.2E-04*** 1.0E-04*** 1.2E-04*** 1.4E-04*** 1.4E-04** 8.0E-05** 1.0E-04***  
TGARCH- α1 0.942*** 0.922*** 0.920*** 0.911*** 0.923*** 0.918*** 0.91*** 0.906*** 0.912*** 0.915*** 
Jump β1 0.028*   0.028*  0.042*** 0.048*** 0.050***   0.053***    0.054***    0.057***   0.055***   0.053***  
 β2 0.028* 0.049***  0.037** 0.039*** 0.026*   0.027*    0.034**    0.035***   0.031***    0.031***  
 μ  -0.028 -0.033  -0.048 -0.074 -0.065 -0.085  -0.103**  -0.094*  -0.098  -0.093*  
 γ  2.040***   1.865***  1.680*** 1.529*** 1.484*** 1.375***   1.364***    1.410***    1.940***    1.538***  
 λ 1.860***   1.789***  1.669*** 1.504*** 1.631*** 1.376***   1.483***    1.889***    2.892***    2.300***  
  κ 0.783***   0.500***  1.173*** 0.984*** 1.779***  0.595***    0.699***    0.501***    0.971***    0.804***  
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Table 3 
Mean Absolute Dollar Forecast Errors by Maturities and Moneyness  

This table reports mean absolute dollar forecast errors of S&P 500 index call options traded on the CBOE from 
January 1996 to December 2005. Sample data in which maturity days are less than 10 days or greater than 180 days 
are excluded. Call options are classified into three days-to-maturity categories of 10-29, 30-89, and 90-180 days, and 
three moneyness categories of out-of-the-money (OTM, if <− KKS /)( -0.03), near-the-money (NTM, if 
-0.03 <−≤ KKS /)( 0.03), and in-the-money (ITM, if ≥− KKS /)( 0.03).  

 
Days to Maturity  10 - 29    30 - 89    90 - 180    

Moneyness OTM NTM ITM OTM NTM ITM OTM NTM ITM ALL
GARCH 2.99 2.71 2.29 4.98 4.34 3.98 7.93 7.27 7.48  4.60 
EGARCH 2.20 2.51 2.44 3.52 4.59 4.50 5.57 7.98 8.43  4.23 
GJR-GARCH 1.48 2.75 2.98 4.41 9.17 7.75 12.05 22.98 17.54  7.69 
NGARCH 3.41 2.80 2.34 5.88 5.27 4.19 9.86 9.17 7.45  5.32 
TGARCH 2.98 2.73 2.33 4.87 4.86 4.08 7.41 7.80 7.06  4.67 
NGARCH-Jump 1.82 3.10 5.01 3.44 6.79 7.17 7.36 16.06 17.24  6.31 
TGARCH-Jump 2.49 3.84 4.21 4.92 7.84 7.27 9.32 16.10 17.83  7.11 
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Table 4 

Mean Absolute Dollar Forecast Errors by Maturities and Moneyness under Market 
Momentum 

This table reports mean absolute dollar forecast errors of S&P 500 index call options traded on the CBOE from 
January 1996 to December 2005 under market momentum. Sample data in which maturity days are less than 10 days 
or greater than 180 days are excluded. Call options are classified into three days-to-maturity categories of 10-29, 30-89, 
and 90-180 days, and three moneyness categories of out-of-the-money (OTM, if <− KKS /)( -0.03), near-the-money 
(NTM, if -0.03 <−≤ KKS /)( 0.03), and in-the-money (ITM, if ≥− KKS /)( 0.03). The market momentum is 
defined as the cumulative returns of past 60-day S&P 500 indices, RM(t-60, t-1), in which there are five categories: (1) 
RM<-10%, (2) -10%≤RM<-5%, (3) -5%≤RM<5%, (4) 5%≤RM<10%, and (5) 10%≤RM.  
 
Days to Maturity  10 - 29    30 - 89    90 - 180    
Moneyness OTM NTM ITM OTM NTM ITM OTM NTM ITM  Total 

Panel A.  RM < -10%  
 GARCH 3.33 3.87 3.57  8.70 8.73 6.55  14.31 12.03 10.20  8.12 
 EGARCH 2.34 2.73 3.40 3.77 5.32 6.12 4.29 7.88 9.98  4.41
 GJR-GARCH 1.62 3.30 4.29 5.10 12.63 11.35 12.14 28.07 21.81  8.71
 NGARCH 5.36 5.21 3.06 11.69 11.26 6.40 18.81 16.64 10.63  10.43
 TGARCH 4.20 4.13 3.05 7.66 7.75 5.37 9.64 8.91 7.03  6.74
 NGARCH-Jump 2.80 3.24 6.57 4.78 5.95 6.69 5.29 10.93 15.80  5.64
 TGARCH-Jump 2.73 6.59 8.57 6.05 14.82 13.69 11.30 26.86 25.50  10.18

       Panel B. -10% ≤RM <-5% 
 GARCH 4.07 3.85 3.14 6.22 5.41 4.91 9.64 9.65 8.85  6.04
 EGARCH 2.45 2.75 3.17 3.41 5.01 6.58 5.08 9.75 11.23  4.71
 GJR-GARCH 1.82 3.44 3.91 5.47 13.40 10.67 14.59 30.68 24.40  9.93
 NGARCH 4.48 3.75 2.69 7.48 5.91 4.89 11.24 10.69 7.77  6.68
 TGARCH 3.57 3.18 2.83 5.43 5.07 5.41 7.50 8.67 7.87  5.36
 NGARCH-Jump 2.27 3.63 6.69 3.26 7.90 9.07 8.06 19.77 21.54  6.98
 TGARCH-Jump 2.75 5.94 7.46 6.30 12.22 11.08 11.91 24.74 25.23  9.91

     Panel C. -5%≤ RM < 5% 
 GARCH 3.14 2.80 2.15 4.86 4.19 3.44 7.32 6.66 6.94  4.35
 EGARCH 2.55 2.72 2.23 4.06 4.61 3.74 6.15 7.48 7.78  4.26
 GJR-GARCH 1.41 2.35 2.79 3.75 7.97 7.06 11.31 21.76 17.24  6.95
 NGARCH 3.41 2.81 2.13 5.68 5.09 3.43 9.29 8.49 6.56  5.00
 TGARCH 3.13 2.89 2.15 5.18 4.98 3.37 7.86 7.53 6.45  4.67
 NGARCH-Jump 1.65 2.76 5.07 3.02 5.88 6.68 6.86 15.03 17.33  5.76
 TGARCH-Jump 2.62 3.44 3.76 4.69 6.65 6.17 8.22 13.19 16.38  6.22

      Panel D.  5%≤RM < 10% 
 GARCH 2.09 2.02 1.97 2.98 3.38 3.40 5.25 5.98 6.28  3.38
 EGARCH 1.47 1.91 2.16 2.48 3.77 3.76 5.29 7.23 6.69  3.51
 GJR-GARCH 1.20 2.73 2.63 4.27 8.41 6.46 11.02 20.12 14.51  7.02
 NGARCH 1.85 1.98 2.16 3.07 3.99 3.65 6.50 7.73 6.25  3.77
 TGARCH 1.86 2.00 2.11 3.01 3.77 3.50 5.98 7.11 5.96  3.60
 NGARCH-Jump 1.15 3.08 4.40 3.19 6.80 6.38 7.63 15.54 15.41  6.18
 TGARCH-Jump 2.06 3.46 3.39 4.09 6.95 5.80 8.58 14.87 15.04  6.30

Panel E.  10%≤ RM 
 GARCH 1.86 2.73 2.40 3.24 4.66 4.94 6.02 8.61 9.32  4.51
 EGARCH 1.27 2.74 2.84 2.51 5.77 6.22 5.50 10.69 11.43  5.07
 GJR-GARCH 1.68 4.09 3.22 6.13 12.63 8.81 14.86 26.87 18.92  9.85
 NGARCH 1.51 2.95 2.83 2.91 5.90 6.02 6.13 10.22 10.45  5.12
 TGARCH 1.36 2.72 2.81 2.48 5.33 5.91 5.07 9.30 10.34  4.74
 NGARCH-Jump 1.70 4.47 4.54 4.72 10.86 9.16 11.16 22.06 19.07  8.95
 TGARCH-Jump 1.90 4.20 3.76  4.75 9.87 8.17  10.73 20.25 20.35   8.41
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Table 5 
Mean Absolute Dollar Forecast Errors by Maturities and Moneyness under Bull and Bear 

Markets 
This table reports mean absolute dollar forecast errors of S&P 500 index call options traded on the CBOE from 
January 1996 to December 2005 under bull/bear markets which are identified using Lunde and Timmermann (2004) 
framework. Sample data in which maturity days are less than 10 days or greater than 180 days are excluded. Call 
options are classified into three days-to-maturity categories of 10-29, 30-89, and 90-180 days, and three moneyness 
categories of out-of-the-money (OTM, if <− KKS /)( -0.03), near-the-money (NTM, if -0.03 <−≤ KKS /)( 0.03), 
and in-the-money (ITM, if ≥− KKS /)( 0.03).  
 
Days to Maturity  10 - 29    30 - 89    90 - 180    
Moneyness OTM NTM ITM OTM NTM ITM OTM NTM ITM Total

        Panel A.  Bull Market 
 GARCH 2.50 2.35 2.10 4.16 3.74 3.84 6.75 6.61 7.42 4.03
 EGARCH 1.78 2.39 2.34 3.23 4.73 4.55 5.81 8.71 8.49 4.26
 GJR-GARCH 1.55 2.64 2.80 4.21 8.57 7.39 11.74 21.67 16.71 7.38
 NGARCH 2.55 2.43 2.23 4.44 4.66 4.14 7.79 8.43 7.41 4.55
 TGARCH 2.22 2.44 2.24 3.92 4.60 4.13 6.51 7.91 7.37 4.28
 NGARCH-Jump 1.65 3.08 4.55 3.52 6.87 6.97 8.03 16.01 16.59 6.39
 TGARCH-Jump 2.18 3.52 3.84 4.38 7.27 6.89 8.89 15.67 17.60 6.74

        Panel B.  Bear Market 
 GARCH 3.84 4.26 3.26 7.18 7.08 4.71 11.21 9.84 7.79 6.65
 EGARCH 2.94 3.04 2.91 4.32 3.96 4.27 4.89 5.08 8.14 4.12
 GJR-GARCH 1.35 3.21 3.83 4.95 11.84 9.57 12.91 28.11 21.32 8.77
 NGARCH 4.92 4.44 2.87 9.73 8.01 4.44 15.62 12.07 7.65 8.13
 TGARCH 4.32 4.00 2.81 7.39 6.02 3.83 9.93 7.37 5.61 6.05
 NGARCH-Jump 2.13 3.18 7.33 3.23 6.43 8.19 5.46 16.27 20.22 6.02
 TGARCH-Jump 3.04 5.20 5.99 6.39 10.40 9.17 10.52 17.80 18.93 8.44
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Table 6 
Mean Absolute Dollar Forecast Errors by Maturities and Moneyness in Financial Crises 

This table reports mean absolute forecast errors of S&P 500 index call options traded on the CBOE from January 1996 
to December 2005 for three financial crises: Russian debt default (August 17, 1998), 9/11 attack (September 11, 2001), 
and the WorldCom scandal (July 21, 2002). Sample data in which maturity days are less than 10 days or greater than 
180 days are excluded. The pre-crash period is defined as three months prior to the crisis event. The during-crash 
period is defined as three months after the crisis event occurred. The post-crash period is defined as from the fourth 
month after the crisis event occurred till three months before the next crisis event. Call options are classified into three 
days-to-maturity categories of 10-29, 30-89, and 90-180 days, and three moneyness categories of out-of-the-money 
(OTM, if <− KKS /)( -0.03), near-the-money (NTM, if -0.03 <−≤ KKS /)( 0.03), and in-the-money (ITM, if 

≥− KKS /)( 0.03).  
 
Days to Maturity 10 - 29   30 - 89   90 - 180   
Moneyness OTM NTM ITM OTM NTM ITM OTM NTM ITM Total 

Panel A.  Pre-Crash Period 
 GARCH 1.77 2.27 2.72 4.17 4.71 4.02 7.15 8.35 7.72  4.51 
 EGARCH 2.49 2.42 2.49 3.69 3.98 3.74 4.81 6.12 7.63  3.85 
 GJR-GARCH 0.79 2.60 3.39 4.20 10.30 7.65 11.08 25.21 17.71  7.71 
 NGARCH 3.37 3.08 2.48 6.98 6.31 4.13 11.69 11.62 7.97  6.51 
 TGARCH 3.22 2.97 2.45 5.74 5.15 3.67 8.33 8.39 6.49  5.24 
 NGARCH-Jump 1.59 2.25 4.12 2.81 5.07 4.69 5.17 13.48 15.70  4.65 
 TGARCH-Jump 1.49 3.19 4.65 3.39 6.68 6.65 6.95 17.41 18.70  5.96 

          Panel B.  During-Crash Period 
 GARCH 4.35 4.64 3.60 8.89 7.08 6.38 14.14 10.11 10.84  7.97 
 EGARCH 1.86 3.09 4.30 3.01 7.79 9.26 4.77 13.76 14.73  5.67 
 GJR-GARCH 2.02 3.55 4.67 5.42 14.02 12.79 13.17 31.02 25.15  10.01 
 NGARCH 5.13 4.11 3.51 8.82 7.64 7.21 14.85 12.87 11.36  8.38 
 TGARCH 3.68 3.38 3.74 5.38 6.62 7.50 7.54 9.43 10.50  6.04 
 NGARCH-Jump 3.35 3.59 5.57 4.72 7.24 7.69 6.37 14.99 18.57  6.55 
 TGARCH-Jump 2.41 5.97 8.02 5.53 14.29 13.34 11.10 28.17 27.38  10.35 

        Panel C.  Post-Crash Period 
 GARCH 3.29 2.94 2.25 5.36 4.72 3.89 8.18 7.77 7.40  4.80 
 EGARCH 2.60 2.66 2.26 4.14 4.75 4.09 6.34 8.19 8.13  4.41 
 GJR-GARCH 1.49 2.79 2.98 4.69 9.75 8.01 12.85 25.48 19.01  8.13 
 NGARCH 3.61 2.91 2.22 6.42 5.64 3.85 10.46 9.65 6.95  5.49 
 TGARCH 3.35 2.93 2.18 5.64 5.28 3.71 8.42 8.41 6.73  4.97 
 NGARCH-Jump 1.63 3.24 5.86 3.44 7.06 8.19 7.71 17.24 19.24  6.76 
 TGARCH-Jump 2.84 3.75 4.15 5.32 7.54 7.16 9.49 15.18 18.35  7.08 
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Table 7 
Mean Absolute Dollar Forecast Errors by Maturities and Moneyness in the Pre-Crash Period 

under Market Momentum 
This table reports mean absolute forecast errors of S&P 500 index call options traded on the CBOE from January 1996 
to December 2005 in the pre-crash period under market momentum for three financial crises: Russian debt default 
(August 17, 1998), 9/11 attack (September 11, 2001), and the WorldCom scandal (July 21, 2002). Sample data in 
which maturity days are less than 10 days or greater than 180 days are excluded. The pre-crash period is defined as 
three months prior to the crisis event. Call options are classified into three days-to-maturity categories of 10-29, 30-89, 
and 90-180 days, and three moneyness categories of out-of-the-money (OTM, if <− KKS /)( -0.03), near-the-money 
(NTM, if -0.03 <−≤ KKS /)( 0.03), and in-the-money (ITM, if ≥− KKS /)( 0.03). The market momentum is 
defined as the cumulative returns of past 60-day S&P 500 indices, RM(t-60, t-1), in which there are five categories: (1) 
RM<-10%, (2) -10%≤RM<-5%, (3) -5%≤RM<5%, (4) 5%≤RM<10%, and (5) 10%≤RM. 
 
Days to Maturity  10 - 29    30 - 89    90 - 180    
Moneyness  OTM NTM ITM OTM NTM ITM OTM NTM ITM Total

   Panel A.  RM < -10% 
 GARCH 1.67 1.71 2.67 5.27 4.49 3.33 9.28 6.48 4.86 4.89 
 EGARCH 2.42 1.97 2.12 3.66 2.64 2.77 3.89 2.09 5.11 3.09 
 GJR-GARCH 0.93 2.91 4.18 4.89 11.80 9.58 10.07 23.91 18.32 7.83 
 NGARCH 4.40 4.07 1.87 10.79 9.66 3.95 17.06 14.29 7.54 9.48 
 TGARCH 3.66 3.26 1.85 7.41 6.16 2.70 9.74 6.95 3.27 6.06 
 NGARCH-Jump 2.42 2.08 5.42 4.15 3.41 4.47 3.81 6.01 13.38 4.08 
 TGARCH-Jump 1.78 5.65 7.13 4.99 12.25 10.33 8.53 21.54 20.71 8.18 

       Panel B. -10% ≤ RM < -5% 
 GARCH 2.44 2.68 1.51 4.16 4.33 3.41 6.27 5.43 4.47 4.08 
 EGARCH 3.58 3.61 1.26 4.48 3.99 2.78 5.54 3.23 3.60 3.97 
 GJR-GARCH 0.51 2.12 2.46 4.09 9.78 7.67 9.79 23.02 16.62 7.10 
 NGARCH 4.22 4.38 1.38 7.35 7.07 3.07 12.25 11.10 4.61 6.92 
 TGARCH 4.44 4.66 1.41 6.57 6.26 2.88 9.81 7.88 3.26 6.02 
 NGARCH-Jump 1.63 2.46 4.97 2.36 4.22 4.33 4.35 10.93 13.90 4.04 
 TGARCH-Jump 1.01 4.43 6.53 3.87 9.83 8.30 8.38 21.51 20.48 7.41 

     Panel C. -5% ≤ RM < 5% 
 GARCH 1.59 2.25 2.96 3.74 5.07 4.37 6.49 10.14 9.72 4.56 
 EGARCH 2.22 2.21 2.83 3.53 4.46 4.20 5.15 8.56 9.56 4.14 
 GJR-GARCH 0.78 2.43 3.34 3.85 9.97 7.15 11.88 26.19 17.71 7.62 
 NGARCH 2.65 2.44 2.83 5.32 5.48 4.38 8.92 11.19 9.18 5.41 
 TGARCH 2.63 2.43 2.79 4.81 4.82 4.08 7.19 9.19 8.56 4.79 
 NGARCH-Jump 1.25 2.19 3.63 2.51 5.63 4.88 5.98 16.03 16.20 4.93 
 TGARCH-Jump 1.53 2.18 3.54 2.42 4.66 5.23 5.49 14.71 17.16 4.65 

       Panel D.  5% ≤ RM < 10% 
 GARCH 1.84 2.86 2.89 3.45 4.03 4.19 5.91 7.35 7.18 4.19 
 EGARCH 2.30 2.83 2.79 3.36 3.65 4.14 4.62 5.59 7.47 3.83 
 GJR-GARCH 0.81 3.53 3.40 4.32 10.29 7.10 11.87 25.44 17.68 8.52 
 NGARCH 2.50 3.22 2.94 4.94 5.18 4.36 8.87 10.23 6.88 5.43 
 TGARCH 2.80 3.23 2.89 4.78 4.35 4.07 7.22 7.89 6.19 4.80 
 NGARCH-Jump 0.81 2.60 3.44 1.72 5.51 4.63 6.20 16.50 18.55 5.18 
 TGARCH-Jump 1.20 2.80 4.28 3.31 5.44 5.76 6.65 17.51 19.93 5.89 

  Panel E.  10% ≤ RM 
 GARCH 2.49 2.02 0.94 5.06 3.45 － 8.11 4.04 － 3.85 
 EGARCH 2.84 2.51 0.71 5.34 3.90 － 7.43 3.16 － 3.96 
 GJR-GARCH 0.52 2.59 2.78 4.65 12.14 － 14.32 31.13 － 6.54 
 NGARCH 3.33 3.17 0.42 7.73 6.77 － 15.60 13.27 － 6.55 
 TGARCH 3.48 3.38 0.41 7.51 6.59 － 13.19 10.34 － 6.10 
 NGARCH-Jump 0.76 1.94 6.49 1.20 4.31 － 6.10 16.29 － 3.46 
 TGARCH-Jump 0.91 4.65 7.71  4.07 12.05 －  11.42 25.69 －  6.89 
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Table 8 
Mean Absolute Dollar Forecast Errors by Maturities and Moneyness in the During-Crash 

Period under Market Momentum 
This table reports mean absolute forecast errors of S&P 500 index call options traded on the CBOE from January 1996 
to December 2005 in the during-crash period under market momentum for three financial crises: Russian debt default 
(August 17, 1998), 9/11 attack (September 11, 2001), and the WorldCom scandal (July 21, 2002). Sample data in 
which maturity days are less than 10 days or greater than 180 days are excluded. The during-crash period is defined as 
three months after the crisis event occurred. Call options are classified into three days-to-maturity categories of 10-29, 
30-89, and 90-180 days, and three moneyness categories of out-of-the-money (OTM, if <− KKS /)( -0.03), 
near-the-money (NTM, if -0.03 <−≤ KKS /)( 0.03), and in-the-money (ITM, if ≥− KKS /)( 0.03). The market 
momentum is defined as the cumulative returns of past 60-day S&P 500 indices, RM(t-60, t-1), in which there are five 
categories: (1) RM<-10%, (2) -10%≤RM<-5%, (3) -5%≤RM<5%, (4) 5%≤RM<10%, and (5) 10%≤RM.  
 

Days to Maturity  10 - 29    30 - 89    90 - 180    
Moneyness OTM NTM ITM OTM NTM ITM OTM NTM ITM Total 

 Panel A.  RM < -10% 
 GARCH 4.03 4.45 3.67 9.65 9.46 7.70 15.94 13.09 11.72  9.20 
 EGARCH 2.09 2.57 3.59 3.29 6.77 7.90 4.27 11.76 12.44  4.94 
 GJR-GARCH 1.85 2.97 4.28 5.36 13.51 12.54 12.51 30.07 23.21  9.37 
 NGARCH 5.91 5.32 2.99 11.16 10.23 6.85 18.70 16.09 11.01  10.34 
 TGARCH 4.29 3.89 3.05 6.74 7.11 6.31 8.72 8.93 8.19  6.45 
 NGARCH-Jump 3.45 3.20 6.07 5.24 6.97 7.17 5.86 11.85 15.85  6.20 
 TGARCH-Jump 2.73 7.13 9.12 6.10 15.78 14.26 11.95 30.33 27.14  10.91 

      Panel B. -10% ≤ RM < -5% 
 GARCH 7.19 5.15 3.27 8.87 4.29 5.03 12.66 5.89 7.88  7.01 
 EGARCH 2.25 3.34 4.92 2.85 9.72 11.79 6.29 17.13 18.04  7.20 
 GJR-GARCH 3.53 3.00 4.53 5.79 15.40 14.27 14.07 32.10 28.00  11.38 
 NGARCH 6.44 3.99 3.31 6.71 4.10 7.25 10.11 7.59 9.03  6.45 
 TGARCH 4.20 2.96 4.04 3.59 5.86 9.22 6.28 9.36 12.86  5.84 
 NGARCH-Jump 5.13 4.08 4.77 4.74 7.55 8.88 7.30 16.51 20.36  7.31 
 TGARCH-Jump 2.65 5.06 7.24 5.44 15.28 14.44 10.61 28.04 29.53  10.99 

    Panel C. -5% ≤ RM < 5% 
 GARCH 3.19 5.01 3.97 6.22 4.80 5.34 9.31 7.50 11.27  5.91 
 EGARCH 0.92 3.97 5.51 2.32 8.48 9.76 5.25 15.56 18.06  6.36 
 GJR-GARCH 1.41 4.96 5.77 5.47 14.08 12.14 14.65 32.47 27.75  10.63 
 NGARCH 1.93 2.59 4.70 3.08 5.78 7.88 6.31 10.61 13.87  5.37 
 TGARCH 1.58 2.99 5.01 2.56 6.51 8.34 4.73 10.84 14.50  5.36 
 NGARCH-Jump 1.73 4.16 5.24 3.10 7.75 7.76 7.35 20.67 23.18  6.88 
 TGARCH-Jump 1.31 4.87 6.56 3.88 10.94 10.99 8.72 23.97 26.67  8.63 

      Panel D.  5% ≤ RM < 10% 
 GARCH 2.12 2.82 2.09 7.05 4.81 4.26 8.28 4.18 5.62  4.37 
 EGARCH 0.49 2.26 3.67 1.69 5.91 9.18 3.96 11.97 13.93  5.14 
 GJR-GARCH 0.73 2.54 3.54 3.72 11.99 11.77 11.80 28.65 23.91  8.60 
 NGARCH 0.38 1.70 3.47 2.01 4.39 8.19 5.50 9.50 11.12  4.53 
 TGARCH 0.51 1.90 3.53 1.94 4.83 8.38 5.16 9.68 11.55  4.67 
 NGARCH-Jump 0.74 2.58 4.60 1.66 6.09 7.22 6.54 19.43 23.07  6.13 
 TGARCH-Jump 0.86 3.92 6.62 2.58 9.26 10.37 7.83 20.49 24.79  7.99 

 Panel E.  10% ≤ RM 
 GARCH － － － 12.11 12.08 4.69 26.43 23.29 13.78 13.08 
 EGARCH － － － 1.55 3.50 6.35 3.38 12.22 16.33 4.85 
 GJR-GARCH － － － 3.80 13.26 11.13 16.99 35.50 32.95 12.55 
 NGARCH － － － 9.17 8.22 3.55 19.56 15.64 7.05 9.33 
 TGARCH － － － 6.39 4.33 2.66 7.26 1.18 5.35 5.04 
 NGARCH-Jump － － － 4.14 2.44 6.15 3.24 9.47 18.94 5.61 
 TGARCH-Jump － － － 3.84 13.59 11.26 15.08 32.90 34.52 12.39 
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Table 9 
Mean Absolute Dollar Forecast Errors by Maturities and Moneyness in the Post-Crash Period 

under Market Momentum 
This table reports mean absolute forecast errors of S&P 500 index call options traded on the CBOE from January 1996 
to December 2005 in the post-crash period under market momentum for three financial crises: Russian debt default 
(August 17, 1998), 9/11 attack (September 11, 2001), and the WorldCom scandal (July 21, 2002). Sample data in 
which maturity days are less than 10 days or greater than 180 days are excluded. The post-crash period is defined as 
from the fourth month after the crisis event occurred till three months before the next crisis event. Call options are 
classified into three days-to-maturity categories of 10-29, 30-89, and 90-180 days, and three moneyness categories of 
out-of-the-money (OTM, if <− KKS /)( -0.03), near-the-money (NTM, if -0.03 <−≤ KKS /)( 0.03), and 
in-the-money (ITM, if ≥− KKS /)( 0.03). The market momentum is defined as the cumulative returns of past 60-day 
S&P 500 indices, RM(t-60, t-1), in which there are five categories: (1) RM<-10%, (2) -10%≤ RM<-5%, (3) 
-5%≤RM<5%, (4) 5%≤RM<10%, and (5) 10%≤RM.  
 

Days to Maturity  10 - 29    30 - 89    90 - 180    
Moneyness OTM NTM ITM OTM NTM ITM OTM NTM ITM Total 

 Panel A.  RM < -10% 
 GARCH 3.01 4.33 3.82 9.25 10.75 5.59 14.78 14.79 9.12  8.13 
 EGARCH 2.73 3.46 3.65 5.07 4.47 3.72 4.81 4.25 5.52  4.21 
 GJR-GARCH 1.62 4.05 4.39 4.64 11.44 9.47 13.32 27.34 19.78  7.89 
 NGARCH 4.94 5.75 3.86 13.78 14.87 6.72 21.14 20.17 11.66  11.41 
 TGARCH 4.35 5.06 3.71 10.14 10.51 4.64 12.46 10.72 5.97  7.97 
 NGARCH-Jump 1.85 4.03 8.36 4.16 5.91 6.82 5.11 13.42 17.40  5.54 
 TGARCH-Jump 3.28 6.35 8.05 6.84 14.92 14.26 12.33 23.74 23.66  10.04 

     Panel B. -10% ≤ RM < -5% 
 GARCH 3.41 3.73 3.38 5.88 5.93 5.16 9.51 11.73 9.84  6.14 
 EGARCH 2.29 2.39 2.94 3.37 3.84 5.12 4.62 9.01 10.23  4.13 
 GJR-GARCH 1.46 3.82 3.98 5.69 13.71 9.89 15.84 32.06 24.63  10.14 
 NGARCH 3.89 3.45 2.71 7.70 6.18 4.30 11.36 11.58 7.94  6.71 
 TGARCH 3.25 2.89 2.69 5.74 4.63 4.30 7.37 8.63 6.97  5.13 
 NGARCH-Jump 1.49 3.74 7.63 3.04 8.83 10.05 9.12 22.74 23.19  7.50 
 TGARCH-Jump 3.09 6.53 7.66 6.95 11.74 10.12 13.02 24.42 24.56  10.05 

   Panel C. -5% ≤ RM < 5% 
 GARCH 3.53 2.99 2.04 5.65 4.71 3.46 8.35 7.28 6.81  4.75 
 EGARCH 3.01 2.91 1.96 4.84 4.91 3.36 6.89 7.69 7.27  4.50 
 GJR-GARCH 1.47 2.35 2.66 4.08 8.43 7.34 11.88 23.76 18.08  7.30 
 NGARCH 3.93 3.10 1.92 6.90 5.79 3.12 11.04 9.29 5.96  5.54 
 TGARCH 3.71 3.19 1.89 6.31 5.57 3.00 9.19 8.12 5.85  5.12 
 NGARCH-Jump 1.70 2.86 5.56 3.30 6.02 7.35 6.97 15.37 18.35  6.05 
 TGARCH-Jump 2.98 3.39 3.60 5.20 6.34 6.08 8.46 12.16 16.48  6.19 

    Panel D. 5% ≤ RM < 10% 
 GARCH 2.75 2.25 2.14 3.73 3.71 3.46 6.29 6.35 6.16  3.75 
 EGARCH 1.97 2.04 2.23 2.98 4.06 3.68 6.39 7.88 6.46  3.80 
 GJR-GARCH 1.42 3.04 2.98 4.95 9.66 7.18 12.28 24.05 16.90  7.98 
 NGARCH 2.57 2.09 2.22 3.87 4.19 3.42 8.11 8.39 5.58  4.09 
 TGARCH 2.59 2.19 2.14 3.85 4.17 3.31 7.50 8.03 5.51  4.00 
 NGARCH-Jump 1.33 3.51 5.84 3.34 7.17 7.52 7.84 16.75 17.83  6.85 
 TGARCH-Jump 2.37 3.56 3.85 4.40 7.32 6.26 9.25 15.12 16.52  6.68 

 Panel E.  10% ≤ RM 
 GARCH 2.79 3.44 2.44 3.88 4.94 5.27 6.58 8.81 10.18  4.97 
 EGARCH 1.45 2.52 3.00 2.55 6.05 7.08 5.75 11.97 13.41  5.47 
 GJR-GARCH 1.76 4.23 3.52 6.67 15.28 10.64 15.76 32.62 23.19  11.42 
 NGARCH 1.73 2.59 2.93 2.87 5.60 6.56 6.22 10.33 11.53  5.19 
 TGARCH 1.58 2.43 2.94 2.50 5.34 6.61 5.37 10.15 11.88  5.00 
 NGARCH-Jump 1.74 4.66 5.75 4.63 12.53 11.78 11.04 25.51 23.23  10.23 
 TGARCH-Jump 1.96 4.30 4.51  4.84 11.14 9.79  10.54 23.21 24.44  9.41 
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Table 10  

Regression Results of Absolute Dollar Forecast Errors 
The sample contains S&P 500 index call options traded on the CBOE from January 1996 to December 2005. Sample data 
in which maturity days are less than 10 days or greater than 180 days are excluded. The dependent variable is the absolute 
forecast error ( GH

tiAE , ) defined as the absolute difference between the observed market price and the model price of option 
i  at time t . Independent variables include the cumulative returns of past 60-day market indices (RM(t-60, t-1)), implied 
volatilities ( ,i tIMPLYvol ) derived using the Black-Scholes formula, days to maturity ( ,i tTM ), moneyness ( ( )t i iS K K− ), 
and the three-month US Treasury bill middle rate as the surrogate for risk-free rate ( trf ) at time t. Standard errors based 
on White’s (1980) heteroskedasticity consistent estimators are reported in parentheses. *, **, and *** represent 
significance levels at 10%, 5%, and 1%, respectively. 

, 0 1 60, 1 2 , 3 , 4 5 , GH GHt i
i t t t i t i t t i t

i

S KAE w w RM w IMPLYvol w TM w w rf e
K− −

−
= + + + + + + . 

 
 

 

  GARCH EGARCH GJR-GARCH NGARCH TGARCH 
NGARCH-  

Jump 
TGARCH-  

Jump 

Intercept -2.361*** -1.443*** -10.254*** -1.351*** 0.304*** -8.24*** -7.133***
 (0.05) (0.07) (0.09) (0.06) (0.06) (0.09) (0.08) 

1t60tRM −− ,  -0.082*** 0.023*** 0.121*** -0.143*** -0.066*** 0.144*** 0.032***
 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

,i tIMPLYvol  0.175*** 0.122*** 0.445*** 0.121*** 0.061*** 0.339*** 0.429***
 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

,i tTM  0.043*** 0.041*** 0.129*** 0.056*** 0.042*** 0.084*** 0.088***
 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

( )t i iS K K−  -0.092*** 0.028*** 0.001 -0.100*** -0.028*** 0.119*** 0.042***
 (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) 

trf  0.266*** 0.204*** 0.306*** 0.321*** 0.206*** 0.682*** 0.078***
 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Adj. R2 0.240  0.213    0.503    0.303    0.213    0.403    0.392   
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Table 11  

Regression Results of Adjusted Absolute Dollar Forecast Errors 
The sample contains S&P 500 index call options traded on the CBOE from January 1996 to December 2005. Sample data 
in which maturity days are less than 10 days or greater than 180 days are excluded. The dependent variable is the adjusted 
absolute dollar forecast error ( ,_ GH

i tADJ AE ) which is the regression error from equation (17). The independent variables 
include the lagged S&P 500 composite dividend yield ( 1tDIV − ), the lagged default spread ( 1tDEF − ) which is the yield 
spread between Moody’s Baa and Aaa bonds, and lagged term spread ( 1tTERM − ) which is the yield spread between ten 
year bond and six-month T-bill. Standard errors based on White’s (1980) heteroskedasticity consistent estimators are 
reported in parentheses. *, **, and *** represent significance levels at 10%, 5%, and 1%, respectively. 
 

tittt
GH
ti TERMcDEFcDIVccAEADJ ,1312110,_ η++++= −−− . 

 

   GARCH   EGARCH   GJR-GARCH  NGARCH  TGARCH NGARCH-  
Jump 

TGARCH-  
Jump 

Intercept 1.248*** 0.779*** 8.101*** 1.305*** 1.242*** 5.529*** 2.943***
 ( 0.10) ( 0.08) ( 0.13) ( 0.10) ( 0.08) ( 0.13) ( 0.13) 

1tDIV −  -2.442*** -0.434*** -6.101*** -2.25*** -1.516*** -4.434*** -2.555***
 (0.05) ( 0.04) ( 0.07) ( 0.05) ( 0.04) ( 0.07) ( 0.06) 

1tDEF −  3.713*** 0.863*** 1.017*** 3.505*** 2.276*** 1.113*** 0.626***
 ( 0.07) ( 0.06) ( 0.09) ( 0.07) ( 0.06) ( 0.08) ( 0.09) 

1tTERM −  -0.368*** -0.537*** 0.355*** -0.486*** -0.516*** 0.287*** 0.331***
 ( 0.01) ( 0.01) ( 0.02) ( 0.02) ( 0.01) ( 0.02) ( 0.02) 

        
Adj. R2  0.057    0.023    0.072    0.05    0.042   0.046  0.014   

 
 


