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Abstract

This paper provides a mean-variance analysis of immunization strategies

that trade off coupon reinvestment risk with resale price risk. For static im-

munization strategies, neither traditional nor stochastic durations fall in the

set of efficient horizons. This finding is robust across various interest rate envi-

ronments and bond characteristics, and explains the poor immunization results

obtained by the comparative study of Gultekin and Rogalski (1984). When

dynamic portfolio rebalancing is allowed, traditional and stochastic durations

induce efficient strategies with similar performance. We therefore obtain that

immunization performance is more driven by strategy sophistication rather

than by the choice of duration, which corroborates the empirical finding of

Agca (2005). Our results still hold under the two-factor term structure model

with stochastic volatility of Longstaff and Schwartz (1992).
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1 Introduction

Immunizing bond portfolios against interest rate fluctuations is a major challenge in fixed-

income management. Since the work of Macaulay, duration has been viewed as a relevant

tool for immunization purposes. Yet, extending the definition of duration to account for

stochastic interest rates is a non trivial exercise. Several papers propose new definitions of

stochastic duration: Cox, Ingersoll and Ross (1979) and Wu (2000) for equilibrium single

factor models, Au and Thurston (1995) and Frühwirth (2002) for Heath-Jarrow-Morton

models, and Munk (1999) for multi-factor models. Despite these theoretical contributions,

empirical studies on immunization performance do not conclude on the superiority of

stochastic durations over traditional ones. Gultekin and Rogalski (1984) find that all of

the seven durations they study induce disappointing results. Studies edited by Kaufman,

Bierwag and Toevs (1983) as well as the more recent works of Wu (2000) and Agca

(2005) reach similar conclusions. All this statistical evidence calls for investigating the

immunization performance that one can expect from traditional and stochastic durations.

This paper undertakes a mean variance analysis of returns generated by a couple of

stylized immunization strategies. The basic strategy captures the fundamental issue in

duration-based immunization, that is, trading off coupon reinvestment risk and resale

price risk (see e.g. Sundaresan, 2002). The other strategy is a dynamic extension that

allows for frequent rebalancing. We characterize the set of coupon reinvestment horizons

yielding mean-variance efficiency. As a by-product, we highlight the duration that achieves

the lowest variance in returns. Neither traditional nor stochastic durations fall in the set

of efficient horizons. This finding is robust across various interest rate environments and

bond characteristics. Our findings shed a new light on prior evidence. The ex ante

inefficiency of both traditional and stochastic duration-based strategies could explain the

poor immunization results obtained by Gultekin and Rogalski (1984) in their comparative

study of ex post performance.

Moreover, as we move from the basic to the dynamic strategy, efficiency is retrieved

and, although the same performance ranking across duration measures holds, differences
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in immunization performance are narrowed. This is consistent with Agca (2005) who

concludes that immunization performance is more driven by strategy sophistication rather

than by the choice of duration. Our finding is robust when we alternatively work under

the two-factor term structure model with stochastic volatility of Longstaff and Schwartz

(1992), suggesting the choice of the term structure model does not affect the ranking

among immunization performance.

The paper proceeds as follows. Section 2 presents the term structure model and the

set of durations under study. Section 3 describes the basic immunization strategy. Section

4 undertakes the mean variance analysis and shows the existence of an optimal set of

reinvestment horizons. Section 5 extends the analysis to a dynamic immunization strategy

where the reinvestment horizon is recalculated and the portfolio is rebalanced periodically.

We conclude in section 6.

2 Term structure model and durations

The mean-variance analysis is carried out under the Vasicek (1977) term structure model.

This setting allows for explicitly characterizing the mean and the variance of strategy

returns.1 The term structure is driven by the instantaneous risk-free rate rt which follows

a Gaussian mean-reverting process under the risk-neutral measure

drt = α (β + λ− rt)dt+ ηdZt. (1)

In equation (1), the (physical) process rt reverts to the long-termmean β, α is the reversion

speed, λ is the market price of risk, and random increments are driven by the Brownian

motion Zt with volatility η. The time−t value of the default-free discount bond with

principal $1 and time to maturity τ , denoted by P (t, τ), is given by

P (t, τ) = a (τ) exp (−b (τ) rt) ,

1Korn and Koziol (2006) conduct a mean-variance analysis of bond returns in the same
framework. Their focus is on portfolio optimization, and not on risk management issues
like immunization.
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with

a (τ) = exp

(
(b (τ)− τ)

(
α2 (β + λ)− η2/2

)
α2

−

η2b2 (τ)

4α

)

b (τ) =
1− exp (−ατ)

α
.

Let Pc (t, T − t) denote the time−t value of the coupon bond. Without loss of generality,

we assume a continuous coupon stream c so that

Pc (t, T − t) = c

∫
T

t

P (t, k − t)dk + P (t, T − t) .

One denotes by Ω = {r0, α, β, λ, η} the set of parameters. Typical shapes of the

zero-coupon yield curves generated by the Vasicek model are: increasing, decreasing and

humped. We work under three sets of parameters to capture different interest rate en-

vironments. Figure 1 details the parameterizations and shows the corresponding term

structures.

We consider three different duration measures: the Macaulay and the Fisher-Weil du-

rations among the so-called “traditional” measures, and the Cox-Ingersoll-Ross stochastic

duration. For a coupon bond with face value 1 and continuous coupon c, the Macaulay

duration is defined by

θmac =
c
∫ T

0
ke−ykdk + Te−yT

Pc (0, T )
,

where y is the continuously compounded yield-to-maturity on the coupon bond Pc (0, T ).

The Fisher-Weil duration is

θfw =
c
∫ T

0
kP (0, k)dk + TP (0, T )

Pc (0, T )
.

These two traditional durations are widely used in the industry. On a theoretical ground,

Ingersoll, Skelton and Weil (1978) show that these durations are valid risk measures when

changes in the term structure are limited to parallel shifts. Cox, Ingersoll and Ross (1979)

propose to define the stochastic duration as the maturity, expressed in units of time, of a

discount bond with same basis risk as the initial instrument. Therefore, in the context of
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the Vasicek model
2

θ
sto
= b

−1

(
c
∫
T

0
b (k)P (0, k)dk + b (T )P (0, T )

Pc (0, T )

)

where

b−1 (t) = −
1

α
ln (1− αt) , t <

1

α
.

3 The basic immunization strategy

We introduce a stylized strategy that captures the trade-off between coupon reinvestment

risk and resale price risk. Consider an investor who is currently long in one coupon

bond with face value 1, maturity T and continuous coupon c. The strategy with horizon θ

(0 ≤ θ ≤ T ) consists in (i) holding the coupon bond between dates 0 and θ, (ii) re-investing

each time−t coupon in the discount bond P (t, θ − t), and (iii) closing the positions at time

θ.3

The value πθ of the investor’s portfolio at date θ is

πθ = Pc (θ, T − θ) + c

∫
θ

0

ds

P (s, θ − s)
. (2)

Setting θ = 0, the strategy reduces to the instantaneous resale of the coupon bond. Setting

θ = T , the strategy reduces to the buy and hold of the coupon bond. As the investor

selects a longer θ, his or her portfolio gets more exposed to coupon reinvestment risk and

less exposed to resale price risk. The immunization strategy looks for the best trade-off.

Proposition 1 For any horizon θ, the random value of the basic immunization strategy

2It is well known that the extended Vasicek model is equivalent to the one-factor Heath-
Jarrow-Morton model with exponentially decaying volatility. Consequently, the duration
θ
cir of this paper is analogous to the measure used by Au and Thurston (1995) example
2, and Agca (2005), equation (8).

3We implicitly assume a perfect bond market where discount bonds of all maturities are
traded. Empirical papers (see Agca, 2005, and references therein) study specific portfolio
formation strategies (such as the bullet and the barbell portfolios) to cope with restrictions
on available bonds. In this paper, we abstract from these constraints.
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has mean and variance respectively equal to

E (πθ) = c

∫
T

θ

A (θ, k,−) dk +A (θ, T,−) + c

∫
θ

0

A (s, θ,+)ds.

and

var (πθ) = Σ2

P +Σ2

C + 2ΣPC

where

Σ2

P = 2c2
∫ T

θ

∫ T

j

A (θ, k,−)A (θ, j,−)B (t, u, v,±)B (θ, k, θ, j,+)dkdj

+A (θ, T,−)2B (θ, T, θ, T,+)

+2c

∫
T

θ

A (θ, k,−)A (θ, T,−)B (θ, k, θ, T,+)dk,

Σ2

C = 2c2
∫

θ

0

∫
θ

s

A (s, θ,+)A (u, θ,+)B (s, θ, u, θ,+)dsdu,

ΣPC = c2
∫

T

θ

∫
θ

0

A (θ, k,−)A (s, θ,+)B (s, θ, θ, k,−)dsdk

+c

∫
θ

0

A (θ, T,−)A (s, θ,+)B (s, θ, θ, T,−)ds,

with

A (t, u,±) = a (u− t)−(±1) exp

(
±b (u− t)mt +

1

2
b2 (u − t) vt

)

B (t, u, v,w,±) = exp (±b (u− t) b (w − v) gt,v)− 1

and

mt : = E (rt) = r0e
−αt + β

(
1− e

−αt
)
,

vt : = var (rt) =
η
2

2α

(
1− e

−2αt
)
,

gt,u : = cov (rt, ru) = η2 exp (−α (t+ u))
exp (2αt)− 1

2α
.

Proof: see appendix.

Proposition 1 allows for a variance decomposition of the basic immunization strategy

returns.4 The variances corresponding to resale price risk and coupon reinvestment risk

4Without loss of generality, the analysis will focus on annualized returns defined by

Rθ = (πθ − Pc (0, T )) / (θPc (0, T )).
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involve Σ2

P
and Σ2

C
, respectively. The immunization strategy also induces a covariance

term involving ΣPC . In line with intuition, Figure 2 shows that the basic immunization

strategy with a longer horizon decreases the exposure to resale price risk and increases

the risk of coupon reinvestment. The covariance component typically reduces the total

risk and its effect is the strongest around half time to maturity. Similar patterns (not

reported) hold for different interest rate environments.

Proposition 2 For the instantaneous resale strategy, the return has mean and standard

deviation

limE (Rθ)
θ→0+

= r

lim σ (Rθ)
θ→0+

= η · b
(
θ
sto

)
.

Proof: see appendix.

At the limit, buying and immediately selling the coupon bond yields a return equal

to the instantaneous spot rate. The volatility of this strategy is that of the instan-

taneous spot rate multiplied by the sensitivity of the coupon bond (since b
(
θ
sto

)
=

P ′

c
(t, T − t) /Pc (t, T − t)).

4 Mean-variance analysis

In this section, we characterize the set of efficient basic immunization strategies. Then

we assess the performance of basic immunization strategies using the duration measures

introduced in section 2.

Figure 3 plots, for every horizon θ, the returns of the basic immunization strategy in

the mean-standard deviation space (0, σ (Rθ) ,E (Rθ)). Inspection of Figure 3 shows that

there exists a minimum variance horizon θ∗. This is the horizon that achieves the lowest

variance trade-off between coupon reinvestment risk and resale price risk. The same plot is

represented in Figure 4 for the other interest rate environments Ω2 (decreasing yield curve)

and Ω3 (humped yield curve), as well as in Figure 5 for different bond characteristics. The
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returns of the basic immunization strategy display a robust pattern across various interest

rate parameters and bond characteristics: A minimum variance is attained for θ = θ
∗

and the most “north-western” returns are obtained with θ ranging from θ
∗ to T . In the

absence of coupons, θ∗ = T . Hence θ∗ can be interpreted as a duration. For the remainder

of the paper, it will be referred to as the minimum variance duration.5

Proposition 3 The basic immunization strategy with horizon θ is mean-variance efficient

if and only if

θ ≥ θ
∗

= argmin
θ

[σ (Rθ)] .

Corollary The buy and hold strategy ( θ = T ) is mean-variance efficient.

Using Propositions 1 and 3, we can gauge the performance of immunization strategies

based on traditional and stochastic durations. Results are displayed in Figure 6 using the

base case parameters of Figure 3. As a robustness check, Tables 1, 2 and 3 show the means

and standard deviations of returns for different interest rate environments (Table 1), and

different coupon rates and maturities (Tables 2 and 3). Sharpe ratios are also reported.6

Our findings can be summarized in three main points.

First, both traditional and stochastic durations are always (except for one case) below

the minimum variance duration, and therefore induce inefficient immunization strategies.

Oddly enough, all these durations induce an underexposure to the coupon reinvestment

risk. Second, The Cox-Ingersoll-Ross duration is systematically the lowest among the three

measures. Hence immunization strategies based on traditional durations outperform those

based on the stochastic duration, especially for long bonds. This finding helps explain why

previous empirical studies fail to prove the superiority of stochastic durations. Third, the

strategy based on Macaulay duration and that based on Fisher-Weil duration yield very

5Note that, just like traditional and stochastic durations, the minimum variance dura-
tion need not be a strictly increasing function of maturity.

6In our context, the Sharpe ratio is a relevant measure of immunization performance
because (i) bond returns are Gaussian in the Vasicek model, and (ii) for a given target
excess return, the Sharpe ratio penalizes dispersion (measured as the variance) around the
mean.
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similar immunization results.

5 Dynamic immunization strategies

In this section, we check consider a dynamic extension of the basic immunization strategy.

Specifically, the coupon reinvestment horizon is not determined once at initial date, but

rather recalculated periodically. As the spot rate changes over time, all the accumulated

coupons that were previously invested at date t in the zero coupon bond with maturity θt

are then reinvested in the zero coupon bond with maturity θt+∆t.
7

As in the former section, we use the traditional and stochastic durations to determine

the reinvestment horizons {θt}t≥0. We then challenge these strategies with the one con-

sisting in minimizing the variance of the investment strategy returns (this minimization

is now performed periodically).

5.1 Strategy description

We discretize the time interval [0, T ] and we denote by ∆t the (arbitrarily small) time step.

This time step represents the investor’s rebalancing frequency. The dynamic immunization

strategy is described as follows.

1. Buy the coupon bond with maturity T at time 0,

2. At any date i∆t, the accumulated capitalized coupons (acci) are defined as

acci =
i∑

k=1

c∆t

⎛
⎝

i∏
j=k

P
(
j∆t, θ(j−1) − j∆t

)

P
(
(j − 1)∆t, θ(j−1) − (j − 1)∆t

)

⎞
⎠ ,

and they will be invested in the zero coupon bond with maturity θ(i),

3. At the same date, the next reinvestment horizon θ(i) is calculated along the chosen

duration measure (see the appendix for details),

7Obviously, this stylized strategy would entail significant transaction costs. Note how-
ever, that every strategy based on each duration would face the same amount of transaction
costs. Hence, these costs do not affect the comparison between strategies.
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4. Accumulated capitalized coupons are reinvested until date Θ = I∆t where

I = inf
{
i ≥ 0 : θ(i) < ∆t

}
.

Note that the starting point of the dynamic strategy coincides with the basic immu-

nization strategy defined in the above section. That is, we have that π0,θ = πθ and hence

θ
x
(0) = θ

x, where x characterizes the duration measure. Then basic and dynamic strategies

differ as the spot rate follows a particular path and the investor updates the reinvestment

horizon accordingly.

5.2 Monte Carlo results

We carry out a mean-variance analysis of dynamic strategies by simulating a large number

of scenarios. Without any loss in generality, we assume the investor’s rebalancing frequency

to be monthly (∆t = 1/12). The Vasicek process for the spot rate is simulated using the

Euler scheme. To reduce the bias caused by time discretization, the Euler scheme uses a

daily time step (∆t = 1/360). Then the monthly interest rate process is simply obtained

by taking one every thirty realizations. The same set of sample paths is used to run all

dynamic strategies. The number of sample paths is set to 1,000, which is found to be

sufficient for the level of accuracy reported in our tables.

Figure 7 and Table 4 report the mean-variance analysis. Not surprisingly, Sharpe

ratios are higher than in the basic case (Table 3), especially for long maturities, because

of the value created by updating information.

As in the basic case, strategies based on traditional and stochastic durations fail to

beat that based on the minimum variance. Furthermore, the performance ranking across

durations remains the same. The strategy based on the stochastic duration exhibits the

poorest performance. Thus, the degree of strategy sophistication does not alter our previ-

ous conclusion: Both traditional and stochastic durations imply mean-variance inefficient

immunization strategies, and stochastic durations fail to yield a superior performance.

Most importantly, the differences in Sharpe ratios across durations become small when

the strategy gets dynamic. Let RS denote the relative spread in Sharpe ratios between
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the best performing strategy (based on the minimum variance duration) and the worst

performing strategy (based on the stochastic duration)

RS =
Sharpe ratio (θ∗)− Sharpe ratio

(
θ
cir

)

Sharpe ratio
(
θ
cir

) .

In the basic case: RS = 173%, 336%, and 518% for T = 1, 5, and 10, respectively. By

contrast, with the dynamic strategy: RS = 0.9%, 4.7%, and 12.7% for T = 1, 5, and 10,

respectively. Thus, we obtain that immunization performance is more driven by strategy

sophistication rather than by the choice of duration. The empirical study of Agca (2005)

reaches a similar conclusion.

5.3 Alternative interest rate model

We check the extent to which our results could be driven by the chosen interest rate model.

Simulations of the dynamic immunization strategies are performed under a different inter-

est rate model. Specifically, we choose to work under the Longstaff and Schwartz (1992)

two factor model where

drt =

(
αγ + βη −

βδ − αξ

β − α
rt −

ξ − δ

β − α
Vt

)
dt

+α

√
βrt − Vt

α (β − α)
dW 1

t
+ β

√
Vt − αrt

β (β − α)
dW 2

t

and

dVt =

(
α2γ + β2η −

αβ (δ − ξ)

β − α
rt −

βξ − αδ

β − α
Vt

)
dt

+α2

√
βrt − Vt

α (β − α)
dW 1

t
+ β2

√
Vt − αrt

β (β − α)
dW 2

t
,

where W 1 and W 2 are two independent Brownian motions and α, β, γ, δ, η and ξ are

positive constant parameters.

Simulating the strategy described in subsection 5.1 requires (i) knowledge of the dis-

count bond value function and (ii) determination of the coupon reinvestment horizon.

The Longstaff and Schwartz (1992) model allows for a closed-form solution to P (t, τ). As
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for durations, Macaulay and Fisher-Weil measures keep the same definitions. Moreover,

Munk (1999) solves for the stochastic (Cox-Ingersoll-Ross type) duration in the Longstaff

and Schwartz (1992) model. He finds that θsto is the solution to

0 =
α (βr − V )

ϕ2

((
eϕθ

sto

− 1

)2
am

(
θ
sto
)2
−K2

a

)

+
β (V − αr)

ψ2

((
eψθ

sto

− 1

)
2

bm

(
θ
sto
)2
−K2

b

)
,

with ϕ =
√
2α+ δ2, ψ =

√
2β + (ξ + λ)2, λ is the market price of risk, and

am (x) =
2ϕ

(δ +ϕ) (eϕx − 1) + 2ϕ

bm (x) =
2ψ

(ξ + λ+ψ) (eψx − 1) + 2ψ

Ka =
c
∫ T
t
P (t, k − t)

(
eϕ(k−t)

− 1
)
am (k − t)dk

Pc (t, T − t)

+
P (t, T − t)

(
eϕ(T−t)

− 1
)
am (T − t)

Pc (t, T − t)

Kb =
c
∫ T

t
P (t, k − t)

(
eψ(k−t)

− 1
)
bm (k − t) dk

Pc (t, T − t)

+
P (t, T − t)

(
eψ(T−t)

− 1
)
bm (T − t)

Pc (t, T − t)
.

Simulations results are reported in Table 5. Again, we use the Euler scheme with a

daily time step (∆t = 1/360) to discretize the interest rate process. Then we use one every

thirty realizations of the process to work with monthly values. When simulating processes

with stochastic volatility, the standard Euler scheme can generate negative variance with

non-zero probability, which causes the time stepping scheme to fail. To avoid this problem,

we rely on the so-called full truncation scheme as described in Lord et al. (2006).8

Parameter values are set very close to the ones obtained by Jensen (2001) who estimates

the Longstaff-Schwartz model on the weekly US 3-month T-Bill over the 1954 — 1998

period. Specifically, we take α = 0.0003, β = 0.015, γ = 40, δ = 0.25, ξ = 4 and η = 5.

8
Lord et al. (2006) and Andersen (2007) numerically find that among Euler discretizations that correct

for negative variances, the full truncation scheme produces the smallest discretization bias.
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Setting the initial values of r = 0.05 and V = 0.0002, we obtain an increasing term

structure similar to the one generated by interest rate environment Ω1.

As shown in Table 5, results are very similar to the Vasicek case. In particular, the

performance ranking among duration measures is the same, with the two traditional du-

rations producing almost identical mean-variance results across all maturities considered.

Our findings are therefore robust to the choice of the term structure model.

6 Concluding remarks

This paper has challenged several durations as coupon reinvestment horizon for immu-

nization purposes. Both traditional and stochastic durations almost always lie below the

minimum variance duration, inducing mean-variance inefficient strategies. As we consider

a more sophisticated strategy with frequent rebalancing, the ranking between durations

(in terms of mean-variance performance) remains the same, but differences across du-

rations are narrowed. The analysis is conducted under a Gaussian interest rate model,

which allows for analytical solutions for the mean and the variance of strategies and for

an explicit characterization of the mean-variance efficient set. Yet, the same performance

ranking across duration measures holds under an alternative two-factor term structure

model with stochastic volatility. Our results explain why previous empirical studies on

immunization (i) find disappointing performance for all duration-based strategies, and (ii)

conclude that strategy sophistication matters more than the choice of duration.

A possible reason may stem from the ambivalent definition of duration. Most avail-

able durations, especially the stochastic one, are defined as the bond price elasticity with

respect to the relevant risk factor(s). These measures are essentially Hicks-type durations

built for hedging purposes. Alternatively, duration can be defined as the holding period

over which the portfolio made of all reinvested coupons plus the present value of the bond

is immune to interest rate changes. This is the Macaulay-type duration, which justifies

its use in immunization strategies. Unfortunately, it is well known that the hedging and

immunization definitions coincide only when the term structure is flat and subsequently
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undergoes parallel shifts. Our ex ante mean-variance analysis and previous ex post em-

pirical studies both emphasize the limitations in implementing an immunization strategy

with a duration defined in a hedging sense.

Our paper therefore suggests that duration-based immunization strategies should not

rely on available measures, but rather on adapted durations that are specifically designed

for trading off coupon reinvestment risk with resale price risk.
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Appendix

Proof of Proposition 1

The mean of the value process is given by

E (πθ) = c

∫
T

θ

E (P (θ, k − θ)) dk +E (P (θ, T − θ)) + c

∫
θ

0

E

(
1

P (s, θ − s)

)
ds.

For any given t and τ , we have that

E (P (t, τ)) = a (τ)E (exp(−b (τ) rt)) .

Since rt is Gaussian with mean

mt := E (rt) = r0e
−αt

+ β
(
1− e−αt

)

and variance

vt := var (rt) =
η
2

2α

(
1− e

−2αt
)
,

we obtain

E (P (t, τ)) = a (τ) exp

(
−b (τ)mt +

1

2
b2 (τ) vt

)
.

Similarly,

E

(
1

P (t, τ)

)
=

1

a (τ)
exp

(
b (τ)mt +

1

2
b2 (τ ) vt

)
.

Hence

E (πθ) = c

∫
T

θ

a (k − θ) exp

(
−b (k − θ)mθ +

1

2
b
2 (k − θ) vθ

)
dk

+a (T − θ) exp

(
−b (T − θ)mθ +

1

2
b
2 (T − θ) vθ

)

+c

∫
θ

0

1

a (θ − s)
exp

(
b (θ − s)ms +

1

2
b
2 (θ − s) vs

)
ds.
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As for variance, we have that

var (πθ) = c2var

(∫
T

θ

P (θ, k − θ) dk

)
+ var (P (θ, T − θ))

+2c · cov

(∫
T

θ

P (θ, k − θ)dk,P (θ, T − θ)

)

+c2var

(∫
θ

0

1

P (s, θ − s)
ds

)

+2c2cov

(∫
T

θ

P (θ, k − θ) dk,

∫
θ

0

1

P (s, θ − s)
ds

)

+2c · cov

(
P (θ, T − θ) ,

∫
θ

0

1

P (s, θ − s)
ds

)
.

Which yields, for k ≥ j and u ≥ s

var (πθ) = 2c2
∫ T

θ

dj

∫ T

j

cov (B (θ, k − θ) ,B (θ, j − θ))dk

+var (B (θ, T − θ))

+2c

∫ T

θ

cov (B (θ, k − θ) ,B (θ, T − θ))dk

+2c2
∫ θ

0

ds

∫ θ

s

cov

(
1

B (u, θ− u)
,

1

B (s, θ − s)

)
du

+2c2
∫ θ

0

ds

∫ T

θ

cov

(
B (θ, k − θ) ,

1

B (s, θ− s)

)
dk

+2c

∫ θ

0

cov

(
B (θ, T − θ) ,

1

B (s, θ − s)

)
ds.

First, we compute var (P (t, τ)) for any given t and τ . We have that

var (P (t, τ)) = a2 (τ) var (exp (−b (τ) rt)) .

Since exp (−b (τ) rt) is log-normal, we get

var (P (t, τ)) = a2 (τ) exp
(
−2b (τ)mt + b

2 (τ) vt
) (

exp
(
b
2 (τ) vt

)
− 1

)
.

Similarly,

var

(
1

P (t, τ)

)
=

1

a2 (τ )
exp

(
2b (τ)mt + b2 (τ) vt

) (
exp

(
b2 (τ) vt

)
− 1

)
.

17



Next, we compute cov (P (t, τ) , P (t, ζ)) for any given t, τ and ζ. We have that

cov (P (t, τ ) , P (t, ζ)) = a (τ)a (ζ) cov (exp(−b (τ) rt) , exp(−b (ζ) rt)) .

Note that the last covariance can also be written as

E (exp (− (b (τ) + b (ζ)) rt))−E (exp (−b (τ) rt))E (exp(−b (ζ) rt)) ,

which yields

cov (P (t, τ ) , P (t, ζ))

= a (τ)a (ζ)

[
exp

(
− (b (τ) + b (ζ))mt +

1

2
((b (τ) + b (ζ)))2 vt

)]

−a (τ)a (ζ)

[
exp

(
− (b (τ) + b (ζ))mt +

1

2
b2 (τ) vt +

1

2
b2 (ζ) vt

)]

= a (τ)a (ζ) exp

(
− (b (τ) + b (ζ))mt +

1

2
b2 (τ) vt +

1

2
b2 (ζ) vt

)

× [exp (b (τ) b (ζ) vt)− 1] .

Now we compute cov
(

1

P (s,τ) ,
1

P (u,ζ)

)
for any given s, u ≥ s, τ and ζ. We have that

cov

(
1

P (s, τ)
,

1

P (u, ζ)

)
=

1

a (τ)a (ζ)
cov (exp (b (τ) rs) , exp (b (ζ) ru)) .

Note that the last covariance can also be written as

E (exp (b (τ) rs + b (ζ) ru))−E (exp(b (τ) rs))E (exp(b (ζ) ru)) ,

or, equivalently

exp

(
b (τ)ms + b (ζ)mu +

1

2

[
b2 (τ) vs + b2 (ζ) vu + 2b (τ) b (ζ) gs,u

])

− exp

(
b (τ)ms +

1

2
b2 (τ) vs

)
exp

(
b (ζ)mu +

1

2
b2 (ζ) vu

)
,

with

gs,u := cov (rs, ru) = η
2 exp (−α (s+ u))

exp (2αs)− 1

2α
.
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Hence

cov

(
1

P (s, τ)
,

1

P (u, ζ)

)

=
1

a (τ) a (ζ)
exp

(
b (τ)ms + b (ζ)mu +

1

2

[
b2 (τ) vs + b2 (ζ) vu + 2b (τ) b (ζ) gs,u

])

−

1

a (τ)a (ζ)
exp

(
b (τ)ms +

1

2
b2 (τ) vs

)
exp

(
b (ζ)mu +

1

2
b2 (ζ) vu

)
.

cov

(
1

P (s, τ)
,

1

P (u, ζ)

)

=
1

a (τ)a (ζ)
exp

(
b (τ)ms + b (ζ)mu +

1

2
b2 (τ) vs +

1

2
b2 (ζ) vu

)

[exp (b (τ) b (ζ) gs,u)− 1] .

Finally, the computation of cov
(
P (θ, τ) , 1

P (u,ζ)

)
for any given θ, θ ≥ u, τ and ζ yields

cov

(
P (θ, τ) ,

1

P (u, ζ)

)

=
a (τ)

a (ζ)
exp

(
−b (τ)mθ + b (ζ)mu +

1

2
b2 (τ) vθ +

1

2
b2 (ζ) vu

)

[exp (−b (τ) b (ζ) gu,θ)− 1] .

Combining all these results completes the proof.

Proof of Proposition 2

Applying Itô’s lemma,

dPc (t, T − t) =
∂Pc (t, T − t)

∂t
dt+

∂Pc (t, T − t)

∂r
dr +

1

2

∂2Pc (t, T − t)

∂r2
(dr)2 . (3)

Note that

∂Pc (t, T − t)

∂t
= c

∫
T

t

∂P (t, k − t)

∂t
dk − cP (t, 0) +

∂P (t, T − t)

∂t

∂Pc (t, T − t)

∂r
= c

∫
T

t

∂P (t, k − t)

∂r
dk +

∂P (t, T − t)

∂r

∂2Pc (t, T − t)

∂r2
= c

∫
T

t

∂2P (t, k − t)

∂r2
dk +

∂2P (t, T − t)

∂r2
.
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Hence, equation (3) becomes

dPc (t, T − t) =

(
c

∫
T

t

∂P (t, k − t)

∂t
dk − cP (t, 0) +

∂P (t, T − t)

∂t

+α (β − rt) c

∫
T

t

∂P (t, k − t)

∂r
dk + α (β − rt)

∂P (t, T − t)

∂r

+
η2

2
c

∫
T

t

∂2P (t, k − t)

∂r2
dk +

η2

2

∂2P (t, T − t)

∂r2

)
dt

+η

(
c

∫
T

t

∂P (t, k − t)

∂r
dk +

∂P (t, T − t)

∂r

)
dZt.

Terms in dt can be simplified as

E (dPc (t, T )) = c

(∫
T

t

(
∂P (t, k)

∂t
+ α (β − rt)

∂P (t, k)

∂r
+

η2

2

∂2P (t, k)

∂r2

)
dk

)
dt

−cdt+

(
∂P (t, T)

∂t
+ α (β − rt)

∂P (t, T )

∂r
+

η2

2

∂2P (t, T )

∂r2

)
dt.

In absence of arbitrage, we have, for any u > t

∂P (t, u− t)

∂t
+ α (β − rt)

∂P (t, u− t)

∂r
+

η2

2

∂2P (t, u− t)

∂r2
= rtP (t, u− t) .

Hence

E (dPc (t, T − t) + cdt) = rtc

(∫
T

t

P (t, k − t)dk

)
dt+ rtP (t, T − t) dt,

E

(
dPc (t, T − t) + cdt

Pc (t, T − t)

)
= rtdt.

As for standard deviation, we obtain from equation (3)

σ

(
dPc (t, T − t) + cdt

Pc (t, T − t)

)
=

η

Pc (t, T − t)

(
c

∫
T

t

∂P (t, k − t)

∂r
dk +

∂P (t, T − t)

∂r

)
.

Hence, from the definition of θsto

σ

(
dPc (t, T − t) + cdt

Pc (t, T − t)

)
= ηb

(
θ
sto

)
.

Dynamic strategy description

For the minimum variance duration, the next reinvestment horizon θ
∗

(i) is calculated as

argmin
θ

[σ (Ri,θ)] where the value process of the dynamic immunization strategy is given
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by

πi,θ = Pc (θ, T − θ) + c

∫
θ

i∆t

ds

P (s, θ − s)
+

acci

P (i∆t, θ − i∆t)
.

Note that the last term is known at date i∆t and therefore does not interfere in the

computation of vari (πi,θ).

Similarly, the next reinvestment horizon θ(i) for all other durations is calculated as

θ
mac
(i) =

c
∫ T

i∆t
(k − i∆t) e−y(k−i∆t)

dk + (T − i∆t) e−y(T−i∆t)

c
∫ T

i∆t
e−y(k−i∆t)dk + e−y(T−i∆t)

,

where y is the continuously compounded yield-to-maturity on the coupon bond

θ
fw

(i)
=

c
∫ T

i∆t (k − i∆t)P (i∆t, k − i∆t)dk + (T − i∆t)P (i∆t, T − i∆t)

c
∫
T

i∆t
P (i∆t, k − i∆t) dk +P (i∆t, T − i∆t)

,

θsto(i) = b−1

(
c
∫
T

i∆t
b (k − i∆t)P (i∆t, k − i∆t)dk + b (T − i∆t)P (i∆t, T − i∆t)

c
∫
T

i∆t
P (i∆t, k − i∆t) dk +P (i∆t, T − i∆t)

)
,

The annualized return of the dynamic immunization strategy is then given by

RΘ =
1

Θ

Pc (Θ, T ) + accΘ −Pc (0, T )

Pc (0, T )
.
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Figures

Figure 1: Sets of parameters and their implied zero-coupon yield curves.

The three sets of parameters are:

Set Shape r0 α β η

Ω1 Increasing 0.05 0.3 0.07 0.03

Ω2 Decreasing 0.05 0.3 0.04 0.03

Ω3 Humped 0.05 0.1 0.07 0.03

and λ = 0 across the three sets.

2 4 6 8 10
t

0.045

0.05

0.055

0.06

yield

Figure 1 plots the zero-coupon yield curve corresponding to the set Ω1 (straight line), Ω2

(long-dashed line), and Ω3 (short-dashed line).
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Figure 2: Variance decomposition

of the basic immunization strategy returns.

2 4 6 8 10
θ

0

0.0005

0.001

0.0015

0.002

Figure 2 plots the total variance components of basic immunization strategy returns. The

straight line plots the variance corresponding to resale price risk. The short-dashed line plots the

variance corresponding to coupon reinvestment risk. The long-dashed line plots the covariance

between the two risks. Interest rate environment is Ω1. Bond maturity is T = 10, coupon rate is

c = 0.1.
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Figure 3: Basic immunization strategy returns

in the mean-standard deviation space.
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Figure 3 plots the returns of the basic immunization strategy in the mean-standard deviation

space for every horizon θ. Interest rate environment is Ω1. Bond maturity is T = 10, coupon rate

is c = 0.1.
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Figure 4: Basic immunization strategy returns

in the mean-standard deviation space

with different interest rate environments.
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θ = 0

Figure 4 plots the returns of the basic immunization strategy in the mean-standard deviation

space for every horizon θ. Bond maturity is T = 10, and coupon rate is c = 0.1. For the top

figure, interest rate environment is Ω1(dashed line) and Ω2 (straight line). For the bottom figure,

interest rate environment is Ω1(dashed line) and Ω3 (straight line).
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Figure 5: Basic immunization strategy returns

in the mean-standard deviation space

with different bond characteristics.
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Figure 5 plots the returns of the basic immunization strategy in the mean-standard deviation

space for every horizon θ. Interest rate parameters are Ω1. For the top figure, bond maturity is

T = 10, and coupon rate is c = 0.05. For the bottom figure, bond maturity is T = 5, and coupon

rate is c = 0.1.
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Figure 6: Duration-based strategies in the mean-standard deviation space:

The case for basic immunization strategy returns.
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Figure 6 plots the returns of the basic immunization strategy in the mean-standard deviation

space for every horizon θ. The respective positions of strategies based on traditional and stochastic

durations are highlighted. Interest rate environment is Ω1. Bond maturity is T = 10, coupon rate

is c = 0.1.
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Figure 7: Duration-based strategies in the mean-standard deviation space:

The case for dynamic immunization strategy returns.
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Figure 7 plots the returns of the dynamic immunization strategy in the mean-standard devi-

ation space for strategies based on minimum variance, traditional and stochastic durations. The

Sharpe ratio for each strategy is the slope of the dashed line with intercept equal to the ten-year

yield. Interest rate environment is Ω1. Bond maturity is T = 10, coupon rate is c = 0.05.
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Tables

Table 1: Mean-variance analysis of the basic immunization strategy:

Different interest rate environments.

Min. var. Traditional durations Stochastic

duration Macaulay Fisher-Weil duration

θ
∗

θ
mac

θ
fw

θ
sto

Panel A: Interest rate parameters are Ω1

θ (years) 8.802 6.820 6.795 4.895

E (Rθ) (%) 8.062 7.326 7.316 6.642

σ (Rθ) (%) 1.538 2.055 2.066 3.059

Sharpe ratio 1.306 0.668 0.660 0.270

Panel B: Interest rate parameters are Ω2

θ (years) 9.102 7.043 7.070 5.167

E (Rθ) (%) 5.019 4.888 4.890 4.812

σ (Rθ) (%) 1.210 1.834 1.821 2.889

Sharpe ratio 0.765 0.367 0.371 0.156

Panel C: Interest rate parameters are Ω3

θ (years) 8.251 6.939 6.949 6.321

E (Rθ) (%) 6.366 6.011 6.014 5.859

σ (Rθ) (%) 2.375 3.314 3.302 4.131

Sharpe ratio 0.549 0.271 0.272 0.175

For various interest rate environments, Table 1 reports the duration (in years), the expected

return (in percentage), the volatility (in percentage) and the Sharpe ratio of the associated basic

immunization strategy. The Sharpe ratio is defined as (E (Rθ)− y (θ)) /σ (Rθ) where y (θ) =

−(1/θ) lnP (0, θ) is the zero coupon yield. Bond maturity is T = 10, and coupon rate is c = 0.1.
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Table 2: Mean-variance analysis of the basic immunization strategy:

Different maturities and 10% coupon.

Min. var. Traditional durations Stochastic

duration Macaulay Fisher-Weil duration

θ
∗

θ
mac

θ
fw

θ
sto

Bond maturity is T = 1

θ (years) 0.984 0.953 0.953 0.948

E (Rθ) (%) 5.395 5.382 5.382 5.380

σ (Rθ) (%) 0.039 0.089 0.089 0.100

Sharpe ratio 3.560 1.498 1.497 1.324

Bond maturity is T = 5

θ (years) 4.673 4.038 4.034 3.611

E (Rθ) (%) 6.674 6.433 6.431 6.273

σ (Rθ) (%) 0.614 1.085 1.090 1.595

Sharpe ratio 1.432 0.646 0.642 0.369

Bond maturity is T = 10

θ (years) 8.802 6.820 6.795 4.895

E (Rθ) (%) 8.062 7.326 7.316 6.642

σ (Rθ) (%) 1.538 2.055 2.066 3.059

Sharpe ratio 1.306 0.668 0.660 0.270

For various bond maturities, Table 2 reports the duration (in years), the expected return

(in percentage), the volatility (in percentage) and the Sharpe ratio of the associated basic im-

munization strategy. The Sharpe ratio is defined as (E (Rθ)− y (θ)) /σ (Rθ) where y (θ) =

−(1/θ) lnP (0, θ) is the zero coupon yield. Interest rate environment is Ω1. Coupon is c = 0.1.
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Table 3: Mean-variance analysis of the basic immunization strategy:

Different maturities and 5% coupon.

Min. var. Traditional durations Stochastic

duration Macaulay Fisher-Weil duration

θ
∗

θ
mac

θ
fw

θ
sto

Bond maturity is T = 1

θ (years) 0.992 0.975 0.975 0.973

E (Rθ) (%) 5.398 5.391 5.391 5.390

σ (Rθ) (%) 0.021 0.049 0.049 0.055

Sharpe ratio 6.739 2.796 2.795 2.471

Bond maturity is T = 5

θ (years) 4.847 4.411 4.408 4.083

E (Rθ) (%) 6.725 6.556 6.555 6.431

σ (Rθ) (%) 0.397 0.834 0.838 1.313

Sharpe ratio 2.305 0.942 0.937 0.529

Bond maturity is T = 10

θ (years) 9.557 7.760 7.740 5.771

E (Rθ) (%) 8.315 7.624 7.617 6.909

σ (Rθ) (%) 1.172 2.080 2.094 3.331

Sharpe ratio 1.903 0.778 0.770 0.308

For various bond maturities, Table 2 reports the duration (in years), the expected return

(in percentage), the volatility (in percentage) and the Sharpe ratio of the associated basic im-

munization strategy. The Sharpe ratio is defined as (E (Rθ)− y (θ)) /σ (Rθ) where y (θ) =

−(1/θ) lnP (0, θ) is the zero coupon yield. Interest rate environment is Ω1. Coupon is c = 0.05..
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Table 4: Mean-variance analysis of the dynamic immunization strategy:

Different maturities and 5% coupon.

Min. var. Traditional durations Stochastic

duration Macaulay Fisher-Weil duration

θ
∗

θ
mac

θ
fw

θ
sto

Bond maturity is T = 1

E (Rθ) (%) 5.412 5.412 5.412 5.412

σ (Rθ) (%) 0.030 0.031 0.031 0.031

Sharpe ratio 4.982 4.942 4.942 4.938

Bond maturity is T = 5

E (Rθ) (%) 6.811 6.812 6.812 6.813

σ (Rθ) (%) 0.233 0.241 0.241 0.245

Sharpe ratio 4.231 4.107 4.107 4.043

Bond maturity is T = 10

E (Rθ) (%) 8.512 8.518 8.518 8.523

σ (Rθ) (%) 0.413 0.439 0.439 0.467

Sharpe ratio 5.845 5.506 5.509 5.188

For various bond maturities (in years), Table 4 reports the expected return (in percentage), the

volatility (in percentage) and the Sharpe ratio of the associated dynamic immunization strategy.

The Sharpe ratio is defined as (E (Rθ)− y (θ)) /σ (Rθ) where y (θ) = −(1/θ) lnP (0, θ) is the

zero coupon yield. Interest rate environment is Ω1. Coupon is c = 0.05.
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Table 5: Mean-variance analysis of the dynamic immunization strategy

under the Longstaff-Schwartz model:

Different maturities and 5% coupon.

Traditional durations Stochastic

Macaulay Fisher-Weil duration

θ
mac

θ
fw

θ
sto

Bond maturity is T = 1

E (Rθ) (%) 5.760 5.760 5.760

σ (Rθ) (%) 0.019 0.019 0.019

Sharpe ratio 9.290 9.290 9.201

Bond maturity is T = 5

E (Rθ) (%) 7.166 7.166 7.169

σ (Rθ) (%) 0.151 0.151 0.153

Sharpe ratio 7.469 7.470 7.421

Bond maturity is T = 10

E (Rθ) (%) 9.059 9.059 9.080

σ (Rθ) (%) 0.328 0.328 0.345

Sharpe ratio 8.517 8.527 8.162

For various bond maturities (in years), Table 5 reports the expected return (in percentage), the

volatility (in percentage) and the Sharpe ratio of the associated dynamic immunization strategy.

The Sharpe ratio is defined as (E (Rθ)− y (θ)) /σ (Rθ) where y (θ) = −(1/θ) lnP (0, θ) is the

zero coupon yield. Simulations are run under the Longstaff and Schwartz (1992) two-factor model.

Coupon is c = 0.05.
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