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Abstract

A company’s credit spreads and default policy are analyzed in a

structural model of credit risk. Agents have incomplete information

about the company’s EBIT (Earnings Before Interest and Taxes) pro-

cess and observe it with time delays. When all agents observe the state

variable with the same delay, the delay has a minor effect on credit

spreads and default policy. Asymmetric information occurs when dif-

ferent agents observe the EBIT process with different time delays. Our
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participants at faculty seminars at Trondheim Business School, the Norwegian School

of Economics and Business Administration, Princeton University, and the University of

Stavanger for useful comments and discussions. First version: March 4, 2008.

1



simple model with neither noisy accounting information nor discrete

arrival of information, but with asymmetric information between bond-

and equity holders, produces qualitatively similar results as Duffie and

Lando (2001). Wider credit spreads are obtained in another model

where we allow for trade of equity, and where the information asym-

metry is between the management and the financial market.

Keywords and phrases: Credit risk, credit spreads, delayed informa-

tion, asymmetric information.
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1 Introduction

We analyze a company’s credit spreads and default policy in a model where

agents have incomplete information about the company’s EBIT (Earnings

Before Interest and Taxes) process, the only state variable. The agents

observe the state variable with time delays. If all agents observe the state

variable with identical time delay, the delay has a minor effect on credit

spreads and default policy compared to the case with complete information.

Asymmetric information occurs if different agents observe the state variable

with different time delays and leads to wider credit spreads. This effect

is especially pronounced for bonds with short maturities, and short-term

credit spreads do not converge to zero. Introducing a simplified Duffie and

Lando (2001) model with asymmetric information between bond- and equity

holders, we show that this asymmetry produces positive credit spreads for

short-term maturities. Finally, a model relaxing non-tradability of equity

and bonds, but with information asymmetry between management and the

financial market produces wider credit spreads than the simplified model.

The risk that a debtor will not honor his contractual obligations with

the creditor is called credit risk. This topic has received attention in both

the academic literature and among practitioners. There are two dominat-

ing approaches to credit risk in the finance literature; structural models and

reduced form models. The first was pioneered by Merton (1974). He models

the value of a company’s assets by a stochastic process and debt and equity

are considered as contingent claims on the total asset value. Some of the pa-

pers in this tradition include Black and Cox (1976), Geske (1977), Longstaff

and Schwartz (1995), Leland (1994), and Duffie and Lando (2001). The

second approach assumes the existence of a default arrival intensity. This

approach was pioneered by Jarrow and Turnbull (1992), for extensions see
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e.g., Jarrow and Turnbull (1995), Jarrow, Lando, and Turnbull (1997), and

Schönbucher (1998).1 Coculescu, Geman, and Jeanblanc (2008) and Guo,

Jarrow, and Zeng (2008) analyze technical aspects of credit risk and incom-

plete information.

As a bond’s time to maturity approaches zero, the credit spread ap-

proaches zero in traditional structural models. This property is not in line

with observations in financial markets and is considered a problem with

the structural models. The reduced form approach is typically able to pro-

duce strictly positive credit spreads also for short term maturities, but is

not founded on economic models of the company. However, they seem to

be more useful than structural models when it comes to practical use and

calibration to market data.

We analyze four cases. The first case assumes complete information and

builds on the model of Leland (1994). It serves as a natural benchmark for

the other three cases.

In the second case we assume that all agents receive the same informa-

tion with identical time delay. This case is motivated by Jarrow and Protter

(2004) who state that real life values of companies are typically not observ-

able, and that implications of this fact for default policy and credit spreads

are not well understood. We show that the most important difference be-

tween case 2 and case 1 is that the value of a bankruptcy lottery must be

accounted for when a bankruptcy decision is made. Furthermore, for real-

istic parameter values we show that the value of this lottery is too low to

have a significant effect on default policy and credit spreads.

The third case is the first of two cases with asymmetric information. In
1Comprehensive treatments of these two approaches can be found in the enclopedic

monograph by Bielecki and Rutkowski (2002) or in the more accessible monograph by

Duffie and Singleton (2003).
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this case equity holders are better informed than bond holders, i.e., equity

holders receive information about the value of the state variable earlier than

the bond holders. This assumption is in line with Duffie and Lando (2001).

To keep these two groups of agents separated, equity is by assumption not

traded, eliminating bond holders’ access to the equity market. Equity hold-

ers are by assumption precluded from buying corporate debt. The latter

assumption is justified by insider-trading regulation. This case produces

wider credit spreads than case 1 and 2. In particular, short-term credit

spreads do not converge to zero. Although our model is simpler than the

model of Duffie and Lando (2001), i.e., it contains neither noisy account-

ing information nor discrete arrival of information, it produces qualitatively

similar results. Asymmetric information and our simpler model with a con-

tinuous flow of information are sufficient to obtain short-term credit spreads

that do not converge to zero.

In case 4 we introduce a new agent called management who is better

informed than the financial market, i.e., the bond- and equity holders. We

disregard all agency problems between the management and the equity hold-

ers. All participants in the financial market have access to the same infor-

mation at any point in time. We relax the non-tradability assumption in

case 3 and do not restrict equity holders from buying or selling bonds and

equity and vice versa for bond holders. This is a reasonable and tractable

property of our model and corresponds nicely with what is observed in real

markets. These assumptions are superior to the assumptions in case 3 for

the following reasons:

1. Tradability of equity extends the model’s applicability to a much wider

set of companies. There are relatively few companies with a secondary
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market for corporate debt whose equity is not traded.2

2. When the company needs more capital to run its operations, non-

tradability of equity can cause equity holders to file for bankruptcy

due to liquidity problems, not because it is economically optimal. The

reasons are:

• The equity holders cannot finance infusion of capital by selling

or diluting their stocks.

• Equity holders might have problems borrowing money to finance

any infusion of capital by using the equity as collateral since the

true value of equity is only known by themselves and not by

the lender. Moreover, this information cannot be revealed to the

lender (otherwise, bond holders would have the same information

as equity holders and the information asymmetry disappears).

3. Asymmetric information leads to wider credit spreads, and thereby a

higher cost of debt financing. This result implies a lower debt ratio

than the optimal ratio in the case of fully informed bond holders. This

again leads to a lower total value of the firm, and, thus, asymmetric

information also reduces the value of the equity. There is therefore no

economic rationale for keeping information away from bond holders in

these types of models.

Credit spreads are wider in case 4 than in case 3.

The model of Duffie and Lando (2001) is the first structural model which

is equivalent to a reduced form model. In case 3 and 4 we present two more

examples of structural models which are equivalent to reduced form models.
2Examples are Special Purpose Vehicles, mutually owned companies (banks and insur-

ers), foundations, and municipals.
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We do not address the problem of optimal capital structure, but instead

focus our analysis on the effects of incomplete information on credit spreads

and default policy.

The paper is organized as follows: In section 2 we present the economic

model and some preliminaries. The classical case with complete information

(case 1) is reviewed in section 3. The case with delayed information (case 2)

is analyzed in section 4. The case with delayed and asymmetric information

between bond- and equity holders (case 3) is analyzed in section 5. In

section 6 we analyze the case with delayed and asymmetric information

between management and the financial market (case 4). Section 7 contains

some concluding remarks. Technical results and proofs are relegated to the

appendices.

2 The Economic Model and Basic Results

2.1 The Set-up

We use the EBIT (earnings before interest and taxes) version of the economic

model of Leland (1994), see e.g., Goldstein, Ju, and Leland (2001). The

EBIT process of the company is given by the stochastic differential equation

dδt = µδtdt + σδtdBt, (1)

where the drift and volatility parameters µ and σ are constants. We assume

that µ < r, where r represents the constant risk free interest rate and

that the initial value of the process δ0 is a positive constant. Here Bt is

a standard Brownian motion that is defined on a fixed, filtered probability

space (Ω,F , P ). Furthermore, P represents the original probability measure,

and all agents are risk neutral.

The information filtration Ft is generated by the process {δs, 0 ≤ s ≤ t}
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(augmented with all sets of measure zero). To incorporate delayed informa-

tion we assume that two distinct classes of agents have information filtrations

Fm
t and F l

t , where m and l signify more and less information, respectively.

We define

Fm
t = Ft−m, for all t ≥ m,

F l
t = Ft−l, for all t ≥ l,

and 0 ≤ m ≤ l. Clearly, from this specification the filtrations can be nested

as

F l
t ⊆ Fm

t ⊆ Ft.

Let the assessment of the value of the company at time t by an agent

with information delay k ∈ {0, m, l} be denoted by V k
t . The assessed value

of the company is the expected discounted value of the EBIT stream. An

important feature of our model is that at time t the owner of the EBIT

stream receives the delayed payment rate δt−k. Thus

V k
t = E

[ ∫ ∞

t
e−r(s−t)δs−kds

∣∣Fk
t

]
=

δt−k

r − µ
, (2)

where t ≥ k. With a time lag k in the filtration, any other payment rate

δt−j , j < k could be used by the owner to reduce the information lag to j.

We remark that V k
t is simply δt−k multiplied by a constant, and is therefore

also a geometric Brownian motion.

For k = 0 the value is identical to the value when there is no delay in

the flow of information. Both the expectation and the righthand side in

expression (2) clearly reflect the delay through the presence of δt−k instead

of δt that is present under complete information. Note that V k
t = V 0

t−k, i.e.,

the value assessed at time t by an agent with information lag k is identical

to the value assessed at time t − k by an agent with complete information.
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As in Leland (1994) we assume that the company has issued perpetual

debt with face value D. The debt is serviced by a constant rate of coupon

payments C. These payments are tax deductible (only interest is paid on

perpetual debt). The tax benefit rate is θC, where θ is the tax rate.

In our model the bankruptcy decision is based on the information of the

better informed agent. In correspondence with practice, we let the equity

holders make the bankruptcy decision in the following way in the four cases

we consider: In the first three cases the equity holders are better informed

and the bankruptcy decision is based on their information set. In the fourth

case the management of the company, which always acts in the best interest

of the equity holders, is better informed than the equity holders and the

bankruptcy is therefore based on its information set.

We define the stopping time τ with respect to the filtration Fm
t for fixed

t ≥ m as

τ = inf{u ≥ t : V m
u ≤ V m

B }, (3)

where from expression (2) V m
t = δt−m

r−µ , and V m
B is a constant. In this model

the company is bankrupt and liquidated the first time V m
t = V m

B , i.e., τ

represents the time of bankruptcy.

In addition to the information contained in F l
t , the least informed agent

also observes whether the company is bankrupt or not. Formally we define

Gl
t = F l

t ∨ σ(1{s>τ}, s ≤ t),

where 1{·} denotes the usual indicator function.

The better informed agents are restricted from trading in the financial

market, and the market therefore only consists of the least informed agents.

Prices of debt instruments are therefore set by the least informed agents.

We denote the complete-information value of the company upon bank-
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ruptcy by Vτ , i.e., from equation (2),

Vτ ≡ V 0
τ =

δτ

r − µ
.

Upon bankruptcy a cost of αVτ occurs. Here α is assumed constant, and the

bankruptcy cost is therefore proportional to the complete-information value.

Also, in case of bankruptcy, the debt holders require the face value of the

debt D to be repaid. In general Vτ is different from V m
τ , i.e., the complete-

information value of the assets at time τ is different from the value upon

which the bankruptcy decision is made. In particular, there is a positive

probability that Vτ − D − αVτ > 0. In this case the time τ value of the

company is sufficient to cover debt and bankruptcy costs, and any proceeds

are paid to the equity holders.

2.2 Corporate Bond Pricing

We analyze a zero coupon bond maturing at time s with recovery rate R(τ, s)

in the case of default at time τ . Duffie and Lando (2001) explain the con-

nection between the perpetual debt and the following unit discount bond.

The time t price of a unit discount corporate bond maturing at time s is the

conditional expected discounted payoff, i.e.,

ϕ(t, s) = E
[
e−r(s−t)1{τ>s} + e−r(τ−t)R(τ, s)1{τ≤s}

∣∣Gl
t

]

= e−r(s−t)P (τ > s
∣∣Gl

t) +
∫ s

t
R(u, s)e−r(u−t)fτ (u)du, (4)

where fτ (u) is the probability density of the stopping time τ conditional on

Gl
t. Define

P (s) = P (τ > s
∣∣Gl

t). (5)

In the remaining of the paper we calculate P (s) under different assumptions

about the information structures. For notational conveinience we distinguish

between the different cases by adding superscripts to P (s).
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In the special case considered in Duffie and Lando (2001), R(u, s) =

(1 − α)e−r(s−u), u ∈ (t, s], and the pricing expression (4) simplifies to

ϕ(t, s) = e−r(s−t)P (s) + (1 − α)e−r(s−t)(1 − P (s)). (6)

We use this recovery rate throughout the paper because it leads to tractable

analytical expressions. Other, possibly more realistic recovery functions

have much of the same qualitative properties as the one above, but they

may require numerical solutions.

Based on the definition of the credit spread η and expression (6) we have

that

e−(r+η)(s−t) = e−r(s−t)P (s) + (1 − α)e−r(s−t)(1 − P (s)),

so

η =
− ln

(
αP (s) + (1 − α)

)
s − t

. (7)

Notice that the credit spread vanishes as α → 0. If there is no economic loss

in case of bankruptcy, there is of course no credit risk. Further more, the

credit spread tightens as P (s) increases.

2.3 Credit Default Swap (CDS)

CDSs are the most common form of credit derivatives. A CDS is a default

insurance contract. For each unit of face value of debt it pays the amount

X = 1 − (1 − α)V m
B

D
(8)

at the time of default, if default happens before the CDS matures at some

time T . Notice that X is Fm
t -measurable, but in general not Gl

t-measurable.

The cost of the insurance is covered by coupon payments to the issuer of the

CDS, known as the CDS spread. The CDS spread is the annualized coupon
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rate c(t, T ) that implies a total market value of the swap of zero at the time

of issue. Assuming semi-annual coupons and that n = 2T ,

c(t, T ) =
2E[Xe−r(τ−t)1{τ≤T}

∣∣Gl
t]∑n

i=1 e−0.5riP (t + 0.5i)
, (9)

where P (·) is defined in expression (5).

3 Case 1: Complete Information

Let us start by looking at the classical case where there is no delay in the

flow of information. This case is essentially the Leland (1994) model. Under

complete information l = m = 0 and F l
t = Gl

t = Fm
t = Ft. Thus, in the case

with complete information all agents are equally informed. For notational

simplicity we let V m
B = VB, where VB = V 0

B. In this section we denote the

initial time by t, where t ≥ 0.

3.1 Equity Holders’ Optimization Problem

The equity holders are faced with the following optimal stopping problem

(see e.g., Duffie (2001), chapter 11.C)

φ(v) = sup
τ∈T

E
[ ∫ τ

t
e−r(s−t)(δs − (1 − θ)C)ds

∣∣Ft

]
, (10)

where T is the set of Ft-adapted stopping times. The value function satisfies

the ordinary differential equation (ODE)

µvφv +
1
2
σ2v2φvv − rφ + (r − µ)v − (1 − θ)C = 0, (11)

where subscripts denote partial derivatives. The general solution to this

equation is

φ(v) = A1v
γ1 + A2v

γ2 + v − (1 − θ)
C

r
,
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where Ai, i = 1, 2, are constants to be determined from boundary conditions

and

γi =
1
2σ2 − µ ±

√
(µ − 1

2σ2)2 + 2rσ2

σ2
,

with γ1 < 0 and γ2 ≥ 1. Differentiating φ with resepct to v yields

φ′(v) = γ1A1v
γ1−1 + γ2A2v

γ2−1 + 1.

When the value of the company approaches infinity, only equity holders

benefit from any further increase in asset value, thus

lim
v→∞

φ′(v) = 1.

As γ2 ≥ 1, this condition implies that A2 = 0, i.e.,

φ(v) = A1v
γ1 + v − (1 − θ)

C

r
. (12)

We impose the usual value matching and high contact conditions

φ(VB) = 0 (13)

and

φv(VB) = 0. (14)

Equations (13) and (14) can be solved for A1 and VB. The solution for VB

is3

VB =
γ1

γ1 − 1
(1 − θ)C

r
. (15)

3.2 Corporate Bond Pricing

In the case of complete information the corporate bond price is given by

expression (6), using that

P (s) = P 1(s) = P (τ > s
∣∣Ft) = Ψ(s − t, Vt, VB),

3In the special case considered by Leland (1994) where µ = r, VB = (1−θ)C/(r+0.5σ2).
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Figure 1: Credit spreads classical case The figure shows the credit

spreads for zero-coupon bonds with up to three years to maturity.

where an analytical expression for Ψ(·, ·, ·) is given in expression (25) in

appendix A.

Example 1. Assume that δt = 3.5, r = 0.08, and µ = 0.045. From expres-

sion (2) these parameters give Vt = 100. Furthermore, assume that σ = 0.3,

θ = 0.3, α = 0.3, and C = 13. From expression (15) VB = 65. With the

recovery policy in expression (6) the credit spreads for zero-coupon bonds

with maturities of up to three years are plotted in Figure 1. From Figure 1

we clearly see that the credit spread approaches zero as the time to maturity

approaches zero, a typical property of structural models of credit risk.
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3.3 Credit Default Swap

Under complete information P 1(t + 0.5i) = Ψ(0.5i, Vt, VB), where Ψ(·, ·, ·)

is given in expression (25) in appendix A. In this section X defined in

expression (8) is a constant (i.e., also Gl
t-measurable), and the CDS spread

is given by

c(t, T ) =
2XΥ(T − t, Vt, VB)∑n

i=1 e−0.5riΨ(0.5i, Vt, VB)
,

where Υ(T − t, Vt, VB) = E[e−r(τ−t)1{τ ≤ s − t}
∣∣Ft] is given in expression

(26) in appendix B.

We present a numerical example illustrating the CDS spreads in subsec-

tion 5.3 where we also include delayed and asymmetric information.

4 Case 2: Delayed Information

4.1 The Equity Holders’ Optimization Problem

In the case with delayed information all agents have access to the same

information, but they receive the information with a time lag l = m > 0.

This assumption implies that F l
t = Gl

t = Fm
t ⊂ Ft. In this section the initial

point in time is denoted by t ≥ l. Thus, at time t agents observe the state

variable (i.e., the EBIT process) at time t−m. This assumption changes the

optimization problem for the equity holders. From standard properties of

geometric Brownian motions follow that the complete-information value of

the assets at the bankruptcy time τ is given by the log-normally distributed

random variable

Vτ = V m
τ e(µ− 1

2
σ2)m+σ(Bτ−Bτ−m). (16)
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From the definition of the barrier V m
B in expression (3), the time τ value of

the assets in expression (16) can also be written as

Vτ = V m
B e(µ− 1

2
σ2)m+σ(Bτ−Bτ−m).

In the case where the value of the assets is sufficiently high to cover both

repayment of the debt and bankruptcy costs, i.e., Vτ − D − αVτ > 0, the

equity holders get the payoff Vτ−D−αVτ . By deciding to file for bankruptcy

at time τ , the equity holders enter a bankruptcy lottery4 with payoff ((1 −

α)Vτ − D)+. The time τ value of this lottery is

π(V m
B ) = E[((1 − α)Vτ − D)+

∣∣Fm
τ ]

= (1 − α)eµmV m
B N(z) − DN(z − σ

√
m),

(17)

where

z =
ln

(
(1−α)V m

B
D

)
+ (µ + 1

2σ2)m

σ
√

m

and N(·) is the cumulative standard normal probability distribution func-

tion.

Proof. The result follows from the standard Black-Scholes-Merton formula

for a European call option, but without discounting since the payoff is re-

ceived instantaneously when V m
τ = V m

B .

The equity holders’ optimization problem is now given by

φ(v) = sup
τ∈Tm

E
[ ∫ τ

t
e−r(s−t)(δs−m−(1−θ)C)ds+e−r(τ−t)π(V m

B )
∣∣Fm

t

]
, (18)

where Tm denotes the set of Fm
t -adapted stopping times. There are three

differences between expressions (18) and (10). The first is the inclusion of
4This lottery has some resemblance to the wild card play that is present when trading

in the CBOT Treasury bond futures, see e.g., Hull (2006).
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the bankruptcy lottery in the optimization problem. Second, the lagged

state variable δt−m enters, and third, the information set at time t is lagged.

In appendix C we show that the equity holders’ optimization problem

is equivalent to a standard stopping problem. Thus, also in the case with

delayed information the value function φ(v) is the solution to the ODE

(11) and has general solution given by expression (12). However, the value

matching and the high contact conditions now change to

φ(V m
B ) = π(V m

B ) (19)

and

φv(V m
B ) = πv(V m

B ) = (1 − α)eµmN(z), (20)

respectively.

Using expressions (19) and (20), we are not able to find analytical ex-

pressions for A1 and V m
B . However, equations (19) and (20) can easily be

solved numerically.

In Table 1 we illustrate the effect of different delays on the default barrier

and the value of the bankruptcy lottery. The effect is relatively small for

delays less than one year. For instance, for m = 0.5, the value of V m
B is

only changed at the second decimal place and the value of the bankruptcy

lottery is zero with two digits accuracy. For longer delays, the value of the

bankruptcy lottery is larger and, thus, more important for the equity holders’

bankruptcy decision. The value function φ is increasing in the assessed value

of the assets (V m
t ). Combining this observation with expression (19), it is

clear that the assessed value V m
t that makes (19) hold (i.e., V m

B ) must be

higher for higher values on the righthand side. Thus, longer delays increase

the default barrier.

From Table 2 it is clear that increasing the volatility has virtually no

effect on the value of the bankruptcy lottery, except for high values of the
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volatility (say, above 100%). Note that we have taken into account that a

more risky firm typically has less debt than a less risky firm.

4.2 Corporate Bond Pricing

In the case of delayed information the corporate bond price is given by

expression (6), using that

P (s) = P 2(s) = P (τ > s
∣∣F l

t) = Ψ(s − t + l − m, V l
t , V m

B ) = Ψ(s − t, V l
t , V m

B ),

where an analytical expression for Ψ(·, ·, ·) is given in expression (25) in

appendix A. Observe that P 2(s) neither depends on m nor l since they are

equal and therefore cancel.

Assuming that the assessed asset values are the same under complete and

delayed information, the only way delayed information can change credit

spreads is if the default barrier V m
B 
= VB. As we saw in Table 1, this is the

case for large delays in the flow of information and/or high asset volatilities,

cf. Table 2. In Table 3 we report credit spreads for different delays in

information and different levels of the volatility. The corresponding default

barriers are taken from Tables 1 and 2. As Table 3 shows, for reasonable

delays (typically less than one year) and levels of the volatility, any changes

in the credit spreads are negligible.

The above observations may shed light on two important aspects:

1. The effect of not being able to observe the process for the value of the

assets in a structural model has a minor effect on the optimal default

policy, cf., the discussion in Jarrow and Protter (2004). This effect

becomes noticeable for larger delays and high levels of volatility.

2. Delayed information has a negligible effect on credit spreads.
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Table 1: Effect of delayed information The table shows how the default

barrier V m
B and the price of the bankruptcy lottery π(V m

B ) varies for different

lengths of the information lag m. The parameter values are α = 0.3, r =

0.08, µ = 0.045, σ = 0.3, θ = 0.3, C = 13, and D = 90.

m V m
B VB π(V m

B )

0.0 65.0000 65.0000 0.0000

0.2 65.0000 65.0000 0.0000

0.5 65.0289 65.0000 0.0036

1.0 65.6098 65.0000 0.1291

1.5 67.0580 65.0000 0.5834

2.0 69.2680 65.0000 1.4737

2.5 72.1945 65.0000 2.8798

3.0 75.8860 65.0000 4.9026

3.5 80.4840 65.0000 7.6939

4.0 86.2511 65.0000 11.4961
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Table 2: Effect of volatility under delayed information The table

shows how the default barrier V m
B and the price of the bankruptcy lottery

π(V m
B ) varies for different levels of the volatility σ. The parameter values

are α = 0.3, r = 0.08, µ = 0.045, m = 0.2, θ = 0.3, and C = 13. D is

approximately equal to the market value of corporate debt when δt = 3.5.

σ D V m
B VB π(V m

B )

0.15 92 93.2899 93.2899 0.0000

0.25 99 73.6273 73.6273 0.0000

0.50 81 39.9644 39.9643 0.0000

0.75 62 23.3913 23.3901 0.0001

1.00 48 14.9151 14.9079 0.0009

2.50 16 3.0370 2.8094 0.0836

5.00 6 1.2562 0.7214 0.3902
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4.3 Credit Default Swap

Under delayed information P 2(t + 0.5i) = Ψ(0.5i, V l
t , V m

B ), where Ψ(·, ·, ·) is

given in expression (25) in appendix A. Also in this section X is a constant.

The CDS spread is then given by

c(t, T ) =
2XΥ(T − t, V l

t , V m
B )∑n

i=1 e−0.5riΨ(0.5i, V l
t , V m

B )
,

where Υ(T − t, V l
t , V m

B ) = E[e−r(τ−t)1{τ ≤ s − t}
∣∣F l

t ] is given in expression

(26) in appendix B.

5 Case 3: Asymmetric Information between Bond-

and Equity holders

We now analyze the first case with delayed and asymmetric information.

Equity holders have access to information earlier than the bond holders. In

order to keep these two groups of agents separated, equity holders are neither

allowed to buy nor sell bonds in the secondary market nor trade equity.

This assumption is also used by Duffie and Lando (2001). The information

structure is now as follows; 0 ≤ m < l, i.e., F l
t ⊂ Gl

t ⊂ Fm
t ⊆ Ft. As before,

the initial point in time t ≥ l.

Collin-Dufresne, Goldstein, and Helwege (2003) find that since 1937 only

four companies have defaulted on bonds with an investment grade rating

from Moody’s. This suggests that the time lag m − l cannot be too long.

With a sufficiently large time lag, even a company issuing bonds rated in-

vestment grade may have enough time to move into default.5

5This observation also gives some justification for using a diffusion model instead of

a jump-diffusion model. Few companies “jump” into default when their bonds are rated

investment grade.
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5.1 The Equity Holders’ Optimization Problem

The equity holders’ optimization problem is now given by

φ(v) = sup
τ∈Tm

E
[ ∫ τ

t
e−r(s−t)(δs−m − (1 − θ)C)ds + e−r(τ−t)π(V m

B )
∣∣Fm

t

]
.(21)

This problem is identical to the problem in expression (18) in case 2, and

thus have the same solution. This means that asymmetric information, as

defined in case 3, has a minor effect on default policy compared to case 1

with complete information. It is important to emphasize that the default

barrier V m
B is not a function of the state variable. In particular this means

that also the bond holders who have less information than the equity holders

can calculate V m
B . More formally, V m

B is Gl
t-measurable.

5.2 Corporate Bond Pricing

In case 1 (case 2) the bond holders observe that the value of the assets

(lagged asset value) approaches and eventually hits the default barrier VB

(V m
B ). In contrast to this situation, under asymmetric information they may

observe that the assessed asset value V l
t approaches V m

B , but they never

observe that it hits V m
B because the bankruptcy decision is based on the

value V m
t with l > m. Formally, the stopping time τ is totally inaccessible,

as also is the case in the model of Duffie and Lando (2001). Thus, also our

model is an example of a structural model that is equivalent to an intensity

based model.

For the bond holders to calculate the bond prices, they need to estimate

the survival probability conditional on their information set.

1. the lagged asset value observed by the management is higher than the

default barrier V m
B (otherwise the company would already have been

declared bankrupt), and

23



2. the lagged information set F l
t which contains the assessed asset value

V l
t .

The survival prbability is calculated as

P (s) = P 3(s) = P (τ > s
∣∣Gl

t) = P (τ > s
∣∣V m

t > V m
B ;F l

t),

where the last equality follows from the Markov property of V m
t . Using

Baye’s rule, we have that

P 3(s) =
P (τ > s

∣∣F l
t) · P (V m

t > V m
B

∣∣τ > s;F l
t)

P (V m
t > V m

B

∣∣F l
t)

=
P (τ > s

∣∣F l
t)

P (V m
t > V m

B

∣∣F l
t)

.

When m 
= l, P (τ > s
∣∣F l

t) = Ψ(s− t+ l−m, V l
t , V m

B ) and is given in expres-

sion (25) in appendix A. Combining this result with standard properties of

log-normal random variables, we write

P 3(s) =
Ψ(s − t + l − m, V l

t , V m
B )

N
(
− ln y+ν(l−m)

σ
√

l−m

) , (22)

where y = V m
B /V l

t and ν = µ − 1
2σ2.

In appendix D we show that the spread under asymmetric information is

wider than the spread under symmetrically distributed information. Taking

the limit as s → t, we have that

lim
s→t

P 3(s) = 1 − y2νσ−2
N

(
ln y+ν(l−m)

σ
√

l−m

)

N
(
− ln y+ν(t−m)

σ
√

t−m

) . (23)

The limit in (23) is strictly positive and less than 1, thus it must be the case

that

lim
s→t

η3 = ∞.

The intuition for this result is that if the defaultable zero-coupon bond has a

price less than the default-free zero-coupon bond when the time to maturity
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vanishes, this can only be achieved for a “very high” credit spread (i.e., an

infinite credit spread).

Example 2. Assume that δt−l = 3.5, σ = 0.3, µ = 0.045, r = 0.08, C =

13, θ = 0.3, α = 0.3, and l = 0.25. These parameter values give V m
B =

65. With the recovery policy in expression (6) the credit spreads for zero-

coupon bonds with maturities of up to three years are plotted in Figure 2.

Starting from the top, the graphs are for m = 0.06, m = 0.1, m = 0.14,

and finally for complete information (the credit spreads from Example 1)

The figure clearly demonstrates that asymmetric information leads to wider

credit spreads. Increasing the asymmetry (i.e., reducing m) increases the

credit spreads.

In contrast to the credit spreads under complete information, the spreads

under asymmetric information in the short end of Figure 2 do not converge

to zero. The credit spreads under asymmetric information to the far left

are for bonds maturing in half a day. In practice soon to mature corpo-

rate bonds are not analyzed in terms of their credit spread because “the

discount” mostly reflects the probability for immediately bankruptcy, ad-

justed for the recovery rate (see e.g., the discussion on page 14-15 in Lando

(2004)). Although not commented by the authors, in similar figures in Duffie

and Lando (2001) it seems like the x-axes are truncated, possibly to exclude

such “high” short-term credit spreads.

Example 3. Consider a company which funds parts of its activities by short-

term debt, for instance a financial institution borrowing in the interbank

market. Assuming the same parameter values as in Example 2, Figure 3

and Figure 4 show that short-term credit spreads on overnight borrowing

can be highly sensitive to asset volatility and assessed asset values. This

can be relevant for explaining the effect the sub-prime crisis dating back to
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Figure 2: Effect of asymmetric information between bond- and eq-

uity holders on credit spreads The figure shows credit spreads for zero-

coupon bonds with up to three years to maturity. The upper graph repre-

sents the case where the equity holders’ delay m = 0.06. The second, third,

and fourth graphs from the top represent the cases of m = 0.1, m = 0.14,

and complete information, respectively. The bond holders’ delay l = 0.25.

the summer of 2007 had on the interbank market. A key component was

the information asymmetry between different banks about their exposure to

the sub-prime market. Relatively small changes in the assessed value of a

bank’s assets or in the volatility of a bank’s assets, could very well lead to

high short-term credit spreads.
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Figure 3: Effect of volatility on overnight credit spreads The figure

shows the overnight credit spreads for different values of the underlying

volatility σ. Other parameter values are: δt−l = 3.5, µ = 0.045, r = 0.08,

θ = 0.3, α = 0.3, m = 0.1, and l = 0.25.

5.3 Credit Default Swap

In this case of delayed and asymmetric information X is also a constant and

the CDS spread is given by

c(t, T ) =
2XΓ(T − t, V m

t , V m
B )∑n

i=1 e−0.5riP 3(t + 0.5i)
,

where Γ(T − t, V m
t , V m

B ) = E[e−r(τ−t)]1{τ ≤ T}
∣∣V m

t > VB;F l
t ] is given in

expression (30) in appendix E and P 3(·) is defined in expression (22).

Example 4. Assume that δt−l = 3.5, σ = 0.3, µ = 0.045, r = 0.08, C = 13,

θ = 0.3, α = 0.3, m = 0.1, l = 0.25, and the coupon payments on the CDS

are paid semi-annually. These parameter values give V m
B = 65. For these
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Figure 4: Effect of assessed asset values on overnight credit spreads

The figure shows the overnight credit spreads for different values of the

assessed asset value V l
t . Other parameter values are: µ = 0.045, r = 0.08,

σ = 0.3, θ = 0.3, α = 0.3, m = 0.1, and l = 0.25.

parameters, the CDS rates for case 1 and case 3 are plotted in Figure 5.

The highest rates are for case 3 with delayed and asymmetric information.

6 Case 4: Asymmetric Information between Man-

agement and Financial Market

In this case the management of the company is better informed than the

bond- and equity holders who are the least informed agents. In particular,

bond- and equity holders have the same information lag. Because manage-

ment acts in the best interest of the owners, it solves the equity holders’
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Figure 5: CDS spreads The figure shows the CDS spreads for different

times to maturity. The top graph represents case 3 and the lower graph

case 1.

optimization problem as if the owners had the same information set as the

management. In many countries it is illegal for the management to run the

company on the debt holders’ expense if it knows that the company should

have been declared bankrupt, partially justifying this assumption.

Financial distress and bankruptcy are characteristics of a highly extraor-

dinary situation for a company. It is therefore reasonable to assume that

such an event leads to an increased speed in the flow of information between

the management and the equity holders. In our model when the manage-

ment observes that the assessed asset value V m
t hits the default barrier, the
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equity holders are informed and immediately file for bankruptcy.6

As argued in the introduction, as we show in appendix D, and further

illustrate in Example 2, there are no reasons for keeping information away

from the financial market in these kinds of models. The difference in time

lag, l − m, therefore reflects the time it takes to inform the financial mar-

ket. Reporting information right away may be costly. In practice, there

can be strategic reasons (outside of our model) for the management to keep

information away from the financial market for some time. In a financial

market where both stocks and corporate bonds are traded without restric-

tions, both bond- and equity holders typically have the same information.

If not, bond holders could buy one share of stock and equity holders could

buy one share of bond to access the other party’s information. Both these

strategies eliminate any information asymmetry.

6.1 The Equity holders’ Optimization Problem

When the management and the financial market have different time lags, it

has to take into account that the equity holders receive a dividend payment

consistent with their information set. I.e., at time t they receive dividends

at a rate δt−l − (1 − θ)C. Although δt−l is contained in the management’s

information set Fm
t , we rewrite this in terms of the management’s time t

observable EBIT value δt−m as δt−mZ − (1 − θ)C. Here

Z = e−(µ− 1
2
σ2)(l−m)−σ(Bt−m−Bt−l),

where Z is Fm
t -measurable and unknown for the financial market. Condi-

tional on no bankruptcy, i.e., V m
t > V m

B , the management solves the optimal
6The assumption that equity holders are immediately informed can be relaxed without

adding much economic insight, but it will increase the notational burden. It is sufficient

that equity holders are informed about the state variable and file for bankruptcy before

time τ + (l − m). The stopping time is still totally inaccessible for the financial market.
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stopping problem

φ̂(v) = sup
τ∈Tm

E
[ ∫ τ

t
e−r(s−t)(δs−mZ − (1 − θ)C)ds + e−r(τ−t)π(V m

B )
∣∣Fm

t

]
.

The only difference between this problem and the corresponding problem

in expression (21) is the presence of Z. Since Z is Fm
t -measurable, we can

divede through by Z. The management can solve the equivalent problem,

where φ(v) = φ̂(v)/Z,

φ(v) = sup
τ∈Tm

E
[ ∫ τ

t
e−r(s−t)(δs−m − (1 − θ)

C

Z
)ds +

1
Z

e−r(τ−t)π(V m
B )

∣∣Fm
t

]
.

The value of the equity is then the solution to the ODE

µvφv +
1
2
σ2v2φvv − rφ + (r − µ)v − (1 − θ)C

Z
= 0.

The value matching and high contact conditions now become

φ(V m
B ) =

π(V m
B )

Z

and

φv(V m
B ) =

(1 − α)eµmN(z)
Z

,

respectively.

6.2 Corporate Bond Pricing

In this case Z is unobservable for the financial market. The bond holders

do therefore not know the optimal default barrier V m
B when they calculate

bond prices, i.e., V m
B is not Gl

t-measurable. In general, for a given value of Z,

bond holders are able to determine V m
B . The bond holders observe that the

company is not bankrupt at time t, thus they infer that V l
t Z = V m

t > V m
B .

Using the definition of the bond price in expression (4), the law of iterated
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expectations, and our choice of recovery function, we can write the bond

price as

ϕ(t, s) = E

[
E

[
e−r(s−t)1{τ>s} + e−r(τ−t)R(τ, s)1{τ≤s}

∣∣Fm
t

]∣∣∣Gl
t

]

= E
[
e−r(s−t)P (s) + R(t, s)e−r(s−t)(1 − P (s))

∣∣Gl
t

]

= e−r(s−t)P 4(s) + R(t, s)e−r(s−t)(1 − P 4(s)),

where

P (s) = P 4(s) = E
[
P (τ > s

∣∣Fm
t )

∣∣∣Gl
t

]
= E

[
Ψ(s − t, V m

t , V m
B )

∣∣∣Gl
t

]
, (24)

where we remember that V m
t = V l

t Z.

A closed form expression for the bond price is not readily available,

but the price can be estimated by numerical methods such as Monte Carlo

simulations.

Compared to case 3, the increased uncertainy for the bond holders re-

garding the default barrier reduces the survival probability. This increased

uncertainty leads to wider credit spreads in case 4 compared to case 3. The

function Ψ(·, ·, ·) in expression (25) is concave in its second argument. In this

case both the second and the third argument in Ψ(·, ·, ·), see expression (24),

depend on Z. Numerical investigations indicate that Ψ(·, ·, ·), as a function

of Z, i.e., Ψ(Z) is concave. For realistic parameter values, E[Z
∣∣Gl

t] ≈ 1. By

Jensen’s inequality

P 3(s) ≈ Ψ(E[Z
∣∣Gl

t]) > E[Ψ(Z)
∣∣Gl

t] = P 4(s).

Thus, credit spreads are wider in case 4 than in case 3, cf. expression (7).

Example 5. Assume that δt−l = 3.5, σ = 0.3, µ = 0.045, r = 0.08, C = 13,

θ = 0.3, α = 0.3, and l = 0.25. In Figure 6 we show the spread for four
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different delays m. Starting with the top graph, m = 0.1, m = 0.14, m =

0.18, and m = 0.22.

In Figure 7 we plot the spreads for m = 0.1, m = 0.14, and m = 0.18

for both case 3 and 4. The three upper graphs are for case 4, while the three

lower graphs are for case 3 (the three year period is divided into 240 time

steps). The increased uncertainty for the bond holders because they do no

longer know the bankruptcy barrier V m
B results in wider credit spreads, in

particular for short-term bonds. The figure also illustrates the importanse

of asymmetric information when determining short-term credit spreads.

6.3 Credit Default Swaps

For the case in this section, the expression for X in expression (8) is Fm
t -

measurable (not Gl
t-measurable). Thus, the CDS-spread is given by

c(t, T ) =
2E[Xe−r(τ−t)1{τ≤T}

∣∣Gl
t]∑n

i=1 e−0.5riP 4(t + 0.5i)
.

The fact that X is not Gl
t-measurable precludes the use of expression (26)

when estimating the expectation in the nominator. One way to estimate

the expectation is by Monte Carlo simulation, but this is rather computa-

tional intensive because we cannot use closed form expression of the type in

appendix B or E.

7 Conclusions

This paper analyzes the effect of delayed and asymmetric information on

credit spreads on corporate bonds traded in a secondary market and on

CDS spreads. In the case where the bankruptcy decision is based on delayed

information we identified a potential gain for equity holders as a lottery with

non-negative payoff. This payoff may be strictly positive in the case the
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Figure 6: Effect of asymmetric information between management

and financial market on credit spreads The figure shows credit spreads

for zero-coupon bonds with up to three years to maturity. The upper graph

represents the case m = 0.1. The second, third, and fourth graphs represent

m = 0.14, m = 0.18, and m = 0.22, respectively. The bond holders’ delay

l = 0.25. The three year period is divided into 240 time steps and 100,000

simulations are used to calculate the credit spread at each time step.

actual market value of the company is significantly higher than the value

of the company on which the bankruptcy decision was based. For realistic

parameter values, this lottery has a rather small value and the effects on

bankruptcy policy and credit spreads are also small.

Asymmetric information, on the other hand, has a substantial effect

on credit spreads. Asymmetric information explains why credit spreads on

bonds with short time to maturity do not approach zero. Our results are
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Figure 7: Comparison of credit spreads for case 3 and case 4 The

figure shows credit spreads for zero-coupon bonds with up to three years to

maturity for case 3 and 4 for m = 0.1, m = 0.14, and m = 0.18. The upper

three graphs are for case 4, while the lower three graphs are for case 3. The

bond holders’ delay l = 0.25. The three year period is divided into 240 time

steps and 100,000 simulations are used to calculate the credit spread at each

time step for case 4.

qualitatively similar to the results of Duffie and Lando (2001), which they de-

rive in a model with incomplete accounting information. Our analysis shows

that it is not the incomplete accounting information per se that causes the

equivalence between the structural and reduced form approaches, but rather

the information asymmetry between bond- and equity holders. The same

conclusion applies in our case 4 where we relax some of their assumptions,

e.g., non-tradability of stocks and bonds.
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A Survival Probability

Consider a geometric Brownian motion with dynamics as in expression (1)

and initial value v. The probability of not crossing the barrier vb in a time

period of length s when v > vb, is

Ψ(s, v, vb) = N
(− ln vb

v + νs

σ
√

s

)
− (

vb

v
)2νσ−2

N
( ln vb

v + νs

σ
√

s

)
, (25)

where ν = µ− 1
2σ2, see e.g., Musiela and Rutkowski (1997) Corollary B.3.4.

B Definition of Υ

Define

Υ(s − t, v, vb) = eb(z−w)N(
b − w(s − t)√

s − t
) + eb(z+w)N(

b + w(s − t)√
s − t

), (26)

where

b = ln(vb/v)/σ,

z = (µ − 1
2
σ2)/σ,

and

w =
√

z2 + 2r,

see e.g., Lando (2004), appendix B.
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C The Equity Holders’ Optimization Problem in

the Case with Delayed Information

Observe that

sup
τ∈Tm

E
[ ∫ τ

t
e−r(s−t)(δs−m − (1 − θ)C)ds + e−r(τ−t)π(V m

B )
∣∣Fm

t

]

= sup
τ∗∈T ∗

E
[ ∫ τ∗

t−m
e−r(s−(t−m))(δs − (1 − θ)C)ds

+e−r(τ∗−(t−m))π(V m
B )

∣∣Ft−m

]
,

where the stopping time τ∗ = τ − m and T ∗ is the set of all Ft−m-adapted

stopping times. The expression in the last line we recognize as a standard

optimal stopping problem and its connection to ODEs is known. For details,

see Øksendal (2004).

D Proof that Asymmetric Information Increases

Credit Spreads

In this appendix we prove that, ceteris paribus, asymmetric information

leads to wider credit spreads. Let η2 and η3 be the credit spreads in case 2

and in case 3, respectively. We want to prove that η3 > η2. First observe

that

η3 =
− ln

(
αP 3(s) + (1 − α)

)
s − t

>
− ln

(
αP 2(s) + (1 − α)

)
s − t

= η2

⇔

P 3(s) < P 2(s). (27)

Remember that in case 2 l = m. To distinguish case 2 from case 3 we

use m as the index for the bond holders’ delay in case 2 and we reserve l

to be the bond holders’ information delay in case 3. We use the same time
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lag m in case 2 and in case 3. Let A be the event that no bankruptcy takes

place on the time interval [t, s] and B the event that no bankruptcy takes

place on the time interval [t − l + m, t]. That is,

A = {ω : inf
s∈[t,s]

V m
s > V m

B }

B = {ω : inf
s∈[t−l+m,t]

V m
s > V m

B }.

Also define

B̂ = {ω : V m
t > V m

B }.

We prove the result ceteris paribus. Therefore let V m
t = V l

t = v, for a

positive constant v.

We then have that (conditional on V m
t = v)

P 2(s) = P (τ > s
∣∣Fm

t ) = P (A) = P (A|B). (28)

Because of the Markov property of V m
t , P 2(S) does not change when con-

ditioning on B. We further have that (conditional on V l
t = v)

P 3(s) = P (τ > s
∣∣Gl

t) = P (τ > s
∣∣B̂; V l

t = v) =
P (A ∩ B)

P (B̂)
. (29)

Combining equations (28) and (29) with the inequality in (27), it is sufficient

to show that

P (A ∩ B)
P (B̂)

< P (A|B).

Using Baye’s rule, we get that

P (A|B)P (B) < P (A|B)P (B̂)

⇔

P (B) < P (B̂).

The last inequality is trivially satisfied, proving that credit spreads are wider

under delayed and asymmetric information than under delayed information.

By letting m = 0 (i.e., case 1), the proof still holds.
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E Credit Default Swap

In this appendix we derive the expression for Γ(T−t, V m
t , V m

B ), a conditional

version of the result in appendix B. By definition

Γ(T − t, V m
t , V m

B ) = E
[
e−r(τ−t)1{τ ≤ T}

∣∣Gl
t

]

= E
[
e−r(τ−t)1{τ ≤ T}

∣∣V m
t > V m

B ;F l
t

]
.

Trivially,

E
[
e−r(τ−t)1{τ ≤ T}

∣∣F l
t

]

= E
[
e−r(τ−t)1{τ ≤ T}1{V m

t > V m
B }

∣∣F l
t

]

+E
[
e−r(τ−t)1{τ ≤ T}1{V m

t ≤ V m
B }

∣∣F l
t

]
.

Observe that the last term in the previous expression can be written as

E
[
e−r(τ−t)1{τ ≤ T}1{V m

t ≤ V m
B }

∣∣F l
t

]

= E
[
e−r(τ−t)1{V m

t ≤ V m
B }

∣∣F l
t

]

= E
[
1{V m

t ≤ V m
B }

∣∣F l
t

]

= P (V m
t ≤ V m

B

∣∣F l
t).

The second equality follows from the definition of the stopping time τ in

expression (3).

From Baye’s formula and the above two expressions follow that

Γ(T − t, V m
t , V m

B ) =
E

[
e−r(τ−t)1{τ ≤ T}

∣∣F l
t

]
− P (V m

t ≤ V m
B

∣∣F l
t)

P (V m
t > V m

B

∣∣F l
t)

=
Υ(s − t + l − m, V m

t , V m
B ) − P (V m

t ≤ V m
B

∣∣F l
t)

P (V m
t > V m

B

∣∣F l
t)

.(30)
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