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A two-Factor Asset Pricing Model

based on the Fat Tail Distribution of Firm Sizes

Abstract

We derive a theoretical two-factor model which has empirically a similar explanatory

power as the phenomenological Fama-French three-factor model. In addition to the usual

market risk, our model accounts for a diversification risk, proxied by the equally-weighted

portfolio. This additional risk results from an “internal consistency factor” appearing for

arbitrary large economies, as a consequence of the concentration of the market portfolio when

the distribution of the capitalization of firms is sufficiently heavy-tailed as in real economies.

Our model rationalizes the superior performance of the Fama and French three-factor model

in explaining the cross section of stock returns: the size factor constitutes an alternative

proxy of the diversification factor while the book-to-market effect is related to the increasing

sensitivity of value stocks to this factor.

JEL classification: G11, G12
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1 Introduction

In the standard equilibrium and/or arbitrage pricing framework, the value of any asset is

uniquely specified from the belief that only the systematic risks need to be remunerated by the

market. This is the conclusion of the CAPM (Treynor 1961, Treynor 1999, Sharpe 1964, Lintner

1965, Mossin 1966) and of the APT (Ross 1976, Roll and Ross 1980, Roll and Ross 1984, Roll

1994). Here, we show that, even for arbitrary large economies when the distribution of the

capitalization of firms is sufficiently heavy-tailed as is the case of real economies, there may

exist a new source of significant systematic risk, which has been totally neglected up to now but

must be priced by the market. This new source of risk can readily explain several asset pricing

anomalies on the sole basis of the internal-consistency of the market model.

This result is based on two ingredients. The first one is the tautological internal consistency

condition that the market portfolio, and any other factor that can be replicated by a portfolio

of assets traded on the market, is constituted – by construction – of the assets whose returns

it is supposed to explain. This internal consistency condition leads mechanically to correlations

between the return residuals, as already stressed by Fama (1973) and Sharpe (1990, footnote

13) when the return on the market portfolio is considered as the only explaining factor, or by

Chamberlain (1983) in the case where there exist several linearly independent portfolios that

contain only “factor” variance and are therefore optimal for any risk-averse investor. These cor-

relations are equivalent to the existence of at least one internal consistency factor (uncorrelated

with the market and the other explanatory factors), which is a function of the weights of the

market portfolio and of the portfolios replicating the other factors. The impact of this new fac-

tor is usually neglected away on the basis of the law of large numbers applied to well-diversified

portfolios.

Actually, and this is our second ingredient, when the distribution of the weights of the

portfolios replicating the explaining factors – the distribution of the capitalization of firms in

the case of the market portfolio, for instance – is sufficiently heavy-tailed, the law of large

numbers, which is at the origin of the diminishing contribution of the residual risks to the

total risk of “well-diversified portfolios” (Ross 1976, Huberman 1982), breaks down. Intuitively,

whatever the size of the economy, the largest firms contribute idiosyncratic risks that can not

be diversified. In this case, the generalized central limit theorem (Gnedenko and Kolmogorov

1954) shows that the impact of an internal consistency factor does not vanish even for infinite

economies1. This may be the origin of a significant amount of risk for portfolios that would have

1In a different context, Gabaix (2005) has proposed that the same kind of argument can explain that idiosyn-
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been otherwise assumed “well-diversified” in its absence. As a consequence, when writing down

for instance the APT, an additional explaining factor must be accounted for.

This result must be contrasted with the many seminal papers deriving the APT and pro-

viding pricing bounds for finite economies. Indeed, following for instance Dybvig (1983) or

Grinblatt and Titman (1983), among others, the residual risk of well-diversified portfolios re-

sulting from the finiteness of the economy should be priced but the pricing error relative to a

pure factor model disappeared in the limit of a large economy, as a full diversification of the

non-systematic risk is achieved. In contrast, we find that the lack of diversification persists

even when the number of traded assets is infinite. Besides, the generalization of Ross (1976)’s

results provided by Chamberlain (1983) breaks down as a result of this lack of diversification.

Indeed, Chamberlain (1983)’s results explicitly require that the risk of any sequence of portfolios

bearing only residual risks converges to zero if the portfolios are well-diversified. Similarly, one

cannot apply anymore Connor (1982)’s result that the APT pricing equation holds exactly if

each asset has an infinitesimal weight in the economy. Indeed, in economies with a heavy-tailed

distribution of firm sizes, the largest company has a size of the same order as the total size of all

the companies2. These different remarks are in fact intimately entangled as will become clear

in the sequel of this article. We stress that our results are driven by the fat-tailed nature of the

distribution of the weights of the portfolios replicating the factors (when replication is possible),

as occurs for the market portfolio when the distribution of firm sizes is heavy-tailed. Our results

do not rely on any other distributional assumption concerning the explanatory factors or the

disturbance terms. For simplification, we will assume that both the factors and the disturbance

terms have finite variance, but it is simply for the convenience of the exposition of our results.

They could easily be generalized to the case where factors and disturbance terms do not admit

a finite second moment on the basis of the result established by Wang (1988), for instance.

The introduction of our new “internal consistency factor,” which accounts simply for the

lack of diversification of the market portfolio, allows us to provide a theoretical explanation of

several well-known pricing anomalies. In particular, the relevance of the two effects studied

by Fama and French (1992, 1993, 1995), namely the small-firm effect (first documented by

cratic firm-level fluctuations are responsible for an important part of aggregate shocks, and therefore provide a
microfoundation for aggregate productivity shocks. Indeed, as in the present article, it is suggested that the tradi-
tional argument according to which individual firm shocks average out in aggregate breaks down if the distribution
of firm sizes is fat-tailed, as documented empirically.

2This simply results from the large deviation theorem on heavy-tailed distribution according to which, given
N iid random variables S1, . . . , SN with a fat tailed distribution, we have (Embrechts et al. 1997)

lim
x→∞

Pr [max(S1, . . . SN ) ≥ x]

Pr [S1 + · · · + SN ≥ x]
= 1.
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Banz (1981)) and the book-to-market ratio, can be understood from and rationalized within

the theoretical framework of the APT when the “internal consistency factor”, and its associated

diversification premium, is accounted for. Thus, in addition to providing an econometric reason

for why the APT with a market factor may be misspecified even when there are many assets,

our model also connects the Fama and French phenomenological model to the arbitrage pricing

theory. More precisely, our model provides an understanding of the superior performance of

Fama and French’s three-factor model in explaining the cross section of stock returns. Indeed,

the new internal consistency factor provides a rationalization of the size factor as a proxy of the

internal consistency factor. Besides, consistent with the fact that high book-to-market stocks

have significantly lower beta’s with respect to the market portfolio compared with low book-

to-market stocks (Bernardo et al. 2007), the book-to-market effect also emerges naturally from

our formalism. In the context of the on-going debate (Lakonishok et al. 1994, Daniel et al.

2001) on the interpretation of the two empirical effects analyzed by Fama and French (1993),

we provide an explanation with a solid economic underpinning only based on the consequences

of the undisputable fact that the market portfolio is highly concentrated on a small number of

very large companies and therefore can obviously not account for the behavior of the smallest

ones.

The article is organized as follows. In the next section, we synthesize the available empirical

evidence on the fat-tailed nature of the distribution of firm sizes and their consequence on the

lack of diversification of the market portfolio. Then, in section 3, we make clear the conse-

quences of the internal consistency condition mentioned above; due to the internal consistency

condition, we show that the disturbance terms must obey a condition which determines their

correlation. Next we present our main results on the asymptotic behavior of the variance of

well-diversified portfolios: we show that, together with the market risk, there is an additional

source of systematic risk resulting from the internal consistency condition. This additional risk

may be of the same order as the market risk even for infinite economies when the distribution of

the capitalization of companies is sufficiently heavy-tailed. Section 4 confirms, by use of numer-

ical simulations, the relevance of the concentration effect for markets with a realistic number of

traded assets. Then, it discusses the consequences for the arbitrage pricing of financial assets,

providing an expression that accounts for the premium required by the investors to bear this

systematic “internal consistency” risk and we propose proxies for the empirical assessment of

this risk premium. It allows us to provide theoretical economic explanations of some of the

empirical factors reported in the literature while an empirical analysis shows that, on the basis

of only two factors (the market portfolio and the equally-weighted portfolio), our model is at
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least as successful as the Fama and French three-factor model over the period Jan. 1927 to Dec.

2005 for the US market data available on Professor French’s website3. Section 5 summarizes our

results and draw some conclusion.

2 The distribution of firm sizes and the concentration of the

market portfolio

The study of the distribution of firm sizes benefits from a rich history. Zipf (1949) made

an important early contribution by establishing that, when sizes of US corporation assets are

ranked from the largest to the smallest, the firm size s(n) of the nth largest firm is inversely

proportional to its rank n, i.e., s(n) ∼ 1/n. This law is now referred to as the Zipf’s law.

Inverting this relation, we have that the rank of the nth largest firm is inversely proportional to

its size n ∼ 1/s(n) which is nothing but the sample complementary cumulative distribution of

the Pareto law with a tail exponent µ = 1.

Zipf’s law seems to be a robust property of business firms4 (Ijri and Simon 1977). Indeed,

several proxies for the size of companies have been used which recover the same robust results

that the exponent µ is equal or close to 1: assets, market capitalizations, number of employees,

profits, revenues, sales, value added and so on (Axtell 2001, Axtell 2006, Gabaix et al. 2006,

Marsili 2005, Simon and Bonini 1958). Besides, Ramsden and Kiss-Haypa (2000) have analyzed

the distribution of firms by revenues in 20 countries in America, Asia and Europe and report an

exponent µ ranging from 0.44 to 1.25 with a median value equal to 0.85.

Several models have attempted to provide explanations for the distribution of firm sizes,

in terms of the law of proportional effect (Gibrat 1931, Simon and Bonini 1958), of economies

of scale and costs reduction (Bain 1956, Robinson 1961), of the distribution of managerial

talents and efficient allocation of productivity factors across managers (Lucas 1978), or of the

partition of the set of workers (Axtell 2006), among others. But, only recently, the closeness of

the exponent µ to the value 1 has been justified from a simple argument proposed by Gabaix

et al. (2006). They have transposed the mechanism given for cities (Gabaix 1999a, Gabaix

and Ioannides 2004, and the references therein) to firm sizes and mutual fund capitalizations:

starting from the traditional argument based upon Gibrat’s law of proportional effect, whereby

firm growth is treated as a random process and growth rates are independent of firm size, a log-

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
4Other social entities, such as cities, share this property (Zipf 1949, Gabaix 1999a, Gabaix 1999b, Gabaix and

Ioannides 2004).
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normal process modified with small perturbations to ensure convergence to a non-degenerate

steady-state distribution yields a power law distribution. The value of its exponent µ = 1 then

results from the condition that the average normalized size of firms stays constant in a stationary

economy.

Consubstantial with the fat tailed character of the distribution of firm sizes is the concen-

tration of the market portfolio. Indeed, the market portfolio, defined as the value-weighted

portfolio of all the assets traded on a given market suffers from an inherent lack of diversifica-

tion, resulting from the fat tail distribution of firm sizes, in the sense that only a few dozen of

companies account for a very large part of the overall market capitalization. For instance, the

top ten largest companies of the US market represents about one fifth to one fourth of the US

market capitalization.

More generally, given an economy of N firms, whose sizes Si, i = 1, . . . , N , follow a Pareto

law with tail index µ, the ratio of the capitalization of the largest firm to the total market

capitalization

RN =
maxSi
∑N

i=1 Si

, (1)

which is nothing but the weight of the largest company in the market portfolio, behaves on

average like

E [RN ] −→ 0, if µ > 1, (2)

E [1/RN ] −→ 1

1 − µ
, if µ < 1, (3)

as the number of firms N goes to infinity (Bingham et al. 1987).

This result means that when the distribution of firm sizes admits a finite mean (i.e. µ > 1),

the weight of the largest firm in the market portfolio goes to zero, and so do the weights of any

other firms, in the limit of a large market. In terms of asset pricing, the fact that the weight

of each individual firm in the economy is infinitesimal ensures that the APT pricing equation

holds for each asset and not only on average (Connor 1982). In contrast, when the distribution

of firm sizes has no finite mean (i.e. µ ≤ 1), equation (3) shows that the asymptotic weight of

the largest firm in the market portfolio does not vanish, illustrating the fact that, for such an

economy, the market portfolio is not well diversified, all the more so the smaller the tail index

µ is. A practical consequence is then that the APT pricing equation, if it holds, only holds on

average, with possibly large pricing errors for individual assets.
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In order to get a closer look at the concentration of the market portfolio, we focus on its

Herfindahl index, which is perhaps the most widely used measure of economic concentration

(Polakoff 1981, Lovett 1988),

HN = ||wm||2 =
N∑

i=1

w2
m,i , (4)

where wm,i denotes the weight of asset i in the market portfolio whose composition is given by the

N -dimensional vector wm, with
∑N

i=1 wm,i = 1. The Herfindahl takes into account the relative

size and distribution of the firms traded on the market. It approaches zero when the market

consists of a large number of firms with comparable sizes. It increases both as the number of

firms in the market decreases and as the disparity in size between those firms increases. Our use

of the Herfindahl index is not only guided by common practice but also by its superior ability

to provide meaningful information about the degree of diversification of an unevenly distributed

stock portfolio (Woerheide and Persson 1993)5. Following tradition, we say that a portfolio is

well-diversified, if its Herfindahl index goes to zero when the number N of firms traded in the

market goes to infinity.

For illustration purpose, let us first concentrate on an economy where the sizes, sorted in

descending order, of the N firms are deterministically given by

Si,N =

(
i

N

)−1/µ

. (5)

We have arbitrarily chosen the size of the smallest firm as equal to one. Alternatively, one can

think of Si,N as the size of the ith largest firm relative to the size of the smallest one. With this

simple model, the rank i of the ith largest company is directly proportional to its size taken to

the power of minus µ, as it should in order for the distribution of sizes to obey a Pareto law

with a tail index equal to µ. It is easy to check that the weight of the largest firm in the market

portfolio goes to zero, as N goes to infinity, when µ is larger than or equal to one while it goes

to some positive constant when µ is less than one. More precisely, we have

wm,1 −→ 0, if µ ≥ 1, (6)

wm,1 −→ 1

ζ (1/µ)
, if µ < 1, (7)

where ζ(·) denotes the Riemann zeta function (Abramovitz and Stegun 1972, p. 807).

5Even if its relevance has been sometimes questioned, in particular when the distribution of weights has an
infinite second moment (Mandelbrot 1997), as it is the case when the distribution of firm sizes follows Zipf’s law,
we will see in section 3.4 that this choice of concentration measure of a portfolio is not arbitrary but is instead
dictated by the choice of the risk measure taken as the variance of the portfolio returns.
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For the Herfindahl index, one gets

HN =







1

1 − 1
(1−µ)2

· 1

N
+ O

(

N2/µ−2
)

, µ > 2,

lnN + γ

4N
+ O

(

N−3/2 lnN
)

, µ = 2,
(

1 − µ

µ

)2

ζ(2/µ) · 1

N2−2/µ
+ O

(

N3(1/µ−1)
)

, 1 < µ < 2,

π2

6

1

(γ + lnN)2
+ O

(
N−1(γ + lnN)−2

)
, µ = 1,

ζ(2/µ)

ζ(1/µ)2
+ O

(

N1−1/µ
)

, µ < 1.

(8)

In accordance with the behavior of the weight of the largest firm, HN goes to zero when the index

µ is larger than or equal to one, while it goes to some positive constant otherwise. However, the

decay rate of HN toward zero becomes slower and slower as µ approaches 1 (from above). In

practice, when the number of traded firms is large – but finite – the concentration of the market

portfolio can remain significant even if µ is larger than one, specifically when µ lies between one

and two.

In order to illustrate this situation, the upper panel of figure 1 depicts the value of the

weight of the largest firm in the market portfolio while the lower panel shows the inverse of the

Herfindahl index as a function of µ. The inverse of the Herfindahl index can be understood as the

effective number of assets in the portfolio, in so far as it is the exact number of assets required

to construct an equally-weighted portfolio with the same concentration (same Herfindahl index)

as the original portfolio, since the Herfindahl index of any equally-weighted portfolio made of

N assets is just H = 1/N . This justifies to interpret the inverse of the Herfindahl index as the

effective number of assets of the portfolio. The plain curves show the limit situation of an infinite

economy while the dotted and dash-dotted curves account for the finiteness of the economy: the

dotted curve refers to the case where only one thousand companies are traded while the dash-

dotted curve corresponds to an economy with ten thousand firms. The lower panel shows that

the typical number of effective assets, in a market where about one thousand to ten thousand

assets are traded, ranges between 35 and 60 if the distribution of market capitalizations follows

Zipf’s Law (µ = 1). This observation remains robust to slight departure from µ = 1. Clearly,

finite economy size effects cannot be neglected for market sizes corresponding to real economies.

[Insert Figure 1 about here]

To be a little bit more general, we can consider an economy where the firm sizes are randomly
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drawn from a power law distribution of size. Proposition 2 in Appendix A focuses on this

situation in detail and shows no qualitative changes with respect to the result (8) derived for

a deterministic set of firm sizes. Concretely, for an economy in which the distribution of firm

sizes follows Zipf’s law, we obtain a typical value of HN of about 4 − 5% for a market where

7000 to 8000 assets are traded6. This value is much larger than the concentration index of a

well-diversified portfolio – typically the equally-weighted portfolio of all assets – which should

be of the order of 0.012 − 0.014%. Intuitively, HN ≃ 4 − 5% means that there are only about

1/Hn ≃ 20− 25 effective assets in a typical portfolio supposedly well-diversified on 7000− 8000

assets. This order of magnitude is the same as the one obtained from our first example where

the distribution of firm sizes was assumed to follow a deterministic sequence.

This simple illustrative example shows, roughly speaking, that the market portfolio reflects

the behavior of the 20 to 25 largest assets traded on the market. In this context, one can wonder

(i) how the market portfolio alone could explain the expected return on any asset, irrespective of

its size, as predicted by the CAPM and (ii) if it is actually optimal for a rational investor to put

her money in this risky portfolio alone, as proposed by the two-fund separation theorem. This

suggests that the lack of diversification of the market portfolio is responsible, to a large extent,

for the failure of the CAPM to explain the cross-section of stock returns. This failure has been

documented in particular by Fama and French (1992, 1993), who find basically no support for

the CAPM’s central result of a positive relation between expected returns and the global market

risk (quantified by the beta parameter). This therefore raises the question of the existence of a

concentration premium.

Many authors have proposed alternative or additional factors in the quest to cure the defi-

ciencies of the CAPM and provide explanations for the so-called pricing anomalies. Three main

classes of additional factors can be distinguished: macro-economic factors, firm-specific factors

and behavioral factors.

Macro-economic factors. The positive or negative impact on stock prices of macro-

economic factors such as interest rates (Chen et al. 1986), exchange rates (Harvey 1991, Fer-

son and Harvey 1993), real output (Culter et al. 1989, Chen et al. 1986), inflation and

money supply (Bodie 1976, Fama 1981, Geske and Roll 1983, Pearce and Roley 1983,

1985), aggregate consumption (Jagannathan and Wang 2007, and references therein), hous-

ing prices (Kullman 2003), oil prices (Chen et al. 1986, Ferson and Harvey 1993, Jones

6These figures are compatible with the number of stocks currently listed on the Amex, the Nasdaq and the
NYSE.
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and Kaul 1996), labor income (Jagannathan and Wang 1996, Reyfman 1997, Heaton and

Lucas 2000) and so on, has been underlined in many studies based on the APT (Ross

1976, Roll and Ross 1984, Roll 1994) or in the context of equilibrium (Burmeister and

Wall 1986, Flannery and Protopapadakis 2002).

Firm-specific factors. It has been stressed for a long time (King 1966, Alexander and

Francis 1986) that grouping of industry sectors may be important in the study of the

return generating process. Similarly, the importance of market capitalization (or small-

firm effect) has been documented in the early eighties by Banz (1981) and Reinganum

(1981) while Stattman (1980) and Rosenberg et al. (1985) underlined the role of the book-

to-market ratio. If other ratios such as the earnings-to-price ratio (Basu 1977) and the

dividend yield (Blume 1980, Rozeff 1984, Keim 1985) for instance, also predict future

returns, most of the attention has been drawn to the size and the book-to-market effect

during the past decade as a result of their superior performance to explain the cross-section

of stock returns (Fama and French 1992, 1993,1995,1996). Among various interpretations,

Berk et al. (1999) have suggested that the explaining power of the size and the book-to-

market ratio could be a consequence of the optimal investment choices of a firm which

make predictable the changes in the firm’s assets and its growth options. Others, like

Campbell and Vuolteenoha (2004) and Campbell et al. (2005) have considered breaking

the beta of a stock with the market portfolio into two components, one reflecting news

about the market’s future cash flows and one reflecting news about the market’s discount

rates in order to explain the size and value “anomalies” in stock returns. More generally,

innovations in assorted state variables seem important in predicting asset prices (Brennan

et al. 2004, Brennan et al. 2006, Petkova 2006).

Behavioral factors. Two major issues have been considered. On the one hand, Rubinstein

(1973) and Krauss and Litzenberger (1976) have proposed to account for the departure of

the distributions of returns from normality and for the sensibility of the investors for the

skewness and kurtosis of the distribution of stock returns. The relevance of this approach

has been underlined by Lim (1989) and Harvey and Siddique (2000) who have tested

the role of the asymmetry in the risk premium by accounting for the skewness of the

distribution of returns. Along the same line, many other extensions have been presented

such as the VaR-CAPM (Alexander and Baptista 2002), in order to account more carefully

for the risk perception of investors. On the other hand, several studies have developed

phenomenological models capturing the reversal of long-term returns (Chan 1988, Chopra
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et al. 1992, DeBondt and Thaler 1985, 1987) and the continuation of short-term trends

(Chan et al. 1996, Jegadeesh and Titman 1993, Jegadeesh and Titman 2001, Richards

1999).

Most of these factors actually provide a significant improvement in explaining the cross-

section of asset returns. However they do not provide a clear identification of the most prominent

ones. Even if the Fama and French three factor model is now widely recognized as the benchmark,

the reasons for its superiority in explaining the cross-section of asset returns are still debated.

Besides, as stressed by Lewellen et al. (2006), any factor correlated with the size and/or the book-

to-market factor exhibits a significant power to explain stock returns. It is therefore particularly

difficult to decide whether a specific risk factor is actually priced because it represents a source

of risk the investors are sensitive to or whether it exhibits some relevance in explaining the

cross-section of stock returns because it is correlated with one (or both) of the two Fama-French

risk factors. In this context, we propose to focus on the consequences of the undisputable fact

that the market portfolio is highly concentrated on a small number of very large companies and

therefore can obviously not account for the behavior of the smallest ones. As we are going to

demonstrate, this will allow us to rationalize the size effect, in relation with what we propose to

call a “diversification factor,” which, to some extent, also justify the relevance of the book-to-

market factor.

3 Internal consistency conditions of factor models and their con-

sequences on diversification

Under the assumption that the return on the market portfolio is a factor explaining the return

on individual assets, our demonstration is based on two ingredients.

• The internal consistency condition states that the market portfolio is made of the assets

whose returns it is supposed to explain. As a consequence, there are correlations between

the disturbance terms.

• The lack of diversification of the market portfolio (associated with the fat tail distribution

of firm sizes) make these correlations non-negligible, giving birth to an additional fac-

tor which significantly contributes to the asymptotic variance of a priori well-diversified

portfolios.
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3.1 The factor model

Consider an economy with N firms whose returns on stock prices are determined according to

the following equation

~r = ~α + ~βm · [rm − E [rm]] + B~φ + ~ε, (9)

where

• ~r is the random N × 1 vector of asset returns;

• ~α = E [~r] is the N ×1 vector of asset return mean values. We do not make any assumption

neither on the ex-ante mean-variance efficiency of the market portfolio, nor on the absence

of arbitrage opportunity, so that ~α is not, a priori, specified;

• rm is the random return on the market portfolio;

• ~βm is the N × 1 vector of the factor loadings of the market factor;

• ~φ is the random N × 1 vector of risk factors φi which are assumed to have zero mean

(E [φi] = 0), unit variance, are uncorrelated with each other and with rm;

• B is the N × q matrix of factor loadings;

• ~ε is the random N×1 vector of disturbance terms with zero average E [~ε] = ~0 and covariance

matrix Ω = E [~ε · ~ε]. The disturbance terms are assumed to be uncorrelated with the

market return rm and the factors φi.

It would be natural to assume that (i) Ω is diagonal in order to have the ith contribution of

~ε embodying the specific risk contribution to the ith asset but, as we shall see in the sequel,

the internal consistency condition makes this impossible and forces the disturbances ~ε to be

correlated. A weaker hypothesis on Ω would be that (ii) all its eigenvalues are uniformly bounded

from above by some constant λ (i.e., the bound is independent of the size of the economy:

∀N, max
||x||=1

x′Ωx ≤ λ). This implies that the covariance matrix of the stock returns defined as

Σ = E
[
(~r − ~α) (~r − ~α)′

]
= ~β~β′ · Var rm + BB′ + Ω, (10)

where the prime denotes the transpose operator, has an approximate q + 1 factor structure,

according to the definition in Chamberlain (1983) and Chamberlain and Rothschild (1983). But

these two assumptions (i) and (ii) are in fact equivalent, as shown by Grinblatt and Titman
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(1985). Indeed, a simple repackaging of the N security returns into N new returns constructed

by forming N portfolios of the primitive assets allows one to get a new formulation of expression

(9) with mutually uncorrelated disturbance terms.

To understand why the disturbance terms cannot be uncorrelated, let us first denote by

~wm the vector of the weights of the market portfolio. Accounting for the fact that the market

factor is itself built upon the universe of assets that it is supposed to explain, the model must

necessarily fulfill the internal consistency relation

rm = ~w′
m · ~r. (11)

Left-multiplying (9) by ~w′
m, the internal consistency condition (11) implies the following rela-

tionship
[

~w′
m · ~β − 1

]

· (rm − E [rm]) + w′
mB~φ + ~w′

m · ~ε = 0 . (12)

Then, by our assumption of absence of correlation between rm, ~φ and ~ε, it follows trivially that7

~w′
m · ~ε = 0 almost surely, (13)

while

~w′
m · ~β = 1 and ~w′

mB = 0 . (14)

Several authors have pointed out a consequence of the internal consistency condition that

the market portfolio is made of (or can be replicated by) the assets they are intended to explain

(Fama 1973, Sharpe 1990). An a priori important consequence of this internal consistency

condition is the breakdown of the standard assumption of independence (or, at least, of the

absence of correlation) between the non-systematic components of the returns of securities. In

other words, the standard factor model decompositions assume that the disturbance terms for

security i are uncorrelated with the comparable components for security j. But, this cannot be

strictly the case as can be seen from the above derivation. This presence of correlations between

the disturbance terms may a priori pose problems in the pricing of portfolio risks: only when the

disturbance terms can be averaged out by diversification can one conclude that the only non-

diversifiable risk of a portfolio is born out by the contribution of the market portfolio which is

weighted by the beta of the portfolio under consideration. Previous authors have suggested that

7Right multiplying equation (12) by ~ε′ and taking the expectation, given that the return on the market

portfolio, the factors ~φ and the disturbance terms ~ε are uncorrelated, we obtain that ~w′

m · Ω = 0. Then, right
multiplying ~w′

m · Ω = 0 by ~wm gives 0 = ~w′

m · Ω · ~wm = w′

m · E[~εε′] · wm = E[(w′

m · ~ε) · (w′

m · ~ε)′] = E[[w′

m · ~ε]2],
hence the result (13).
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this is indeed what happens in economies in the limit of a large market N → ∞, for which the

correlations between the disturbance terms vanish asymptotically and the internal consistency

condition seems irrelevant. For example, while Sharpe (1990, footnote 13) concluded that, as a

consequence of equation (13), at least two of the disturbances, say εi and εj , must be negatively

correlated, he suggested that this problem may disappear in economies with infinitely many

securities. Actually, we show below that this apparently quite reasonable line of reasoning does

not tell the whole story: even for economies with infinitely many securities, when the companies

exhibit a large distribution of sizes as they do in reality, the constraint (13) can lead to the

important consequence that the risk born out by an investor holding a well-diversified portfolio

does not reduce to the market risk in the limit of a very large portfolio, as usually believed.

A significant proportion of “specific risk” may remain which cannot be diversified away by a

simple aggregation of a very large number of assets.

3.2 Correlation structure of the disturbance terms

The fact that the disturbance terms ~ε in the market model (9) are correlated according to the

condition (13) means that there exists at least one common “factor” f to the ε’s, so that ~ε can

be expressed as

~ε = ~γ · f + ~η , (15)

where ~γ is the vector of loading of the factor f8. The factor f could be chosen a priori such as to

explain one of the many anomalies reported in the previous section. But, as recalled, we want

to move away from this logic of invoking macro-economic, firm-specific or behavioral factors.

We prefer to focus on the parsimonious single market factor model, and just account for the

lack of diversification of the market portfolio which calls for a diversification premium. As a

bonus, we will see that this strategy turns out to provide a fundamental basis for explaining a

significant part of the pricing anomalies. Our only requirement is that the covariance matrix of

~ε exhibits an eigenvalue that goes to infinity in the limit of an infinite economy, when HN does

not go to zero. In contrast, when HN goes to zero as N → ∞, the largest eigenvalue should

remain bounded. This requirement derives simply from the results of Chamberlain (1983) and

Chamberlain and Rothschild (1983), who have linked the existence of K unbounded eigenvalues

(in the limit N → ∞) of the covariance matrix of the asset returns to a unique approximate

8With this representation, we avoid the case where the explaining factor – here the market portfolio – could
be replicated by a single traded asset. Indeed, in such a case, the replicating portfolio would be concentrated on
one single asset, say the first one, so that the internal consistency condition would read ε1 = 0 without any other
constraint on the εi, i > 1.
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factor structure, such that the K associated eigenvectors converge and play the role of K factor

loadings.

For simplicity, we choose ~η to be a vector of uncorrelated residuals with zero mean9. Since

~w′
m~ε = 0, f and ~η are not independent from one another. More precisely, we have

f = − ~w′
m~η

~w′
m~γ

, (16)

provided that ~w′
m~γ 6= 0; if not, the random vector ~η would have to satisfy ~w′

m~η = 0, which

contradicts our assumption of an absence of correlations between the components of ~η. Therefore,

in this framework, f is not actually a factor – it should be uncorrelated with ~η if it was – but

is rather an “endogenous” factor. The market model (9) then becomes

~r = ~α + ~β · [rm − E [rm]] + ~γ · f + ~η, (17)

with

• Cov (rm, f) = Cov (rm, ~η) = 0, as the result of the absence of correlation between rm and

~ε,

• Var ~η = ∆, where ∆ is a diagonal matrix,

• Var f = ~w′

m∆~wm

(~w′

m~γ)2
, and

• Cov (f, ~η) = − 1
~w′

m~γ · ~w′
m∆.

In order to understand and illustrate the relevance and the limits of the assertion according to

which the existence of correlations between two disturbance terms εi and εj should be negligible

in an infinite size market (Fama 1973, Sharpe 1990), let us now evaluate their typical magnitude.

To simplify the notations, let us rescale without loss of generality the vector ~γ by ~w′
m~γ, so that

the relation (16) becomes

f = −~w′
m~η, (18)

with ~w′
m~γ = 1. The covariance matrix Ω of ~ε is

Ω =
(
~w′

m∆~wm

)
~γ~γ′ − ~γ ~w′

m∆ − ∆~wm~γ′ + ∆. (19)

9It should be enough to assume that all the eigenvalues of the covariance matrix of ~η are positive and uniformly
bounded by some positive constant (Grinblatt and Titman 1983).
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Assuming, for instance, that all the γi’s are equal to one (the condition ~w′
m~γ = 1 is then

automatically satisfied from the normalization of the weights ~wm) and that ∆ii = ∆ for all i’s,

the correlation between εi and εj (i 6= j) reads

ρij =
HN − wm,i − wm,j

√
(1 + HN − 2wm,i) (1 + HN − 2wm,j)

, (20)

=
HN

1 + HN
·
(
1 + O(wm,i(j)/HN )

)
. (21)

Expression (21) shows that, provided that the market portfolio is sufficiently well-diversified,

namely provided that the weight of each asset and the concentration index goes to zero in the

limit of a large market (N → ∞), the correlations ρij between any two disturbance terms goes

to zero as usually assumed. However, the largest eigenvalue of the correlation matrix, associated

with the (asymptotic) eigenvector ~1 = (1, 1, . . . , 1)′, is λmax,N ≃ N · HN

1+HN
and goes to infinity,

as the size of the economy growths unbounded, as soon as HN goes to zero more slowly than

1/N . This clearly shows that the correlations between the disturbance terms are not necessarily

negligible.

The question, that we now have to address, is whether these weak correlations may chal-

lenge the usual assumption that well-diversified portfolios do not bear additional non-diversified

sources of risks. For this, let us consider a well diversified portfolio ~wp, i.e., a portfolio such that

||wp||2 → 0 as the size of the economy goes to infinity. From equation (19), the residual variance

of this portfolio, namely the part of the variance of the portfolio that cannot be ascribed to

systematic risk factors, reads

w′
pΩwp =

(
~w′

m∆~wm

) (
~γ ~w′

p

)2 − 2
(
~w′

m∆~wp

) (
~γ′ ~wp

)
+ ~w′

p∆~w′
p . (22)

In addition to our previous hypothesis that ∆ is a diagonal matrix, we assume that its entries are

uniformly bounded from below by some positive constant c1 and from above by some constant

c2 < ∞ and that |~γ ~w′
p| is uniformly bounded from below by some positive constant c′ and from

above by some finite constant c′′ (this is the case, for instance, when one considers ~γ = ~1, which

is compatible with the requirement w′
m · ~γ = 1 assumed in the representation (19)). Then

~w′
p∆~w′

p ≤ c2 · ||~wp||2 → 0, (23)

∣
∣
(
~w′

m∆~wp

) (
~γ′ ~wp

)∣
∣ ≤ c2 · c′′ · ||wm|| · ||wp|| → 0, (24)
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and

c1 · c′ · ||wm||2 ≤
(
~w′

m∆~wm

) (
~γ ~w′

p

)2 ≤ c2 · c′′ · ||wm||2, (25)

so that

w′
pΩwp ∼ K · HN , K > 0, as N → ∞. (26)

Therefore, the residual variance ~w′
pΩ~wp of any “well-diversified portfolio” ~wp goes to zero, as the

size N of the economy goes to infinity, if and only if the concentration index HN of the market

portfolio goes to zero. In the case of a real economy with µ = 1, section 2 has shown that the

Herfindahl index HN of the market portfolio goes to zero but at the particularly slow decay rate

of 1/(lnN)2. As a consequence, the residual variance may still account for a significant part of

the total portfolio variance. We will give a numerical example in the next paragraph providing a

more precise statement concerning the behavior of the residual variance of the equally-weighted

portfolio.

3.3 Asymptotic behavior of the variance of the excess return of the equally-

weighted portfolio

In order to investigate more precisely the impact of the correlations between the disturbance

terms induced by the condition of internal consistency on the variance of the returns of a “well-

diversified” portfolio, we consider first the simple case of the equally-weighted portfolio whose

composition is given by the vector ~we = 1
N

~1. Algebraic manipulations yield

Var re = βe
2 · Var rm + γ̄2

N ·
∑N

i=1 S2
i ∆ii

(
∑N

i=1 Siγi

)2 − 2γ̄N
1

N
·
∑N

i=1 Si∆ii
∑N

i=1 Siγi

+
1

N

(

1

N

N∑

i=1

∆ii

)

, (27)

where re denotes the return on the equally-weighted portfolio and βe its beta with the market

factor. We have reintroduced the explicit dependence on the term
∑N

i=1 wm,iγi (no more assumed

to be scaled to the value 1) and used the fact that the market weight of firm i is wm,i =

Si/
∑n

j=1 Sj . Besides, Var re denotes the variance of the return on the equally weighted portfolio

re conditional on the knowledge of the firms capitalizations at the beginning of the period and of

the structural parameters γi and ∆ii. Therefore, we should have written Var re|{Si}, {γi}, {∆ii},
but for the sake of simplicity and without possible confusion since we will always refer to the

conditional variance, we will keep the notation Var re in the sequel.

Two of the four terms in the right-hand-side (r.h.s.) of expression (27) are standard. The

first term βe
2 · Var rm is the traditional contribution of the market risk factor weighted by
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the beta of the portfolio. The last rightmost term in the r.h.s. of (27) represents the usual

contribution of the diversifiable risk of the portfolio when one assumes that the disturbance

terms are uncorrelated and therefore represents the specific sources of risk. The two other terms

are new and result from the existence of correlations between the disturbances. In the absence

of such correlations, γ̄ would be zero and these two terms disappear.

Assuming that the ∆ii’s are N iid (positive) random variables with finite expected value

E [∆ii] < ∞, we get that 1
N2

∑N
i=1 ∆ii and 1

N

(

γ̄N ·
∑N

i=1 Si∆ii
∑N

i=1 Siγi

)

are Op (1/N), irrespective of the

fact that the distribution of firm sizes admits or does not admit a finite mean10. This implies

that, in the limit of large N , the third and fourth terms in the r.h.s. of expression (27) can be

neglected, leading to

Var re = βe
2 · Var rm + γ̄2

N ·
∑N

i=1 S2
i ∆ii

(
∑N

i=1 Siγi

)2 + Op(1/N). (28)

The fact that the fourth term in expression (27) disappears in the limit N → ∞ is not surprising

since it recovers the standard result on the diversification of the idiosyncratic risks. More

interestingly, the fact that the third term in (27) also goes to zero as 1/N means that it does

not introduce (in the limit of a large market) an additional risk worth considering.

Proposition 3 in Appendix B reveals through expression (28) that the only significant addi-

tional contribution to the risks of the equally-weighted portfolio stems from the term

γ̄2
N ·

∑N
i=1 S2

i ∆ii
(
∑N

i=1 Siγi

)2 , (29)

which is nothing but the variance (conditional of the γi’s and the Si’s) of the term γ̄N ·f resulting

from the expression of the market model (17).

By the same kind of derivation as in Appendix A, we get that the contribution (29) exhibits

three different behaviors. Either the variance of the distribution of firm sizes is finite and the

term (29) goes to zero as 1/N , or only the mean of the distribution of firm sizes exists and the

term (29) goes to zero at a much slower rate or, finally, if the mean of the distribution of firm

sizes does not exist, the additional risk term (29) converges to some finite positive value. The

general result is stated in appendix B

Restricting our attention to the case where µ is equal (or close) to one, as in real markets,

10The term within the parentheses converges in law either to zero, if E[S] < ∞, or to some non degenerated
distribution, if S is regularly varying with tail index less than one.
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we get that the asymptotic behavior of the variance of the equally weighted portfolio is given by

Var re = βe
2 · Var rm +

π · E [γ]2 · E
[
∆1/2

]2

2 · E [|γ|]2 · (lnN)2
· ξN + op

(

1/ (lnN)2
)

, (30)

where ξN can be understood as a parameter which characterizes the market under consideration.

Its value is not specified by the theory and it must be calibrated. However, Appendix B shows

that, in the limit of an infinite market (N → ∞), ξN follows a Lévy law whose density is

given by (47). Expression (30) implies that the variance of the equally-weighted portfolio,

while asymptotically proportional to the variance of the market portfolio, receives a significant

contribution due to the internal consistency condition together with the Zipf distribution of

company sizes. This additional contribution decays to zero extremely slowly with the number

N of companies in the economy. For instance, (i) assuming that the variance ∆ii of the residuals

ηi is the same for all of them and, a priori, of the same order as the variance of the market

return: ∆ii ∼ Var rm, (ii) considering that the ratio E[γ]2

E[|γ|]2
is of the order of one and (iii)

accounting for the fact that the median value of the Lévy law is approximately equal to 2.198,

the additional term is typically of the order of π
(ln N)2

· Var rm. So, assuming that βe is about

one and considering a market where 7000 to 8000 assets are traded11, the typical amplitude of

the additional term represents 5% of the total variance of the equally-weighted portfolio. More

precisely, in one case out of two, the contribution of the additional term is larger than 5% of

the total variance. Figure 2 presents the probability to reach or exceed a given level for the

contribution of the residual variance to the total variance, in an economy with 7000-8000 traded

assets. In one case out at four (p = 0.25), the contribution of the residual variance to the total

variance is larger than 15%; in one case out ten (p = 0.1), it represents more than 50%. Over

the time period from January 1927 to December 2005, the variance12 of the monthly excess

returns of the equally-weighted portfolio is 0.56%, the variance of the monthly excess returns of

the market portfolio is 0.30% and βe = 1.24. Therefore, the residual variance – i.e., the part of

the variance of the equally-weighted portfolio not explained by the market – is equal to 0.10%,

which represents 20% of the total variance. These figures are perfectly in line with our model.

[ Insert Figure 2 about here]

11These figures are compatible with the number of stocks currently listed on the Amex, the Nasdaq and the
NYSE.

12We consider the data from the CRSP for the US market.
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3.4 Relation with the concentration of the market portfolio

The variance of the term γ̄N · f given by (29) cannot be easily related to observable market

variables since it is a mixture of the firm sizes (which are observable) and of the not directly

accessible underlying variables γi’s and ∆ii’s which describe the correlation structure of the

disturbances ~ε in the model (9). Nevertheless, as a consequence of the assumption that the γi’s

and ∆ii’s have finite expectations, the behavior of the term
∑N

i=1 S2
i ∆ii

(
∑N

i=1 Siγi)
2 is the same as that of

∑N
i=1 S2

i

(
∑N

i=1 Si)
2 which is nothing but the Herfindahl index HN of the market portfolio since

HN ≡
N∑

i=1

w2
m,i =

∑N
i=1 S2

i
(
∑N

i=1 Si

)2 . (31)

This expresses the deeper fact that proposition 2 in Appendix A and proposition 3 in Ap-

pendix B are closely related. Loosely speaking, these two propositions can be summarized as

follows

Var re ≃ β2
e · Var rm + Kµ · HN , (32)

where

Kµ =







E [∆] , µ ≥ 2,

E
[

∆µ/2
]2/µ

, 1 < µ < 2,

E
[

∆µ/2
]2/µ

· E [γ]2

E [|γ|µ]2/µ
, µ ≤ 1.

(33)

Expression (32) has a simple intuitive meaning based upon the standard interpretation of the

Herfindahl index as the inverse of the effective number of assets of a portfolio, if this portfolio

was well-diversified (in fact, equally-weighted). Indeed, considering an equally-weighted portfolio

made of n assets, its Herfindahl index is H = 1/n. Conversely, given a portfolio whose Herfindahl

index is H, its effective number of assets, defined as the number of assets of an equally-weighted

portfolio with the same value H of the Herfindahl index, is neff = 1/H. Therefore, considering

that the real market is not made of N (≃ 7000 − 8000) assets but actually of Neff = 1/HN

(≃ 20−25) effective assets, equation (32) expresses the variance of the equally-weighted portfolio

as the sum of two terms: the first one gives the variance of the portfolio resulting from the

exposition to the market risk β2
e ·Var rm while the second one represents the residual variance of

the Neff = 1/HN assets. The constant Kµ appears as the average residual variance of the Neff

assets. Thus, when the market portfolio is well-diversified, HN goes to zero, or equivalently, the

number of effective assets goes to infinity so that, by virtue of the law of large numbers, the
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residual variance Kµ/Neff goes to zero. In contrast, when the market portfolio is concentrated

on a few assets, HN does not go to zero, the number of effective assets remains finite in the limit

of an infinite economy and the residual variance does not go to zero.

For illustration purpose, we discuss in turn three cases. First, both proposition 2 in Appendix

A and proposition 3 in Appendix B show that the concentration index HN and the variance of

f are of the order of 1/N , like the last two terms in the r.h.s. of expression (27), provided that

the variance of the distribution of firm sizes is finite. As a consequence, for such distributions

of firm sizes, the market portfolio is well diversified insofar as the concentration index is of the

same order as the inverse of the number of assets in the portfolio. As a consequence, there is no

additional non-diversifiable risk and, in the limit of a large market, we have

Var re = β2
e · Var rm + Op(N

−1). (34)

Let us consider the example of a distribution of firm sizes given by a Gamma law Γ(r, λ). In

such a case, it is well-known that the joint distribution of {wm,i}N−1
i=1 is a multivariate Beta law

with parameter r (Mosimann 1962), which yields

E[HN ] =
r + 1

r · N + 1
, (35)

in accordance with the fact that Hn = 1
N + op(1/N).

Second, if the distribution of firm sizes admits only a finite mean value and, in addition, is

regularly varying at infinity with a tail index µ ∈ (1, 2), the proposition 2 in Appendix A and

proposition 3 in Appendix B state that both the concentration index and the variance of f are

of the order of 1/N2(1−1/µ). As a consequence, the contribution to the total risk due to the

second term in the r.h.s. of (27) decays to zero much slower than the decay ∼ 1/N of the two

last terms. Then

Var re = β2
e · Var rm +

C

N
2
(

1− 1
µ

) + Op(N
−1), for some C > 0. (36)

As an example, if the tail index of the distribution of firm sizes is µ = 3/2, the ratio of the

second term in the r.h.s. of (27) over the last two terms is of the order of N1/3. Therefore,

assuming that the prefactors of these contributions have the same magnitude, the second term

is typically 10, 21 and 46 times larger than the last two terms, if one thousand, ten thousands

and one hundred thousand companies are traded on the market.
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Finally, if the distribution of firm sizes does not even admit a finite mean value but is still

regularly varying at infinity with a tail index µ ∈ (0, 1), proposition 2 in Appendix A and

proposition 3 in Appendix B show that the Herfindahl index and the variance of f converge

to non-degenerated random variables which are the ratio of two positive and dependent stable

random variables:

HN = H + op(1), with H = lim
N→∞

S2
1 + · · · + S2

N

(S1 + · · · + SN )2
, (37)

Var f = σ2
f + op(1), with σ2

f = lim
N→∞

∆11 · S2
1 + · · · + ∆NN · S2

N

(γ1 · S1 + · · · + γN · SN )2
, (38)

so that

Var re = β2
e · Var rm
︸ ︷︷ ︸

specific market risk

+ E [γ]2 · σ2
f

︸ ︷︷ ︸

non−diversified risk

+op(1). (39)

The first term in the r.h.s. of (39) is the non-diversifiable market risk which is remunerated by

the market according to the CAPM formula. The second term clearly exemplifies the fact that

due to (i) the dependence between the ~ε resulting from the internal consistency condition and

(ii) the Pareto form of the distribution of the size of companies, full diversification cannot occur

even in the limit of a market with an infinite number of assets. Consider the example where

the distribution of firm sizes is the Lévy law defined by equation (47). Using its properties of

stability under convolution, the distribution of the market weights wm,i can be easily obtained.

For instance, the density of the marginal law of wi is given by

gN (w) =
N − 1

π
· w−1/2(1 − w)1/2

1 + [(N − 1)2 − 1] w
, (40)

so that E [HN ] = 1
2 · N+1

N , in agreement with the fifth statement of proposition 2 in Appendix A

and (37).

Finally, let us stress that our previous results, stated for the equally weighted portfolio, hold

in fact for any well-diversified portfolio, as suggested by (26). Appendix B discusses this point

in details.
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4 Discussion

4.1 Analysis of synthetic markets generated numerically

In order to assess the impact of the internal consistency factor in real stock markets of finite size,

we present in table 1 the results of numerical simulations of synthetic markets with respectively

N = 1000 and N = 10000 traded assets. We construct the synthetic markets according to model

(17) so that the only explicit explaining factor is the market factor and the size distribution of

the capitalization of firms is the Pareto distribution

Pr [S ≥ s] =
1

sµ
· 1s≥1 . (41)

We investigate various synthetic markets characterized by different tail index µ, from µ = 1/2

(deep in the heavy-tailed regime), µ = 1 (borderline case often referred to as the Zipf law when

expressed with sizes plotted as a function of ranks) to µ = 2 (for which the central limit theorem

holds and standard results are expected). It is important to stress that the results presented in

table 1 are insensitive to the shape of the bulk of the distribution of firm sizes, and only the tail

Pr [S ≥ s] ∼ s−µ, for large s, matters.

The three values of the tail index µ equal to 2, 1 and 1/2 correspond to the three major

behaviors of the residual variance of a “well-diversified” portfolio, namely the part of the total

variance related to the disturbance term ε only, given by proposition 3 in Appendix B:

• for µ = 2, the residual variance goes to zero as 1/N , so that the market return should be

the only relevant explaining factor if the number of traded assets is large enough;

• for µ = 1, the residual variance goes very slowly to zero, so that one can expect a significant

contribution to the total risk and a strong impact of the internal consistency factor f for

large (but finite) market sizes;

• for µ = 1/2, the residual variance does not go to zero and one can expect that the

contribution of the residual variance to the total risk remains a finite contribution as the

size of the market increases without bounds.

For each value µ = 2, µ = 1 and µ = 1/2, we generate 100 synthetic markets of each size

N = 1000 and N = 10000 (hence a total of 3 × 2 × 100 synthetic markets). For each market,

we construct 20 equally weighted portfolios (randomly drawn from each market) and we regress

their returns on the returns of the market portfolio (rm), on the returns of the market portfolio
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and of the internal consistency factor (rm, f), on the returns of the market portfolio and of the

(overall) equally weighted portfolio (rm, re), on the returns of the market portfolio and of an

arbitrary under-diversified portfolio (rm, ru) and on the returns of the market portfolio and of an

arbitrary well-diversified arbitrage portfolio (rm, ra). Using the 100 market simulations for each

case (µ, N), Table 1 summarizes the mean, minimum and maximum values of the coefficient of

determination R2 of these five regressions of the 20 equally weighted portfolios.

[Insert Table 1 about here]

For µ = 2, as was expected, the market return is the only relevant factor: it accounts on

average for about 95% and 99% (for N = 1000 and N = 10000 assets, respectively) of the total

variance of the 20 equally-weighted portfolios under considerations. The fact, that the explained

variance increases from 95% to 99% when going from N = 1000 to N = 10000 assets, results

from the standard diversification effect: for N = 1000, each of the 20 equally-weighted portfolios

are made of only 1000/20=50 assets compared with 10000/20=500 assets for N = 10000. As a

confirmation, the minimum and maximum values of the R2 remains very close to their respective

mean values.

For µ = 1, the market factor explains a much smaller part of the total variance compared

with the previous case (80% and 88%, respectively for N = 1000 and N = 10000 assets). As

expected, the lack of explanatory power of the market factor is stronger for the markets with

the smallest number N = 1000 of traded assets. In addition, the minimum R2 (1% and 20%,

resp.) departs strongly from its mean value. Besides, the regression on the market factor and the

internal consistency factor f (which is readily accessible in the case of a numerical simulation)

provides a level of explanation (95% and 99%, respectively) comparable to that of the case

µ = 2 for which full diversification of the residual risk occurs. Moreover, the equally-weighted

portfolio provides the same level of explanation as f itself. This is particularly interesting

insofar as f is not observable in a real market while the return on the equally-weighted portfolio

can always be calculated, or at least proxied. We find more generally that any well-diversified

portfolio provides overall the same explaining power. This result is simply related to the fact

that the internal consistency factor f is responsible for the lack of diversification of “ well-

diversified” portfolios (when µ . 1) so that the return on any “well-diversified” portfolio p

reads rp ≃ αp + βp · rm + E [γ] · f . This suggests that the equally-weighted portfolio or any

well-diversified portfolio, in so far as it is strongly sensitive to the internal consistency factor f ,

may act as a good proxy for this factor.
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In contrast, the regression on any under-diversified portfolio, while improving on the regres-

sion performed just using the market portfolio, remains of lower quality: the gain in R2 is only

5-6% on average with respect to the regression on the sole market portfolio, while the gain in R2

lies in the range 10-15% when using the equally-weighted portfolio. Finally, table 1 shows that

the introduction of an arbitrage portfolio does not improve the regression. This is due to the

fact that arbitrage portfolios are not asymptotically sensitive to the internal consistency factor

f in the large N limit, as recalled in section B.2 of Appendix B.

The same conclusions hold qualitatively for synthetic markets generated with µ = 1/2,

with the important quantitative change that the explanatory power of the market factor does

not increase with the market size N . This expresses the predicted property that the internal

consistency factor f should have an asymptotically finite contribution to the residual variance

as the size of the market increases without bounds.

Finally, our numerical tests confirm that the distributional properties of the γ’s (the factors

loading of the residuals on the internal consistency factor f) have no significant impact on the

results of the simulation, provided that E [|γ|] < ∞.

4.2 Consequences for the Arbitrage Pricing Theory and the standard pricing

anomalies

In his article establishing the arbitrage pricing theory, Ross (1976, p. 347) explicitly assumes

that the disturbance terms in the factor model (9) are “mutually stochastically uncorrelated,”

which is inconsistent with the constraint (13) if we assume that the factors (or at least some of

them) can be replicated by assets portfolios. Indeed, the derivation of the APT results from the

construction of a well-diversified arbitrage portfolio (step 1 in Ross (1976, p. 342)) chosen so

as to have no systematic risk (step 2). The fact that this arbitrage portfolio is well-diversified

is important because it is at the basis of the argument for the diversification of the specific risk

of the arbitrage portfolio in the limit of a large number of assets (law of large numbers), which

conditions the results of steps 3 and 4 in Ross (1976). Unfortunately, as shown in Appendix B,

if one of the factors can be replicated by a portfolio whose weights are distributed according to

a sufficiently fat-tailed distribution, the specific risk of this portfolio cannot be diversified away

even if it is a well-diversified portfolio, as defined in Appendix B. In that case, the conclusion

resulting from steps 3 and 4 in Ross (1976) breaks down.

Alternatively, we can say that the residual risks exhibit too strong correlations. This problem
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has been tackled by many authors. In particular, Chamberlain (1983) and Chamberlain and

Rothschild (1983) have developed the appropriate formalism to deal with it, while Stambaugh

(1982) and Ingersoll (1984) have provided sharp pricing bounds in the presence of correlation

between the error terms. Basically, when all the eigenvalues of their covariance matrix remains

bounded as more and more assets are added to the market until its size goes to infinity, the APT

holds. In contrast, when several eigenvalues grow without bound, the factors associated with

these eigenvalues must be split off from the residuals and considered as new explaining factors

that should be priced. This argument is at the basis of the choice of the specification (15) of

the dependence structure of the disturbances of our market model. Therefore, if we explicitly

include our additional internal consistency risk factor f in the analysis, the original derivation

of Ross’ results still holds, as shown by Chamberlain (1983). Indeed, a key technical assumption

for the APT to hold is that the εi’s (in equation (9)) are “sufficiently independent to ensure that

the law of large numbers holds” (Ross 1976, p. 342) and, as explained in the previous sections,

this condition breaks down. Nonetheless, this condition holds for the residuals ηi defined by

equations (15-17). Then, for the one factor model (17), the following result holds:

Proposition 1. Consider a market where N assets are traded and for which the internal consis-

tency condition (13) holds, so that the returns of the set of assets obey the following dynamics:

~r = E [~r]+ ~β · [rm − E [rm]]+~γ ·f +~η, where f is the (zero-mean) additional factor resulting from

the internal consistency condition and rm is uncorrelated with f and the centered disturbance

vector ~η. Then, under the usual assumptions required for the APT to hold, the expected return

on asset i satisfies

E [ri − r0] = βi · E [rm − r0] + (γi − γm · βi) · E [ricc − r0] , (42)

where r0 denotes the risk free interest rate and E [ricc] ≥ r0 is the expected return on any portfolio

~wicc such that ~w′
icc · ~β = 0, with unit exposure to the factor f – i.e. such that ~w′

icc · ~γ = 1 – and

which is well-diversified in the sense that the variance Var (~wicc · ~η) goes to zero as the number

N of assets goes to infinity. γm = ~w′
m · ~γ is the gamma of the market portfolio. The index icc

refers to the “internal consistency condition.”

The proof of this result proceeds as follows. Starting from the model (17) and following step

by step the demonstration of theorems I and II in Ross (1976), we get the asymptotic result

E [~r] = ρ~1 + λ1
~β + λ2~γ, (43)
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where ρ, λ1 and λ2 are three non-negative constants. Their values are determined by expressing

the expected return on the market portfolio wm, on the portfolio wicc and on any well-diversified

portfolio without any systematic risk. This leads to identifying ρ with r0, λ2 with E [ricc − r0]

and λ1 with −γm ·E [ricc − r0]−r0. The quantity γm = ~w′
m ·~γ never vanishes, due to the internal

consistency constraint of the model.

Two comments are in order. Firstly, expression (42) looks like a standard APT decomposition

of the risk premia of the expected return of a given asset i weighted by their factor loading,

except for one important feature: the risk premium due to the internal consistency factor has its

amplitude controlled by the factor loading γi (as usual) corrected by the unusual term −γmβi.

In a standard factor decomposition, it is always convenient to impose γm ≡ ~w′
m.~γ = 0 so that

the contribution to the total risk premium due to any factor is proportional to its corresponding

factor loading γi. In the factor decomposition including the internal consistency factor, this is

intrinsically impossible, as we have stressed above. In this sense, expression (42) is not the result

of a standard factor decomposition. It is however the correct decomposition for a one factor

model in the presence of the internal consistency condition, which may lead to the creation of

the new internal consistency factor. The later should in fact be referred to as an endogenous

factor. This decomposition leading to (42) is the correct one in particular to highlight the crucial

consequence of the internal consistency condition in the contribution of the endogenous factor

to the total risk premium of a given asset. As we shall see, the fact that the factor loading βi of

the market portfolio contributes to the amplitude of the risk premium due to the endogenous

factor provides an interesting interpretation of the book-to-market effect.

Secondly, in the case where the market portfolio is well-diversified, the contribution of the

additional risk factor f vanishes asymptotically so that the risk premium associated with this

risk factor goes to zero in the limit of an infinitely large market.

4.3 Empirical consequences

[Insert Table 2 about here]

The pricing formula given by proposition 1 offers an interesting new insight into the valuation

of asset prices. However, the direct assessment of the risk premium associated with the internal

consistency risk factor ICC is not possible because we do not have a priori access to it, so that

the practical implementation of this theoretical framework seems problematic. Nonetheless,
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recalling that the risk premium associated with the additional term (γi − γm · βi) ·E [ricc − r0] is

due to the lack of diversification of the so-called “specific risk,” and that well-diversified portfolios

such as the equally-weighted portfolio are particularly sensitive to this risk, it seems natural to

consider the return on this portfolio in order to probe the market price of the non-diversified risk.

Besides, the numerical simulations presented in section 4.1 testify to the relevance of this choice.

However, insofar as the equally-weighted portfolio is (by construction) strongly correlated with

the market portfolio (ρ = 90%, see table 2), it can be desirable to consider instead the arbitrage

portfolio made of a long position in the equally-weighted portfolio and of a short position in

the market portfolio in order to avoid high multicollinearity in the regressions. This arbitrage

portfolio constitutes our proxy for the ICC risk factor and we denote by ricc(t) the time series of

its returns. Its correlation with the market is 38%, which is significantly smaller than the original

correlation between the market portfolio and the equally weighted portfolio. This correlation

between ricc(t) and the returns of the market portfolio is of the same order as the correlations

between the two factors SMB and HML of Fama and French (see Fama and French (1993) for

the description of the construction of these two portfolios) and the market factor (33% and 22%

respectively).

Therefore, this reasoning applied to proposition 1 leads us to estimate the following regression

model

ri,t − r0 = αi + βi · [rm(t) − r0] + βICC
i · ricc(t) + εi(t) . (44)

In order to assess the explaining power of the new factor, we also include in the regression

model the factors SMB and HML. We use the monthly excess returns of twenty-five equally-

weighted portfolios sorted by the quintiles of the distribution of sizes and book-to-market values

and the returns of ten value-weighted and equally-weighted industry portfolios13. The choice

of the sets of industry portfolios follows the remark in Lewellen et al. (2006) that any factors

correlated with the Fama-French factors will automatically perform well for the set of the 25

double sorted portfolios because they have a strong factor structure (the three Fama-French

factors explain more than 90% of the variation of the time-series of the portfolios’ returns).

Therefore, restricting one’s attention to this particular set of portfolios does not constitute a

valuable test of the relevance of a given factor in explaining the cross-section of stock returns.

Alternative set of portfolios, such as industry or beta-sorted portfolios, must then be considered.

13We have used the monthly data available on Professor French’s website: http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/ftp/25_Portfolios_5x5.zip for the 25 portfolios sorted by size and book-to-market,
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/10_Industry_Portfolios.zip for the ten
industry portfolios and
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F_Research_Data_Factors.zip for the
market factor, the risk-free interest rate and the two factors SMB and HML.
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Tables 3 to 7 present our results for the period from Jan. 1927 (or July 1931, depending on the

dataset) to Dec. 2005.

[Insert Tables 3 to 5 about here]

Table 3 presents the parameter estimates of the multi-linear time series regression of the

excess monthly returns of 25 equally-weighed portfolios (sorted by quintiles of the distribution

of sizes – Small, 2, 3, 4 and Big – and by quintiles of the distribution of Book equity to Market

equity ratio – Low, 2, 3, 4 and High) regressed on the excess return on the market portfolio,

on the two Fama-French factors SMB and HML and on the proxy ICC for the additional risk

factor due to the internal consistency constraint given by the difference between the return on

the equally-weighted portfolio and the return on the market portfolio:

ri,t − r0 = αi + βi · [rm(t) − r0] + βICC
i · ricc(t) + βSMB

i · rsmb(t) + βHML
i · rhml(t) + εi(t). (45)

The figures decorated by one star (resp. two stars) show the cases which reject the null hypothesis

that the factor under consideration is not significant in the presence of the others at the 5% (resp.

the 1%) level. Clearly, the three factors SMB, HML and ICC are, almost always, significant at

the 1% level, suggesting that it is a priori useful to consider these three factors together. The

regressions on the four factors provide a very good explanation of the portfolios excess returns,

as witnessed by the R2’s which are larger than, or of the order of, 90% for most portfolios,

except for three extreme cases: Small-Low, Small-2 and Big-High.

However, these conclusions must be tempered in view of the results summarized in tables 4

and 5 which gives the R2 and the α of the various regressions of the multi-linear times series of

the monthly excess returns of these 25 equally-weighed portfolios on the market portfolio (Rm),

on the market portfolio and the factor ICC (ICC), on the market portfolio and the size factor

(SMB), on the market portfolio and the book to market factor (HML), on the market portfolio

and the two Fama & French factors (HML + SMB), on the market portfolio, the factor ICC

and the size factor (ICC + SMB), on the market portfolio, the factor ICC and the book to

market factor (ICC + HML) and, finally on all four factors (market, ICC, SMB and HML).

The numbers in boldface represent the maximum value of the R2 (table 4) and the minimum

absolute value of the α (table 5) within the group of regression with two factors (columns ICC,

SMB and HML) and with three factors (columns HML + SMB, ICC + SMB and ICC + HML)

while the numbers within parenthesis provide the 95% confidence interval obtained by bootstrap
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(Efron and Tibshirani 1993).

Several comments are in order. First, for the two-factor models – namely the regression

models which include the market factor and one of the factors ICC, SMB or HML – table 4

shows that the internal consistency factor ICC provides the best explanation in 11 cases out

of 25. Second, for the groups of portfolios within the first three quintiles of the distribution

of sizes, i.e, Small, 2 and 3, the factor ICC provides the largest improvement in 10 cases out

of 15. Besides, the improvement provided by the factor ICC is particularly important for the

group of the five portfolios built on the first quintile of the distribution of size (group “Small”)

with respect to both the size and the book-to-market factors. The fact that the ICC factor is

more important for the smallest portfolios can be intuitively related to the fact that the market

portfolio is highly concentrated on the few largest companies and is therefore unable to explain

the expected return on the smallest firms. The lack of diversification of the market portfolio,

due to the heavy tail distribution of firm size, makes the market portfolio totally insensitive

to the firms with small size. Third, based upon the 95% confidence intervals (figures within

parenthesis) obtained by bootstrap, this improvement is statistically significant with respect to

the regression on the sole market factor14 and also with respect to the regression on the market

portfolio and either the size or the book-to-market factor in the group “Small”. In contrast,

for portfolios belonging to the two last quintiles of the distribution of size, i.e., portfolios of the

group 4 and Big, the factor HML provides the largest improvement 9 times out of 10 and is

statistically significant, with respect to the regression on the sole market factor, for 8 of these

portfolios.

For the three-factor models, the pair (SMB,HML) provides the best improvement in 13

cases out of 25, before the pair (ICC,HML) which is the best 8 times out of 25, while the pair

(SMB,ICC) wins the “horse race” only 4 times out of 25. However, these improvement are

statically significant with respect to the best two-factor model (which is most often the market

+ factor ICC) in only 5 cases out of 25, namely for the portfolios 2-4, 2-High; 3-4, 3-High; and

4-Low. Therefore, the usefulness of a three-factor model is clearly questionable.

To sum up our tests performed on the 25 equally-weighted portfolios ordered by quintiles

in size and book-to-market, we have found that, on average, the factor ICC alone provides the

best significant improvement with respect to the market factor, and also provides a significant

improvement with respect to the market factor and either the size or the book-to-market factor.

14Note that, a priori, the quoted R2 of the linear models are not directly comparable since they involve different
numbers of parameters. In principle, it is thus necessary to use the adjusted-R2 instead of the raw R2. However,
the large number of data points (948) makes the difference between these two quantities irrelevant at the level of
precision of the first decimal place.
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Overall, the addition of one or two of the Fama and French factors turns out to provide only

a marginal improvement. The confidence intervals on the R2 obtained by bootstrap suggests

that a two-factor model (market portfolio + factor ICC) has almost the same explanatory power

than the three-factor Fama-French model, while being more parsimonious and based on solid

economic foundation.

Overall, the value of the intercepts given in table 5 yields the same conclusions. Indeed, on

the one hand, the Fama and French three-factor model seems to provide intercepts which are

more often non-significantly different from zero (20 times out of 25) while the two-factor ICC

model provides only 15 non-significant intercepts. On the other hand, the two-factor ICC model

gives a much smaller α on average. Besides, the GRS statistic (Gibbons et al. 1989) underlines

that the significance of the intercepts α’s remains comparable (see the last two lines of Table 4)

and that they are always significantly different from zero. In this respect, the factor ICC does

not really improve on the two factors of Fama and French but, clearly, the GRS statistics reaches

its minimum when the size factor is replaced by the ICC factor. Therefore, based on the results

on the “Small” group of portfolios, on the GRS test and on our theoretical approach, we can

finally conclude to the superiority of the factor ICC with respect to the size factor SMB. On the

overall, the explaining power of the book-to-market factor HML seems undisputable even if it is

weakened in the presence of ICC.

We now turn to the comparison of the different models for the ten industry portfolios. The

tables concerning the value-weighted portfolios are not presented in order to save space but are

available upon request. It is observed that in the presence of the risk factor ICC, the factor SMB

turns out to be not significant for most portfolios (7 cases out of 10). Conversely, in the presence

the factor SMB, the factor ICC has no explanatory power in only 4 cases out of 10. This clearly

confirms that, overall, ICC is a superior substitute to SMB. As for the HML factor, it turns out to

be always significant, even in the presence of the factor ICC. Again, these observations must be

tempered by the analysis of the R2 and the α of the various multi-linear times series regressions

of the monthly excess returns of these 10 value-weighed industry portfolios on the same set of

factors as in table 4. On the basis of the 95% confidence intervals obtained by bootstrap, none

of the factors ICC, SMB and HML or any combination thereof, is able to provide a significant

improvement with respect to the regression on the sole market factor. Concerning the factor

ICC, this observation is not a big surprise since it is expected to provide a strong explanatory

power for well-diversified portfolios. But, by construction, value-weighted portfolios are not

diversified, hence the lack of explanatory power of the factor ICC. Moreover, if the number of
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assets in each industry is large enough, we should expect that the contribution of the residual

risk to the total risk goes to zero, as it goes to zero for the market portfolio.

[Insert Tables 6 to 8 about here]

The situation is totally different when one considers the same set of industry portfolios

but constructed on an equally-weighted basis. In this case, each industry portfolio is “well-

diversified,” in the sense that the weight of each asset in a given industry portfolio is inversely

proportional to the number of assets in this portfolio. Tables 6 to 8 summarize the values of

the parameter estimates, of the R2 and of the α, respectively, of the multi-linear time series

regressions of the excess monthly returns on 10 equally-weighed industry portfolios regressed,

as previously, on the excess return on the market portfolio, on the two Fama-French factors and

on the factor ICC, on the one hand, and on the same set of factors as in tables 4, on the other

hand. As in the case of the 25 equally-weighted portfolios sorted by size and book-to-market,

the addition of the internal consistency factor ICC to the market factor provides overall the

best improvement in terms of the R2 of two-factor models. In addition, no three- or four-factor

model provides a statistically significant improvement while the α are overall much smaller for

the two-factor ICC model than for the Fama and French three-factor model. In addition, the

GRS test does not reject the hypothesis of a zero-intercept for the model “Market factor + ICC

factor” at the 2% level while it strongly rejects the Fama & French model.

Finally, since our theory is based upon the fact that there exists non negligible correlations

between the error terms in the original market model (9), it is natural to investigate whether

the introduction of the ICC factor actually helps decrease theses correlations. Does the two-

factor ICC model capture the factorial structure of asset returns as well as the Fama and French

model? To answer this question, table 9 provides the fraction of the total variance explained

by the three main factors resulting from the principal component analysis15 of the covariance

matrices of the residuals obtained from the linear regressions of the excess returns of the 25

value- and equally-weighted portfolios sorted by size and BE/ME and of the 10 value- and

equally-weighted industry portfolios regressed against the same set of factors as in table 4. In

each case, the line Σ corresponds to the percentage of the total variance let unexplained by

the linear regressions. Excepted the case of the 25 value-weighted portfolios, the total residual

variance is overall the same for the two-factor ICC model and for the model of Fama and French

while it is generally smaller than the residual variance obtained for the two others two-factor

15The approach proposed by Bai and Ng (2002) provides an interesting alternative but has not been considered
to keep the length of the paper reasonable.
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models, i.e, “Market + SMB” and “Market + HML.” More important, the fraction of the total

variance explained by the first ACP factor is the same for the two-factor ICC model and for the

Fama and French model while it is between two and four times smaller than for the two others

two-factor models in the cases of the two 25 portfolios sorted by size and book-to-market. It

indisputably shows that the two-factor ICC models captures a part of the factorial structure of

asset returns that is comparable with the part captured by the three-factor model of Fama and

French and that is much better than the one that could be captured by the two others two-factor

models.

All these evidences confirm that the two-factor model constructed with the market portfolio

and with the internal consistency factor ICC has overall at least the same explanatory power as

the three-factor Fama-French model.

4.4 Relation between the internal consistency factor ICC and the two Fama

and French factors SMB and HML

As illustrated above, the additional internal consistency factor allows us to explain several well-

known pricing anomalies, with a power comparable to the HML + SMB Fama-French factors. We

now discuss why this can be expected on the basis of our theoretical results. Specifically, starting

from our theoretical framework, we address the question of why should the two additional factors

of Fama and French have an explaining power, that is, what could be the origins of the size and

book-to-market effects.

The size effect. The size effect is well-known to generally explain the part of the cross-section

of expected returns left unexplained by any misspecified asset pricing model (Berk 1995), which

raises the question of its relevance as the signature of a genuine risk factor. Our theoretical model

provides an answer to this question by rationalizing the role of the size effect as providing a proxy

for the diversification factor f (or ICC). Indeed, since the arbitrage portfolio which proxies the

ICC factor is long in the equally-weighted portfolio and short in the market portfolio, it is

therefore long on the small caps and short on the large caps, just like the SMB portfolio. There

is thus no qualitative difference between the Fama and French’s factor SMB and our proxy of

the ICC factor. This is confirmed by the large value of the linear correlation between the two

portfolios proxying the SMB and ICC factors equal to 86% (see table 2) over the time interval

studied here. As an illustration, the return on each factors is depicted on the left panel of figure 3

while the right panel represents the value of $1 invested in the market portfolio in Jan. 1927
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and the value of a leveraged position of $1 invested in SMB and ICC in Jan. 1927.

[Insert figure 3 about here]

The book-to-market effect. As illustrated by Stattman (1980) and Rosenberg et al. (1985)

in the early eighties and as emphasized more recently by Fama and French (1992, 1993), stocks

with a high book-to-market value tend to overperform stocks with a low book-to-market value.

Several economic explanations have been proposed to justify this phenomenon. Among others,

Fama and French have proposed that value stocks are companies that are in financial distress

while Campbell and Vuolteenoha (2004) have suggested that growth stocks might have spec-

ulative investment opportunities that will be profitable only if equity financing is available on

sufficiently good terms.

The pricing formula provided by proposition 1 offers a straightforward justification of the

book-to-market effect. Indeed, there is good empirical evidence that high book-to-market stocks

have significantly lower beta’s with respect to the market portfolio compared with low book-

to-market stocks. For instance, using a large sample of firms from 1977 to 2004, Bernardo et

al. (2007) find that the difference between the beta’s of growth opportunities and the beta’s of

assets-in-place is positive and statistically significant, at the 95% level, in 34 out of 37 industry

classifications. Bernardo et al. suggest that this results from the fact that, since firms with

more growth opportunities have cash flows with longer duration, their values are more sensitive

to changes in interest rates and thus should have higher beta’s. Then, ceteris paribus, the

additional term (γi − γm · βi) · E [ricc − r0] introduced by the internal consistency constraint

leads to a higher expected rate of return for a stock with a low beta if the term γm is positive.

5 Conclusion

Starting from a factorial model in which the only a priori systematic risk is the market portfolio,

we have shown that there is a new source of significant systematic risk, which has been totally

neglected up to now but which ought to be priced by the market. This occurs when (i) the

internal consistency condition holds (which simply means that the market portfolio is constituted

of the assets whose returns it is supposed to explain) and (ii) the distribution of the capitalization

of firms is sufficiently fat-tailed, as is the case of real economies. The corresponding new internal

consistency factor does not disappear for arbitrary large economies because the contribution,
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to the risk of arbitrary well-diversified portfolios due to the largest firms, remains finite for

arbitrary large economies when the distribution of the capitalization of firms is sufficiently heavy-

tailed. For this reason, this endogenous factor can be considered as related to the existence of

a diversification/concentration premium resulting from the concern of investors with respect to

the level of diversification of their portfolio in so far as holding the market portfolio alone does

not allow for a good diversification.

Applied to the Arbitrage Pricing Theory, we have shown that the original derivation of

Ross’ results still holds, provided that we explicitly include the additional diversification factor

in the analysis. As a consequence, this factor is shown to provide possible theoretical economic

explanations of some of the empirical factors reported in the literature. In particular, it allows

understanding the superior performance of Fama and French three-factor model in explaining

the cross section of stock returns. Indeed, the diversification factor provides a rationalization of

the SMB factor as a proxy of this factor. Besides, being consistent with the fact that high book-

to-market stocks have significantly lower beta’s with respect to the market portfolio compared

with low book-to-market stocks, the Value/Growth effect is related to the increasing sensitivity

of value stocks to the diversification factor. Finally, on the basis of only two factors (the market

portfolio and the equally-weighted portfolio), our model turns out to be at least as successful as

the Fama and French three-factor model in explaining the cross-section of monthly returns on

US stock over the time period for Jan. 1927 to Dec 2005.
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A Concentration of the market portfolio when the distribution

of firm sizes follows a power law

We consider an economy where the firm sizes are randomly drawn from a power law distribution

of sizes. By application of the generalized law of large numbers (Feller 1971, Gnedenko and Kol-

mogorov 1954, Ibragimov and Linnik 1975) and using standard results on the limit distribution

of self-normalized sums (Darling 1952, Logan et al. 1973), we can state that16

Proposition 2. The asymptotic behavior of the concentration index HN is the following:

1. provided that E[S2] < ∞,

HN =
1

N

E
[
S2
]

E [S]2
+ op(1/N),

2. provided that S is regularly varying with tail index µ = 2 and sµ ·Pr [S > s] → c as s → ∞,
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lnN

N
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1
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,

3. provided that S is regularly varying with tail index µ ∈ (1, 2) and sµ · Pr [S > s] → c as

s → ∞,

HN =
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· 1
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,

where ξN is a positive free parameter characteristic of the distribution of firm sizes in the

market under consideration. In the limit of large markets, the unconditional distribution

of this parameter is the stable law17 S(µ/2, 1),

4. provided that S is regularly varying with tail index µ = 1 and sµ ·Pr [S > s] → c as s → ∞,

HN =
π

2 · ln2 N
· ξN + Op

(
1

ln3 N

)

,

where ξN is a positive free parameter characteristic of the distribution of firm sizes in the

market under consideration. In the limit of large markets, the unconditional distribution

of this parameter is the Lévy law S(1/2, 1),

16For the simplicity of the exposition, we have assumed that the firm sizes Si are independent. Proposition 2
can however be generalized to the more realistic case where the firm sizes are not independent. Under mild mixing
conditions, the results remain the same up to a scale factor (Jakubowski 1993, Davis and Hsing 1995).

17The stable law S(α, β) has characteristic function ψα,β(s) =

{

exp
[
−|s|α + isβ tan απ

2
|s|α−1

]
α 6= 1,

exp
[
−|s| − isβ 2

π
· ln s

]
α = 1,

with

β ∈ [−1, 1].
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5. provided that S is regularly varying with tail index µ ∈ (0, 1) and sµ · Pr [S > s] → c as

s → ∞,

HN =
4

π1/µ

[

Γ

(
1 + µ

2

)

cos
πµ

4

]2/µ

· ξN ,

where ξN is a positive free parameter characteristic of the distribution of firm sizes in the

market under consideration. In the limit of large markets, the unconditional distribution

of this parameter is given by the limit law of the ratio ζN

ζ′2N
, where ζN and ζ ′N denote two

sequences of strongly correlated positive random variables that converge in law to S(µ/2, 1)

and S(µ, 1) respectively18,

6. provided that S is slowly varying19,

HN → 1, a.s.

As a consequence of the fourth statement of the proposition above, for economies in which the

distribution of firm sizes follows Zipf’s law (µ = 1) the asymptotic behavior of the concentration

index HN of the market portfolio is given by

HN ≃ π

2 · (lnN)2
· ξN , (46)

where ξN is a sequence of positive random variables with stable limit law S(1/2, 1), namely the

Lévy law with density

f(x) =
1√
2π

· x−3/2e−
1
2x , x ≥ 0. (47)

This shows that, even if the concentration of the market portfolio goes to zero in the limit of

an infinite economy, it goes to zero extremely slowly as the size N of the economy diverges.

Accounting for the fact that the numeric factor ξN in (46) is a specific realization (characteristic

of the state of the market under consideration) of a random variable with asymptotic law given

by the Lévy law (47) whose median value is approximately equal to 2.198, a typical value of HN

is 4 − 5% for a market where 7000 to 8000 assets are traded20. This value is much larger than

the concentration index of a well-diversified portfolio – typically the equally-weighted portfolio

– which should be of the order of 0.012 − 0.014%. Intuitively, HN ≃ 4 − 5% means that there

18 More precisely, the sequence of random vectors (ξN , ζN )′ converges to an operator-stable law with stable
marginal laws S(µ/2, 1) and S(µ, 1) respectively, and a spectral measure concentrated on arcs ±(x, x2). The full
characterization of the spectral measure is beyond the scope of this article (see (Meerschaert and Scheffler 2001,
Section 10.1) for details).

19The random variable S is slowly varying if its distribution function F satisfies limx→∞

1−F (tx)
1−F (x)

= 1, for all
t > 0. It corresponds to the limit case where S is regularly varying with µ→ 0.

20These figures are compatible with the number of stocks currently listed on the Amex, the Nasdaq and the
NYSE.
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are only about 1/Hn ≃ 20 − 25 effective assets in a typical portfolio supposedly well-diversified

on 7000 − 8000 assets. This order of magnitude is the same as the one obtained from our first

example where the distribution of firm sizes was assumed to follow a deterministic sequence.

B Asymptotic variance of the excess return on a well-diversified

portfolio

B.1 Case of the equally-weighted portfolio

The asymptotic behavior of the variance of the excess return on a equally-weighted portfolio,

conditional on the realization of the set of firm sizes, can be derived by the same kind of

arguments as in Proposition 2:

Proposition 3. Assuming that the γi’s are iid random variables such that E [|γ|] < ∞, and that

the ∆ii’s are iid positive random variables such that E[∆ii] = ∆̄ < ∞, the asymptotic behavior

of the variance of the equally-weighted portfolio is the following:

1. provided that E[S2] < ∞,

Var re = βe
2 · Var rm + Op(1/N),

2. provided that S is regularly varying with tail index µ = 2 and sµ ·Pr [S > s] → c > 0, as s

goes to infinity,

Var re = βe
2 · Var rm +

c · ∆̄
E [S]2

lnN

N
+ op(lnN/N),

3. provided that S is regularly varying with tail index µ ∈ (1, 2) and sµ · Pr [S > s] → c > 0,

as s goes to infinity,

Var re = βe
2 · Var rm +

[

πcE
[
∆µ/2

]

2Γ
(µ

2

)
sin µπ

4

]2/µ
1

E [S]2
· 1

N2−2/µ
· ξN + op

(
1

N2−2/µ

)

,

where ξN is a positive free parameter characteristic of the distribution of firm sizes in the

market under consideration. In the limit of large markets, the unconditional distribution

of this parameter is the law S(µ/2, 1),

4. provided that S is regularly varying with tail index µ = 1 and sµ ·Pr [S > s] → c > 0, as s
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goes to infinity,

Var re = βe
2 · Var rm +

π E
[
∆1/2

]2

2

E [γ]2

E [|γ|]2
1

ln2 N
· ξN + op

(
1/ ln2 N

)
,

where ξN is a positive free parameter characteristic of the distribution of firm sizes in the

market under consideration. In the limit of large markets, the unconditional distribution

of this parameter is the law S(1/2, 1),

5. provided that S is regularly varying with tail index µ ∈ (0, 1) and sµ · Pr [S > s] → c > 0,

as s goes to infinity,

Var re = βe
2 · Var rm + E

[

∆µ/2
]2/µ E [γ]2

E [|γ|µ]2/µ

4

π1/µ

[

Γ

(
1 + µ

2

)

cos
πµ

4

]2/µ

· ξN + op(1),

where ξN is a positive free parameter characteristic of the distribution of firm sizes in the

market under consideration. In the limit of large markets, the unconditional distribution

of this parameter is given by the limit law of the ratio ζN

ζ′2N
, where ζN and ζ ′N denote

two sequences of strongly correlated21 positive random variables that converge in law to

S(µ/2, 1) and S(µ, βγ) with βγ =
E[γµ·1γ>0]−E[|γ|µ·1γ<0]

E[|γ|µ] respectively.

B.2 Generalization to arbitrary well-diversified portfolios

The results stated in section 3 and in the previous part of this appendix refer to one particular

portfolio, the equally-weighted portfolio. This portfolio is interesting because it is often taken

as a reference and as a starting point to more elaborate allocations by analysts and practition-

ers. However, it seems natural to conjecture that the results summarized in proposition 3 also

hold (with suitable adaptation) for the entire class of well-diversified portfolios as suggested by

equation (26). By well-diversified portfolio is meant a portfolio of N assets whose concentration

index goes to zero in the limit of large N . In the particular case where we consider a portfolio

p, with weight on asset i given by wp,i = αi/N , where the αi’s have to sum up to N in order to

ensure that the sum of the fractions of wealth invested in each asset is equal to one and such

that 1
N

∑N
i=1 α2

i is uniformly bounded from above by some finite constant, the Herfindahl index

of p behaves as

Hp,N ∼ C

N
, as N → ∞, (48)

21see footnote 18.

40



where C is a positive and finite constant. Then, the variance of portfolio p reads

Var rp = βp
2 · Var rm + E [γ]2 ·

∑N
i=1 S2

i ∆ii
(
∑N

i=1 Siγi

)2 + op(1) , (49)

by virtue of the law of large numbers.

This expression shows that the term
∑N

i=1 S2
i ∆ii

(
∑N

i=1 Siγi)
2 (or equivalently the concentration index

HN of the market portfolio) still controls the decay (or the absence of decay) of the contribution

to the variance in addition to the variance associated with the correlation of the portfolio p with

the market portfolio. Therefore, we conclude that proposition 3 holds for the entire class of

portfolios whose Herfindahl index decays to zero as C/N , for large N . In fact, the result holds

for this class of long portfolios, i.e. such that the weights αi/N sum up to one. In the case of an

arbitrage portfolio, namely a portfolio whose weights αi/N sum up to zero, no additional term

appears in the variance (49).

Finally, when the concentration index of the portfolio under consideration goes to zero, but

at rate slower from 1/N , obtaining a detailed result for the variance of the portfolio’s return

involves more complex formulas. For the present work, equation (26) is sufficient to state that,

in general, well-diversified portfolios, of which the equally-weighted portfolio is just an example,

have generally a non-diversified risk which does not vanish in the limit of large economies, if

the distribution of firm capitalizations is sufficiently heavy-tailed. Therefore, holding a portfolio

with asymptotically vanishing Herfindahl index does not necessarily diversify away the non-

systematic risk.
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Table 1
Numerical simulations

Average, minimum and maximum value of the R2 of the regression of the return of 20 equally weighted portfolios (randomly drawn from a market
of N = 1000 and N = 10000 assets according to the model (17)) on the market portfolio (rm), on the market portfolio and the internal consistency
factor (rm, f), on the market portfolio and the (overall) equally weighted portfolio (rm, re), on the market portfolio and an under-diversified
portfolio (rm, ru) and on the market portfolio and a well-diversified arbitrage portfolio (rm, ra). Different market situations are considered with
distributions of firm sizes with tail index µ which varies from 0.5 to 2.

N=1000 N=10000
rm rm, f rm, re rm, ru rm, ra rm rm, f rm, re rm, ru rm, ra

Mean 94% 94% 95% 94% 94% 99% 99% 99% 99% 99%
µ = 2 Min 90% 93% 93% 90% 90% 99% 99% 99% 99% 99%

Max 96% 96% 96% 96% 96% 100% 100% 100% 100% 100%

Mean 80% 95% 95% 86% 82% 88% 99% 99% 93% 89%
µ = 1 Min 1% 91% 91% 42% 17% 20% 99% 99% 66% 20%

Max 95% 100% 100% 95% 95% 99% 100% 100% 99% 99%

Mean 56% 97% 97% 79% 64% 56% 100% 100% 83% 63%
µ = 1/2 Min 2% 89% 89% 34% 15% 1% 96% 97% 15% 3%

Max 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
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Table 2
Summary statistics

Mean value, standard deviation and correlation coefficients of the monthly returns on the market
portfolio (excess return over the one month T-bill), on the equally weighted portfolio (excess
return over the one month T-bill), on the ICC factor (spread between the return on the equally
weighted portfolio and the market portfolio), on the SMB and the HLM factors over the time
period from January 1927 to December 2005.

Correlation
Mean Std Re ICC SMB HML

Rm 0.64% 5.48% 0.90 0.38 0.33 0.22
Re 1.03% 7.52% 0.74 0.63 0.35
ICC 0.39% 3.48% 0.86 0.42
SMB 0.25% 3.37% 0.09
HML 0.41% 3.60%
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Table 3
Multi-factor time series regressions for monthly excess returns on 25

equally-weighted portfolios sorted by size and book-to-market (beta): Jul. 1931 -
Dec. 2005, 894 months

Parameter estimates of the linear regression of the excess returns on 25 equally-weighed portfolios
(sorted by quintiles of the distribution of size – Small, 2, 3, 4 and Big – and by quintiles of the
distribution of Book equity to Market equity ratio – Low, 2, 3, 4 and High) regressed on the
excess return on the market portfolio, on the two Fama-French factors SMB and HML and on
the proxy for the additional risk factor due to the internal consistency constraint given by the
difference between the return on the equally-weighted portfolio and the return on the market
portfolio:

ri,t − r0 = αi + βi · [rm(t) − r0] + βICC
i · ricc(t) + βSMB

i · rsmb(t) + βHML
i · rhml(t) + εi(t).

In the four columns labeled β, βSMB, βHML and βICC the figures decorated by one star (resp.
two stars) show the cases which reject the null hypothesis that the factor under consideration
is not significant in the presence of the others at the 5% (resp. the 1%) level. For instance, for
the portfolios 4-Low and 4-4, the factor SMB is not significant (neither at the 5% nor the 1%
level) in the presence of both the market factor, the factor HML and the proxy for the factor
ICC. In contrast, the factor ICC (resp. HLM) is significant, at the 1% level, in the presence of
the market factor, the SMB and HML (rsp. ICC) factors.

α β βSMB βHML βICC R2

Low -0.0076 1.24∗∗ -0.49∗∗ -0.24∗∗ 2.33∗∗ 75%
2 -0.0032 1.05∗∗ 0.78∗∗ 0.16∗ 1.17∗∗ 81%

Small 3 0.0007 1.01∗∗ 0.37∗∗ 0.21∗∗ 1.06∗∗ 89%
4 0.0017 0.94∗∗ 0.47∗∗ 0.36∗∗ 1.05∗∗ 94%
High 0.0037 0.93∗∗ 0.45∗∗ 0.65∗∗ 1.32∗∗ 92%

Low -0.0032 1.11∗∗ 0.70∗∗ -0.38∗∗ 0.56∗∗ 90%
2 -0.0009 1.11∗∗ 0.69∗∗ 0.14∗∗ 0.34∗∗ 94%

2 3 0.0011 0.98∗∗ 0.75∗∗ 0.33∗∗ 0.20∗∗ 93%
4 0.0008 1.00∗∗ 0.74∗∗ 0.56∗∗ 0.11∗∗ 95%
High -0.0004 1.07∗∗ 0.79∗∗ 0.83∗∗ 0.19∗∗ 96%

Low -0.0021 1.16∗∗ 0.29∗∗ -0.38∗∗ 0.61∗∗ 92%
2 0.0010 1.03∗∗ 0.44∗∗ 0.03 0.11∗ 92%

3 3 0.0005 1.04∗∗ 0.38∗∗ 0.32∗∗ 0.08∗∗ 93%
4 0.0011 0.97∗∗ 0.51∗∗ 0.52∗∗ -0.01∗∗ 93%
High -0.0007 1.18∗∗ 0.31∗∗ 0.87∗∗ 0.28∗∗ 94%

Low 0.0004 1.08∗∗ 0.07 -0.44∗∗ 0.26∗∗ 93%
2 -0.0004 1.04∗∗ 0.14∗∗ 0.10∗∗ 0.11∗ 91%

4 3 0.0010 1.02∗∗ 0.17∗∗ 0.29∗∗ 0.09 92%
4 0.0002 1.08∗∗ 0.08 0.57∗∗ 0.16∗∗ 93%
High -0.0024 1.27∗∗ 0.17∗∗ 0.98∗∗ 0.28∗∗ 93%

Low 0.0002 1.06∗∗ -0.24∗∗ -0.35∗∗ 0.21∗∗ 96%
2 0.0003 1.04∗∗ -0.19∗∗ 0.07∗∗ 0.13∗∗ 94%

Big 3 -0.0001 1.04∗∗ -0.20∗∗ 0.32∗∗ 0.11∗∗ 93%
4 -0.0015 1.10∗∗ -0.30∗∗ 0.66∗∗ 0.26∗∗ 92%
High -0.0012 1.10∗∗ -0.26∗∗ 0.82∗∗ 0.27∗∗ 86%
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Table 4
Multi-factor time series regressions for monthly excess returns on 25 equally-weighted portfolios sorted by size and

book-to-market (R2): Jul. 1931 - Dec. 2005, 894 months

R2 of the linear regression of the excess returns of 25 equally-weighed portfolios (sorted by quintiles of the distribution of size – Small, 2, 3, 4
and Big – and by quintiles of the distribution of Book equity to Market equity ratio – Low, 2, 3, 4 and High) on the market portfolio (Rm),
on the market portfolio and the factor ICC (ICC), on the market portfolio and the size factor (SMB), on the market portfolio and the book to
market factor (HML), on the market portfolio and the two Fama & French factors (HML + SMB), on the market portfolio, the factor ICC and
the size factor (ICC + SMB), on the market portfolio, the factor ICC and the book to market factor (ICC + HML) and, finally on all these four
factors (Market, ICC, SMB and HML). Figures in boldface represent the maximum value of the R2 within the group of regression with two factors
(columns ICC, SMB and HML) and with three factors (columns HML + SMB, ICC + SMB and ICC + HML).

HML ICC ICC All
Rm ICC SMB HML + + + four

SMB SMB HML factors
Low 52.0% 74.8% 66.7% 54.3% 68.6% 74.9% 74.8% 75.2%

(43.1%,60.6%) (68.5%,80.3%) (60.1%,74.5%) (44.3%,64.3%) (62.1%,75.8%) (68.7%,80.9%) (69.3%,80.6%) (69.6%,81.0%)

2 51.8% 79.9% 76.4% 54.9% 78.9% 80.7% 79.9% 80.9%
(43.4%,61.5%) (73.0%,86.0%) (71.9%,81.3%) (45.7%,66.6%) (73.3%,84.3%) (75.1%,86.1%) (74.0%,86.2%) (75.5%,86.5%)

Small 3 63.8% 89.0% 82.9% 68.5% 87.0% 89.1% 89.1% 89.4%
(57.2%,70.3%) (85.8%,91.8%) (80.0%,85.6%) (60.7%,76.5%) (83.9%,90.2%) (86.4%,91.9%) (85.8%,92.5%) (86.6%,92.6%)

4 61.7% 92.5% 84.4% 69.4% 91.3% 92.6% 93.2% 93.7%
(53.8%,69.8%) (90.9%,94.2%) (81.6%,87.6%) (62.1%,77.2%) (89.3%,93.2%) (91.0%,94.3%) (91.7%,95.0%) (92.5%,95.3%)

High 53.9% 89.5% 77.2% 67.5% 89.6% 89.7% 92.1% 92.5%
(46.3%,62.6%) (86.0%,92.5%) (71.2%,82.5%) (60.9%,74.3%) (85.9%,92.4%) (86.1%,92.7%) (89.5%,94.4%) (89.9%,94.8%)

Low 70.3% 84.2% 88.9% 70.8% 89.6% 88.9% 89.0% 90.4%
(66.1%,75.4%) (81.0%,87.7%) (86.1%,91.5%) (66.5%,76.3%) (87.1%,92.1%) (86.4%,91.5%) (86.7%,91.5%) (88.5%,92.6%)

2 78.0% 92.2% 92.3% 79.3% 93.4% 93.5% 92.3% 93.7%
(71.3%,84.1%) (90.3%,94.1%) (90.8%,94.0%) (73.2%,85.0%) (92.1%,94.9%) (92.3%,95.0%) (90.5%,94.2%) (92.5%,95.2%)

2 3 74.6% 90.8% 89.6% 78.4% 92.9% 91.6% 91.1% 93.0%
(65.9%,83.0%) (88.3%,93.8%) (86.9%,92.8%) (71.0%,85.9%) (91.2%,95.3%) (89.5%,94.2%) (88.8%,94.1%) (91.4%,95.4%)

4 75.8% 91.0% 87.7% 83.6% 94.9% 91.1% 93.2% 95.0%
(69.2%,81.8%) (88.4%,93.1%) (84.7%,90.7%) (78.5%,88.5%) (93.7%,96.2%) (88.6%,93.2%) (91.4%,94.8%) (93.8%,96.2%)

High 71.3% 89.3% 83.4% 84.4% 95.8% 89.4% 94.3% 95.9%
(65.5%,76.6%) (85.7%,92.0%) (79.3%,87.5%) (80.4%,88.0%) (94.0%,97.0%) (85.8%,92.0%) (92.2%,95.8%) (94.2%,97.1%)

(continued. . . )
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Table 4 – Continued

HML ICC ICC All
Rm ICC SMB HML + + + four

SMB SMB HML factors

Low 80.3% 88.6% 90.7% 80.8% 91.4% 90.8% 92.2% 92.5%
(75.7%,84.8%) (86.1%,90.8%) (87.8%,93.0%) (76.5%,85.5%) (88.9%,93.5%) (88.4%,93.1%) (90.6%,93.7%) (90.9%,94.0%)

2 85.6% 90.9% 91.8% 85.7% 92.0% 92.0% 91.1% 92.0%
(82.7%,88.3%) (89.1%,92.9%) (89.7%,93.8%) (82.9%,88.6%) (90.1%,93.9%) (90.1%,93.9%) (89.2%,93.0%) (90.2%,93.9%)

3 3 85.4% 91.4% 89.9% 88.8% 93.0% 91.4% 92.4% 93.1%
(81.9%,88.4%) (89.2%,93.2%) (87.3%,92.1%) (86.3%,90.9%) (91.5%,94.3%) (89.3%,93.3%) (90.8%,93.8%) (91.5%,94.3%)

4 80.4% 88.7% 86.0% 87.8% 93.0% 88.7% 91.9% 93.0%
(75.2%,84.9%) (85.0%,91.6%) (82.2%,89.4%) (84.3%,91.1%) (91.1%,94.7%) (85.2%,91.7%) (89.6%,93.9%) (91.1%,94.7%)

High 75.6% 85.9% 79.9% 90.5% 94.3% 87.2% 94.2% 94.4%
(70.8%,79.7%) (82.5%,88.9%) (75.8%,83.9%) (87.1%,93.1%) (92.4%,95.8%) (83.7%,90.3%) (92.0%,95.8%) (92.6%,96.0%)

Low 86.4% 87.0% 88.4% 90.2% 92.3% 89.0% 92.6% 92.6%
(84.0%,88.7%) (84.8%,89.3%) (86.2%,90.4%) (88.3%,91.8%) (90.8%,93.7%) (86.9%,91.2%) (91.4%,93.9%) (91.4%,94.0%)

2 89.4% 91.3% 90.8% 90.0% 91.4% 91.3% 91.4% 91.5%
(87.1%,91.5%) (89.0%,93.3%) (88.2%,93.1%) (88.0%,91.9%) (89.3%,93.5%) (89.1%,93.4%) (89.3%,93.4%) (89.4%,93.5%)

4 3 87.3% 90.3% 88.9% 90.5% 92.0% 90.5% 91.9% 92.0%
(84.5%,89.8%) (87.5%,92.5%) (86.2%,91.5%) (88.5%,92.6%) (89.8%,94.0%) (87.8%,92.7%) (89.7%,93.8%) (89.8%,94.0%)

4 82.5% 86.6% 83.5% 91.8% 92.7% 88.1% 92.8% 92.8%
(78.6%,85.7%) (82.6%,89.8%) (79.9%,87.1%) (89.2%,93.9%) (90.3%,94.6%) (84.1%,91.1%) (90.2%,94.6%) (90.3%,94.7%)

High 74.4% 82.1% 76.6% 90.7% 92.5% 84.5% 92.6% 92.7%
(69.6%,78.9%) (77.6%,85.9%) (72.0%,81.1%) (87.6%,93.2%) (89.9%,94.5%) (79.7%,88.7%) (90.0%,94.6%) (90.1%,94.6%)

Low 92.0% 92.5% 92.2% 95.1% 95.2% 92.7% 95.1% 95.5%
(90.5%,93.3%) (91.0%,93.8%) (90.7%,93.5%) (94.0%,96.1%) (94.2%,96.2%) (91.1%,94.1%) (94.0%,96.1%) (94.6%,96.4%)

2 93.3% 93.3% 93.5% 93.7% 93.9% 93.9% 93.7% 94.0%
(91.0%,94.9%) (91.0%,95.0%) (91.5%,95.0%) (91.6%,95.3%) (92.0%,95.4%) (92.1%,95.4%) (91.8%,95.3%) (92.2%,95.5%)

Big 3 88.2% 88.3% 88.4% 92.3% 92.7% 90.6% 92.5% 92.7%
(85.0%,90.6%) (85.1%,90.9%) (85.6%,90.9%) (90.0%,94.2%) (90.5%,94.5%) (87.9%,93.0%) (90.3%,94.3%) (90.5%,94.6%)

4 79.0% 80.5% 79.1% 91.9% 92.0% 86.0% 91.9% 92.2%
(74.3%,82.9%) (75.8%,84.5%) (74.7%,83.0%) (89.2%,94.0%) (89.3%,94.1%) (81.5%,89.6%) (89.2%,94.0%) (89.6%,94.3%)

High 70.1% 72.6% 70.1% 86.2% 86.2% 78.5% 86.3% 86.5%
(64.1%,75.2%) (66.9%,77.2%) (64.4%,75.3%) (82.4%,89.9%) (82.5%,89.9%) (72.7%,83.3%) (82.5%,89.9%) (82.8%,90.1%)

Average 76.1% 87.3% 84.7% 82.2% 90.6% 88.6% 90.8% 91.4%
(72.6%,79.7%) (85.3%,89.3%) (82.4%,87.2%) (79.4%,85.3%) (89.1%,92.2%) (86.7%,90.6%) (89.5%,92.2%) (90.2%,92.8%)
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Table 5
α of the multi-factor time series regressions for monthly excess returns on 25

equally-weighted portfolios sorted by size and book-to-market: Jul. 1931 - Dec.
2005, 894 months

α (times one thousand) of the linear regression of the excess returns of 25 equally-weighed
portfolios (sorted by quintiles of the distribution of size – Small, 2, 3, 4 and Big – and by
quintiles of the distribution of Book equity to Market equity ratio – Low, 2, 3, 4 and High) on
the market portfolio (Rm), on the market portfolio and the factor ICC (ICC), on the market
portfolio and the size factor (SMB), on the market portfolio and the book to market factor
(HML), on the market portfolio and the two Fama & French factors (HML + SMB), on the
market portfolio, the factor ICC and the size factor (ICC + SMB), on the market portfolio, the
factor ICC and the book to market factor (ICC + HML) and, finally on all these four factors
(Market, ICC, SMB and HML). Figures in boldface represent the maximum value of the R2

within the group of regression with two factors (columns ICC, SMB and HML) and with three
factors (columns HML + SMB, ICC + SMB and ICC + HML). The two last rows reports
Gibbons et al. (1989) test statistics and p-values.

HML ICC ICC All
Rm ICC SMB HML + + + four

SMB SMB HML factors

S
m

al
l

Low -2.87 -7.84 -5.28 -4.68 -6.92 -7.99 -7.61 -7.59
(-7.7,2.4) (-11.0,-4.3) (-8.9,-1.3) (-9.6,0.3) (-10.5,-3.0) (-11.2,-4.6) (-10.8,-4.0) (-10.8,-4.1)

2 1.76 -3.32 -1.12 -0.19 -2.86 -2.93 -3.16 -3.19
(-2.3,5.9) (-5.8,-0.8) (-4.0,1.8) (-4.2,3.8) (-5.8,0.1) (-5.4,-0.4) (-5.7,-0.5) (-5.7,-0.6)

3 4.90 0.99 2.84 2.95 1.05 1.09 0.76 0.74
(1.6,8.4) (-0.7,2.8) (0.6,5.3) (-0.4,6.3) (-1.0,3.1) (-0.5,2.9) (-1.0,2.6) (-1.0,2.6)

4 6.56 2.27 4.33 4.07 2.03 2.32 1.74 1.72
(3.3,9.7) (0.9,3.7) (2.2,6.3) (1.2,6.9) (0.4,3.8) (0.9,3.8) (0.4,3.1) (0.3,3.1)

High 10.22 4.92 7.63 6.44 4.07 4.78 3.71 3.69
(6.3,14.4) (3.0,6.9) (4.9,10.4) (3.2,9.8) (2.0,6.1) (2.9,6.7) (1.9,5.4) (2.0,5.3)

Low -1.83 -4.49 -3.69 -1.26 -3.02 -3.80 -3.15 -3.18
(-4.6,1.1) (-6.6,-2.5) (-5.5,-1.8) (-4.0,1.5) (-4.8,-1.2) (-5.6,-2.1) (-5.0,-1.5) (-4.9,-1.6)

2 1.64 -0.98 0.05 0.71 -0.76 -0.64 -0.84 -0.86
(-0.5,3.8) (-2.3,0.3) (-1.3,1.4) (-1.5,2.8) (-2.0,0.6) (-1.8,0.6) (-2.2,0.4) (-2.1,0.4)

2 3 4.02 1.43 2.51 2.57 1.18 1.68 1.15 1.12
(1.8,6.2) (0.1,2.7) (1.2,3.9) (0.5,4.5) (-0.1,2.4) (0.4,3.0) (-0.1,2.4) (-0.1,2.3)

4 4.15 1.60 2.78 2.03 0.78 1.69 0.78 0.75
(1.9,6.2) (0.1,3.0) (1.1,4.4) (0.2,3.8) (-0.3,1.8) (0.2,3.1) (-0.4,2.0) (-0.3,1.8)

High 4.22 1.03 2.64 1.08 -0.36 0.98 -0.38 -0.41
(1.5,7.1) (-0.7,2.8) (0.7,4.9) (-1.1,3.1) (-1.5,0.9) (-0.7,2.8) (-1.8,1.1) (-1.6,0.9)

(continued. . . )
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Table 5 – Continued

HML ICC ICC All
Rm ICC SMB HML + + + four

SMB SMB HML factors

Low -1.30 -3.20 -2.59 -0.75 -1.97 -2.77 -2.13 -2.14
(-3.5,0.7) (-4.9,-1.7) (-4.2,-1.0) (-2.7,1.2) (-3.4,-0.5) (-4.3,-1.4) (-3.6,-0.8) (-3.5,-0.9)

2 2.10 0.80 1.25 1.83 1.03 1.05 1.02 1.00
(0.4,3.7) (-0.6,2.0) (0.1,2.4) (0.1,3.4) (-0.2,2.3) (-0.2,2.3) (-0.3,2.4) (-0.3,2.3)

3 3 2.45 1.03 1.70 1.21 0.54 1.05 0.53 0.51
(0.9,4.1) (-0.2,2.3) (0.3,3.1) (-0.3,2.8) (-0.7,1.8) (-0.2,2.4) (-0.8,1.8) (-0.7,1.8)

4 3.61 1.96 2.79 1.81 1.06 1.93 1.09 1.07
(1.7,5.4) (0.5,3.4) (1.1,4.4) (0.3,3.2) (-0.1,2.2) (0.5,3.4) (-0.2,2.3) (-0.1,2.2)

High 3.50 1.11 2.57 0.18 -0.64 0.74 -0.70 -0.72
(1.0,6.1) (-0.9,3.0) (0.3,5.1) (-1.7,1.9) (-2.1,0.7) (-1.2,2.6) (-2.1,0.6) (-2.1,0.6)

Low -0.23 -0.62 -0.67 0.95 0.51 -0.29 0.44 0.43
(-1.7,1.2) (-2.1,0.7) (-2.0,0.6) (-0.4,2.3) (-0.6,1.6) (-1.6,0.9) (-0.6,1.5) (-0.7,1.5)

2 0.44 -0.29 0.06 -0.05 -0.40 -0.26 -0.43 -0.43
(-0.8,1.8) (-1.5,0.9) (-1.1,1.3) (-1.3,1.2) (-1.6,0.7) (-1.5,0.9) (-1.6,0.7) (-1.6,0.7)

4 3 2.51 1.57 2.09 1.39 1.02 1.49 1.00 1.00
(1.1,3.9) (0.3,2.8) (0.8,3.4) (0.1,2.6) (-0.2,2.2) (0.2,2.7) (-0.2,2.1) (-0.2,2.1)

4 2.67 1.45 2.29 0.53 0.21 1.12 0.17 0.17
(0.9,4.4) (-0.2,3.0) (0.4,4.0) (-0.7,1.9) (-1.1,1.5) (-0.5,2.5) (-1.1,1.4) (-1.1,1.4)

High 2.00 -0.19 1.29 -1.68 -2.29 -0.73 -2.36 -2.37
(-0.7,4.7) (-2.5,2.3) (-1.3,4.0) (-3.6,0.0) (-4.0,-0.6) (-2.9,1.4) (-4.0,-0.8) (-4.0,-0.8)

B
ig

Low -0.81 -0.48 -0.70 0.14 0.24 -0.40 0.17 0.17
(-1.8,0.2) (-1.5,0.5) (-1.7,0.3) (-0.7,1.0) (-0.6,1.1) (-1.4,0.6) (-0.7,1.0) (-0.6,1.0)

2 0.56 0.56 0.68 0.20 0.33 0.40 0.28 0.29
(-0.5,1.5) (-0.5,1.5) (-0.3,1.6) (-0.9,1.2) (-0.7,1.2) (-0.6,1.4) (-0.8,1.2) (-0.7,1.2)

3 0.94 0.74 1.09 -0.27 -0.11 0.40 -0.15 -0.14
(-0.3,2.2) (-0.6,2.0) (-0.2,2.3) (-1.5,0.9) (-1.3,1.0) (-0.8,1.6) (-1.3,1.0) (-1.3,1.0)

4 0.94 0.21 1.03 -1.55 -1.43 -0.41 -1.51 -1.50
(-1.1,2.9) (-1.7,2.1) (-1.0,3.0) (-2.9,-0.2) (-2.8,-0.1) (-2.1,1.2) (-2.9,-0.2) (-2.8,-0.2)

High 1.94 0.90 1.93 -1.12 -1.08 0.20 -1.17 -1.16
(-0.6,4.9) (-1.7,3.7) (-0.6,4.8) (-2.9,0.8) (-2.9,0.8) (-2.2,2.7) (-3.0,0.7) (-3.0,0.7)

Average 2.16 0.05 1.10 0.66 -0.31 0.03 -0.43 -0.44
(0.6,3.7) (-0.6,0.7) (0.1,2.1) (-0.7,1.9) (-1.0,0.3) (-0.6,0.7) (-1.0,0.1) (-1.0,0.1)

GRS 4.37 4.11 4.41 4.02 4.07 4.19 3.92 4.06
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 6
Multi-factor time series regressions for monthly excess returns on 10

equally-weighted industry portfolios (beta): Jan. 1927 - Dec. 2005, 948 months

Parameter estimates of the linear regression of the excess returns of ten equally-weighed industry
portfolios regressed on the excess return on the market portfolio, on the two Fama-French factors
SMB and HML and on the proxy for the additional risk factor due to the internal consistency
constraint given by the difference between the return on the equally-weighted portfolio and the
return on the market portfolio:

ri,t − r0 = αi + βi · [rm(t) − r0] + βICC
i · ricc(t) + βSMB

i · rsmb(t) + βHML
i · rhml(t) + εi(t).

In the four columns labeled β, βSMB, βHML and βICC , the figures decorated by one star (resp.
two stars) show the cases which reject the null hypothesis that the factor under consideration
is not significant in the presence of the others at the 5% (resp. the 1%) level.

Industry α β βSMB βHML βICC R2

Consumer Non Durables -0.0003 0.84∗∗ 0.08∗ 0.10∗∗ 0.77∗∗ 94%
Consumer Durables -0.0024 1.12∗∗ 0.21∗∗ 0.07∗ 0.97∗∗ 92%
Manufacturing -0.0004 1.07∗∗ 0.12∗∗ 0.17∗∗ 0.76∗∗ 97%
Energy 0.0019 0.95∗∗ 0.13 0.34∗∗ 0.55∗∗ 69%
Business Equipment 0.0016 1.22∗∗ -0.29∗∗ -0.65∗∗ 1.52∗∗ 92%
Telecom 0.0030 0.92∗∗ -0.30∗∗ -0.54∗∗ 0.98∗∗ 73%
Shops 0.0000 0.91∗∗ 0.11∗ -0.11∗∗ 0.93∗∗ 90%
Health 0.0037 0.91∗∗ -0.04 -0.54∗∗ 0.92∗∗ 80%
Utilities 0.0006 0.85∗∗ 0.21∗ 0.55∗∗ -0.06 66%
Others -0.0008 0.95∗∗ 0.07 0.39∗∗ 0.93∗∗ 95%
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Table 7
Multi-factor time series regressions for monthly excess returns on 10 equally-weighted industry portfolios (R2): Jan. 1927 -

Dec. 2005, 948 months

R2 of the linear regression of the excess returns of ten equally-weighed industry portfolios regressed on the (excess return) on the market portfolio
(Rm), on the market portfolio and the factor ICC (ICC), on the market portfolio and the size factor (SMB), on the market portfolio and the book
to market factor (HML), on the market portfolio and the two Fama & French factors (HML + SMB), on the market portfolio, the factor ICC
and the size factor (ICC + SMB), on the market portfolio, the factor ICC and the book to market factor (ICC + HML) and, finally on the four
factors (market, ICC, SMB and HML). Figures in boldface represent the maximum value of the R2 within the group of regression with two factors
(columns ICC, SMB and HML) and with three factors (columns HML + SMB, ICC + SMB and ICC + HML).

HML ICC ICC All
Rm ICC SMB HML + + + four

SMB SMB HML factors
Consumer Non
Durables

75.9% 94.1% 88.4% 79.7% 91.8% 94.1% 94.3% 94.3%
(70.9%,80.5%) (92.4%,95.5%) (85.2%,91.2%) (74.9%,83.9%) (89.5%,93.9%) (92.5%,95.5%) (92.7%,95.6%) (92.7%,95.7%)

Consumer Durables
74.4% 92.3% 87.9% 76.9% 90.2% 92.4% 92.3% 92.4%

(69.2%,79.2%) (90.2%,94.2%) (84.8%,91.1%) (72.2%,81.9%) (87.6%,92.6%) (90.3%,94.3%) (90.2%,94.2%) (90.4%,94.3%)

Manufacturing
82.2% 96.7% 92.0% 85.9% 95.4% 96.8% 97.0% 97.1%

(78.3%,86.0%) (95.7%,97.6%) (89.9%,93.9%) (82.5%,88.9%) (93.9%,96.6%) (95.7%,97.6%) (96.1%,97.8%) (96.2%,97.9%)

Energy
58.3% 67.8% 63.7% 63.4% 68.5% 68.1% 69.3% 69.3%

(51.7%,64.5%) (61.9%,73.7%) (57.6%,69.9%) (58.6%,68.5%) (63.0%,74.1%) (62.3%,74.0%) (64.0%,74.7%) (64.0%,74.8%)

Business Equipment
74.5% 87.4% 86.2% 74.8% 86.6% 88.0% 91.6% 91.8%

(68.7%,79.9%) (85.0%,89.8%) (82.5%,89.4%) (69.3%,80.1%) (83.2%,89.6%) (85.9%,90.4%) (90.1%,93.0%) (90.4%,93.2%)

Telecom
62.7% 68.2% 68.1% 63.9% 69.4% 68.6% 72.6% 73.0%

(55.4%,69.2%) (64.0%,72.8%) (61.4%,74.0%) (56.5%,70.5%) (63.4%,75.1%) (64.2%,74.2%) (69.0%,77.0%) (69.5%,77.3%)

Shops
71.8% 90.1% 86.7% 72.8% 87.6% 90.3% 90.4% 90.5%

(66.7%,77.0%) (86.2%,93.1%) (82.8%,90.5%) (67.7%,78.2%) (83.6%,91.2%) (86.6%,93.4%) (87.1%,93.3%) (87.1%,93.4%)

Health
65.1% 74.5% 75.9% 66.4% 77.4% 76.2% 80.5% 80.5%

(58.2%,71.3%) (69.5%,79.0%) (72.0%,79.7%) (60.0%,72.5%) (73.7%,81.0%) (72.8%,79.9%) (77.3%,83.7%) (77.4%,83.8%)

Utilities
58.3% 60.8% 58.9% 65.9% 66.5% 61.7% 66.3% 66.5%

(51.0%,65.3%) (52.8%,68.8%) (51.6%,66.8%) (58.2%,72.8%) (58.3%,74.0%) (53.8%,69.5%) (58.3%,73.6%) (58.5%,74.1%)

Others
71.9% 92.8% 83.6% 81.6% 92.7% 93.4% 95.2% 95.2%

(66.1%,77.2%) (90.5%,94.8%) (79.3%,87.5%) (77.5%,85.3%) (90.1%,94.9%) (91.1%,95.3%) (93.4%,96.6%) (93.5%,96.6%)

Average
69.5% 82.4% 79.1% 73.1% 82.6% 82.9% 84.9% 85.0%

(65.0%,73.9%) (79.9%,85.1%) (76.0%,82.3%) (69.0%,77.1%) (79.9%,85.4%) (80.5%,85.6%) (82.9%,87.2%) (83.0%,87.3%)
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Table 8
α of the multi-factor time series regressions for monthly excess returns on 10

equally-weighted industry portfolios: Jan. 1927 - Dec. 2005, 948 months

α (times one thousand) of the linear regression of the excess returns of ten equally-weighed
industry portfolios regressed on the (excess return) on the market portfolio (Rm), on the market
portfolio and the factor ICC (ICC), on the market portfolio and the size factor (SMB), on the
market portfolio and the book to market factor (HML), on the market portfolio and the two
Fama & French factors (HML + SMB), on the market portfolio, the factor ICC and the size
factor (ICC + SMB), on the market portfolio, the factor ICC and the book to market factor
(ICC + HML) and, finally on the four factors (market, ICC, SMB and HML). Figures in boldface
represent the minimum absolute value of the α within the group of regression with two factors
(columns ICC, SMB and HML) and with three factors (columns HML + SMB, ICC + SMB
and ICC + HML). The two last rows reports Gibbons et al. (1989) test statistics and p-values.

HML ICC ICC All
Rm ICC SMB HML + + + four

SMB SMB HML factors
Cons. Non
Dur.

1.97 -0.11 1.10 0.81 0.00 -0.13 -0.29 -0.28
(-0.1,3.9) (-1.1,0.8) (-0.2,2.3) (-1.1,2.6) (-1.2,1.1) (-1.1,0.8) (-1.2,0.7) (-1.2,0.7)

Cons. Dur.
0.38 -2.39 -0.85 -0.91 -2.05 -2.29 -2.42 -2.40

(-2.3,3.1) (-3.8,-0.9) (-2.7,1.1) (-3.5,1.6) (-3.7,-0.3) (-3.8,-0.8) (-3.9,-0.9) (-3.9,-0.9)

Manufact.
2.10 -0.10 1.19 0.75 -0.10 -0.14 -0.39 -0.37

(0.1,3.9) (-0.9,0.8) (-0.1,2.4) (-1.1,2.4) (-1.1,0.9) (-0.9,0.8) (-1.2,0.5) (-1.1,0.5)

Energy
4.46 2.59 3.75 2.79 2.13 2.41 1.92 1.93

(1.3,7.7) (-0.1,5.4) (1.0,6.7) (-0.2,5.7) (-0.5,5.0) (-0.3,5.3) (-0.8,4.7) (-0.8,4.7)

Bus. Equ.
2.76 0.36 1.60 3.22 2.13 0.66 1.61 1.58

(-0.1,5.4) (-1.5,2.2) (-0.4,3.5) (0.3,6.0) (0.0,4.2) (-1.2,2.4) (0.0,3.2) (0.0,3.1)

Telecom
3.19 1.98 2.58 3.89 3.31 2.19 2.99 2.95

(0.6,5.7) (-0.3,4.3) (0.2,5.0) (1.3,6.5) (0.9,5.6) (-0.0,4.5) (0.6,5.2) (0.5,5.1)

Shops
2.03 -0.29 0.97 1.36 0.37 -0.12 0.02 0.03

(-0.4,4.2) (-1.6,1.1) (-0.7,2.5) (-1.0,3.5) (-1.2,1.9) (-1.5,1.4) (-1.3,1.5) (-1.3,1.5)

Health
4.10 2.50 3.23 4.83 4.00 2.91 3.67 3.67

(1.6,6.6) (0.4,4.6) (1.2,5.3) (2.3,7.5) (1.9,6.1) (0.8,5.0) (1.8,5.7) (1.8,5.7)

Utilities
2.44 1.63 2.23 0.74 0.56 1.35 0.55 0.58

(-0.3,5.0) (-0.9,4.2) (-0.4,4.8) (-1.9,3.0) (-2.0,2.9) (-1.2,3.9) (-2.0,2.9) (-2.0,2.9)

Others
2.71 0.01 1.69 0.47 -0.47 -0.25 -0.81 -0.81

(0.2,5.1) (-1.3,1.2) (-0.2,3.4) (-1.5,2.2) (-1.7,0.8) (-1.4,0.8) (-1.8,0.1) (-1.8,0.1)

Average
2.61 0.62 1.75 1.79 0.99 0.66 0.68 0.69

(0.9,4.2) (0.2,1.0) (0.9,2.6) (0.2,3.4) (0.2,1.8) (0.3,1.1) (0.3,1.1) (0.3,1.1)

GRS 2.53 2.21 2.69 2.72 2.61 2.24 2.70 2.70
p-value 0.01 0.02 0.00 0.00 0.00 0.01 0.00 0.00
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Table 9
Principal components analysis of the covariance matrices of the residuals

For each of the four sets of portfolios investigated up to now, this table provides the fraction of
the total variance explained by the three main factors resulting from the principal component
analysis of the covariance matrices of the residuals obtained by linear regression of the excess
returns of each set of portfolios regressed against the (excess return) on the market portfolio
(Rm), against the market portfolio and the factor ICC (ICC), against the market portfolio and
the size factor (SMB), on the market portfolio and the book to market factor (HML), against
the market portfolio and the two Fama & French factors (HML + SMB), against the market
portfolio, the factor ICC and the size factor (ICC + SMB), against the market portfolio, the
factor ICC and the book to market factor (ICC + HML) and, finally against the four factors
(market, ICC, SMB and HML). In each case, the line Σ corresponds to the percentage of the
total variance let unexplained the linear regressions.

25 value-weighted portfolios sorted by size and book-to-maked
HML ICC ICC All

Rm ICC SMB HML + + + four
SMB SMB HML factors

1 14.4% 3.8% 6.5% 11.2% 3.6% 3.6% 3.4% 3.4%
2 3.5% 3.4% 3.4% 3.3% 1.4% 3.3% 2.3% 1.4%
3 3.1% 2.3% 1.4% 1.1% 0.9% 1.3% 1.1% 0.9%

Σ 27.2% 15.5% 16.8% 21.0% 10.9% 13.7% 12.1% 10.6%

25 equally-weighted portfolios sorted by size and book-to-maked
HML ICC ICC All

Rm ICC SMB HML + + + four
SMB SMB HML factors

1 16.9% 3.9% 7.6% 13.2% 3.3% 3.5% 2.7% 2.6%
2 3.4% 2.7% 2.9% 2.7% 2.1% 2.4% 1.7% 1.6%
3 2.7% 1.7% 1.7% 1.3% 1.2% 1.6% 1.2% 1.2%

Σ 28.9% 13.9% 17.6% 22.2% 11.3% 12.7% 10.6% 9.9%

10 value-weighted industry portfolios
HML ICC ICC All

Rm ICC SMB HML + + + four
SMB SMB HML factors

1 5.3% 5.2% 5.1% 5.0% 4.8% 5.0% 4.7% 4.7%
2 4.4% 4.3% 4.3% 4.3% 4.3% 4.3% 4.3% 4.3%
3 4.2% 4.1% 4.2% 3.4% 3.4% 3.9% 3.4% 3.4%

Σ 24.8% 24.4% 24.5% 23.2% 22.8% 23.9% 22.8% 22.7%

10 equally-weighted industry portfolios
HML ICC ICC All

Rm ICC SMB HML + + + four
SMB SMB HML factors

1 13.9% 5.5% 5.8% 12.8% 4.1% 5.2% 3.9% 3.9%
2 5.5% 3.5% 3.8% 3.9% 3.5% 3.5% 3.0% 2.9%
3 3.5% 2.3% 3.5% 3.0% 2.5% 2.3% 2.3% 2.3%

Σ 30.0% 16.6% 20.1% 26.5% 16.7% 16.2% 14.3% 14.2%
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Figure 1. Concentration of the market portfolio. The upper panel shows the weight of
the largest firms in the market portfolio as a function of the tail index µ of the Pareto distribution
of firm sizes. The lower panel shows the inverse of the Herfindahl index of the market portfolio
– namely the effective number of assets Neff in the market portfolio – as a function of the tail
index µ of the Pareto distribution of firm sizes. In both cases, the continuous line provides the
values in the limit of an infinite economy while the dotted and dash-dotted curves correspond
to the cases of an economy with one thousand and ten thousand firms respectively.
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Figure 2. Contribution of the residual variance to the total variance. The figure shows
the probability p to reach or exceed a given contribution level, in percentage, of the residual
variance to the total variance of the return on the equally weighted portfolio in a market with
7000-8000 traded assets and with a distribution of firm sizes given by Zipf’s law (µ = 1).
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Figure 3. Comparison of ICC and SMB. The upper panel shows the return of the factor
SMB versus the return of the factor ICC. The straight line shows the regression line with equation
y = −0.0008+0.8292 ·x. The lower panel depicts the value of $1 invested in the market portfolio
in Jan. 1927 (grey curve; green online) and the value of a leveraged position of $1 invested in
SMB (dark grey curve; blue online) and ICC (black curve; red online) in Jan. 1927. For the two
arbitrage portfolios SMB and ICC, the initial endowment of $1 can be thought of as a reserve
to ensure against risk losses, from which the returns can be discounted to provide the shown
wealth curves.
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