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Abstract

The ability of the usual factors from empirical arbitrage-free representations of the term
structure—that is, spanned factors—to account for interest rate volatility dynamics has
been much debated. We estimate new arbitrage-free Nelson-Siegel (AFNS) term structure
specifications that allow for stochastic volatility to be linked to one or more of the spanned
AFNS yield curve factors. Our results with three separate daily data sets—U.S. Treasury
yields, U.K. gilt yields, and U.S. dollar swap and LIBOR rates—suggest that much ob-
served stochastic volatility cannot be associated with spanned term structure factors in
terms of time-series correlations at high frequency. However, some of the AFNS models
with stochastic volatility do provide a close fit to our measure of realized yield volatility

in addition to providing a good fit to the yield term structure.
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1 Introduction

Understanding and predicting the variability of interest rates plays a crucial role in derivatives
pricing and portfolio risk management, so creating good empirical models of interest rate
stochastic volatility has been a key research priority. Unfortunately, while the canonical affine
arbitrage-free term structure models have been widely applied to price bonds, the ability of
these popular models to capture the changing volatility of interest rates has been seriously
questioned. Indeed, using U.S. swap rate data, Collin-Dufresne et al. (2009) find that a
standard three-factor affine model, in which one of the factors drives volatility, produces very
poor volatility estimates. They suggest that an unspanned volatility factor (i.e., a factor that
does not influence the model’s conditional mean dynamics under the pricing measure) has
to be added to the affine term structure model in order to capture the stochastic volatility
observed in U.S. dollar swap rates. However, Jacobs and Karoui (2009) argue the conclusions
of Collin-Dufresne et al. (2009) depend in large part on the particular sample period analyzed,
and they strongly recommend further research to examine whether (spanned) factors in an
affine arbitrage-free model can capture the conditional volatility in U.S. Treasury and swaps
data. In this paper, we conduct such research by examining to what extent spanned factors
can generate stochastic interest rate volatility.

In previous work, analysis of multiple factor sources for spanned volatility have been
hampered by problems in estimating the parameters of multifactor affine models.! To avoid
these difficulties, we incorporate spanned stochastic volatility into the class of affine, arbitrage-
free Nelson-Siegel (AFNS) term structure models developed by Christensen, Diebold, and
Rudebusch (CDR, 2007). These models are characterized by imposing the level, slope and
curvature factors used in the original Nelson-Siegel yield curve model and observed in principal
components analysis of interest rates. This class of models captures both the cross section of
yields and their time-series dynamics quite well and can be readily estimated. We introduce
five new specifications of AFNS models that incorporate stochastic volatility. The first two
specifications allow for one factor—either the level or curvature factor—to generate stochastic
volatility, and these are denoted AFNS;-L and AFNS;-C, respectively.?:? The third and fourth
specifications allow for two factors to generate stochastic volatility. These are denoted as

AFNSs-L,C when the level and curvature factors generate stochastic volatility, and AFNSo-

!The latent nature of the factors and the over-parameterization of the models make estimation quite difficult.
See Kim and Orphanides (2005) and Duffee (2008).

2As explained in Section 3, it is not possible to specify a stochastic volatility model based on the slope
factor within the AFNS framework.

30ur nomenclature draws on Dai and Singleton (2000). Our AFNS,, models are members of their A, (3)
class of models, which have three state variables and n square-root processes.



S,C when the slope and curvature factors generate stochastic volatility.* Finally, the fifth
specification, denoted AFNS3, allows all three factors to generate stochastic volatility. A
key advantage of our approach to modeling stochastic volatility is that the factors remain
well-defined as level, slope, and curvature and do not change for any admissible parameter
set. This structure makes the results comparable across model classes and allows us to detail
which factors are able to generate stochastic yield volatility most similar to that observed in
the data. This feature distinguishes our approach from the existing literature on affine models
where the optimal parameters for any unconstrained affine model only implicitly reveal which
factor(s) generate(s) stochastic volatility.”

In the existing literature, a few papers have tried to incorporate stochastic volatility into
the dynamic Nelson-Siegel models introduced by Diebold and Li (2006). Hautsch and Ou
(2009) incorporate stochastic volatility into the dynamic Nelson-Siegel model by including
three additional state variables that are the drivers of the stochastic volatility in the level,
slope, and curvature, respectively. They find that the stochastic volatility factors of the slope
and curvature factor, in particular, contain important information that help forecast excess
holding period returns on Treasury bonds. Koopman et al. (2008) incorporate one common
factor driving volatility in the fitted errors across all maturities in their sample. They also try
to allow for a common volatility factor that directly causes stochastic volatility in the three
state variables, but they find limited gains from that specification. Unlike the approach we
detail in this paper, neither of these papers address the problem of eliminating the existence
of arbitrage opportunities inherent in the standard dynamic Nelson-Siegel model.

In the empirical part of the paper, we examine the performance of these new model classes
on three datasets. We first examine daily U.S. Treasury yields from the Giirkaynak et al.
(2007) database over the period from January 2, 1985 to March 1, 2010 for eight maturities.
Focusing on the most parsimonious specification in which the three factors are independent,
we find that the introduction of stochastic volatility does not weaken the models’ in-sample
fit of the term structure relative to the AFNSy model with constant volatility. With respect
to the models’ fitted stochastic volatility measured in terms of standard deviations, we find
that different magnitudes of variation and correlations with our measure of realized standard
deviations based on the daily data are induced. The correlation between the fitted and realized

bond yield standard deviations is quite low and often negative over the full sample. However,

4The third possible specification in which the level and slope factors generate stochastic volatility is not
compatible with the AFNS framework as detailed in Section 3.

5We only use bond yields in the model estimation and leave the issue of “unspanned stochastic volatility”,
a condition where bond prices are unaffected by changes in interest rate volatility, as per Collin-Dufresne and
Goldstein (2002) and Collin-Dufresne et al. (2009), for future research.



Jacobs and Karoui (2009) find that, for U.S. Treasury yields, affine term structure models are
much better able to generate stochastic volatility measures that correspond to the observed
data in the period prior to 1992 for as of yet unclear reasons. Our correlations confirm this
result as they increased markedly to roughly 30% for several models in the pre-1992 part
of our sample. If, instead of focusing on time-series correlations at high frequency, we use
the root-mean-squared errors (RMSE) between the fitted and realized standard deviations
as model validation, the results are more favorable to the affine models and the spanned
factors. In particular the AFNS3 model, which exhibits the most variation in the fitted
volatility measure, performs well based on this measure with RMSEs below 15 basis points
at all maturities in addition to providing a good fit to the cross section of yields.

In the second empirical exercise, we examine daily U.K. gilt yields downloaded from the
website of the Bank of England covering the same period and the same eight maturities as
the U.S. Treasury data. In general, the results accord with the findings from the U.S. data.
First, the introduction of stochastic volatility has little effect on the in-sample yield fit as
compared to the Gaussian AFNSy model. Second, the time-series correlations between the
fitted and realized measures of yield volatility are weak and sample dependent with the 1992-
2002 period exhibiting the largest, positive correlations, but still not exceeding 42%. Third,
and more importantly, the AFNS3 model provides the closest fit to the measure of realized
yield volatility with RMSEs of around 19 basis points for the shortest maturities down to 11
basis points for the longest maturities.

For robustness, our third and last empirical exercise looks at the daily U.S. dollar swap
and LIBOR data examined by Collin-Dufresne et al. (2009). As with the U.S. Treasury and
U.K. gilt data, we do not find important differences between the in-sample performance of the
stochastic volatility models and the AFNSy model. However, with respect to the models’ fitted
stochastic volatility series, we find again that the AFNS3 model induces a reasonable degree
of variation and provides a close fit to the realized volatility measure with RMSEs ranging
from 16 basis points for the six-month LIBOR down to 10 basis points for the ten-year swap
rate. This advantage does not translate as readily into superior performance with respect to
correlation with the realized standard deviations based on daily data as other models generate
higher correlations than the AFNS3 model. The correlations between the fitted and realized
standard deviations for the full sample are high for the AFNS;-L and AFNS,-L,C models, with
values above 60% for the six-month LIBOR rate and roughly 20% for the ten-year swap rate.
The AFNS3 model generates quite low and even negative correlations over the full period,

but the correlations increase to nearly 50% for the short-term rates in the pre-1992 period



highlighted by Jacobs and Karoui (2009). Yet, the other two models based on the stochastic
level factor perform quite well with high correlations at the longer maturities. These models
also have relatively high correlations in the post-1991 sample, whereas the AFNS3 model has
negative correlations for seven of the eight maturities considered.

To summarize, our results suggest that, while incapable of matching the high-frequency
time variation of realized yield volatilities, three-factor affine models can be relied upon to
provide a close fit to both the cross section of yields and their realized volatility for U.S. and
U.K. government bond yields as well as U.S. dollar swap and LIBOR rates. In this sense,
spanned yield curve factors can be said to be able to capture a large part of the realized
yield volatility. However, the important question as to whether the non-explained part of
yield volatility can be profitably exploited and hence require the introduction of unspanned
stochastic volatility as advocated by Collin-Dufresne et al. (2009), is beyond the scope of this
paper and we leave it for future research.

The rest of the paper is structured as follows. Section 2 presents a short summary of the
AFNS model of the term structure. Section 3 presents our five classes of modified AFNS
models with volatility dynamics. Section 4 presents empirical results for the daily U.S. Trea-
sury yields data, Section 5 reports results for the daily U.K. gilt yields, and Section 6 presents
the results for the weekly U.S. swaps and LIBOR data. Section 7 concludes. An appendix

contains additional technical details.

2 The AFNS Model with Constant Volatility

In this section, we briefly review the AFNS model with constant volatility (that is, the
AFNSy specification).® We start from a standard continuous-time affine arbitrage-free struc-
ture (Duffie and Kan, 1996) that underlies all the models in this paper. To represent an
affine diffusion process, define a filtered probability space (Q, F, (F;), @), where the filtration
(Fi) = {F: : t > 0} satisfies the usual conditions; see Williams (1997). The state variable
X is assumed to be a Markov process defined on a set M C R”™ that solves the following

stochastic differential equation (SDE):

dX; = KQ)[69(t) — Xy]dt + S (t) D(Xy, t)dW 2, (1)

5This model has been shown to exhibit both good in-sample fit and out-of-sample forecast accuracy for
various yield curves. The empirical analysis conducted in Christensen et al. (2007) is based on unsmoothed
Fama-Bliss data for nominal Treasury yields. Christensen et al. (2010) examine yields for nominal and real
Treasuries as per Giirkaynak et al. (2007, 2010). Christensen et al. (2009) examine short-term LIBOR and
highly-rated financial firms’ corporate bond rates, while Christensen and Lopez (2008) examines corporate
bond rates from a broad set of industrial sectors and credit ratings.



where W is a standard Brownian motion in R"™, the information of which is contained in
the filtration (F;).” The drift terms 69 : [0,7] — R" and K9 : [0,T] — R™™ are bounded,
continuous functions.® Similarly, the volatility matrix X : [0, 7] — R™*" is assumed to be a
bounded, continuous function, while D : M x [0,T] — R™*" is assumed to have the following

diagonal structure:

VAL + ST OX ... 0
0 co )+ ()X
where
7 () 0i(t) ... o)
v(t) = : , O(t) = : : ;
Y"(t) o) ... 6,(0)

v :[0,T] — R™ and § : [0,T] — R™ ™ are bounded, continuous functions, and §°(t) denotes
the ith row of the d(¢)-matrix. Finally, the instantaneous risk-free rate is assumed to be an

affine function of the state variables

e = po(t) + pr(t) X,

where pg : [0,7] — R and p; : [0,7] — R"™ are bounded, continuous functions.
Duffie and Kan (1996) prove that zero-coupon bond prices in this framework are exponential-

affine functions of the state variables
T
P(t,T) = EtQ [exp ( — / rudu)| = exp (B(t,T)' X; + A(t,T)),
t

where B(t,T) and A(t,T) are the solutions to the following system of ordinary differential
equations (ODEs)

n

dBEZ D _ p+ (KOYB(T) - % (¥'B(t,T)B(t,T)%);3("), B(T,T)=0, (2)
j=1
dA(cZ D) o= B, TY K9 - % Y (E'BET)B(tT)L); 0, AT T)=0, (3)

i=1

"Note that the affine property applies to bond prices; therefore, affine models only impose structure on the
factor dynamics under the pricing measure.

8Stationarity of the state variables is ensured if all the eigenvalues of K@ (t) are positive. If the eigenvalues
are complex, the real component should be positive; see Ahn et al. (2002). However, stationarity is not a
necessary requirement for the process to be well defined.



and the possible time-dependence of the parameters is suppressed in the notation. These

pricing functions imply that the zero-coupon yields are given by affine functions of X;

1 B(t,T)
log P(t,T) = —
7 s P.T)

AT
Xt _ (t7 )

In the AFNS model with constant volatility, the instantaneous risk-free rate is defined by
ry = th + Xt2

In addition, the three state variables in the model X; = (X}, X2, X}}) are described by the

following system of SDEs under the risk-neutral @-measure:

e 00 0 0% bl aw e
dx =0 x - 0¢ || x2 [|dt+2| aw?@ |, x>0
dx} 00 X o X} awe

In matrix notation, this system is denoted as
dX, = K909 — X,)dt + 22w 2.

CDR (2007) show that this specification implies that zero-coupon bond yields are given by

1— e M0 1— e M0 A(t,T)
) =X 4+ | o | X2 [ — T | X3 - D
y(t. 1) t+< NT — 1) ) t+< NT—t) © A

Importantly, the factor loadings in this yield function match the level, slope, and curvature
loadings introduced in Nelson and Siegel (1987) with a final yield-adjustment term, which
represents convexity effects due to Jensen’s inequality.

The model is completed with a risk premium specification that connects the factor dynam-
ics to the dynamics under the real-world (or historical) P-measure. It is important to note
that there are no restrictions on the dynamic drift components under the empirical P-measure
beyond the requirement of constant volatility. To facilitate empirical implementation, we use
the extended affine risk premium developed by Cheridito et al. (2007). In the Gaussian
framework, this specification implies that the risk premiums I'; depend on the state variables;
that is,

Iy =+ ++'X,

where 7° € R3 and ' € R3*3 contain unrestricted parameters. The relationship between



real-world yield curve dynamics under the P-measure and risk-neutral dynamics under the
(Q-measure is given by

AW = dWl + Tydt.

Thus, the P-dynamics of the state variables are
dX; = KP(6F — X,)dt + $dw,

where both K and 0¥ are allowed to vary freely relative to their counterparts under the
@Q-measure. Following CDR, we identify this class of models by fixing the #% means under
the Q-measure at zero without loss of generality. Furthermore, CDR show that ¥ cannot be
more than a triangular matrix for the model to be identified. Thus, the maximally flexible

specification of the original AFNS model has Q)-dynamics given by

dx} 0 0 0 X} on 0 0 W€
ax2 =0 -x 2 X2 |dt+ | oo o2 O awre |,
dXE’ 0 0 =X XE’ 031 032 033 th&Q

while its P-dynamics are given by

1 P P P P 1 1P
dX; K11 Kl Ki3 91 X, o1 O 0 dW;

2 — P P P P 2 2,p
dX{ = K31 Kyg Kag 02 — X; dt+| o091 022 O dW;

3 P P P P 3 W?”P
dXt R31 K39 K33 93 Xt 031 032 033 d t

The main limitation of the AFNS class of models above is the constant volatility matrix
Y. The purpose of this paper is to modify the AFNS model in a straightforward fashion in
order to incorporate stochastic volatility. The key assumption to preserving the desirable
Nelson-Siegel factor loading structure in the zero-coupon bond yield function is to maintain
the K9 mean-reversion matrix under the Q-measure. Furthermore, all model classes will be

characterized by an instantaneous risk-free rate defined as the sum of the first two factors
re =X} + X7

3 Five AFNS Specifications with Stochastic Volatility

In this section, we present five AFNS specifications with stochastic volatility that vary de-

pending on whether they contain one, two, or three stochastic volatility factors and on the



identity of those factors. For each model class, we derive the maximally flexible specifica-
tion that can be obtained using the extended affine risk premium specification introduced in

Cheridito et al. (2007).

3.1 AFNS Models with One Stochastic Volatility Factor

There are two AFNS stochastic volatility specifications that allow just one factor to exhibit
stochastic volatility. The first, denoted as the AFNS;-L model, allows only the level factor
to exhibit stochastic volatility. The state variables in this specification follow this system of

stochastic differential equations under the risk-neutral QQ-measure:

dx} e 0 0 6% X}
dx2 [ = | 0o x =i 08 | —| x2 || at
dx? 00 A\ 0% X3
oin 0 0 X7 0 0 w9
+ | 091 092 O 0 1+ OBnX} 0 awze |,

031 032 033 0 0 V14 B X} AW

where the X/ level factor is a square-root process with stochastic volatility that affects the
instantaneous volatility of the two other factors through the §2; and (31 volatility sensitivity
parameters.9

For the factor loadings in the zero-coupon bond prices, B!(t,T) is the solution to

dB(t,T)

1 1 1
= 14 eB L T) - Soh BUL T - Soh B T)? - soh B T)?

—UglallBl(t, T)B2(t, T)— aglallBl(t, T)B?’(t7 T)— 02103132(15, T)B?’(t7 T)
1 1
—5621 [05232@, T)? + 02,B3(t,T)* + 2099032, B*(t, T)B3(t,T) | — 553103333(15, T)?,

while B%(t,T) and B3(t,T) are given by

ATt
P (S

1— e—)\(T—t)
B3, T) = (T—t)e X8 [~ |
1) = (Tt _

The last two factor loadings match exactly the factor loadings of the slope and curvature

“Note that we cannot set n% to zero as that would eliminate the drift of X} and cause this process to
remain at zero once it hits zero, which it will P-a.s. Instead, we fix this parameter at a small, but positive,
e =107°, to get close to the unit-root property imposed in the AFNSy model.



factors in the Nelson-Siegel zero-coupon yield function, while the ODE for B!(t,T) contains
quadratic elements related to the stochastic volatility of X!. The A(t,T)-function in the

yield-adjustment term in this class of models must solve the following ODE:

dA(t,T)
dt

1 1
= —B(t,T)K?° — 505232(@ T)* - 5(052 +023)B3(t,T)? — 092032 B%(t, T)B*(, T).
To estimate this model, we specify the dynamics under the real-world P-measure as the
measure change dW® = dW/}/ + T;dt. Note that we are limited to the essentially affine risk
premium structure introduced by Duffee (2002) for this particular model class.!? Given this

limitation, the maximally flexible affine P-dynamics are, in general, given by

dx} K200\ [[6F X}
dX? = kb kb, kD or | — | X? dt
dXx} H}:I;l H§2 /13133 i 95 X3}
o 0 0 X 0 0 dwt
+ | om om0 0 1+ pBauX;! 0 dw"

031 032 033 0 0 1+ 531Xt1 th?,,P

For the first factor with stochastic volatility, there is a restriction on the mean parameter 9{3

that we implement as'!
e 0¥
1

Tt
K11

07 =

Furthermore, for this process to be well-defined under both probability measures, we require
that

kD67 >0 and 5'9?>0.

These two inequalities are satisfied provided Hﬁ > 0 and 9? > 0. These restrictions ensure
that the X/-process will move into positive territory whenever it hits the lower zero-boundary.
Finally, we identify this class of models by fixing 9? = 0?? = 0, eliminating the -means of
the unconstrained processes as in CDR (2007). These restrictions allow the corresponding

means under the P-measure to be determined in the estimation. There are 19 parameters

10We cannot use the extended affine risk premium specification for this particular specification because of
the restriction imposed on /{% to obtain a level factor structure as similar as possible to the one in the Nelson-
Siegel model. If we were to do so, the Feller condition for X} could not reasonably be expected to be satisfied
under the Q-measure as X/ approaches a unit-root process. Please see the technical appendix for further
details on this point.

1A similar approach is used in the other model classes with stochastic volatility generated by the level
factor.



in the maximally flexible specification of this class of models. In contrast, if we assume the
factors are independent for the sake of parsimony, the number of parameters is reduced to 12.
The natural next AFNS one-factor stochastic volatility specification would allow the slope

factor to exhibit stochastic volatility. However, examination of the matrix

00 0
K= 0 x - |,
00 A

shows that X7 cannot be a square-root process with X} as an unconstrained process, if the
important off-diagonal element /1523 is to remain equal to —A\, which generates the unique
factor loading of the curvature factor in the AFNS model. Thus, there is no admissible
AFNS;-S model. Instead, we turn to the AFNS{-C model by allowing the curvature factor
to be a stochastic volatility factor. This approach preserves the properties of the level and
slope factors, allows the curvature factor to continue serving as the stochastic mean of the
slope factor under the pricing measure, and designates the curvature factor to be the source
of stochastic volatility in the model.

For the AFNS;-C model, we assume that the state variables X; are described under the

risk-neutral ()-measure as:

dx} 00 0 0% X}
dx2 [ = | 0 x =i o8 | — | x2 |]|dt
dx3 00 X 0% X}

011 012 013 V1+ B3 X} 0 0 thl’Q
+ 0 o099 o093 0 A1+ ﬁ23X§> 0 thZQ

0 0 o3 0 0 X3 AW

The curvature factor here is a square-root process that induces stochastic volatility in the
other two factors through the G135 and (a3 volatility sensitivity parameters.
In this model class, the first two factor loadings are identical to those in the Ay(3) model,

while B3(t,T) is the solution to:

dB3(t,T)

1 1 1
p7 = —AB*(t,T)+ \B*(t,T) — 5<;%3131(1t,T)2 — 505332(151)2 - §a§3B3(t,T)2

—013023B(t, T)B*(t,T) — 013033 B' (t, T) B (¢, T) — 023033 B* (¢, T) B*(¢,T)
1 1
—56130%131(t,T)2 - 5P 01, B (t,T)? + 03, B*(t, T)* + 201202231(t,T)B2(t,T)].

10



The A(t,T)-function in the yield-adjustment term in this class of models solves the ODE:

dA(t,T)
dt

1 1
= —B(, 7)K% - 5(0%1 +0%)BY(t,T)? — 505232@, T)% — 012022 B (t,T)B%(t,T).

We estimate this model using the extended affine risk premium specification such that
the measure change is dW® = dW/} 4 I'idt. The maximally flexible affine P-dynamics are,

in general, given by

dth K}{)l /1{32 /1{33 i 9{) th
dX? = wh okl KDy or | - X? dt
dx; 0 0 &) [\6F X}

o11 012 013 V14 Bis X} 0 0 aw} "
+ 0 o099 093 0 1+ ﬁgng’ 0 th2,P

0 0 o3 0 0 X3 dw "

To keep the model arbitrage-free, X cannot be allowed to hit the zero-boundary. This
outcome is prevented by requiring that the parameters for the X-process satisfy the Feller
condition under both probability measures; i.e.,
Pop 1 o Q1 o
53393 > 50'33 and )\03 > 50-33.
Finally, we identify this class of models by fixing 9? = 9? = 0, which allows the means
under the P-measure of the unconstrained factors to vary freely and be determined in the

estimation. In total, there are 20 free parameters in the maximally flexible specification of

this model class and 13 for the independent factor specification.

3.2 AFNS Models with Two Stochastic Volatility Factors

Our second class of stochastic volatility models allows for two stochastic volatility factors.
Although there are three potential specifications, the specification with just the level and
slope factors exhibiting stochastic volatility is not admissible because it does not permit the
important off-diagonal element m% to equal —A, which is the unique characteristic of the
curvature factor in the original AFNS model. Instead, stochastic volatility is associated with

either level and curvature or slope and curvature. The first of these specifications, denoted

11



AFNS,-L,C, has factor dynamics under the risk-neutral Q-measure given by'?

dx} e 0 0 0% X}
ax | = | 0o x —x 0¢ | — | x2 |[]|dt
dx} 00 A 0% X}
o1 0 0 X} 0 0 aw e
+ 021 022 023 0 V1+PuX!+063X 0 AW
0 0 o3 0 0 X} w9

The X} and X} factors exhibit stochastic volatility and induce volatility in the X? factor via
the (o1 and (o3 volatility sensitivity parameters.
The factor loadings in the zero-coupon bond price function are the unique solutions to

the following set of ODEs:

dB(t,T 1 1
BT _ +eBY(t,T) — o}, B} (t,T)?* — —03,B*(t,T)?

dt 2 2

1
—onoa B (t, T)B*(t,T) — 552105232(?5,T)27

2
% 1+ AB2(t,T),

3
% _ B4, T) + ABYt,T) — 305333(151)2 - 303332(151)2

1
—0'230'3332(75, T)Bs(t, T) — 5ﬁ230’§232(t, T)2,

where we note that the solution to B2(t,T) is simply

1— e—A(T—t)

B*(t,T) = —
( ? ) )\
Hence, X? preserves its role as a slope factor. The A(t, T)-function is the solution to:

dA(t,T)

1
p = —B(t,T) K% — §a§2B2(t,T)2.

Using the extended affine risk premium structure, the maximally flexible affine P-dynamics

2Note that, as before, we fix ¢ = 107% to approximate the unit-root property imposed in the standard
AFNSy model.

12



are given by

dx} K00 oF X}
dX}? = kY kb kL or | - X? dt
X} K0 kL oF X3
o1 0 0 X} 0 0 awt
+ 021 022 023 0 V1+PuX!+063X 0 awz"
0 0 o33 0 0 X3 awt

For the level factor, the condition ¢ - 9? = nﬁ@f must be satisfied. Furthermore, to keep
this model class arbitrage-free, X} cannot hit the zero-boundary. This outcome is prevented
by requiring that the parameters for the X process satisfy the Feller condition under both

probability measures; i.e.,'3

KEOF 4 kb 0P > éagg and A62 > %Ugg.
Finally, to have a well-defined X} process, the effect of the level factor on the drift of the cur-
vature factor must be positive, which we impose with the /€3Pl < 0 constraint. This condition
implies that the two square-root processes cannot be negatively correlated. To identify this
model class, we fix the 9;2 mean at zero. There are 18 parameters in the maximally flexible
specification of this class of models and 13 in the independent factors specification.
The second AFNS specification with two volatility factors allows the slope and curvature
factors to be square-root processes while the level factor remains unconstrained. The factor

dynamics of the AFNS,-S,C model under the Q-measure are

dx} 00 0 0% X}
ax | = | 0o x —x 0¢ | — | x2 |[]|dt
dx} 00 A 0% X}
o o1z o3 VI1+BXZ 4+ fiX; 0 0 AW
+ 0 o» O 0 X7 0 dw
0 0 o33 0 0 X3 w29

Note that the X? and X} square-root processes are positively correlated through the off-

diagonal element m% = —A < 0. Beyond generating their own stochastic volatility, these two

BFor X!, we just need to ensure that the process does not turn negative, which is assured provided that
E~91Q >0 and k167 > 0.
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factors induce instantaneous volatility for X} via the 812 and B3 volatility sensitivities.
For the first factor loading in the zero-coupon bond price function, this structure implies
that
BY(t,T) = —(T —t),

which preserves the role of the level factor. The next two factor loadings are the unique

solutions to:

B2(t,T 1 1
% = 1+ AB*(t,T) - 505232(151)2 — 5a§2Bl(t,T)2
1
—01209B' (t, T)B*(t,T) — 5512U%1Bl(t,T)27
B3(t,T 1 1
d g ) —AB%(t,T) + \B(t,T) — 503333(751)2 - 5a%gBl(t,T)2

1
—o13033BY (¢, T)B3(t,T) — 56130%131(15, T)%.

The A(t,T)-function in the yield-adjustment term is the solution to

dA(t,T)

1
p = —B(t,T)K%9 — 5<;%1131(1t,T)2.

Using the extended affine risk premium specification, the maximally flexible affine P-dynamics

can be written as

dX} kD kD KD [ oF X}
dX? = 0 kb Kl or | - X? dt
X} 0 ki ki i oF X3
o11 012 013 V1+BXE 4+ fisX} 0 0 aw "
+ 0 oy O 0 X2 0 awpt
0 0 o33 0 0 X3 aw"

To keep this class of models arbitrage-free, the X? and X} factors must avoid hitting the
zero-boundary. This outcome is ensured by imposing the Feller condition on their parameters

as follows:
P pP P pP 1, Q Q L, P pP P P L 4 Q 14

Furthermore, for X? and X} to be well-defined, the sign of the effect they have on each other

must be positive, which we impose using the constraints 553 < 0 and /152 < 0. This implies
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that the two square-root processes cannot be negatively correlated. Finally, we identify this
class of models by fixing 9? = 0, which allows 6 to vary freely. In total, there are 20
free parameters in the maximally flexible specification and 13 for the independent factors

specification.

3.3 AFNS Models with Three Stochastic Volatility Factors

In the fifth and last AFNS3 specification, all three factors exhibit stochastic volatility. The

dynamics of X; are described under the Q-measure as'*

dx} e 0 0 0% X}
dx2 | = | 0 x —x 08 | — | x2 || at
dx3 00 X 0% X}
oin 0 0 X 0 0 W€
+ 0 o3 O 0 X2 0 AW2C
0 0 o3 0 0 X3 dw 9

In this model class, the factor loadings in the zero-coupon bond price function are given by

the unique solution to

Bl(t, T 1
% = 1+aBl(t,T)—§a§IBl(t,T)2,
2
BT~ 1 ABLT) — B0 1)
dB3(t, T 1
# = —)\B2(t,T)+)\B3(t,T)—§a§3B3(t,T)2,

while the A(t, T')-function in the yield-adjustment term is given by the solution to:

dA(t,T)

= Bt T)K909.
dt ( b )

MNote that, we again fix e = 107% to approximate the unit-root property imposed in the AFNS, model.
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Applying the extended affine risk premium specification, the maximally flexible affine P-

dynamics are given by

dX} kb0 0 oF X}
dX? = kY kb KD or | — | X? dt
dXt?’ /{?]:1 /{?]:2 /{53 i 9?{3 Xf’
on 0 0 X 0 0 aw"
+ 0 oy 0 0 X2 0 awprr
0 0 o33 0 0 X3 aw

For X}, the constraint 5-9? = K}{)l 9{) must be satisfied. The limited risk premium specification
due to the near unit-root property of X} also implies that X? and X} cannot impact the drift
of X} once KJ% and KJ% have been fixed at zero. We need these restrictions in order to match
the Nelson-Siegel factor loading structure as closely as possible.

To keep this model class arbitrage-free, X? and X must not hit the zero-boundary.
We ensure this by imposing the Feller condition on their parameters under both probability

measures, i.e.,'®

ﬁiﬁf—i—m%ﬁf—i—n%@f > %JSQ; )\929 —)\9_(? > 50—52; ff;ﬁf-l-ﬁfg@f—i—n;fg@;f > %a'gg; and )\05 > %033.
Furthermore, to have well-defined processes for X? and X}, the sign of the effect that the fac-
tors have on each of these two factors must be positive, which we impose with the restrictions
551 <0, 553 <0, /i?ljl < 0, and /i:};z < 0. Note that these restrictions imply that the three
square-root processes cannot be negatively correlated. In total, there are 16 parameters in
the maximally flexible specification of this class of models and 10 in the independent factors

specification.'6

BFor X}, we just need to ensure that the process does not become negative, which is assured if ¢ - 9? >0
and k107 > 0.

161t turns out that 939 is difficult to estimate for our data sets. It is consistently estimated at the boundary
of the Feller condition for X? under the Q-measure, which must be satisfied in order to use the extended affine
risk premium structure. Our solution is to fix 9_(? so that the Feller condition is satisfied by ¢ = 1075. We
impose restrictions such that

0? = 7)\9? — %052 —e.
A

We caution that this is a property specific to our data sets and is not necessarily of general validity.
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3.4 Estimation Methodology

The stochastic volatility models described above are estimated using the Kalman filter algo-
rithm. In term structure models, zero-coupon yields are affine functions of the state variables,
such that
1 1
Y (1) = —;B(T)’Xt - ;A(T) +&(7),
where e4(7) is i.i.d. Gaussian white noise measurement errors. The conditional mean for

multi-dimensional affine diffusion processes is given by
BP[Xr|Xi] = (I - exp(— K" (T — )07 + exp(~ K"(T — 1)) X,, (4)

where exp(—KP (T —t)) is a matrix exponential. In general, the conditional covariance matrix

for affine diffusion processes is given by

T
VI [Xr|X] = /t exp(—K7(T = 5))SD(E"[X,| X)) D(E” [X| X¢))'S exp(—(K7)' (T — 5))ds.  (5)

Stationarity of the system under the P-measure is ensured if the real components of all
the eigenvalues of K are positive, and this condition is imposed in all estimations. For this

reason, we can start the Kalman filter at the unconditional mean and covariance matrix!'”
S S & P Py
Xo=0" and 5= / e KT D)D) S e K ) 3 s,
0

However, the introduction of stochastic volatility implies that the factors are no longer
simply Gaussian. We chose to approximate the true probability distribution of the state
variables using the first and second moments and use the Kalman filter algorithm as if the
state variables were Gaussian.!® Under these assumptions, the Kalman filter only provides

quasi-maximum likelihood estimation. The discretized state equation is given by
X = (I — exp(=K"At)0" + exp(—K A X1 + 5, 1 ~ N(0, Vi),

where At is the time between observations and V;_; is the conditional covariance matrix

given in Equation (5). Furthermore, the discretization can cause the square-root processes to

"In the estimation, we calculate the conditional and unconditional covariance matrices using the analytical
solutions provided in Fisher and Gilles (1996).

18 A few notable examples of papers that follow this approach include Duffee (1999), Driessen (2005), and
Feldhiitter and Lando (2008). Jacobs and Karoui (2009) show that use of the extended Kalman filter, which
allows all yields to be measured with error, does not change their qualitative results. In contrast, Collin-
Dufresne et al. (2009) use Bayesian estimation methods for their stochastic volatility models.
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become negative despite the fact that the parameter sets are forced to satisfy Feller conditions
and other non-negativity restrictions. Whenever this happens, we follow the literature and
simply truncate those processes at zero; see Duffee (1999) for example.

In the Kalman filter estimations, the error structure is given by

Ul "N 0 , Vici 0 ’

€t 0 0 H

where H is assumed to be a diagonal matrix of the measurement error standard deviations,
o:(T;), that are specific to each yield maturity in the data set. The linear least-squares
optimality of the Kalman filter requires that the white noise transition and measurement
errors be orthogonal to the initial state; i.e., E[fon;] = 0 and E[foe;] = 0. Finally, the

standard deviations of the estimated parameters are calculated as

T ~ ~ /17—

~ 1|1 0logl(e) dlogl(h)
2O =F T T e |

t=1

where 1Z denotes the optimal parameter set.

4 Empirical Results with Daily U.S. Treasury Yields

We first estimate our AFNS models with stochastic volatility using U.S. Treasury zero-coupon

bond yields from the Giirkaynak et al. (2007) database.

4.1 Data Description

The specific U.S. Treasury bond yields we use are zero-coupon yields constructed by the
method described in Giirkaynak at al. (2007)'” and briefly detailed here. For each business

day a zero-coupon yield curve of the Svensson (1994)-type

L—e M7
AT

1—e M7

/\17’

1— e—)\g'r 3
—e AT 53

y(r) = Bo + B+ [ - 6””}52 + {

)\27’

is fitted to price a large pool of underlying off-the-run U.S. Treasury bonds. Thus, for each
business day we have the fitted values of the four factors (Gy(t), B1(t), B2(t), G3(t)) and the

two parameters (A1(t), A\2(t)). From this data set zero-coupon yields for any relevant maturity

19The Board of Governors in Washington DC frequently updates the factors and parameters of this method,
see the related website http://www.federalreserve.gov/pubs/feds/2006/index.html
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Figure 1: Time Series of U.S. Treasury Bond Yields.

Ilustration of the daily U.S. Treasury zero-coupon bond yields covering the period from January 2,
1985 to March 1, 2010. The yields shown have maturities in three months, two years, five years and
ten years, respectively.

can be calculated. As demonstrated by Giirkaynak et al. (2007), this model fits the under-
lying pool of bonds extremely well. By implication, the zero-coupon yields derived from this
approach constitute a very good approximation to the true underlying Treasury zero-coupon
yield curve. From this data set we construct zero-coupon bond yields with the following
maturities: 3-month, 6-month, 1-year, 2-year, 3-year, 5-year, 7-year, and 10-year. We use
daily data and limit our sample to the period from January 2, 1985 to March 1, 2010. The
summary statistics are provided in Table 1, while Figure 1 illustrates the constructed time
series of the three-month, two-year, five-year, and ten-year U.S. Treasury zero-coupon yields.

Researchers have typically found that three factors are sufficient to model the time-
variation in the cross section of U.S. Treasury bond yields (e.g., Litterman and Scheinkman,
1991). Indeed, for our daily U.S. Treasury bond yield data, 99.96% of the total variation is
accounted for by three factors. Table 2 reports the eigenvectors that correspond to the first
three principal components of our data. The first principal component accounts for 95.2%
of the variation in the Treasury bond yields, and its loading across maturities is uniformly
negative. Thus, like a level factor, a shock to this component changes all yields in the same

direction irrespective of maturity. The second principal component accounts for 4.5% of the
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.Maturlty No. Mean Stc}. dev. Skewness | Kurtosis
in months | obs. | in % in %
3 6,269 | 4.59 2.22 -0.22 2.33
6 6,269 | 4.69 2.26 -0.23 2.30
12 6,269 | 4.87 2.28 -0.21 2.30
24 6,269 5.16 2.24 -0.13 2.35
36 6,269 | 5.40 2.17 -0.02 2.41
60 6,269 | 5.77 2.05 0.20 2.46
84 6,269 | 6.06 1.94 0.35 2.49
120 6,269 | 6.38 1.83 0.48 2.55

Table 1: Summary Statistics for the U.S. Treasury Bond Yields.
Summary statistics for the sample of daily U.S. Treasury zero-coupon bond yields covering the period
from January 2, 1985 to March 1, 2010.

Maturity Loading on

in months | First P.C. | Second P.C. | Third P.C.

3 -0.36 -0.45 0.52

6 -0.37 -0.39 0.20

12 -0.38 -0.27 -0.20

24 -0.38 -0.05 -0.47

36 -0.37 0.10 -0.42

60 -0.34 0.31 -0.12

84 -0.32 0.43 0.17

120 -0.29 0.53 0.45

% explained 95.24 4.52 0.18

Table 2: Eigenvectors of the First Three Principal Components in U.S. Treasury
Bond Yields.

The loadings of yields of various maturities on the first three principal components are shown. The
final row shows the proportion of all bond yield variability accounted for by each principal component.
The data consist of daily U.S. Treasury zero-coupon bond yields from January 2, 1985 to March 1,
2010.

variation in these data and has sizable negative loadings for the shorter maturities and sizable
positive loadings for the long maturities. Thus, like a slope factor, a shock to this component
steepens or flattens the yield curve. Finally, the third component, which accounts for only
0.2% of the variation, has a U-shaped factor loading as a function of maturity, which is nat-
urally interpreted as a curvature factor. This motivates our use of the Nelson-Siegel model

with its level, slope, and curvature factor for modeling this sample of U.S. Treasury yields.

4.2 Conditional mean results

We first examine the in-sample estimation results for the five model specifications introduced
in Section 3 in addition to the AFNSy model. We only present results for the diagonal,
independent-factors specification for each AFNS model class. For example, the AFNS;-L
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Figure 2: Factor Loadings in the AFNS; Models.
The factor loadings on the three state variables in the zero-coupon bond yield function in the AFNS;
models are shown. The parameters for each model are taken from Tables 3 and 4.

model has P-dynamics given by

dx} 20 0 \[[er X}
dX? = 0 sk 0 or | -1 x? || at
dx; 0 0 &) [\6F X}
o 0 0 X 0 0 dw-*
+ 0 o O 0 /14 fBuX} 0 awz"

0 0 o33 0 0 V14 B3 X} aw?

We use an independent-factors specification because the AFNS models deliver essentially
identical decompositions of the data into level, slope, and curvature factors independent of
the specification of the P-dynamics. Since it is this factor decomposition that determines the
shape and form of the model-implied stochastic volatility, at least at the short one-month
horizon we focus on in this paper, this restriction comes at a minimal loss of generality.

Furthermore, it makes the results more readily comparable across model classes.?’

20Results summarizing the estimation of the maximally flexible specifications of the models are available
upon request.
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Figure 2 illustrates the factor loadings in the zero-coupon bond yield function in all six
AFNS; models. As mentioned in the technical Section 3, the inclusion of stochastic volatility
into the AFNS model prevents us from obtaining the exact Nelson-Siegel factor loadings unlike
what is the case for the AFNSy model class. Importantly, though, the NS factor loading
structure is approximately preserved in all five new model classes, as desired by construction,
independent of the differences in the models’ ability to generate stochastic volatility.

Tables 3 and 4 present our parameter estimates of the six models. The parameter esti-
mates exhibit similarities across the model specifications, especially for the K matrix. The
estimated KT parameter for the level factor indicates the most persistence, while the curva-
ture factor is the least persistent, in all specifications. As for both the mean parameters in
6 and the o volatility parameters, we see some notable differences across the various models
depending on whether the factor in question is generating stochastic volatility or not. In
general, in any of the AFNS; models with stochastic volatility, if a factor is not generating
stochastic volatility, its associated estimated o value is close to the corresponding estimate
in the AFNS model. For the 8” parameters, the variation in the estimated values is tied to
differences in the scale at which each factor operates. Since the factors are latent, this level
varies and depends on which factors generate stochastic volatility and therefore have to be
bound away from the zero-boundary. Finally, the § volatility sensitivity parameters suggest
that the level factor plays a role in generating stochastic volatility for both the slope and the
curvature factor, whereas there is little evidence that slope and curvature play a role for the
volatility of the level factor or for the volatility of each other in this sample of U.S. Treasury
yields.

If we turn to a performance comparison of the various AFNS; specifications, we can start
by comparing the obtained maximum log likelihood values reported in Table 4. Even though
all AFNS; models are non-nested and therefore not directly comparable, the relatively large
differences in likelihood values still suggest that the AFNS;-L model provides the overall
best fit to the cross-sectional and time-series variation of the data relatively closely followed
by the AFNS;-L,C model. On the other hand, the AFNS3 model obtains a markedly lower
maximum likelihood value than any of the other models. This model is restricted by the fact
that all three factors have to remain non-negative, and one or more of these restrictions are
binding periodically, not least during the last 18 months of the sample with the low interest
rate environment in the wake of the financial crisis of 2008 and 2009. Duffee (2002), in his
analysis of general affine A4;(3) term structure models, also find that the A;(3) model class

performs the best, and the A3(3) model class the poorest. Note, though, that he only uses
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AFNS models with independent factors
Parameters | \pNg, | AFNS,-L | AFNS;-C | AFNS,-LC | AFNS,-SC | AFNS;
w1 0.0269 0.0503 0.0149 0.0600 0.0097 0.0496
(0.0436) | (0.0456) | (0.0499) | (0.0433) (0.0431) | (0.00991)
Kkl 0.0799 0.1830 0.1006 0.1577 0.1349 0.3771
(0.0941) | (0.152) | (0.0935) (0.141) (0.0974) | (0.0556)
ki 0.7552 1.0662 0.8649 0.9036 1.3099 1.2717
(0.199) | (0.250) (0.102) (0.104) (0.121) (0.135)
oF 0.0895 0.0618 0.0746 0.0565 -0.0067 0.0213
(0.0217) - (0.0526) - (0.0649) -
oF -0.0410 -0.0199 -0.0341 -0.0179 0.0533 0.0278
(0.0288) | (0.0200) | (0.0202) | (0.0199) (0.0151) | (0.00380)
oF -0.0158 -0.0028 0.0709 0.0824 0.0680 0.0410
(0.00746) | (0.00622) | (0.00682) | (0.00707) | (0.00493) | (0.00378)
o11 0.0057 0.0608 0.0054 0.0657 0.0053 0.0362
(0.00004) | (0.00012) | (0.00006) | (0.00023) | (0.00015) | (0.00038)
022 0.0092 0.0111 0.0086 0.0107 0.0351 0.0359
(0.00008) | (0.00019) | (0.00014) | (0.00028) | (0.00028) | (0.00028)
033 0.0294 0.0306 0.0961 0.0914 0.1084 0.1239
(0.00015) | (0.00050) | (0.00067) | (0.00066) | (0.00066) | (0.00137)
ﬁll - - - - - -
Bra - - - - 0.0000 -
- - - - (1.30) -
Bus - - 0.0000 - 0.0000 -
- - (0.451) — (0.555) -
Bar - 6.3275 - 3.5858 - -
- (0.729) - (1.09) - -
P22 - - - - - -
Bas - - 0.0000 - - -
- - (0.568) - - -
Bs1 - 0.9532 - 0.0000 - -
- (0.542) - (0.619) - -
P32 - - - - - -
533 - - - - - -

Another way to assess the performance of the different AFNS specifications of stochastic
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on daily observations from January 2, 1985 to March 1, 2010.

Table 3: Parameter Estimates of the P-Dynamics for AFNS; Models with the
Independent-Factors Specification for U.S. Treasury Data.
The table contains the estimated K* matrix, 7 vector, ¥ matrix, and 3 volatility sensitivity param-
eters for the independent-factors specification of the P-dynamics in the AFNS; models. Estimated
standard deviations for the parameter estimates are given in parentheses. The estimations are based

essentially affine risk premium specifications, which are less general than the extended affine

risk premium specifications applied in this paper, in particular for A3(3) models.




Parameters

AFNS models with independent factors

AFNSy | AFNS;-L | AFNS;-C | AFNS,-LC | AFNS,-SC | AFNS;
0% — 3,105 — 3,390 — 1,060
- (0.718) - (11.8) - (2.88)
03 - - - - 0.08 0.0493
- - - - - (0.00022)
0% - - 0.08 0.08 0.0790 0.0478
- - - - (0.00017) -
hY 0.4697 0.6067 0.4757 0.6127 0.6063 0.4381
(0.00121) | (0.00104) | (0.00138) | (0.00119) | (0.00139) | (0.00080)
Max log L | 305,776.3 | 316,191.6 | 300,973.5 | 313,826.0 | 299,689.1 | 280,342.7

Table 4: Parameter Estimates of the @-Dynamics for AFNS; Models with the
Independent-Factors Specification for U.S. Treasury Data.

The table contains the estimated #% vector and A parameters for the independent-factors specification
of the P-dynamics in the AFNS,; models. Estimated standard deviations for the parameter estimates
are given in parentheses. The estimations are based on daily observations from January 2, 1985 to
March 1, 2010. The maximum log-likelihood values are reported, although the models are non-nested.

Maturity RMSE for AFNS models with independent factors
in months | AFNSy | AFNS;-L | AFNS;-C | AFNS,-LC | AFNS,-SC | AFNS3
3 21.42 19.89 20.69 18.87 8.86 10.78
6 9.53 8.54 9.11 7.90 0.56 2.38
12 0.10 0.00 0.20 0.56 3.86 6.66
24 2.41 1.76 2.62 1.58 1.33 6.79
36 0.00 0.00 1.93 0.66 2.56 5.58
60 2.82 1.58 2.99 1.54 1.96 6.72
84 1.83 0.50 2.09 0.87 7.87 10.15
120 9.79 4.92 9.86 5.16 22.78 15.46

Table 5: RMSE of Fitted Yields for the AFNS; Models for U.S. Treasury Data.
The table presents the root-mean-squared errors for the fitted yields across the 8 maturities under the
independent-factors specification of the AFNS model with different stochastic volatility specifications.
The sample covers the period from January 2, 1985 to March 1, 2010. All numbers are expressed in
basis points.

volatility is to examine the cross-sectional fit of the yield curve, as shown in Table 5 using
root-mean-squared-error for the models’ fitted errors. Relative to the AFNSy specification,
the introduction of stochastic volatility reduces the RMSE of the fitted yields for the short-
term three- and six-month maturities. However, for the remaining maturities, the stochastic
volatility specifications do not necessarily insure a reduction in the RMSE measure with
one exception, the AFNS;-L model does deliver a uniform improvement in model fit over
the AFNSy model. A more detailed comparison of the five new AFNS; models shows that
three of the models (AFNS;-L, AFNS;-C, and AFNS,-L,C) fit the short-term yields relatively
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poorly, while they deliver a very good fit for the remaining maturities. On the other hand, the
AFNS5-S,C model has the opposite ranking with a very good fit for the first seven maturities,
but a poorer fit of the ten-year yield. Finally, the AFNS3 model falls in between with a decent
fit for all eight maturities. Thus, based on the evidence so far, there is no basis for either
disqualifying or preferring any particular of the five new AFNS; model classes with stochastic
volatility over the others or the original AFNSy model. Of course, from a mechanical point
of view, the AFNS3 specification has the ability to induce the greatest degree of in-sample
stochastic volatility of all the specifications and thus should be best suited ex ante to closely
match the observed data characteristics in terms of yield volatility in addition to providing a
good in-sample fit to the cross section of yields. However, before analyzing whether that is
the case, we will discuss some identification issues that appear in the estimation of three of

the AFNS; model classes with stochastic volatility.

4.3 Identification Issues Related to #9 Parameters

The fact that the §9 parameters are not statistically identifiable and fixed at zero in the
Gaussian AFNSy model is in itself a warning that the §9 parameters in the AFNS models
with stochastic volatility should be treated with caution. Against this background, it is not all
that surprising that 936;2 turn out to be hard to identify in the AFNS;-C and AFNS»-L,C models
and a similar problem pertains to the value of 9;2 in the AFNS,-S,C model. However, as we
will show in the following, the specific value of these 89 parameters significantly affect the size
of the generated stochastic yield volatility. As a result, there is an important identification
problem to address. Here, we exemplify this problem and how we deal with it for the AFNS;-
C model. In the empirical analysis, we apply a similar approach to the other two model
classes mentioned above.

Figure 3 illustrates the fitted one-month standard deviation of the two-year U.S. Treasury
yield in the independent-factors specification of the AFNS;-C model when 0?? is left uncon-
strained (estimated value of 0.545) and when we fix it at two much lower values, 0.08 and
0.06, respectively. We note that, for the unconstrained model, the generated yield volatility
is almost a flat line for this yield maturity, even though this is the part of the covered matu-
rity range where the curvature factor has its peak effect (see Figure 2) and, by implication,
this particular yield and its conditional volatility should have close to the maximum possible
sensitivity to variation in the curvature factor. On the other hand, when we restrict 9?? at the
low values, the variation in the fitted yield volatility is much larger. Also, with 9?? restricted

in this way, the estimated values and standard deviations of some of the key parameters, in
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Figure 3: Fitted One-Month Conditional Standard Deviations of the Two-Year
U.S. Treasury Yield from AFNS;-C Models.

particular the K'* parameters, look better identified and closer to those obtained in the other
AFNS; models as can be seen in Table 6, which reports the estimated parameters for the
three AFNS;-C models analyzed here.

Thus, based on the above evidence, this appears to be a useful restriction that allows the
AFNS;-C model class to generate more meaningful levels of yield volatility in addition to being
better identified. To analyze whether there are any drawbacks to this kind of restriction, we
first study the impact on the estimated factors. Figure 4 shows the estimated level and slope
factors from the three models. The minimum correlation between the level factors is 99.5%.
For the slope factors the minimum pairwise correlation is 99.9%. Thus, the decomposition into
level and slope is completely unaffected by restrictions on 9? . Figure 5 shows the estimated
paths for the curvature factor that generates the stochastic volatility in this model class. We
notice the difference in the estimated value of this factor which changes almost one-for-one
with the size of 9?? . However, importantly, the time variation is almost identical. For the
model with 9?? fixed at 0.08, its correlation for the affected curvature factor is 99.2% with the
unrestricted model, while it is 99.5% with the model with 9? fixed at 0.06. Of course, the
correlation between the unrestricted model and that with 9? fixed at 0.06 is lower, but still

high, at 97.8%. In summary, the models deliver qualitatively identical decompositions into
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Parameters Independent-factors AFNS;-C models
03 free | 65 =0.08 | 69 =0.06
w1 0.0364 0.0149 0.0128
(0.0543) | (0.0499) (0.0568)
fiQPQ 0.0001 0.1006 0.1284
(0.0873) | (0.0935) (0.0945)
ki 0.0437 0.8649 0.7531
(0.135) (0.102) (0.119)
2 0.0874 0.0746 0.0624
(0.0837) | (0.0526) (0.0931)
oF 1.695 -0.0341 -0.0284
(0.0321) | (0.0202) (0.0160)
oF 0.6237 0.0709 0.0543
(0.00881) | (0.00682) | (0.00749)
011 0.0053 0.0054 0.0054
(0.00009) | (0.00006) | (0.00006)
029 0.0086 0.0086 0.0085
(0.00020) | (0.00014) | (0.00012)
033 0.0408 0.0961 0.1006
(0.00110) | (0.00067) | (0.00096)
B3 0.3002 0.0000058 0.0000082
(0.208) (0.451) (0.655)
Ba3 0.1956 0.0000096 0.0000242
(0.282) | (0.568) (0.658)
0% 0.5453 0.08 0.06
(0.00357) — —
A 0.4687 0.4757 0.4694
(0.00120) | (0.00138) | (0.00154)
Max log L | 305,679.5 | 300,973.5 296,667,0

Table 6: Parameter Estimates of AFNS;-C Models for U.S. Treasury Data.
The table contains the estimated dynamic parameters for the independent-factors specification of the
P-dynamics in AFNS;-C models with varying restrictions on 9?. Estimated standard deviations for

the parameter estimates are given in parentheses. The estimations are based on daily observations
from January 2, 1985 to March 1, 2010.

level, slope, and curvature independent of restrictions imposed on 9? or lack thereof.
Second, we analyze the yield fit across the three AFNS;-C specifications. Table 7 reports
the mean and RMSEs of the fitted errors for the three specifications. We note that the fit is
identical, despite the large difference in likelihood values, but consistent with the very high
correlation between the three estimated factors. Based on this we conclude that the dramatic
loss in likelihood value is not matched by a corresponding decline in model fit in any of
the restricted models. Also, this suggests that the significant differences in the maximum
likelihood values across the various AFNS,; models we observed in the previous section should
be interpreted with caution as they are not necessarily matched by a corresponding decline

in model performance.

27



0.12
1

ThetaQ3 free
— ThetaQ3 =0.08
--- ThetaQ3 = 0.06

0.00
|

0.10
1
-0.02

Estimated value of S(t)
-0.04

Estimated value of L(t)
0.08
Il

0.06
|
-0.06

ThetaQa3 free

8 | | — ThetaQz=008
< S 1 |--- ThetaQ3 =006
o 4 ]
s

T T T T T T T T T T T T
1985 1990 1995 2000 2005 2010 1985 1990 1995 2000 2005 2010
(a) Estimated level factors. (b) Estimated slope factors.

Figure 4: Estimated Level and Slope Factors from AFNS;-C Models for U.S. Trea-
sury Data.
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Figure 5: Estimated Curvature Factors from AFNS;-C Models for U.S. Treasury
Data.

Ex ante it would be natural to expect that these different specifications of the same model
class should generate about the same stochastic yield volatility. The high correlation between
the respective factor paths in each specification supports this view and also explains the very
similar in-sample fit reported in Table 7. But how does this square with the difference in the
estimated conditional yield volatility in Figure 37 To understand the difference, note that the

range of variation for each factor is the same across the three specifications and about 0.09 for
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Maturit AFNS;-C models with independent factors
e 07 free 99 = 0.08 6 = 0.06
Mean | RMSE || Mean | RMSE || Mean | RMSE

3 -6.10 21.43 -5.73 20.69 -5.37 20.68
6 -3.40 9.53 -3.19 9.11 -2.99 9.17
12 -0.01 0.10 -0.02 0.20 -0.02 0.24
24 1.43 2.41 1.25 2.62 1.12 3.36
36 0.00 0.01 -0.20 1.93 -0.30 3.21
60 -1.92 2.82 -2.00 2.99 -2.00 3.28
84 0.11 1.83 0.14 2.09 0.17 2.51
120 7.17 9.83 7.27 9.86 7.25 10.09

Table 7: Mean and RMSE of Fitted Yields for AFNS;-C Models for U.S. Treasury
Data.

The table presents the mean and root-mean-squared errors for the fitted yields across the 8 maturities
for the independent-factors specification of the AFNS;-C model with varying restrictions on 936;2 . The
sample covers the period from January 2, 1985 to March 1, 2010. All numbers are expressed in basis

points.

the curvature factors. This similarity is driven by the fact that these factors affect yields in
the same way due to the imposed Nelson-Siegel factor loading structure. By implication, they
will exhibit approximately the same range of variation in order to deliver approximately the
same fit to the cross section of yields as also documented in Table 7. However, importantly,
the absolute level of this factor is very different across the three specifications, which turns
out to have dramatic consequences for the size of the generated stochastic volatility. For
the AFNS;-C model with 9? fixed at 0.08, the curvature factor varies in the range (0,0.11).
Given the estimated value of o33, this translates into the following variation of the stochastic

volatility generated by the curvature factor

o331/ X} € (0,0.032).

On the other hand, for the unrestricted AFNS;-C model, the curvature factor varies in the
range (0.42,0.58). This translates into the following variation in the stochastic volatility

generated by X7 in that model?!

o331/ X} € (0.027,0.031).

Thus, in the AFNS{-C model with 9? fixed at 0.08, the conditional volatility at the largest
values of X} is multiples of the conditional volatility at the lowest values of X;. In the un-

restricted AFNS;-C model, on the other hand, there is much less variation in the generated

21This is based on an estimate of o33 of 0.041.
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stochastic volatility as we move from the highest to the lowest values of X?. Equally im-
portant, the range of generated stochastic volatility in the restricted specification spans that
of the unrestricted specification. These observations combined leads us to focus on a value
for 0?? in the neighborhood of 0.08. At this value, the curvature factor only hits the lower
zero-boundary for a very brief period around the very peak of the financial crisis in 2008.22
Thus, we are close to maximizing the range of generated volatility. If we raise 9?? above 0.08,
we will start to approach the unrestricted case that delivered a narrow range of generated
volatility, and if we go below 0.08, we will reduce the top of the range of generated volatility,
while being restricted by zero at the bottom of the range.

The only drawback of this type of restriction appears to be a slight downward bias due to
the lower estimated values of the curvature factor which is only partially offset by a higher
estimated value of o33 as is evident from Figure 3. However, as we will see later in the analysis
of the U.K. gilt yields, this is not always the case.

We conclude that there is only a very limited downside to imposing restrictions on the
69 parameters in the three model classes discussed here. Thus, these are, in our view,
very innocent restrictions on parameters that are not all that well identified to begin with.
Furthermore, as the results later will show, even this extra ’helping’ hand of restricting the
6@ parameters to a useful range does not allow any of these three model classes (AFNS;-C,
AFNS,-L,C, and AFNS,-S,C) to generate stochastic yield volatility that is more consistent
with our measure of realized volatility than the competing AFNS; model classes. Thus,
the restrictions discussed here do not affect the conclusions we draw later on, rather they
underscore that these three model classes might suffer both from estimation problems and

relatively poorer fit to the aspects of the yield data that we focus on in this paper.

4.4 Stochastic Volatility Results for the AFNS Model Specifications

Collin-Dufresne et al. (2009) demonstrate that there is a tension in affine models between
fitting the cross section of yields and capturing their stochastic volatility. They further argue
that to allow only one factor to generate stochastic volatility in a three-factor affine model
is too restrictive to fit both aspects of the data. By allowing for more factors to generate
stochastic volatility in our AFNS specification, we hope to mitigate this tension. As indicated
in the discussion of the results above, the AFNS specifications with stochastic volatility do
not differ markedly in terms of fitting the observed U.S. Treasury yield curve. However,

their fitted volatility measures, which we define here as the fitted standard deviation, of

22This happens for a number of days in the period from October 20 to December 16, 2008, but not outside
this very short time window.
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Figure 6: Fitted One-Month Conditional Standard Deviations of U.S. Treasury
Yields from the AFNS; Models.

these specifications do differ greatly from each other and from measures of the data’s realized
volatility.??
Figure 6 shows the fitted one-month conditional yield volatility for four different maturities

based on the six AFNS; models. We note the Gaussian AFNSy model with its flat fitted

ZThe fitted one-month conditional volatility measures are given by the square root of

VElyr(n)] = % BV [Xr)B(r),

1

where V¥ [X7] is the conditional covariance matrix of the state variables, T —t = 13,

maturity in years.

and 7 is the yield
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Correlation Three-month U.S. Treasury yield

AFNSy AFNS;-L AFNS;-C  AFNS.-LC  AFNS,-SC AFNS3
AFNSq 1 0 0 0 0 0
AFNS;-L 1 0.440 1.000 -0.221 0.578
AFNS;-C 1 0.457 0.340 0.677
AFNS,-LC 1 -0.212 0.588
AFNS,-SC 1 0.636
AFNS3 1
Correlation Two-year U.S. Treasury yield

AFNSy AFNS;-L. AFNS;-C AFNS,-LC  AFNS,-SC AFNS3
AFNSq 1 0 0 0 0 0
AFNS;-L 1 0.434 0.987 0.149 0.767
AFNS;-C 1 0.569 0.833 0.857
AFNS,-LC 1 0.291 0.856
AFNS,-SC 1 0.722
AFNS;3 1
Correlation Five-year U.S. Treasury yield

AFNSy AFNS;- AFNS;-C AFNS,-LC  AFNS,-SC AFNS3
AFNSq 1 0 0 0 0 0
AFNS;-L 1 0.431 0.989 0.239 0.810
AFNS;-C 1 0.558 0.906 0.859
AFNS,-LC 1 0.372 0.886
AFNS,-SC 1 0.725
AFNS3 1
Correlation Ten-year U.S. Treasury yield

AFNSy AFNS;-I. AFNS;-C AFNS,-LC  AFNS,-SC AFNS3
AFNSq 1 0 0 0 0 0
AFNS;-L 1 0.433 0.997 0.250 0.904
AFNS;-C 1 0.492 0.912 0.761
AFNS,-LC 1 0.310 0.931
AFNS,-SC 1 0.598
AFNS3 1

Table 8: Pairwise Correlations of the One-Month Conditional Standard Deviation
of Four U.S. Treasury Yields Across the AFNS; Models.

The table contains the pairwise correlations between the one-month conditional standard deviations
of the three-month, the two-year, the five-year, and the ten-year U.S. Treasury yields estimated by
the AFNS; models. The estimations are based on daily data from January 2, 1985 to March 1, 2010.

volatility lines. All the models where the level factor is allowed to generate stochastic volatility
exhibit a downward trending pattern in the fitted volatility at all maturities until 2005 at
which point a slow upward trend starts. However, in the AFNS3 model, the recent upward
trend is more than offset by the extremely low interest rates we have seen since the credit
crisis of 2008 and 2009. This depresses the slope and curvature in all the AFNS; models
with consequences for the fitted conditional yield volatility in the AFNS;-C, AFNS,-S,C, and
AFNS3 models.

Table 8 reports the pairwise correlations of the fitted conditional yield volatility series
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for four maturities across all six AFNS; models. There is a large dispersion in the corre-
lations across models with some natural clustering. For example, the fitted yield volatility
of the AFNS;-L and AFNS,-L,C models are highly correlated at all maturities. Also, the
AFNS{-C and AFNS5-S,C models tend to produce highly correlated fitted volatilities with
the exception of the very short maturities where the difference in the role of the slope factor
is most pronounced. Overall, though, the AFNS3 model appears as a reasonable compromise
candidate which has a high, positive correlation with the fitted yield volatility from the other
four AFNS; models with stochastic volatility.

To evaluate the in-sample fit of these one-month-ahead conditional standard deviations,
we compare them to a standard measure of realized volatility based on the same daily data
used in the estimations. We generate the realized standard deviation of the daily changes
in the interest rates for the 31-day period ahead on a rolling basis. The realized variance
measure is used by Andersen and Benzoni (2010), Collin-Dufresne et al. (2009), as well as
Jacobs and Karoui (2009) in their assessments of stochastic volatility models. This measure
is fully nonparametric and has been shown to converge to the underlying realization of the
conditional variance as the sampling frequency increases; see Andersen et al. (2003) for
details. The square root of this measure retains these properties. For each observation date
t we determine the number of trading days N during the subsequent 31-day time window

(where N is most often 21 or 22).2¢ We then generate the realized standard deviation as

N
RV =\ 1D Ay n (7).
n=1

where Ay, ,,/n(7) is the change in yield y;(7) from trading day (n — 1) to trading day n.2
Figure 7 plots the realized 31-day ahead volatility series over the full sample period for
four maturities: 3 months, 2 years, 5 years, and 10 years. In each chart we include the
corresponding fitted yield volatility from four AFNS models: AFNSy, AFNS;-L, AFNS,-
S,C, and AFNS;3. The figure highlights three empirical features of the realized volatilities.
First, the realized volatility series become less volatile as the maturity increases. Table 9
shows that the standard deviation of the realized standard deviation for the changes in the
three-month yield is almost 1.5 times greater than that of the ten-year yield. The degree of

variation declines sharply with the standard deviation of this volatility measure for the one-

24 As a consequence, the realized volatility measure can be calculated for the period from January 2, 1985 to
January 29, 2010.

Z5Note that other measures of realized volatility have been used in the literature, such as the realized
mean absolute deviation measure as well as fitted GARCH estimates. Collin-Dufresne et al. (2009) also use
option-implied volatility as a measure of realized volatility.
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Figure 7: Fitted Standard Deviations from Four AFNS; Models for the U.S. Trea-
sury Data.

year series falling to just 1.06 times greater than that of the ten-year series.?® This pattern of
declining variation as maturity increases suggests that the standard deviations generated by
all the model specifications should exhibit better fit as maturity increases, which is, in general,
the pattern observed in Table 10, which contains the summary statistics of the fitted errors
between the model-implied one-month conditional standard deviations and the 31-day-ahead

realized volatility for all eight maturities in the U.S. Treasury data.

%6Please note that this pattern is similar to the one presented by Jacobs and Karoui (2009) for monthly
Treasury yields, although their measures decline at a slower rate as maturity increases. The differences may
be due to the longer sample period from 1970 to 2003 that they use.
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Maturity | Mean | Std. dev. | Std. dev.
in months | in bps in bps ratio
3 22.56 14.44 1.49
6 19.20 11.57 1.19
12 21.63 10.26 1.06
24 26.05 10.21 1.05
36 27.88 10.25 1.06
60 28.45 10.09 1.04
84 28.00 9.93 1.02
120 27.29 9.71 1.00

Table 9: Summary Statistics for the 31-Day Realized Standard Deviation Series
based on the Daily U.S. Treasury Data.

The summary statistics are for the 31-day rolling realized standard deviations based on the daily U.S.
Treasury data from January 2, 1985 to March 1, 2010. The standard deviation ratio is calculated as
the standard deviation in question divided by the standard deviation for the ten-year maturity.

Maturity RMSE for fitted standard deviations
in months AFNSg AFNS;-L AFNS;-C AFNS,-LC AFNS,-SC AFNSs3
Mean | RMSE Mean | RMSE Mean | RMSE Mean | RMSE Mean | RMSE Mean | RMSE
3 7.61 16.32 30.94 34.07 5.63 15.49 30.73 33.93 4.72 15.47 -2.04 14.71
6 10.66 15.73 33.54 35.53 8.55 14.39 33.37 35.43 8.02 14.41 1.47 12.10
12 8.64 13.41 30.62 32.58 6.07 12.00 30.28 32.41 6.50 12.79 0.08 11.73
24 5.78 11.74 25.89 28.26 2.33 10.91 25.19 27.93 3.59 12.00 -2.10 12.84
36 4.52 11.20 23.01 25.64 0.56 10.97 22.32 25.43 1.48 11.70 -2.86 13.40
60 2.27 10.34 19.09 22.08 -1.79 11.03 18.98 22.42 -2.19 11.40 -4.18 13.59
84 -0.18 9.94 16.46 19.73 -3.83 11.23 16.93 20.52 -4.91 11.73 -5.94 13.71
120 -3.22 10.23 13.81 17.35 -6.13 11.78 14.74 18.41 -7.31 12.44 -8.46 14.27

Table 10: Mean and RMSE for the Fitted Errors of the One-Month Conditional
Standard Deviations from the AFNS Models for the U.S. Treasury Data.

The table presents the mean and RMSE values for the fitted error of the monthly model-based fitted
standard deviations relative to the 31-day realized standard deviations based on the daily U.S. Treasury
data over the period from January 2, 1985 to March 1, 2010. All numbers are measured in basis points.

Second, note that the AFNSy, AFNS;-C, and AFNS5-S,C models produce consistently low
RMSE values between fitted and realized standard deviations for all maturities. However, as
shown in Table 11, the degree of variation exhibited by these fitted standard deviations is quite
low relative to the AFNS3 specification. As our objective is to best capture the stochastic
volatility of these interest rate series, the AFNSj3 specification stands out as a model that
delivers a reasonable fit to both the cross section of yields as well as to the cross section of
realized yield volatilities.

Third, aside from measures of fit, the correlations between the fitted and realized standard
deviations are important measures of how well the various specifications are able to capture the
stochastic volatility observed in the data. Table 12 presents the correlations across the model

specifications and the maturities we examine over the full sample period. The correlations are
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Maturity Ratios of variation for the fitted AFNS standard deviations
AFNSy | AFNS;-L | AFNS;-C | AFNS,-LC | AFNS,-SC | AFNS3

3 0.00 0.98 0.01 1.06 0.51 1.00
6 0.00 1.01 0.05 1.11 0.50 1.00
12 0.00 1.00 0.14 1.13 0.49 1.00
24 0.00 0.89 0.27 1.05 0.50 1.00
36 0.00 0.83 0.33 1.00 0.48 1.00
60 0.00 0.84 0.34 1.00 0.39 1.00
84 0.00 0.91 0.30 1.06 0.30 1.00
120 0.00 0.99 0.23 1.12 0.21 1.00

Table 11: Ratios of Variation between AFNS,; Fitted Standard Deviations.

The table presents the ratios of variation between AFNS fitted standard deviations, which are calcu-
lated as the standard deviation of a model’s fitted standard deviations for a given maturity divided
by the standard deviation of fitted standard deviations from the AFNS3 model.

Maturity Correlations between fitted and realized standard deviation series
in months AFNSO AFNSl—L AFNSl—C AFNSQ—LC AFNSQ—SC AFNSg
3 0 0.241 0.039 0.238 0.014 0.194
6 0 0.242 -0.007 0.235 -0.011 0.184
12 0 0.142 -0.079 0.125 -0.124 0.024
24 0 0.082 -0.170 0.039 -0.244 -0.107
36 0 0.085 -0.214 0.027 -0.284 -0.135
60 0 0.111 -0.238 0.055 -0.296 -0.122
84 0 0.137 -0.227 0.095 -0.274 -0.080
120 0 0.176 -0.195 0.148 -0.229 -0.006

Table 12: Correlations Between Fitted and Realized Standard Deviation Series for
the Full Sample of U.S. Treasury Data.

The table presents the correlations between the 31-day fitted and realized standard deviations for the
U.S. Treasury yield data over the full sample period from January 2, 1985 to March 1, 2010.

relatively low, reaching a maximum of just 0.242, and often being negative with the lowest
value being -0.296. While these low values suggest that the model specifications are not
capable of capturing the stochastic volatility in the data very well, the subsample correlation
results reported by Jacobs and Karoui (2009) suggest that sample periods play a key, but as
of yet not well understood, role in this analysis. For their monthly and weekly U.S. Treasury
yields, they found that term structure models do not generate stochastic volatility measures
that fit the data well for the post-1991 period.?” For this reason we split our sample into three
periods. The first period covers the seven-year period from January 2, 1985 to December 31,
1991. The second period covers the eleven years from January 2, 1992 to December 31, 2002.
Finally, the third period covers the seven years from January 2, 2003 to January 29, 2010,

which is the last day for which we can calculate the 31-day ahead realized volatility measure.

2TPlease note that our correlation values are not directly comparable to the correlations reported by Jacobs
and Karoui (2009) as they smooth their logged realized variance series using an ARMA(1,1) filter.
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| Correlations between fitted and realized standard deviation series |

Maturity January 2, 1985 to December 31, 1991 sample
in months | AFNSy | AFNS;-L | AFNS;-C | AFNS,-LC | AFNS,-SC | AFNS;
3 0 0.177 0.247 0.175 0.070 0.199
6 0 0.228 0.242 0.231 0.013 0.227
12 0 0.227 0.205 0.236 0.137 0.329
24 0 0.248 0.264 0.272 0.257 0.361
36 0 0.265 0.306 0.296 0.273 0.356
60 0 0.262 0.337 0.288 0.282 0.349
84 0 0.251 0.335 0.268 0.289 0.333
120 0 0.245 0.313 0.252 0.301 0.203
Maturity January 2, 1992 to December 31, 2002 sample
in months | AFNSy | AFNS;-L | AFNS;-C | AFNS,-LC | AFNS.-SC | AFNS;
3 0 0.074 -0.056 0.071 -0.062 -0.023
6 0 0.130 -0.130 0.122 -0.166 -0.085
12 0 0.084 -0.138 0.059 -0.305 -0.273
24 0 0.081 -0.140 0.029 -0.326 -0.248
36 0 0.097 -0.158 0.035 -0.305 -0.200
60 0 0.069 -0.183 0.015 -0.276 -0.175
84 0 0.003 -0.167 -0.030 -0.228 -0.167
120 0 -0.075 -0.107 -0.089 -0.146 -0.152
Maturity January 2, 2003 to January 29, 2010 sample
in months | AFNSy | AFNS;-L | AFNS;-C | AFNS,-LC | AFNS,-SC | AFNS;
3 0 0.120 -0.207 0.105 0.039 0.108
6 0 0.035 -0.242 -0.002 0.085 0.117
12 0 0.145 -0.296 0.068 -0.111 -0.057
24 0 0.315 -0.442 0.084 -0.384 -0.327
36 0 0.380 -0.546 0.033 -0.512 -0.461
60 0 0.421 -0.654 0.085 -0.625 -0.573
84 0 0.427 -0.697 0.187 -0.667 -0.605
120 0 0.417 -0.721 0.266 -0.686 -0.595

Table 13: Correlations Between Fitted and Realized Standard Deviation Series for
Three Subsample Periods in the U.S. Treasury Data.

The table presents the correlations between the 31-day fitted and realized standard deviations for the
U.S. Treasury yield data over three sample periods. The top panel is based on the period from January
2, 1985 to December 31, 1991 (1747 daily observations). The middle panel is based on the period from
January 2, 1992 to December 31, 2002 (2731 daily observations). The bottom panel is based on the
period January 2, 2003 to January 29, 2010 (1771 daily observations).

Our empirical results for the three subperiods suggest a result close to those of Jacobs and
Karoui (2009). The top panel of Table 13 shows these correlations for the seven years from
January 2, 1985 to December 31, 1991. Clearly, these correlations are all positive and much
higher, reaching a maximum of 0.361. The AFNS;-C and AFNS3; specifications generate the
highest correlations with the realized volatility series, but as mentioned above, the greater
degree of variation in the fitted standard deviations generated by the AFNS3 specification

makes this model preferable over the AFNS;-C model even for this period. However, the
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Maturity Loading on

in months | First P.C. | Second P.C. | Third P.C.

3 -0.41 -0.65 0.46

6 -0.38 -0.38 -0.14

12 -0.36 -0.11 -0.43

24 -0.36 0.13 -0.41

36 -0.36 0.23 -0.26

60 -0.34 0.32 0.07

84 -0.32 0.35 0.30

120 -0.28 0.36 0.50

% explained 73.58 18.94 5.44

Table 14: Eigenvectors of the First Three Principal Components of the 31-Day
Realized Standard Deviation Series in U.S. Treasury Data.
The loadings of yields of various maturities on the first three principal components of the realized
standard deviation series are shown. The final row shows the proportion of all realized volatility
variability accounted for by each principal component. The underlying data consist of daily U.S.
Treasury zero-coupon bond yields from January 2, 1985 to March 1, 2010.

. AFNS, AFNS;
Correlation I S, c T 5, c
PC. 1 -0.212 | 0.220 | 0.146 || -0.169 | 0.195 | 0.048

P.C.2 0.037 | 0.349 | 0.243 0.090 | 0.331 | 0.162
P.C. 3 0.151 | -0.086 | -0.018 || 0.111 | -0.074 | 0.100

Table 15: Correlations Between Principal Components of the Realized Volatility
Series and the Estimated Factors in the AFNS; and AFNS3; Models for U.S.
Treasury Data.

The table presents the pairwise correlations between the first three principal components of the eight
31-day realized yield standard deviation series based on daily U.S. Treasury yields and the three
estimated factors in the AFNSy and AFNS3 models, respectively.

middle and bottom panels of Table 13 presents the low and mainly negative correlations for
the subsequent two subsample periods. Note, though, that the AFNS;-L model stands out
for the most recent seven-year period with correlations above 0.4 for the five- to ten-year
maturity range. Also, these values are reasonable given the low overall correlations reported
in Table 12 for the full sample.

In summary, AFNS models of the term structure can be expanded to incorporate stochastic
volatility, and the empirical results suggest that the AFNS3 specification generates fitted
volatility measures that exhibit a high degree of variation and simultaneously provide a close
fit to the realized volatility measures in this sample of U.S. Treasury data. However, at a daily
frequency, the correlation between any of the AFNS; model-implied yield standard deviations
and the realized yield volatility is rather low and frequently negative. A potential explanation

for this result is suggested by an examination of the realized volatility series. Table 14 reports
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the loadings across yield maturities of the first three principal components in the eight series
of realized yield standard deviations. The analysis shows that three factors are needed to
encompass 98% of the variation in the data. In Table 15, we correlate these three principal
components with the estimated factors from the most diverse AFNS; models, namely the
AFNSy and AFNS3 models. There is weak positive correlation between the AFNS slope
factors and the second principal component, but beyond that the principal components of
the yield volatility series are close to being uncorrelated with the spanned yield curve factors.
Hence, the relatively diffuse nature of the volatility dynamics observed in the U.S. Treasury
data may require one or more additional factors to model it adequately at the high, daily

frequency.

5 Empirical Results with Daily U.K. Gilt Yields

In this section, we estimate our AFNS models with stochastic volatility using U.K. gilt zero-

coupon bond yields downloaded from the website of the Bank of England.?®

5.1 Data Description

The specific U.K. gilt yields we use are zero-coupon yields constructed from the cubic-spline
method described in Anderson and Sleath (1999, 2001).2° The underlying data contain prices
on U.K. gilt securities®® with a significant amount outstanding and at least three months to
maturity.>! Furthermore, only after March 1997, general collateral repo rates with maturities
up to six months are included in the data. As a consequence, the short end of the yield curve
is sparsely populated prior to this date. We use gilt zero-coupon yields with the following
maturities: 3-month, 6-month, 1-year, 2-year, 3-year, 5-year, 7-year, and 10-year. We use
daily data and limit our sample to the period from January 2, 1985 to March 1, 2010 to have
the sample of U.K. yields match that of the U.S. Treasury yields analyzed in the previous
section. The summary statistics are provided in Table 16, while Figure 8 illustrates the time
series of the three-month, two-year, five-year, and ten-year gilt zero-coupon bond yields.

As we saw in the previous section, three factors are sufficient to model the time variation

28The data is publicly available at the website of the Bank of England at the following link:
http://www.bankofengland.co.uk/statistics/yieldcurve /index.htm

29This method is an adaptation to U.K. yields of the method originally presented in Waggoner (1997) for
U.S. Treasury yields.

30These are securities issued and guaranteed by the U.K. government with fixed coupon rates paid semi-
annually and no embedded options.

31Note that there is no distinction between recently issued on-the-run securities and more seasoned off-the-
run securities, a distinction frequently made in analysis of U.S. Treasury yields.
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Figure 8: U.K. Gilt Yields.

Ilustration of the U.K. zero-coupon gilt yields. The sample covers daily data for the period from
January 2, 1985 to March 1, 2010. The yields shown have maturities in three months, two years, five
years, and ten years.

.Maturlty No. Mean Std. dev. Skewness | Kurtosis
in months | obs. | in % in %
3 3,377 | 4.77 1.89 0.15 6.14
6 5,634 | 6.32 3.00 0.59 3.04
12 6,306 6.71 3.02 0.41 2.65
24 6,323 | 6.76 2.78 0.33 2.35
36 6,323 | 6.83 2.65 0.31 2.13
60 6,323 | 6.92 2.53 0.31 1.88
84 6,323 | 6.97 2.48 0.31 1.74
120 6,323 | 6.98 2.42 0.29 1.60

Table 16: Summary Statistics for U.K. Gilt Yields.
Summary statistics of the zero-coupon U.K. gilt yields. The sample covers daily data for the period
from January 2, 1985 to March 1, 2010.

in the cross section of U.S. Treasury bond yields. Here, we make a similar observation for
the sample of U.K. gilt yields. Indeed, for the most recent ten years of our sample of U.K.
gilt yields where all eight maturities are fully represented, 99.95% of the total variation is
accounted for by three factors. Table 17 reports the eigenvectors that correspond to the first
three principal components for this subsample of our data. The first principal component

accounts for 96.4% of the variation in the gilt yields, and its loading across maturities is
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Maturity Loading on

in months | First P.C. | Second P.C. | Third P.C.

3 -0.46 -0.49 0.34

6 -0.47 -0.35 0.10

12 -0.45 -0.08 -0.23

24 -0.39 0.23 -0.42

36 -0.33 0.35 -0.31

60 -0.25 0.41 0.05

84 -0.19 0.40 0.36

120 -0.12 0.36 0.65

% explained 96.40 3.22 0.33

Table 17: Principal Component Analysis of the U.K. Gilt Yields.
The principal component analysis of the U.K. gilts yields with maturities from three months to ten
years. The sample covers daily data for the period from January 4, 2000 to March 1, 2010.

uniformly negative. Thus, like a level factor, a shock to this component changes all yields
in the same direction irrespective of maturity. The second principal component accounts for
3.2% of the variation in these data and has sizable negative loadings for the shorter maturities
and sizable positive loadings for the long maturities. Thus, like a slope factor, a shock to this
component steepens or flattens the yield curve. Finally, the third component, which accounts
for only 0.3% of the variation, has a U-shaped factor loading as a function of maturity, which
is naturally interpreted as a curvature factor. These results motivate our use of the Nelson-
Siegel model with its level, slope, and curvature factor for modeling this sample of U.K. gilt

yields.

5.2 Conditional mean results

We first examine the in-sample estimation results for the five model specifications introduced
in Section 3 in addition to the AFNSy model. Similar to the analysis of the U.S. yields, we only
present results for the diagonal, independent-factors specification for each AFNS model class.
We use the independent-factors specification because the AFNS models deliver essentially
identical decompositions of the data into level, slope, and curvature factors independent
of the specification of the P-dynamics. Thus, this restriction comes at a minimal loss of
generality.>?

Tables 18 and 19 present our parameter estimates of the six models. Similar to what
we observed in the U.S. Treasury yield data, the level factor is the most persistent, and the

curvature factor the least persistent factor in all six AFNS model classes. Also, in both the

32Results summarizing the estimation of the maximally flexible specifications of the models are available
upon request.
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AFNS models with independent factors

Parameters | \pNg, | AFNS,-L | AFNS;-C | AFNS,-LC | AFNS,-SC | AFNS;
= 0.0666 | 0.0031 | 0.0667 0.0033 0.0706 | 5.7-10°°
(0.0831) | (0.0215) | (0.0827) | (0.0204) | (0.0810) | (0.00090)
K5 02179 | 0.1842 | 0.2095 0.1765 0.1978 0.1196
(0.139) | (0.130) | (0.136) (0.121) (0.105) | (0.0596)
K5 14522 | 13884 | 1.6409 1.6941 1.6113 1.6503
(0.392) | (0.270) | (0.344) (0.257) (0.340) | (0.326)
or 0.0828 | 0.0273 | 0.0828 0.0297 0.0029 | 0.00003
(0.0197) - (0.0195) - (0.0185) -
oy -0.0156 | -0.0226 | -0.0159 | -0.0229 0.0613 0.0369
(0.0190) | (0.0198) | (0.0196) | (0.0199) | (0.0173) | (0.0171)
oy -0.0111 | -0.0092 | 0.0680 0.0680 0.0656 0.0322
(0.00531) | (0.00550) | (0.00509) | (0.00470) | (0.00535) | (0.00512)
o1 0.0098 | 0.0388 | 0.0097 0.0381 0.0076 0.0447
(0.00005) | (0.00018) | (0.00017) | (0.00019) | (0.00022) | (0.00025)
22 0.0159 | 0.0013 | 0.0157 0.0011 0.0581 0.0472
(0.00009) | (0.00001) | (0.00015) | (0.00001) | (0.00028) | (0.00037)
733 0.0338 | 0.0206 | 0.1327 0.1376 0.1321 0.1751
(0.00027) | (0.00024) | (0.00109) | (0.00116) | (0.00226) | (0.00158)
ﬁll - - - - - -
Bra - - - - 7.8959 -
- - - - (0.962) -
B3 - - 0.0007 - 0.4398 -
- - (0.497) - (0.767) -
Bar - 2,041 - 2,536 - -
- (0.499) - (0.238) - -
Bao - - - - - -
Baa - - 0.0009 - - -
- - (0.226) - - -
Bs1 - 25.00 - 0.0118 - -
- (0.611) - (0.371) - -
Bz - - - - - -
533 - - - - - -

Table 18: Parameter Estimates of the
Independent-Factors Specification for U.K. Gilt Data.
The table contains the estimated K* matrix, 7 vector, ¥ matrix, and 3 volatility sensitivity param-
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on daily observations from January 2, 1985 to March 1, 2010.

P-dynamics for AFNS; Models with the

eters for the independent-factors specification of the P-dynamics in the AFNS; models. Estimated
standard deviations for the parameter estimates are given in parentheses. The estimations are based

U.S. and the U.K. data, the level factor is close to being a unit-root process. The slope factor
has approximately the same rate of mean-reversion in both currency areas, about 0.15, while

the curvature factor is slightly more rapidly mean-reverting in the U.K. data than in the U.S.




AFNS models with independent factors

Parameters | \pNg | AFNS,-L | AFNS;-C | AFNS,-LC | AFNS,-SC | AFNSs

0% — 85.81 — 98.94 — 0.0002

- (0.344) - (0.285) - (0.0371)

03 - - - - 0.08 0.0459
- - - - - (0.00003)

03 - - 0.08 0.08 0.0775 0.0444

- - - - (0.00161) -

) 0.6736 0.6554 0.6650 0.6495 0.6644 0.7333
(0.00182) | (0.00174) | (0.00175) | (0.00167) | (0.00177) | (0.00096)
max. log L | 283,576.1 | 284,344.5 | 283,316.8 | 284,041.3 | 283,246.9 | 269,593.2

Table 19: Parameter Estimates of the ()-dynamics for AFNS; Models with the
Independent-Factors Specification for U.K. Gilt Data.

The table contains the estimated #% vector and A parameters for the independent-factors specification
of the P-dynamics in the AFNS,; models. Estimated standard deviations for the parameter estimates
are given in parentheses. The estimations are based on daily observations from January 2, 1985 to
March 1, 2010. The maximum log-likelihood values are reported, although the models are non-nested.

data. For the mean parameters in 87, we get close to the same estimated values when we
compare each AFNS; model across the two data sets. However, for the volatility parameters,
we start to see some differences between the U.S. and the U.K. yield curves. If we compare the
results for the AFNSy models, which provide a proxy for the unconditional volatility of each
factor, the volatility of the U.K. level factor is about twice that of the U.S. level factor, and
the volatility of the U.K. slope factor is about 50% larger than the corresponding estimate for
the U.S. slope factor. These differences could be a reflection of the fact that there has been
several monetary policy regime shifts in the U.K. during this 25-year period, in particular the
U.K. departure from the EMS in 1992 and the independence of the Bank of England in May
1997 come to mind, while events of that nature are absent in the U.S. Treasury data. These
events are likely to have caused uncertainty to be elevated for extended periods of the sample.
Finally, as for the § volatility sensitivity parameters, there is a role for the level factor in the
stochastic volatility of the slope and curvature factor and, possibly, a role for the slope factor
in the stochastic volatility of the level factor. However, as in the U.S. Treasury data, there
does not appear to be any role for the curvature factor in the stochastic volatility of either
the level or the slope factor.

Despite the fact that the AFNS,; models with stochastic volatility are non-nested, we can
still use the obtained maximum log likelihood values as a crude measure of model performance
as noted earlier. The ranking of the six AFNS; models for the U.K. gilt data is identical to
the ranking in the U.S. Treasury data with the AFNS;-L and AFNSs-L,C models delivering
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Maturity RMSE for AFNS models with independent factors
in months | AFNSy | AFNS;-L | AFNS:-C | AFNS,-LC | AFNS,-SC | AFNS3
3 23.95 24.72 23.88 24.51 23.76 4.52
6 14.88 15.03 14.84 14.98 14.80 9.46
12 0.42 0.21 0.51 0.31 0.63 10.04
24 2.77 2.81 2.76 2.80 2.76 4.44
36 0.00 0.00 0.00 0.00 0.00 1.22
60 2.62 2.62 2.62 2.61 2.61 3.87
84 0.87 0.88 0.93 0.95 1.04 5.43
120 10.15 9.46 10.15 9.50 10.13 12.02

Table 20: RMSE of the Fitted Errors for U.K. Gilt Yields in the AFNS; Models.
The table presents the root-mean-squared errors for the fitted U.K. gilt yields across the 8 maturities
under the independent-factors specification of the AFNS model with different stochastic volatility

specifications. The sample covers the period from January 2, 1985 to March 1, 2010. All numbers are
expressed in basis points.

the highest maxima, and the AFNS3 model obtaining the lowest maximum likelihood value.
Note, though, that the differences in likelihood value across models are smaller in the U.K.
data.

Another way to assess the performance of the different AFNS specifications of stochastic
volatility is to examine the cross-sectional fit of the yield curve, as shown in Table 20 using
root-mean-squared-error for the models’ fitted errors. Unlike the U.S. Treasury data, we do
not see a clear improvement in model fit from the introduction of stochastic volatility relative
to the AFNSy specification, rather the contrary, five of the AFNS; models deliver essentially
identical fit to the cross section of yields. It is only the AFNS3 model that produces a
different, more even distribution of the fitted errors across maturities. The relatively poor
fit of the three- and six-month yields in most of the AFNS; models could be a consequence
of the fact that these two maturities are only observed periodically prior to March 1997 and
largely reflect rates on general collateral repo contracts rather than yields on gilt securities.

Overall, though, all AFNS; models deliver a satisfactory fit to the data and no single
model stands out based on either the RMSEs of the fitted errors or the obtained likelihood
values. Thus, like with the U.S. Treasury data, we will be using the fit of the model-implied
yield volatility to the realized yield volatility as a way of model validation. However, before
turning to that task, we will briefly repeat our discussion of the identification issues pertaining

to certain A9 parameters as they appear in the U.K. data.
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Figure 9: Fitted One-Month Conditional Standard Deviations of the Two-Year
U.K. Gilt Yield From AFNS;-C Models.

5.3 Identification Problems Related to ¢ Parameters

Given that some of the §9 parameters were hard to identify in the U.S. Treasury data, it is not
all that surprising that we encounter similar problems in the U.K. gilt data, i.e., 9? remains
hard to identify in the AFNS;-C and AFNS,-L,C models and a similar problem pertains to
the value of 92Q in the AFNS5-S,C model. Also, similar to what we observed in the U.S.
Treasury data, the specific value of these 89 parameters significantly affect the size of the
generated stochastic yield volatility. Figure 9 illustrates this for the AFNS;-C model. Here,
we demonstrate how restrictions on 9? affect the results obtained in the AFNS;-C model.
Similar results are obtained, but not reported, for the other two model classes mentioned
above.

In Figure 10, we compare the estimated level and slope factors from four specifications of
the AFNS;-C model one of which is the unrestricted model, while the three other specifications
have 936;2 fixed at low values. Similar to the U.S. Treasury data, we find that the decomposition
into level and slope is entirely unaffected by restrictions on 936;2 . The minimum correlation
between the estimated level factors is 0.9998, and the minimum correlation between the
estimated slope factors is also 0.9998.

Figure 11 compares the estimated curvature factors with the result of the unrestricted
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Figure 10: Estimated Level and Slope Factors in AFNS;-C Models for U.K. Gilt
Data.
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Figure 11: Estimated Curvature Factors in AFNS;-C Models for U.K. Gilt Data.

model shown in Figure 11(a), while Figure 11(b) illustrates the corresponding results from
the three restricted specifications. We note that the curvature factor in the unrestricted model
has values close to the estimated value of 9? (1.17), and in the restricted models they are
also close to the corresponding restricted values of 9?? . Thus, the choice of 9?? determines the
level at which the curvature factor operates, which in turn affects the size of the generated
yield volatility through the mechanics explained earlier in the discussion of the U.S. Treasury

data. However, the time series correlation remains very high with the smallest correlation
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Maturit AFNS;-C models with independent factors
e 67 free 69 = 0.08 69 = 0.06 99 = 0.04
Mean | RMSE || Mean | RMSE || Mean | RMSE || Mean | RMSE
3 8.58 23.95 8.47 23.88 8.48 23.64 8.95 22.03
6 5.64 14.88 5.60 14.84 5.99 14.77 6.14 15.00
12 -0.06 0.42 -0.07 0.51 -0.10 0.77 -0.11 2.62
24 -0.30 2.77 -0.30 2.76 -0.32 2.75 -0.55 2.66
36 0.00 0.00 0.00 0.00 0.00 0.05 0.00 1.23
60 -0.45 2.62 -0.44 2.62 -0.41 2.61 -0.11 2.42
84 -0.01 0.87 0.00 0.93 0.01 1.09 0.07 1.51
120 0.96 10.15 0.89 10.15 0.69 10.17 -0.32 9.97

Table 21: RMSE of the Fitted Errors for U.K. Gilt Yields in AFNS;-C Models.

The table presents the root-mean-squared errors for the fitted yields across the 8 maturities under the
independent-factors specification of the AFNS;-C model with varying restrictions on 9? . The sample
covers the period from January 2, 1985 to March 1, 2010. All numbers are expressed in basis points.

being 0.9905.

In terms of model fit, Table 21 reports the mean and RMSE of the fitted errors in the four
specifications discussed here. We note that the fitted error statistics are indistinguishable
for the unrestricted model and the two models with 9?? fixed at 0.08 and 0.06, respectively.
However, for the model with 9?? fixed at 0.04, we start to see some deviations related to the
fact that the curvature is bound by the lower zero-boundary on several occasions due to the
low value of 9? as can be seen in Figure 11(b). Furthermore, as observed in Figure 9, a very
low value for 9? like 0.04 induces a downward bias in the fitted yield volatility that is not
apparent for values of 9? around 0.08. As in the U.S. data, this makes us fix 9? at 0.08 in
the empirical analysis.

Finally, when 9? is unrestricted and, as a consequence, the general level of X is not that
well identified, the estimation has problems identifying o1, 099, 93{3 , and 9? . Table 22, which
reports the estimated dynamic model parameters for the four specifications discussed here,
provides evidence of this. On the other hand, when we restrict 9? at the low values, the o and
6 parameters are better identified. However, there are still uncertainty about the values of
the 0 parameters, even though in most estimations they are insignificant based on likelihood
ratio tests.?3 Thus, overall, it looks like the entire set of parameters is better identified when
we restrict 9? to a reasonable, but low value, at little costs in terms of model fit.

In summary, we fix the relevant 69 parameters at low values in an attempt to maximize
the size of the generated yield volatility in the AFNS{-C, AFNS,-L,C, and AFNS,-S,C models

with essentially no effect on their model fit. Still, as we will see in the next section and as we

33Note, though, the Kalman filter is only a QML estimator in the AFNS; models with stochastic volatility.
As a consequence, the asymptotics of the LR tests are not known.
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AFNS;-C models with independent factors
Parameters —poe T 00— 008 T 6% = 0.06 | 67 = 0.0
kT 0.0696 0.0667 0.0685 0.0746
(0.0834) | (0.0827) | (0.0804) | (0.0709)
552 0.2239 0.2095 0.1945 0.1453
(0.140) | (0.136) (0.131) (0.122)
KL, 1.4758 1.6409 1.979 1.407
(0.403) | (0.344) (0.219) (0.249)
9{3 0.0826 0.0828 0.0805 0.0675
(0.0190) | (0.0195) | (0.0187) | (0.0198)
oF -0.0154 -0.0159 -0.0163 -0.0212
(0.0187) (0.0196) (0.0203) (0.0253)
oF 1.1623 0.0680 0.0498 0.0429
(0.645) | (0.00509) | (0.00425) | (0.00670)
011 0.0093 0.0097 0.0094 0.0081
(0.00312) | (0.00017) | (0.00013) (0.00009)
022 0.0094 0.0157 0.0151 0.0135
(0.00527) | (0.00015) | (0.00012) | (0.00014)
033 0.0314 0.1327 0.1534 0.1424
(0.00872) | (0.00109) | (0.00111) | (0.00132)
P13 0.0902 0.0007418 0.1861 3.333
(0.613) | (0.497) (0.532) (0.785)
P23 1.6122 0.000926 | 0.00000305 | 0.0000313
(2.085) | (0.226) (0.261) (0.471)
9;2 1.1736 0.08 0.06 0.04
(0.645) - - -
A 0.6731 0.6650 0.6689 0.6514
(0.00188) | (0.00175) | (0.00133) | (0.000772)
Max log L | 283,569.3 | 283,346.8 | 283,009.2 | 278,844.5

Table 22: Parameter Estimates of AFNS;-C Models for the U.K. Gilt Data.

The table contains the estimated dynamic parameters for the independent-factors specification of the
P-dynamics in AFNS;-C models with varying restrictions on 9?. Estimated standard deviations for
the parameter estimates are given in parentheses. The estimations are based on daily observations
from January 2, 1985 to March 1, 2010. The maximum log likelihood values are reported in the last
row.

saw for the U.S. Treasury data, this "helping hand’ does not allow any these three models to
outperform the other AFNS; models in terms of fitting yield volatility. Thus, none of these

restrictions affect the conclusions we draw later on.

5.4 Stochastic volatility results for the AFNS model specifications

Collin-Dufresne et al. (2009) demonstrate that there is a tension in affine models between
fitting the cross section of yields and capturing their stochastic volatility. In this section, we
analyze how severe that tension is in our sample of U.K. gilt yields.

As indicated in the discussion above of the in-sample results, the AFNS model specifica-
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Figure 12: Fitted One-Month Conditional Standard Deviations of Bond Yields
from the AFNS; Models for U.K. Gilt Data.

tions with stochastic volatility do not differ markedly in terms of fitting the observed U.K.
gilt yield curve. However, as in the U.S. Treasury data, their fitted volatility measures do
differ greatly from each other.?* Figure 12 shows this for four of the eight maturities in our

sample.

34The fitted one-month conditional volatility measures are given by the square root of

1
VI lyr ()] = 5 B() Vi [Xr]B(r),
where V;P'[X7] is the conditional covariance matrix of the state variables, T' — t =
maturity in years.

%, and 7 is the yield
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Correlation Three-month U.K. gilt yield

AFNSy AFNS;-L AFNS;-C  AFNS.-LC  AFNS,-SC AFNS3
AFNSq 1 0 0 0 0 0
AFNS;-L 1 -0.326 1.000 0.111 0.776
AFNS;-C 1 -0.311 -0.054 -0.181
AFNS,-LC 1 0.112 0.778
AFNS,-SC 1 0.688
AFNS3 1
Correlation Two-year U.K. gilt yield

AFNSy AFNS;-L. AFNS;-C AFNS,-LC  AFNS,-SC AFNS3
AFNSq 1 0 0 0 0 0
AFNS;-L 1 -0.331 0.917 -0.078 0.629
AFNS;-C 1 0.071 0.539 0.382
AFNS,-LC 1 0.152 0.831
AFNS,-SC 1 0.634
AFNS;3 1
Correlation Five-year U.K. gilt yield

AFNSy AFNS;- AFNS;-C AFNS,-LC  AFNS,-SC AFNS3
AFNSq 1 0 0 0 0 0
AFNS;-L 1 -0.331 0.894 -0.150 0.802
AFNS;-C 1 0.124 0.712 0.223
AFNS,-LC 1 0.185 0.954
AFNS,-SC 1 0.405
AFNS3 1
Correlation Ten-year U.K. gilt yield

AFNSy AFNS;-I. AFNS;-C AFNS,-LC  AFNS,-SC AFNS3
AFNSq 1 0 0 0 0 0
AFNS;-L 1 -0.329 0.983 -0.033 0.962
AFNS;-C 1 -0.154 0.408 -0.093
AFNS,-LC 1 0.049 0.990
AFNS,-SC 1 0.142
AFNS3 1

Table 23: Pairwise Correlations of the One-Month Conditional Standard Deviation
of Four U.K. Gilt Yields in the AFNS; Models.

The table contains the pairwise correlations between the one-month conditional standard deviations
of the three-month, two-year, five-year, and ten-year U.K. gilt yields estimated by the AFNS; models.
The estimation is based on daily observations from January 2, 1985 to March 1, 2010.

First, the AFNSg model produces a flat line close to the average across the six AFNS;
specifications. Second, the three models where the level factor is allowed to generate stochastic
volatility exhibits a declining trend in the fitted yield volatility at all maturities throughout the
entire sample. Third, the AFNS3 model stands out in that it produces fitted yield volatilities
that are clearly lower than those in any of the other models.

In Table 23, we calculate the correlations between the fitted yield volatilities from the
six AFNS; models for the same four maturities depicted in Figure 12. Again, we observe

some natural clustering. The fitted measures from the AFNS;-L and AFNS,-L,C models
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are very highly correlated for all maturities. In turn, the AFNS3s model is highly correlated
with both of those models. At the other extreme, the AFNS;-C model exhibits rather low,
and frequently negative, correlations in its generated yield volatility relative to those of the
other models. Finally, the fitted volatility of the AFNSy-S,C model is hardly correlated with
those from the AFNS;-L and AFNS,-1,C models. However, it does exhibit a high degree of
correlation with the AFNS3 model for the short- and medium-term yield maturities, where
the slope and curvature factors have their maximum effect on the yield curve. Thus, as in the
U.S. Treasury data, the AFNS3 model emerges as a strong representative specification whose
fitted yield volatility is highly correlated with those of the other AFNS; models in exactly
the maturity ranges where each of these other AFNS; models can be expected to produce the
closest fit to the actual yield volatility.3

To evaluate the in-sample fit of these monthly standard deviations, we compare them to a
standard measure of realized volatility based on the high-frequency daily data. This measure
is fully nonparametric and has been shown to converge to the underlying realization of the
conditional variance as the sampling frequency increases. The square root of this measure
retains these properties. For a given month ¢ with N trading days (where N is most often 21

or 22), we generate the realized standard deviation as

N
RV =\ 1D Ay7 n (7).
n=1

where Ay, n(7) is the change in yield y;(7) from trading day (n — 1) to trading day n.
Note that, due to the limited availability of the three- and six-month yields in the data, it is
not possible to reliably calculate the realized volatility measure for these two maturities prior
to April 1997.

Figure 13 plots the realized yield volatility measure for four maturities and compares it
to the fitted yield volatility from the four most diverse AFNS; models. We note that, on
average, the realized volatility is below the fitted volatility from the AFNS; models.

Table 24 reports the summary statistics for the realized yield standard deviations based
on the U.K. gilt data. If we compare it to the statistics for the U.S. Treasury data in Table 9,
it follows that the mean realized volatility is about the same in the two datasets for the one-
to ten-year maturities where the sample periods are overlapping. However, the variability in

the realized volatility is larger in the U.K. data as measured by the standard deviation of the

35For example, the AFNS,-S,C model can be expected to fit the volatility of short- and medium-term yields
closely while having little to bear on the volatility of long-term yields due to the decay in the factor loading
of the slope and the curvature factor in the AFNS; models.
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Figure 13: Comparison of the Fitted versus Realized One-Month Conditional Stan-
dard Deviations for U.K. Gilt Yields.

realized yield volatilities.

Table 25 reports the mean and RMSE of the erors of the fitted yield volatilities from the
six AFNS,; models relative to the measure of realized yield volatility. The AFNS3 model is
the only model that is consistently close to fitting the realized volatility measure. In fact,
it produces the lowest RMSEs amongst the six AFNS; models for all eight maturities in the
data ranging from 20 basis points for the variable short-term maturities down to just 11 basis
points for the longest, less variable maturities.

In terms of the high-frequency time-series correlations between the realized and fitted
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Maturity | Mean | Std. dev. | Std. dev.
in months | in bps in bps ratio
3 10.89 8.73 0.87
6 13.03 8.50 0.84
12 25.75 19.43 1.92
24 27.45 16.35 1.62
36 27.32 14.58 1.44
60 26.20 12.23 1.21
84 25.55 10.94 1.08
120 24.98 10.10 1.00

Table 24: Summary Statistics for the 31-Day Realized Standard Deviation Series
based on Daily U.K. Gilt Data.

The summary statistics are for the 31-day rolling realized standard deviations based on the daily U.K.
gilt yield data over the period from January 2, 1985 through March 1, 2010. The standard deviation
ratio is calculated as the standard deviation in question divided by the standard deviation for the
ten-year maturity.

RMSE for fitted standard deviations

111\1&;12;1;1?5 AFNS, AFNS,-L AFNS,-C AFNS,-LC AFNS,-SC AFNS;

Mean | RMSE Mean | RMSE Mean | RMSE Mean | RMSE Mean | RMSE Mean | RMSE

3 40.09 41.03 32.53 33.72 39.50 40.46 32.03 33.23 39.17 40.44 16.21 19.21

6 36.41 37.39 29.35 30.54 36.01 37.01 29.36 30.57 35.66 36.92 14.53 17.62

12 22.16 29.47 23.26 28.70 21.87 29.41 22.93 28.64 21.39 28.79 8.56 19.66

24 18.72 24.85 20.20 24.93 18.70 25.18 20.34 25.34 18.17 24.70 8.03 18.08

36 16.55 22.05 18.25 22.51 16.62 22.46 18.53 23.01 16.07 22.05 6.82 16.24

60 12.62 17.57 14.40 18.26 12.64 17.82 14.61 18.50 12.14 17.55 3.39 12.74

84 9.54 14.52 11.13 15.10 9.47 14.61 11.23 15.11 9.04 14.49 0.37 11.23
120 7.06 12.32 8.17 12.52 6.89 12.30 8.17 12.43 6.51 12.35 -2.36 11.01

Table 25: RMSE for the 31-Day Fitted Conditional Standard Deviations.
The table presents the RMSE values for the monthly model-based fitted standard deviations relative
to the 31-day realized standard deviations based on the daily U.K. gilt data over the period from

January 2, 1985 to March 1, 2010. Note that the three- and six-month maturities are missing prior to
April 1997.

yield volatility measures, Table 26 reports those for all six AFNS; models for the full sample.
Three models stand out: the AFNS;-L, AFNSs-L,C, and AFNS3 models exhibit consistent
high, positive correlations in the range from 23% to 51% for the one- to ten-year maturity
range.

In Table 27, we study the high frequency time-series correlations between the realized and
fitted yield volatility series for three subperiods: 1985-1991, 1992-2002, and 2003-2010. From
the table it follows that the high correlations are primarily observed during the period from
the beginning of 1992 to the end of 2002, while the early 1985-1991 period is characterized
by positive, but low correlations not exceeding 0.23. For the most recent seven years, most

correlations have been negative in all the models with the exception of the AFNS;-L model.

93



Maturity Correlations between fitted and realized standard deviation series

AFNSy | AFNS;-L | AFNS;-C | AFNS,-LC | AFNS,-SC | AFNS;

3 0 0.077 -0.033 0.075 0.009 0.077

6 0 0.163 -0.148 0.129 0.034 0.079

12 0 0.509 -0.189 0.498 0.147 0.415

24 0 0.448 -0.192 0.391 -0.008 0.243

36 0 0.430 -0.162 0.358 -0.067 0.228

60 0 0.409 -0.106 0.376 -0.085 0.289

84 0 0.387 -0.078 0.380 -0.111 0.313
120 0 0.378 -0.081 0.378 -0.165 0.332

Table 26: Correlations between Fitted and Realized Standard Deviation Series for
the Full Sample of U.K. Gilt Yields.

The table presents the correlations between the 31-day fitted and realized standard deviations for the
U.K. gilt yield dataset over the full sample period from January 2, 1985 to March 1, 2010.

This model exhibits systematically positive correlations throughout the entire 25-year sample.
However, from Table 25 it follows that the fitted yield volatilities from this model are not
particularly close to the realized yield volatilities.

We can now summarize our results for the U.K. gilt data. First, based on correlations,
which is a measure widely used in the literature on spanned and unspanned stochastic volatil-
ity, three-factor affine models, in general, have difficulties generating the right time variation
because the three spanned yield factors do not respond to the short-term, or high frequency,
variation in the realized yield volatility measures. This conclusion is independent of the num-
ber of factors that are allowed to generate stochastic volatility, and whichever combination
of the spanned factors is allowed to be the source of the stochastic volatility. However, it is
not obvious that all realized volatility should be priced and therefore reflected in the spanned
yield curve factors. If a brief one-day spike in volatility caused, for example, by the historical
20-minute 700 point drop in the Dow Jones Industrial index on May 6, 2010 is not expected
to repeat itself going forward, should it really be reflected in the fitted volatility measure even
though such shocks surely causes spikes in the realized volatility? If, instead, we rely on the
statistics for the fitted errors between the fitted and realized measures of yield volatility for
the purpose of model validation, the conclusion is much more favorable towards the spanned
factors. Also, given that measures of fitted errors are widely accepted in terms of judging
whether a term structure model is able to fit the cross section of yields, it is not obvious that
we should not also use this kind of model evaluation for judging a model’s ability to fit the
term structure of yield volatilities. Along that dimension, we find that the AFNS3 model,
which allows all three spanned factors to generate stochastic volatility, delivers a reasonable

fit to both the cross section of yields as well as the term structure of yield volatilities for both
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| Correlations between fitted and realized standard deviation series |

Maturity January 2, 1985 to December 31, 1991
in months | AFNSy | AFNS;-L | AFNS;-C | AFNS,-LC | AFNS,-SC | AFNS;
3 n.a. n.a. n.a. n.a. n.a. n.a.
6 n.a. n.a. n.a. n.a. n.a. n.a.
12 0 0.031 0.046 0.051 0.045 0.110
24 0 0.032 0.004 0.037 0.069 0.146
36 0 0.057 0.021 0.071 0.061 0.168
60 0 0.118 0.036 0.139 0.063 0.203
84 0 0.169 0.040 0.196 0.075 0.227
120 0 0.213 0.002 0.225 0.090 0.230
Maturity January 2, 1992 to December 31, 2002
in months | AFNSy | AFNS;-L | AFNS;-C | AFNS,-LC | AFNS.-SC | AFNS;
3 0 -0.255 -0.048 -0.258 -0.066 -0.191
6 0 0.019 -0.206 -0.011 0.129 0.093
12 0 0.277 0.037 0.296 -0.029 0.279
24 0 0.288 0.057 0.319 -0.036 0.204
36 0 0.322 0.088 0.365 -0.034 0.246
60 0 0.340 0.143 0.420 -0.039 0.355
84 0 0.335 0.154 0.412 -0.095 0.377
120 0 0.368 0.110 0.411 -0.223 0.389
Maturity January 2, 2003 to January 29, 2010
in months | AFNSy | AFNS;-L | AFNS;-C | AFNS,-LC | AFNS,-SC | AFNS;
3 0 0.231 -0.240 0.219 -0.058 0.031
6 0 0.256 -0.298 0.193 -0.039 0.012
12 0 0.280 -0.418 -0.052 -0.218 -0.231
24 0 0.279 -0.538 -0.419 -0.450 -0.485
36 0 0.277 -0.545 -0.466 -0.507 -0.522
60 0 0.236 -0.554 -0.476 -0.577 -0.571
84 0 0.159 -0.547 -0.450 -0.634 -0.613
120 0 0.086 -0.522 -0.340 -0.654 -0.580

Table 27: Correlations between Fitted and Realized Standard Deviation Series for
Three Subsample Periods in the U.K. Gilt Data.

The table presents the correlations between the 31-day fitted and realized standard deviations for the
U.K. gilt yield dataset over three sample periods. The top panel is based on the period from January
2, 1985 to December 31, 1991 (1770 daily observations). The middle panel is based on the period from
January 2, 1992 to December 31, 2002 (2744 daily observations). The bottom panel is based on the
period from January 2, 2003 to January 29, 2010 (1791 daily observations).

U.S. Treasury and U.K. gilt yields during the 25-year sample period analyzed here.

Finally, if we want to refine any of these models, we need to incorporate some of the
structure in the realized yield volatilities. Table 28 reports the results of a principal component
analysis based on the realized volatility for the six maturities in the U.K. gilt data that are
represented throughout the sample period. The analysis reveals that the first three prinicpal
components explain 99.68% of the variation. However, as shown in Table 29, the three

principal components are not particularly highly correlated with the estimated AFNS factors,
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Maturity Loading on

in months | First P.C. | Second P.C. | Third P.C.
12 -0.55 -0.57 0.57
24 -0.49 -0.18 -0.40
36 -0.44 0.06 -0.49
60 -0.35 0.34 -0.17
84 -0.29 0.47 0.19
120 -0.23 0.55 0.46

% explained 86.97 11.46 1.25

Table 28: Eigenvectors of the First Three Principal Components of the 31-Day
Realized Standard Deviation Series in the U.K. Gilt Data.

The loadings of yields of various maturities on the first three principal components of the realized
standard deviation series are shown. The final row shows the proportion of all realized volatility
variability accounted for by each principal component. The underlying data consist of daily U.K. gilt
zero-coupon bond yields from January 2, 1985 to March 1, 2010.

AFNS, AFNS;
Lt St Ct Lt St Ct
P.C. 1 0.475 | 0.068 | -0.155 || 0.473 | 0.082 | -0.174
P.C.2 |-0.171 | 0.235 | -0.017 || -0.172 | 0.218 | 0.059
P.C.3 0.243 | -0.130 | 0.039 || 0.249 | -0.129 | -0.020

Correlation

Table 29: Correlations Between Principal Components of the Realized Volatility
Series and the Estimated Factors in the AFNS; and AFNS3 Models in the U.K.
Gilt Data.

The table presents the pairwise correlations between the first three principal components of the six
31-day realized yield standard deviation series based on daily U.K. gilt yields for which the full sample
period is available and the three estimated factors in the AFNSy and AFNS3 models, respectively.

only the fairly high positive correlation between the first principal component and the AFNS
level factor appear worth mentioning, but it is still below 50%. Thus, additional factors are

required to match the realized yield volatility series more closely at high frequency.

6 Empirical Results with Daily U.S. Dollar Swap and LIBOR
Rates

Recent research by Collin-Dufresne et al. (CGJ, 2009) as well as Jacobs and Karoui (2009)
have examined the stochastic volatility present in U.S. dollar swap and LIBOR rates. These
studies use weekly data encompassing the period from January 1988 through December 2005.
In this section, we estimate our proposed AFNS models with stochastic volatility on this

dataset, but at daily frequency.?® The data set we examine consists of zero-coupon yields

36We thank Chris Jones for sharing these data with us.
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Figure 14: U.S. Dollar Swap and LIBOR Rates.

Ilustration of the U.S. swap and LIBOR rates. The sample covers daily data for the period from
January 4, 1988 to December 29, 2005. The yields shown have maturities in six months, two years,
five years, and ten years.

generated from daily swap and LIBOR rates from January 4, 1988 through December 29,
2005. For each observation date, the yield curves are constructed by bootstrapping all the
available swap and LIBOR rates. The eight maturities in the data set are 6 months and 1-,
2-, 3-, 4-, 5-, 7- and 10-years. These maturities were chosen because actual yield quotes were
observed for each day in the sample, which should ensure that the bootstrapped yields are
particularly accurate. For further details on this data set, please see the description in CGJ
(2009).

As we saw in the previous sections, three factors are sufficient to model the time variation
in the cross section of U.S. and U.K. government bond yields. Here, we make a similar
observation for the sample of U.S. swap and LIBOR rates. For this sample, 99.98% of the total
variation is accounted for by three factors. Table 31 reports the eigenvectors that correspond
to the first three principal components for this data. The first principal component accounts
for 96.5% of the variation in the swap and LIBOR rates, and its loading across maturities
is uniformly negative. Thus, like a level factor, a shock to this component changes all yields
in the same direction irrespective of maturity. The second principal component accounts for

3.3% of the variation of these data and has sizable negative loadings for the shorter maturities
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.Maturlty No. Mean Stc}. dev. Skewness | Kurtosis

in months | obs. | in % in %
6 4,456 5.10 2.27 0.01 2.40
12 4,456 5.34 2.23 0.02 2.43
24 4,456 5.71 2.09 0.03 2.41
36 4,456 6.00 1.98 0.05 2.38
48 4,456 | 6.23 1.89 0.09 2.33
60 4,456 | 6.42 1.83 0.12 2.28
84 4,456 6.70 1.72 0.20 2.20
120 4,456 6.98 1.62 0.29 2.16

Table 30: Summary Statistics for U.S. Dollar Swap and LIBOR Rates.
Summary statistics of the U.S. swap and LIBOR rates. The sample covers daily data for the period
from January 4, 1988 to December 29, 2005.

Maturity Loading on

in months | First P.C. | Second P.C. | Third P.C.

6 -0.40 -0.51 0.60

12 -0.40 -0.41 -0.03

24 -0.38 -0.16 -0.41

36 -0.36 0.03 -0.38

48 -0.35 0.17 -0.25

60 -0.33 0.28 -0.10

84 -0.31 0.41 0.17

120 -0.28 0.52 0.47

% explained 96.54 3.28 0.16

Table 31: Principal Component Analysis of U.S. Dollar Swap and LIBOR Rates.
The principal component analysis of the U.S. swap and LIBOR rates with maturities from six months
to ten years. The sample covers daily data for the period from January 4, 1988 to December 29, 2005.

and sizable positive loadings for the long maturities. Thus, like a slope factor, a shock to this
component steepens or flattens the yield curve. Finally, the third component, which accounts
for only 0.2% of the variation, has a U-shaped factor loading as a function of maturity, which
is naturally interpreted as a curvature factor. Again, these results motivate our use of the
Nelson-Siegel model with its level, slope, and curvature factor for modeling this sample of

U.S. dollar swap and LIBOR rates.

6.1 Conditional mean results

Table 32 presents the estimated parameters of our AFNS stochastic volatility models for
the U.S. dollar swap market. As expected, these estimates have important similarities with
the estimated parameters for the U.S. Treasury data presented earlier. In particular, the
persistence of each factor is close to the same across the two data samples. Also, the estimated

mean vector #F in each AFNS; specification is hardly distinguishable from the corresponding
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AFNS models with independent factors
Parameters | \pNg, | AFNS,-L | AFNS;-C | AFNS,-LC | AFNS,-SC | AFNS;
Y 0.0335 0.0490 0.0370 0.0473 0.0357 0.0610
(0.0737) | (0.0477) | (0.0769) | (0.0526) (0.0759) | (0.0338)
KL, 0.2275 0.2923 0.2424 0.2851 0.4274 0.3218
(0.130) (0.102) (0.147) (0.178) (0.147) (0.0978)
Ky 1.5156 2.5499 1.5874 2.5508 1.5494 1.8953
(0.247) (0.110) (0.356) (0.475) (0.354) (0.387)
or 0.0825 0.0520 0.0809 0.0536 0.0005 0.0234
(0.0215) - (0.0217) - (0.0231) -
or -0.0287 | -0.0157 | -0.0278 -0.0156 0.0493 0.0357
(0.0165) | (0.0169) | (0.0156) | (0.0180) (0.0120) | (0.00983)
or -0.0073 | -0.0000 0.0742 0.0805 0.0681 0.0569
(0.00399) | (0.00313) | (0.00400) | (0.00307) | (0.00494) | (0.00529)
o1 0.0059 0.0583 0.0060 0.0584 0.0059 0.0392
(0.00006) | (0.00013) | (0.00020) | (0.00012) | (0.00023) | (0.00046)
029 0.0135 0.0036 0.0092 0.0016 0.0688 0.0544
(0.00012) | (0.00003) | (0.00039) | (0.00001) | (0.00062) | (0.00051)
o33 0.0264 0.0038 0.0979 0.1097 0.1004 0.1464
(0.00021) | (0.00004) | (0.00084) | (0.00137) | (0.00256) | (0.00133)
511 - - - - - -
B1s - - - - 0.0000 -
- - - - (0.717) -
B3 - - 0.0000 - 0.0000 -
- - (0.878) - (1.03) -
Bar - 303.3 - 1,494 - -
- (0.113) - (0.838) - -
Baz - - - - - -
Bas - - 15.66 0.0050 - -
- - (2.55) (0.773) - -
Ba1 - 1,039 - - - -
- (0.0921) - - - -
Ba2 - - - - - -
533 - - - - - -
0% - 2,547 - 2,537 — 1,425
- (0.0981) - (0.658) - (43.4)
0s - - - - 0.08 0.0509
- - - - - (0.00041)
03 — — 0.08 0.08 0.0737 0.0462
- - - - (0.00271) -
) 0.3890 0.4925 0.3791 0.4808 0.3760 0.3126
(0.00131) | (0.00141) | (0.00131) | (0.00140) | (0.00127) | (0.00066)
Max log L | 232,737.6 | 236,659.5 | 232,592.9 | 236,509.8 | 232,165.1 | 218,807.3

Table 32: Parameter Estimates for AFNS; Models with the Independent-Factors
Specification for U.S. Dollar Swap Data.

The table contains the estimated K matrix, ¥ vector, ¥ matrix, 69 vector, as well as the estimated
A parameters for the independent-factors specification of the P-dynamics in the AFNS; models, all
estimated for the U.S. dollar swaps and LIBOR rates. Estimated standard deviations of the parameter
estimates are given in parentheses. The maximum log-likelihood values are reported, although the
models are non-nested.

99



Maturity RMSE for fitted standard deviations
in months | AFNSy | AFNS;-L | AFNS;-C | AFNS,-LC | AFNS,-SC | AFNS;
6 28.26 27.40 28.29 27.49 28.20 16.02
12 9.99 9.27 10.04 9.34 10.05 0.67
24 0.33 0.08 0.38 0.13 0.46 5.02
36 0.74 0.63 0.74 0.63 0.73 2.72
48 0.00 0.00 0.00 0.00 0.00 0.31
60 0.60 0.42 0.60 0.42 0.60 2.06
84 1.00 0.51 0.98 0.50 0.99 5.04
120 5.21 4.04 5.19 4.00 5.16 10.02

Table 33: RMSE of the Fitted Yields from AFNS; Models for U.S. Dollar Swap
Data.

The table presents the RMSE values for the daily fitted yields from the AFNS models with stochastic
volatility estimated on the U.S. dollar swap dataset.

estimates for U.S. Treasury yields. As for the o volatility parameters, they are harder to
compare across data sets, even for identical AFNS; specifications, as their estimated value is
impacted by the size of the § volatility sensitivity parameters, which do vary quite a bit across
the two samples although they still indicate that there is no role for the slope or curvature
in the volatility of the level factor, while the level factor does have a role in the volatility
of the other two factors. Finally, the A parameters have lower estimated values in the U.S.
dollar swap data relative to both the U.S. Treasury and U.K. gilt data. This implies a slower
decay in the factor loading of the slope and curvature factor, which appears reasonable as the
constellation of maturities in the U.S. swaps data is skewed slightly towards longer maturities
relative to the samples of U.S. Treasury and U.K. gilt yields analyzed previously.

With respect to the in-sample fit of the yield curve presented in Table 33, the RMSE
values of the fitted yields across the AFNS; models are not that different from each other.
This result suggests that, as in the U.S. Treasury data, the introduction of stochastic volatility
factors does not affect the overall performance of AFNS models. All six AFNS; models fit the
two- to ten-year range very well, while they all underperform for the six-month LIBOR. Note
also that the fit of the AFNS3 specification preferred in the analysis of the U.S. and U.K.
government bond yields is on par with that of the other models. Hence, the performance of

the models is better judged with respect to their fitted volatility measures.

6.2 Conditional variance results

If we examine the models’ performance with respect to the data’s realized volatility, we again
find that the AFNS3 specification generates reasonable fitted standard deviations, but other

models also perform reasonably.
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Figure 15: Fitted Standard Deviations from the AFNS; Models for U.S. Dollar
Swap and LIBOR Data.

Figure 15 presents the fitted one-month conditional standard deviations of the six-month
LIBOR rate and the two-, five- and ten-year swap rates calculated based on the full sample
estimation for each of the six AFNS; models.3” We note that the AFNS; model produces
the lowest fitted yield volatility, while the AFNS;-L and AFNS,-L,C models systematically

3TThe figure shows the square root of
1 /
Vi lyr (7)) = —B(7) V" [X7]B(7),

where V;7[X7r] is the conditional covariance matrix of the state variables, T' —t =
10 years, respectively.

and 7 = 0.5, 2, 5, and

127
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Correlation Six-month LIBOR

AFNSy AFNS;-L AFNS;-C  AFNS.-LC  AFNS,-SC AFNS3
AFNSq 1 0 0 0 0 0
AFNS;-L 1 0.396 1.000 0.000 0.389
AFNS;-C 1 0.398 0.015 0.195
AFNS,-LC 1 0.000 0.390
AFNS,-SC 1 0.909
AFNS3 1
Correlation Two-year swap rate

AFNSy AFNS;-L. AFNS;-C AFNS,-LC  AFNS,-SC AFNS3
AFNSq 1 0 0 0 0 0
AFNS;-L 1 0.396 0.999 0.016 0.493
AFNS;-C 1 0.428 0.057 0.301
AFNS,-LC 1 0.032 0.508
AFNS,-SC 1 0.867
AFNS;3 1
Correlation Five-year swap rate

AFNSy AFNS;- AFNS;-C AFNS,-LC  AFNS,-SC AFNS3
AFNSq 1 0 0 0 0 0
AFNS;-L 1 0.398 0.989 0.203 0.787
AFNS;-C 1 0.521 0.529 0.804
AFNS,-LC 1 0.314 0.866
AFNS,-SC 1 0.633
AFNS3 1
Correlation Ten-year swap rate

AFNSy AFNS;-I. AFNS;-C AFNS,-LC  AFNS,-SC AFNS3
AFNSq 1 0 0 0 0 0
AFNS;-L 1 0.397 0.996 0.292 0.880
AFNS;-C 1 0.467 0.743 0.764
AFNS,-LC 1 0.365 0.914
AFNS,-SC 1 0.614
AFNS3 1

Table 34: Pairwise Correlations of the One-Month Conditional Standard Deviation
of One U.S. LIBOR and three U.S. Swap Rates in the AFNS; Models.

The table contains the pairwise correlations between the one-month conditional standard deviations
of the six-month LIBOR and two-year, five-year, and ten-year U.S. swap rates as estimated by the
AFNS,; models. The estimation is based on daily observations from January 4, 1988 to December 29,
2005.

produce higher fitted yield volatilities than any of the other models.

Table 34 reports the pairwise correlations of the fitted yield volatilities across the six
models for those same four yield maturities. Again, the AFNS;-L and AFNS,-L,C are essen-
tially perfectly correlated. Also, the AFNS,-S,C and AFNS3 models exhibit a higher degree
of covariation between their fitted yield volatilities than in the previous data sets for U.S.
and U.K. government bond yields. Finally, the AFNS;-C model is characterized by fitted

yield volatilities that have a relatively low correlation with the fitted measures from the other
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Maturity Ratios of variation for the fitted AFNS standard deviations
AFNSy | AFNS;-L | AFNS;-C | AFNS,-LC | AFNS,-SC | AFNS3

6 0.00 0.87 0.20 0.85 0.96 1.00
12 0.00 0.91 0.21 0.88 0.96 1.00
24 0.00 1.02 0.24 0.95 0.97 1.00
36 0.00 1.25 0.32 1.07 0.93 1.00
48 0.00 1.34 0.37 1.10 0.80 1.00
60 0.00 1.30 0.37 1.06 0.57 1.00
84 0.00 1.25 0.34 1.04 0.44 1.00
120 0.00 1.22 0.27 1.07 0.32 1.00

Table 35: Ratios of Variation between AFNS,; Fitted Standard Deviations for U.S.
Dollar Swap and LIBOR Rates.

The table presents the ratios of variation between AFNS; fitted standard deviations, which are calcu-
lated as the standard deviation of a model’s fitted yield volatility for a given maturity divided by the
standard deviation of the corresponding fitted yield volatility from the AFNS3 model.

Maturity | Mean | Std. dev. | Std. dev.
in months | in bps in bps ratio
6 17.73 10.38 1.16
12 23.95 10.40 1.16
24 28.81 10.44 1.16
36 29.70 9.92 1.11
48 29.74 9.65 1.08
60 29.60 9.48 1.06
84 29.25 9.20 1.03
120 29.04 8.96 1.00

Table 36: Summary Statistics for the 31-Day Realized Standard Deviation Series
based on Daily U.S. Dollar Swap and LIBOR Data.

The summary statistics are for the 31-day rolling realized standard deviations based on daily U.S.
dollar swap and LIBOR rates over the period from January 6, 1988 to December 31, 2002. The
standard deviation ratio is calculated as the standard deviation in question divided by the standard
deviation for the ten-year maturity.

models.

In terms of variation in the generated yield volatility, Table 35 reveals that several of the
AFNS; models produce fitted yield volatilities with at least as much variation as that of the
AFNS3 model. Equally visible is the very low variation in the fitted volatility of the AFNS;-C
model.

Figure 15 also presents the 31-day-ahead realized standard deviations of the six-month
LIBOR rate and the two-, five- and ten-year swap rates calculated from the sample of daily
data. Table 36 contains the summary statistics of the realized volatility measures and shows
that the unconditional volatility of the realized volatility of the swap and LIBOR rates has
a hump-shaped pattern that peaks at the one-year maturity but declines steadily up to the
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Maturity Correlations between fitted and realized standard deviation series
in months | AFNSy | AFNS;-L | AFNS;-C | AFNS,-LC | AFNS,-SC | AFNS;
6 0 0.633 0.229 0.633 0.065 0.298
12 0 0.546 0.218 0.546 0.023 0.229
24 0 0.408 0.131 0.406 -0.113 0.078
36 0 0.303 0.048 0.289 -0.201 0.019
48 0 0.230 -0.024 0.202 -0.250 -0.007
60 0 0.191 -0.075 0.154 -0.264 0.015
84 0 0.174 -0.118 0.140 -0.271 0.019
120 0 0.235 -0.093 0.212 -0.235 0.107

Table 37: Correlations between Fitted and Realized Standard Deviation Series for
the Full Sample of U.S. Dollar Swaps Data.

The table presents the correlations between the monthly, fitted and realized standard deviations for
the U.S. dollar swaps dataset over the full sample period from January 4, 1988 through December 29,
2005.

ten-year maturity. Furthermore, we note that the means of the realized volatility measure
are slightly higher for the one- to ten-year maturity, while the mean realized volatility of
the six-month LIBOR is about 1.5 basis points lower than the corresponding number for the
six-month U.S. Treasury yield. Of course, this comparison does not correct for the differences
in sample periods and should be interpreted with caution.

With respect to the correlations between the fitted and realized standard deviations, Table
37 shows that several models, including the AFNS3 model, exhibit low and often negative
values as before. However, the AFNS;-L. and the AFNS»-L,C models generate very high
correlations at the short maturities (on the order of 50%) and reasonably high correlations
for longer maturities (on the order of 20%). This good performance suggests that the level
factor plays an important role in the stochastic volatility exhibited by this dataset over the
full sample. Table 38 shows the correlations for three subsample periods: 1988-1991, 1992-
2002, and 2003-2005. As noted by Jacobs and Karoui (2009), most of the models’ correlations
deteriorate for the middle 1992-2002 sample period for as yet unclear reasons. In the early
1988-1991 period, we see correlations as high as 50% for AFNS;{-L, AFNS,-L.C, AFNS3
models, and the first two models preserve those high correlations in 2003-2005 period, whereas
the AFNS3 continues to exhibit negative correlations in that period.

If, instead of simple correlations, we focus on how close the fitted yield volatilities are to
the series of realized yield volatility, the results look more favorable for the spanned factors.
Table 39 reports the RMSEs of the fitted yield volatilities in the six AFNS; models. We note
that the AFNS3; model again stands out with the closest fit to the volatility of the short- and
medium-term swap rates with RMSEe starting at 16 basis points for the six-month LIBOR
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| Correlations between fitted and realized standard deviation series |

Maturity January 6, 1988 to December 31, 1991

in months | AFNSy | AFNS;-L | AFNS;-C | AFNS,-LC | AFNS,-SC | AFNS;

6 0 0.024 -0.528 0.021 0.407 0.428

12 0 0.085 -0.551 0.077 0.497 0.523

24 0 0.182 -0.558 0.156 0.431 0.467

36 0 0.261 -0.547 0.192 0.355 0.354

48 0 0.329 -0.551 0.230 0.287 0.180

60 0 0.386 -0.553 0.278 0.117 -0.112

84 0 0.465 -0.532 0.388 -0.072 -0.122

120 0 0.536 -0.477 0.493 -0.291 0.006
Maturity January 2, 1992 to December 31, 2002

in months | AFNSy | AFNS;-L | AFNS;-C | AFNS,-LC | AFNS.-SC | AFNS;

6 0 0.338 0.256 0.339 -0.328 -0.238

12 0 0.284 0.290 0.286 -0.351 -0.291

24 0 0.248 0.253 0.253 -0.381 -0.316

36 0 0.213 0.200 0.215 -0.386 -0.239

48 0 0.165 0.147 0.157 -0.376 -0.137

60 0 0.118 0.101 0.103 -0.325 -0.014

84 0 0.056 0.047 0.038 -0.286 -0.014

120 0 0.051 0.047 0.038 -0.247 0.015
Maturity January 3, 2003 to November 28, 2005

in months | AFNSy | AFNS;-L | AFNS;-C | AFNS,-LC | AFNS,-SC | AFNS;

6 0 0.338 0.026 0.339 -0.350 -0.324

12 0 0.371 -0.115 0.370 -0.406 -0.415

24 0 0.608 -0.233 0.603 -0.636 -0.610

36 0 0.658 -0.298 0.624 -0.682 -0.540

48 0 0.674 -0.346 0.600 -0.696 -0.371

60 0 0.670 -0.385 0.570 -0.680 -0.099

84 0 0.635 -0.448 0.542 -0.674 -0.033

120 0 0.564 -0.492 0.501 -0.650 -0.009

Table 38: Correlations between Fitted and Realized Standard Deviation Series for
Three Subsample Periods in the U.S. Dollar Swap and LIBOR Data.

The table presents the correlations between the monthly, fitted and realized standard deviations for
the U.S. dollar swap and LIBOR, dataset over three sample periods. The top panel is based on the
period from January 4, 1988 to December 31, 1991 (995 daily observations). The middle panel is based
on the period from January 2, 1992 to December 31, 2002 (2721 daily observations). The bottom panel
is based on the period from January 2, 2003 to November 28, 2005 (719 daily observations).

down to 11 basis points for the three-year swap rate. For the longer-term swap rates it
performance is on par with the second best model, the AFNS,-S,C model, both producing
RMSEs around 10 basis points for the five- to ten-year maturity range. On the other hand,
the AFNS;-L and AFNS,-L,C models that had relatively high positive correlations with
the realized volatility series produce disappointingly high RMSEs as they imply fitted yield
volatility that is systematically too high as can be seen in Figure 15

In summary, AFNS models that incorporate stochastic volatility seem able to generate
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Maturity RMSE for fitted standard deviations
in months AFNSg AFNS;-L AFNS;-C AFNS,-LC AFNS,-SC AFNSs3
Mean | RMSE Mean | RMSE Mean | RMSE Mean | RMSE Mean | RMSE Mean | RMSE
6 23.03 25.26 43.81 44.55 22.98 25.11 43.31 44.06 25.63 28.71 11.42 16.16
12 15.61 18.76 36.22 37.30 15.59 18.61 35.79 36.86 18.10 22.24 5.01 12.72
24 9.08 13.83 29.54 31.18 9.08 13.77 29.20 30.81 11.28 17.33 0.56 12.17
36 6.35 11.78 26.56 28.47 6.35 11.84 26.34 28.17 7.96 14.49 1.50 11.41
48 5.07 10.90 24.82 26.93 5.07 11.10 24.71 26.71 6.20 12.96 2.95 11.34
60 2.59 9.83 21.40 23.78 2.61 10.13 21.52 23.76 3.14 11.03 3.67 11.23
84 0.10 9.20 18.45 21.01 0.16 9.52 18.76 21.18 0.39 9.99 2.40 10.56
120 -3.36 9.57 14.79 17.50 -3.27 9.72 15.31 17.88 -3.23 9.96 -1.11 9.66

Table 39: RMSE for the Monthly Fitted Conditional Standard Deviations.

The table presents the RMSE values for the monthly model-based fitted standard deviations relative
to the 31-day realized standard deviations based on the daily U.S. dollar swap and LIBOR rates over
the period from January 4, 1988 to December 29, 2005.

fitted standard deviations that match some part of the realized standard deviations. If we use
simple correlations as a performance measure, the AFNS;-L model performs well with strictly
positive correlations for all maturities for the full sample as well as for the three subsample
periods. For the six-month LIBOR, which was the focus of attention in CGJ (2009), this model
produces a full sample correlation as high as 63.3%. If, instead, performance is measured by
the closeness of the fitted yield volatility to the corresponding realized measure, the AFNSg
model performs well with low RMSEs at all maturities. Thus, it is feasible for spanned factors
to match important aspects of the realized yield volatility in this sample of U.S. dollar swap
and LIBOR rates, and the common element of the best fitting models is the presence of the
level factor as a driver of the volatility dynamics. Further analysis is required to determine
why this factor appears to play a greater role in the swaps data than in the Treasury data.
However, a principal components analysis of the eight realized yield standard deviation series
shows that the first three components account for 99% of the variation in the data, see Table
40, and the AFNS level factor is the spanned factor with the highest correlation with all three

of those principal components as evidenced in Table 41.

7 Conclusion

In this paper, we extend the AFNS model introduced by CDR (2007) to incorporate stochastic
volatility. We do so by proposing five new specifications whose sources of stochastic volatility
are different permutations of the AFNS model’s three spanned factors. Our empirical exercises
show that the introduction of these volatility factors does not have a significant impact on

the models’ fitted yield values relative to the constant volatility AFNSy model. Furthermore,
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Maturity Loading on

in months | First P.C. | Second P.C. | Third P.C.

6 -0.32 -0.61 0.48

12 -0.37 -0.45 -0.03

24 -0.40 -0.17 -0.39

36 -0.38 0.05 -0.38

48 -0.37 0.21 -0.24

60 -0.35 0.30 -0.05

84 -0.33 0.37 0.27

120 -0.31 0.34 0.58

% explained 83.39 13.02 2.51

Table 40: Eigenvectors of the First Three Principal Components of the 31-Day
Realized Standard Deviation Series for U.S. Dollar Swap and LIBOR Rates.
The loadings of yields of various maturities on the first three principal components of the realized
standard deviation series are shown. The final row shows the proportion of all realized volatility
variability accounted for by each principal component. The underlying data consist of daily U.S. swap
and LIBOR zero-coupon rates from January 4, 1988 to December 29, 2005.

. AFNS, AFNS;
Correlation I S, c T S, c
PC. 1 -0.387 | 0.168 | -0.046 || -0.364 | 0.147 | -0.080

P.C.2 0.409 | 0.346 | 0.357 0.459 | 0.348 | 0.133
P.C. 3 0.323 | 0.031 | -0.094 || 0.343 | 0.029 | -0.125

Table 41: Correlations Between Principal Components of the Realized Volatility
Series and the Estimated Factors in the AFNS; and AFNS3; Models for U.S.
Dollar Swap and LIBOR Data.

The table presents the pairwise correlations between the first three principal components of the eight
31-day realized yield standard deviation series based on daily U.S. dollar swap and LIBOR rates and
the three estimated factors in the AFNSy and AFNS3 models, respectively.

our results suggest that certain of these models, particularly the AFNS3 model based on
all three factors exhibiting stochastic volatility, are able to generate a reasonable amount of
volatility dynamics in sample. In particular, for our daily U.S. Treasury and U.K. gilt yields
datasets, the AFNS3 model generates the most variation in its fitted standard deviations and
provides the closest fit to our realized volatility measures in addition to exhibiting the best
correlations for the pre-1992 period. For the daily U.S. dollar swap and LIBOR dataset, the
AFNS3 model also produces the overall closest fit to the realized yield volatility measures.
However, in terms of correlations, the two models with stochastic level factor, the AFNS;-L
and the AFNSs-L,C models, stand out with positive, and frequently high, correlations with
the realized measures. In conclusion, we find evidence that the extended AFNS modeling
framework captures an important fraction of the stochastic volatility observed in all three

data sets in addition to preserving the good in-sample yield fit and ease of estimation that
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is the advantage of the original Gaussian AFNSy model class. Still, at daily frequency, parts
of the observed volatility in interest rates is only weakly associated with any of the spanned

term structure factors.
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Appendix
This appendix contains additional details of the five model specifications.

The AFNS; model with stochastic volatility through the level factor

In this model class, the Q-dynamics are assumed to be

dx} 107 0 0 0% X}
dX? = 0 A =X 03 | —| x? dt
dx;} 0 0 A 03 X3
on 0 0 X} 0 0 dw e
+ 021 022 0 0 vat +521th 0 thZ,Q

031 032 033 0 0 V14 B X} dwe

This structure implies that v and § in the system of ODEs provided in Equations (2) and (3) are given by

0 1 0 O
y=| 1| and 6=| g 0 0 [,
1 Bsi 0 0O

and B'(t,T), B(t,T), and B3(t, T) are the unique solutions to the following system of ODEs

dB'(¢,T) 1 106

- 0 0 B'(t,T)
wren | o= |1 [+ 0o A 0 B*(t,T)
45°0.T) 0 0 =X A B3(t,T)
3 [ 011 021 031 (Bl)2 B'B? B'B? o1 0 0
- %Z 0 o 032) B'B? (B?)? B2B3 o o2 0 (&%)
=t 0 0 o3 B'B* B?B® (B%)? 031 032 033

3>
To detail the essentially affine risk premium specification first introduced in Duffee (2002) for this class of

models, start by defining the matrices D(X;) and D™ (X,) as

X} 0 0 0 0 0
_ 1
D(X;) = 0  /1+p8nX] 0 and D7 Y(X,)=] 0 Wi 0
1 1
0 0 VIF B X; 0 0 T

In the essentially affine risk premium specification for the A;(3) class of models considered here, I'; is

given by
" 0 0 O X}
I't = D(Xy) ’Y% +D71(Xt) ’Y%l ’732 ’Y%S th
V3 Yo v s X}

By implication, there is a total of 9 free parameters in the essentially affine risk premium specification of I';
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in this case. From the structure of I'y, it follows that the product D(X:)I'+dt is given by

Xiyi 0
D(X)Awdt = | (14 BaXi)ys | dt+ | 51 X) + 73 X7 + 453X | dt.
(1+ Bs1 X1 )3 Vi X¢ 475 X7 4 133 X}

By deducting the term XD(X:)I'+dt from the SDE for the Q-dynamics and replacing thQ with dW,”, we

obtain the SDE for the P-dynamics which, without loss of generality, can be written as

ax} Koo o0 \[[er X}
dX t2 = H§1 Hzl?z ff§3 95 - X7:2 dt
aX, tS 551 552 Fé§3 L 95 XtS
on 0 0 e 0 0 dw}"
+ on o2 0 0 /148Xt 0 dwz’

031 032 033 0 0 V14 B X} th3’P

From the structure of the product D(X:)A.dt it is clear that all drift parameters for the last two factors, Xf
and X7, are allowed to vary freely when we move from the Q-dynamics to the P-dynamics detailed above.
However, for the first factor with stochastic volatility there is a restriction on the value of 8 given by the
equation

1075 .69 = k107,

By implication, 6 and 9? cannot both vary freely when we switch from the @)-measure to the P-measure
under the essentially affine risk premium structure.
If we use the extended affine risk premium specification, the X;-process has to satisfy the Feller condition

under both probability measures, i.e.

1 _ 1
nﬁ@f > Ea'fl and 107° ~91Q > Ea'fl.

Here, it is obvious that with our requirement of /{% = 107% needed to obtain a level factor structure as similar
as possible to the one in the Nelson-Siegel model, the Feller condition for X} cannot reasonably be expected
to be satisfied under the Q-measure as X} is close to a unit-root process. As a consequence, we limit ourselves
to the essentially affine risk premium specification for this model class. Thus, we have to maintain the above

restriction on the value of 6.

The AFNS; model with stochastic volatility through the curvature factor

In this model class, the Q-dynamics are assumed to be

dxi 0 0 0 0% X}
dX? = 0 A =\ 08 | —| x? dt
dx;} 0 0 A 0% X3

o1 012 013 V1+ B3 X} 0 0 dw e
+ 0 022 023 0 V14 /623Xt3 0 thZ,Q

0 0 o3 0 0 X7 dW €
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This structure implies that v and § in the system of ODEs provided in Equations (2) and (3) are given by

1 0 0 fis
Y= 1 and = 0 0 Qo3 )
0 0 0 1

and B'(¢,T), B*(t,T), and B®(t,T) are the unique solutions to the following system of ODEs

dE_(.T) 1 0 0 B(t,T)
D | = | [+l 0 A 0 B(1,T)
4B T) 0 0 —x A B3(t,T)
[ on 0 0 (B> B'B* B'B? o 012 013
- %Z o12 02 0 B'B®> (B?? B’B? oo O 023 &7y
jzl_ 013 023 033 B'B* B?B* (B®)? 0 0 o33

To detail the extended affine risk premium specification for this class of models, start out by defining the

matrices D(X;) and D™'(X;) by

1
V1T BX? 0 0 T 00

— -1 —
D(X;) = 0 V14 6XP 0 and D Y(X;) = 0 \/ﬁ

3
For this model class the extended affine specification of I'; is given by
7 Yo vt s X 00 0 0
De=D(Xe) | a3 | +D7 (X | 43 73 3 x|+ 00 0 0
1 <
V3 0 0 0 X} 00 7= 73

By implication, there is a total of 10 free parameters in this specification of I't. Now, the product D(X¢)I':dt

is given by
(1 + BisXP)vi THXE + Ve X? + 71 XP 0
D(X)Tidt = | (14 BosXP)vs | dt+ | v X +156X2+45:X7 |dt+ ]| 0 |dt.
X3 0 73

By deducting XD(X¢)I'+dt from the SDE for the Q-dynamics and replacing thQ with dW{, we obtain the
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SDE for the P-dynamics which, without loss of generality, can be written as

1 P P P
dX; K11 Riz2 K13
2 _ P P P
dX; = K21 K22 Ka3
ax? 0 0 riy

11 J12 J13
+ 0 022 023

0 0 033

From the specification of T'; it is clear that if X7 hits the zero boundary, the term

o
0 | —
05
V1+BisX}
0
0

X
X2 dt
X7
0 0 dwr
V14 P2 X} 0 dwz’
0 X3 dw2"r

;3 in the extended affine
t

risk premium specification explodes. In order to keep the model arbitrage-free, this has to be prevented by

requiring that the parameters for the X3-process satisfy the Feller condition under both measures, i.e.

1 1
K§39§ > 50’%3 and )\03Q > 50’%3.

The AFNS:; model with stochastic volatility through the level and curvature factor

In this model class, the Q-dynamics are assumed to be

dx} 107% 0 0
dX? = 0 X =X
ax3 0 0 X
011 0 0

+ 021 022 023

0 0 o33

0% X}

09 | - x2 ||at

03 X3
X] 0 0 dw}e
0 V1+08aXF+068X2 0 dw2e
0 0 X3 dw2e

This structure implies that v and ¢ in the system of ODEs provided in Equations (2) and (3) are given by

1 0 0
and §= B21 O oz |,
0 0 1

and B'(t,T), B(t,T), and B3(t, T) are the unique solutions to the following system of ODEs

dB! (t,T) -6
—r 1 10
dB?(t,T) _
—r = 1 + 0
aB3(t,T)
— 0 0
1 3 [ o111 021
- 3 Z 0 o022
=1 L\ 0 o2

B(t,T)

B*(t,T)

B3*(t,T)

(B"Y? B'B* B'B? o1 0 0

B'B> (B*? B°B® 021 o2 Oas (&7)".
B'B® B?B* (B%)? 0 0 o3

JJ

To detail the extended affine risk premium specification for this class of models, start by defining the

matrices D(X;) and D™!(X;) by
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X7 0 0 0 0 0

_ 1
DX)=| 0 ViFEX[+sXi 0 | ad D'X)=| 0 om0
0 0 X3 0 0 L

VP

The reason why element (1,1) in D™*(X;) cannot equal \/1X_1 is that this term is only well defined if X} is
t

positive a.s. However, with the near unit-root property n% = 107% imposed, X} is likely to hit zero under the

@Q-measure. Hence, the above is the appropriate specification of Dil(Xt) in this model class.

The maximally flexible extended affine specification of I'; in this class of models is given by

A 0 0 0 X} 00 0 0
De=DXe) [ 3 | +D (X | 43 2% 3 Xt |+ 00 0 0
75 ¥ 0 0 X} 00 \/}—ts 73
This implies that D(X:)I'+dt is given by
i X{ 0 0
D(X)Twdt = | 73(1+ B X} + BosXP) | dt+ | v X! +93.X7 +3,X3 |dt+ ]| o |dt
X7 Y Xi 73

By deducting XD(X¢)I':dt from the SDE for the Q-dynamics and replacing thQ with dW{, we obtain the
SDE for the P-dynamics which, without loss of generality, can be written as

ax} k0 0 oF X}
dx7 = Kby Kby Kby 05 - X7 dt
dx;} Ky 0 ki ) [\ 65 X3
on 0 0 X] 0 0 dw}r?
+ O21 022 023 0 V14 B X+ Bas X7 0 thz’P
0 0 o33 0 0 X7 dwi?

Note that X} can have a different rate of mean-reversion under the P-measure relative to that under the Q-
measure, but it is not possible to change the constant term through the measure change. Thus, the following
equation has to be satisfied

107%. 09 = xh 67

Furthermore, the limited risk premium specification due to the near unit-root property of X} also implies that

X2 cannot impact the drift of X} (/{{33 = 0) once fi% has been fixed at 0, which we need to get as close as

possible to the desired Nelson-Siegel factor loading structure.®

From the specification of T it is clear that, if X7 hits the zero boundary, the term —2 = in the extended

t
affine risk premium specification will explode. In order to keep this class of models arbitrage-free, such infinite

profit opportunities must be eliminated which is done by requiring that the parameters for the X3-process

38Note that k15 and m% must be zero under all circumstances as the unconstrained process X7 cannot be
allowed to impact the drift of any of the two square-root processes.
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satisfy the Feller condition under both measures, i.e.

1 1
k507 + k508 > 5033 and  X\0F > 5033.

The AFNS; model with stochastic volatility through the slope and curvature factor

In this model class, the Q-dynamics are assumed to be

dx} 0 0 0 0% X}
dx? = 0 A -\ 09 | - x? dt
dx;} 0 0 A 03 X3}
o1 O12 013 \/1 + P12 X2 + 13 X} 0 0 thl’Q
+ 0 o2 O 0 X2 0 dw 2@
0 0 o3 0 0 X7 dw e

This structure implies that v and § in the system of ODEs provided in Equations (2) and (3) are given by

1 0 pPi2 fi3
¥ = 0 and 6 = 0 1 0 )
0 0 0 1

and B'(¢,T), B*(t,T), and B*(t,T) are the unique solutions to the following system of ODEs

dB'(¢,T) 1 0

- 0 B'(t,T)
dBA(LT) = [ 1+l 0o x o B(t,T)
45°0.T) 0 0 =X A B3(t,T)
([ 0n 0 0 (B"Y? B'B* B'B? o 012 013
- %Z 12 o2 O B'B* (B*? B’B? 0 o2 O (7).
=\ o 0 o B'B® B?B® (B%)? 0 0 o3

J»J

To detail the extended affine risk premium specification for this class of models start by defining the

matrices D(X;) and D™'(X;) by

S
VI+ 682X+ Bi3X; 0 0 X2 s xE 0 0

D(X,) = 0 X2 0 and D™'(X;) = 0 1X§ 0
0 0 X7 0 0 =

The maximally flexible extended affine specification of I'; in this class of models is given by

’Y% ’Y%l 7%2 7%3 th 0 0 0 0

_ 1 .

Ii=D(X)| v [+D7'xX)| 0o 0 % x|+l 7= 0 73
V3 0 5 O X7 0 0 ! 73

39For X} we just need to ensure that the process does not turn negative. This is assured provided that
107909 > 0 and <1167 > 0.
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This implies that D(X:)I'+dt is given by

(1 + B2 X7 + f13X?) VI X+ XE + i X 0
D(X)Idt = 3 X} dt + V35 X} dt+ | ~3 | dt
3 X7 V3o X7 V3

By deducting XD(X¢)I'+dt from the SDE for the Q-dynamics and replacing thQ with dW{, we obtain the

SDE for the P-dynamics which, without loss of generality, can be written as

X} T e P b
dX? = 0 kb ki or | - | x? dt
dx; 0 ki riy ) |\ 6F X3
o1l 12 O13 V14 B2 X2+ 83X 0 0 dwrr
+ 0 o2 0 0 Xz 0 dwp "
0 0 o33 0 0 X3 dw2t

From the specification of T; it is clear that if either X7 or X} hits the zero boundary the corresponding terms

L
VX?

models arbitrage-free such infinite profit opportunities must be eliminated. This is done by requiring that the

or \/% in the extended affine risk premium specification will explode. In order to keep this class of
t

parameters for the X?- and X7-processes satisfy the Feller condition under both measures, i.e.
1 1
n§20§ +n§39§ > 5052 and )\0§ — )\93Q > 50’527

and

1 1
k08 + k508 > 5033 and  \0F > 5033.

Furthermore, to have well-defined processes for X7 and X3, the sign of the effect they have on each other must

be positive. Thus, we need to impose the following non-positive boundaries
m§3 <0 and n§2 <0.
This implies that the two square-root processes cannot be negatively correlated.

The AFNS3; model with three stochastic volatility factors

In this model class, the Q-dynamics are assumed to be

dx} 107 0 0 0% X}
dx? = 0 A =X 0% | — XE) dt
dx;} 0 0 A 63 X}
on 0 0 X 0 0 dw}e
+ 0 o2 O 0 X2 0 AW
0 0 o3 0 0 X} dw 29
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This structure implies that v and § in the system of ODEs provided in Equations (2) and (3) are given by
1 0 O

y=1| 0 and 6= 0 1 0 |,
0 0 1

and B'(¢,T), B*(t,T), and B®(t,T) are the unique solutions to the following system of ODEs

4B (LT) 1 10° 0 0 B'(t,T)
dBA(LT) = 1|+ 0 A0 B%(t,T)
T 0 0 —A A B3(t,T)
[ on 0 0 (BY? B'B®> B'B® cn 0 0
- %Z 0 o2 O B'B* (B*® B’B? 0 o2 O (7).
N 0o 0 o B'B® B2B? (B%)? 0 0 om /]

To detail the extended affine risk premium specification for this class of models, start by defining the

matrices D(X;) and D™'(X;) by

xXT 0 0 00 0
Dx)=| o X2 0 and DM (X)=| 0 7z O

0 0 VX 0 0 \/;_g

Similar to the previous models with stochastic volatility via the level factor, element (1,1) in D™*(X;) cannot

1 . . . . 1 . e . .
equal 75T since this term is only well defined if X; is positive a.s. and with the near unit-root property

imposed via /{% = 107%, X} is likely to hit zero under the Q-measure. Hence, the above is the appropriate

specification of D™ (X}) in this model class.

The maximally flexible extended affine specification of I'; in this class of models is given by

o
o

A 0 0 0 be 0 0
_ 1 .
Pe=DX) | a4 [+D7' (X0 | 3 0 o || X2 |+ 0 7m0 "
1 2 2 3 1 3
V3 Y31 V32 0 Xi 0 0 /X3 V3
This implies that D(X:)I'+dt is given by
7Xi 0 0
DX)Twdt = | 3 X7 [ di+ [ 43 X¢ +43X7 [ di+ [ 43 | dt.
73 X7 Vi Xi + 5 X? Vs

By deducting XD(X¢)I'+dt from the SDE for the Q-dynamics and replacing thQ with dW{, we obtain the
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SDE for the P-dynamics which, without loss of generality, can be written as

dxi kb 0 0
dXt2 = H§1 ffgz ff§3
dx; 1451 ’452 ’453

o11 0 0

+ 0 o022 O
0 0 033

oF X}

oy | - x? dt

05 X}

X 0 0 dw"
0 XZ 0 dwz’
0 0 X3 dw2"r

Note that X} can have a different rate of mean-reversion under the P-measure relative to that under the Q-

measure, but it is not possible to change the constant term through the measure change. Thus, the following

equation has to be satisfied

1075 .69 = k107,

The limited risk premium specification due to the near unit-root property of X} also implies that X7 and X7

cannot impact the drift of X} once £% and % have been fixed at 0, which we need to get as close as possible

to the desired Nelson-Siegel factor loading structure.
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