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Abstract 

A common method of valuing the equity in leveraged transactions is the flows-to-
equity method whereby the free cash flow available to equity holders is discounted at 
the cost of equity. This method uses a standard definition of equity free cash flow, but 
the cost of equity varies over time as leverage varies. Various formulas can be used to 
calculate the time-varying cost of equity, most of which are inconsistent with the 
assumptions underlying the free cash flow calculation. In this paper we show how to 
include correctly the following in the flows-to-equity method: 

• A releveraging formula consistent with a fixed debt plan; 

• A yield spread on debt which is fair compensation for default risk; 

• The part of the yield spread which is "excessive"; 

• The expected cost of financial distress. 
We show that each of these can have a significant effect on valuation and the value 
derived in a consistent way can differ substantially from that derived by more 
conventional procedures. 
 
 
 
 
JEL Codes: G12, G24, G31, G32, G33, G34. 
Keywords: Valuation, flows-to-equity, equity cash flow, cost of equity, project 
finance, LBO. 

                                                
1
 This research has benefited from a grant from the Research Council of Norway, grant number 

1798866/S20. We also thank NCCR-FINRISK for financial support. Cooper: London Business School, 
Regent’s Park, London NW1 4SA, UK.  Email: icooper@london.edu.  Nyborg: Department of Banking 
and Finance, Univeristy of Zurich, Plattenstrasse 14, 8032 Zurich, Switzerland. Email: 
nyborg@isb.uzh.ch. 



 2

1. Introduction 

 

The general topic of this paper is the valuation of investments that have fixed debt 

plans. In other words, at the time of the valuation the future amount of debt is a 

function of time alone. The amount of debt is not expected to fluctuate with the future 

value of the investment.  This type of situation arises in LBO's (Baldwin 2001a), 

project finance (Esty 1999), and other highly leveraged transactions (HLT's) where 

the future amortisation of the debt has been agreed at the time of the investment.  Our 

focus is especially on valuing the equity in such investments directly through the 

“flows-to-equity” method, whereby the project’s equity free cash flows are discounted 

at the cost of levered equity.  This method focuses directly on the cash flows equity-

holders will actually receive rather than valuing equity indirectly as the difference 

between total project value and debt, as under the standard adjusted present value 

approach.   

 

As emphasized by Esty, the cost of equity is time varying in investments with fixed 

debt plans, since leverage and thus also the risk of equity changes over time as the 

debt plan unfolds.  It is therefore necessary to use a time varying discount rate when 

using the flows-to-equity method in investments with fixed debt plans. The correct 

way to do this is to calculate an implied market value leverage ratio and releverage the 

cost of equity to reflect this changing leverage ratio at each future date. 

 

We make three main points. First, the standard way of releveraging the cost of equity 

for use in the flows-to-equity approach is inconsistent with the assumption of a fixed 

debt plan. This inconsistency can lead to significant undervaluation of the equity. We 

show how to calculate the cost of equity consistent with an evolving fixed debt plan. 

Second, the most commonly used method of implementing the flows-to-equity 

method implicitly assumes that the entire debt spread results in negative NPV whereas, 

in reality, a large part of it is compensation for the risk of debt. We show how to 

incorporate this into the flows-to-equity method.  Failure to do so also leads to 

undervaluation of the equity. Third, we show how to incorporate other effects of the 

financing plan in a way that is consistent with the present value of the tax saving from 

debt, including the present value of financial distress costs and debt that is expensive 

in the sense that its yield exceeds fair compensation for credit risk. We also discuss 
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the more general issue of the conditions under which it is reasonable to assume a fixed 

debt plan. 

 

The topic is important because the combination of a fixed debt plan and valuation 

using flows-to-equity is common in practice. There are several advantages which 

account for its popularity (Esty 1999, Baldwin 2001a).  In particular, the flows-to-

equity approach: 

• can allow for time-varying debt, which is inconsistent with a constant WACC; 

• can allow for time-varying effective tax rates in a simple way;  

• can accommodate debt which is not issued at its fair price (including 

expensive or subsidised debt); 

• can easily allow for several rounds of equity financing; 

• focuses directly on the cash flows that accrue to equity-holders. 

 

In order to implement the flows-to-equity method a formula is needed with which to 

releverage the cost of equity at each future date (Baldwin (2001b)). There are two 

such releveraging formulas in common use. One formula is consistent with debt being 

a constant proportion of the firm's market value, the assumption which underlies the 

WACC (see Miles-Ezzell (1980), "ME"). The formula for releveraging the cost of 

equity consistent with a constant leverage ratio (continuously adjusted) is:

 ( )( )/E U U DR R D E R R= + −        (1) 

where RE is the cost of equity, RU is the unlevered cost of equity, RD is the cost of 

debt, D is the market value of debt, and E is the market value of equity. 

 

The other common releveraging formula is consistent with a fixed amount of debt (see 

Miller and Modigliani (1963) "MM"). The formula for releveraging the cost of equity 

consistent with this assumption is: 

 ( )( )( )/ 1E U U DR R D E T R R= + − −       (2) 

where T is the corporate tax rate. In this paper we ignore the effect of investor taxes. 

 

In practice these two formulas are used in a variety of forms. For instance, both Esty 

(1999) and Baldwin (2001b) use a simplified version of (1). They use the CAPM, so 
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the releveraging formula is expressed in terms of betas. They also assume that the 

debt is riskless, giving the formula: 

 (( ) / )
E U

E D Eβ β= +         (3) 

where 
E

β  is the equity beta, and 
U

β  is the unlevered equity beta. In terms of discount 

rates, this is equivalent to: 

 ( )( )/E U U FR R D E R R= + −        (4) 

An important feature of all the above formulas is that none is based on a debt policy 

whereby the amount of debt is scheduled to change over time in a predetermined 

manner, the policy that will actually be pursued in a typical HLT. In some 

applications such inconsistency does not matter because the use of a releveraging 

formula inconsistent with the debt policy which will actually be pursued does not 

have a material effect on the valuation (see Cooper and Nyborg 2007). However, in 

HLT's the tax benefit of debt is a first order component of value. Therefore, treating 

this element of the valuation in a consistent way is important. In this paper we show 

how to do this and calculate the size of the resulting adjustment to the present value. 

 

In addition to the issue of consistency between the releveraging formula and the 

leverage policy, there is another issue of consistency. This concerns the yield spread 

on the borrowing, the measure of equity free cash flow used, and the releveraging 

formula. The commonly used formula (3) assumes that debt is riskless. The use of 

equation (3) therefore implicitly assumes that the entire yield spread on the debt 

results in a negative NPV from borrowing. However, a large part of the yield spread 

in HLT's is simply compensation for the risk of debt. A valuation method which treats 

the entire yield spread as implying that debt is expensive will give an underestimate of 

value. We show how to deal with this correctly and the effect of this on present value. 

 

There are two other value effects of leverage which can be significant in HLT's. The 

first is debt which is expensive, in the sense of having a yield that exceeds the fair 

yield required to compensate for credit risk. One benefit of the flows-to-equity 

approach is that, unlike other valuation approaches, it does not assume that debt is 

issued at a fair price (from the equity-holder's perspective). The other issue is the 

expected cost of financial distress, which can be substantial at the leverage ratios used 
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in HLT's. We generalize the model to include negative NPV debt as well as costs of 

financial distress. 

 

We illustrate our results using the realistic example studied by Esty (1999).  Esty’s 

example has the key features of project finance and LBO's: a relatively large amount 

of debt, relatively high margins on the debt, and a fixed debt plan.  We show how to 

include in his valuation the four elements discussed above: 

• A releveraging formula consistent with a fixed debt plan; 

• A yield spread on debt which is fair compensation for default risk; 

• The part of the yield spread which is "excessive"; 

• The expected cost of financial distress. 

We show that each of these can have a significant effect on valuation and the value 

derived in a consistent way can differ substantially from that derived by more 

conventional procedures. 

 

The paper is organised as follows. Section 2 provides a simple example of the 

incorrect valuation that may result from from using the flows-to-equity approach with 

the standard cost of equity formulas. In Section 3 we derive our basic releveraging 

formula and related results, assuming zero NPV debt and no financial distress costs, 

and show that this gives the correct answer in the simple example in Section 2.  

Section 4 extends the analysis to include negative NPV debt and costs of financial 

distress. Section 5 shows the size of the effects using a realistic numerical model, and 

Section 6 gives the conclusions. 

 

2. Numerical example of incorrect valuations using standard formulas in the 

flows-to-equity method 

 

As a motivation for the subsequent analysis, in this section we present an example 

that illustrates the misvaluation that may result in the flows-to-equity method when 

using the standard releveraging formulas given in the Introduction [equations (1), (2), 

and (4)].  We do this by comparing values calculated using the flows-to-equity 

method to the correct value as calculated from a standard two-step adjusted present 
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value approach. The parameters are: Corporate tax rate, T: 35%; Yield on debt, Y: 

5.00%; Riskfree rate, RF : 3.00%; Unlevered cost of equity, RU : 9.00%. 

 

Table 1, Panel A, sets out the after tax operating cash flows, debt plan, and equity free 

tax cash flows.  The project has an investment of 100 at time zero and gives rise to 

after-tax operating free cash flow of 20, 60, 45, 20 in the following years. The debt 

plan is to borrow 90 and pay it down according to the amortization schedule shown. 

The equity cash flows are the operating cash flows plus the tax saving from interest 

minus the debt flows.  The initial equity value is equal to the unlevered value, VU, plus 

the present value of the tax shield (PVTS), i.e., the project’s adjusted net present value 

(APV). Thus, VU is the project’s net present value (NPV), calculated by discounting 

the operating cash flow at the unlevered cost of equity.  The present value of the tax 

shield is calculated by discounting projected interest payments at the yield of the debt. 

Cooper and Nyborg (2008) show that this is consistent with no arbitrage, given certain 

assumptions about the default process for the debt (see Section 3). 

 

Panel B of Table 1 computes the value of the investment using the standard 

implementation of the flows-to-equity method as laid out by Esty (1999). This is 

derived as follows. From Panel A one first inputs the equity cash flows and the debt 

plan. In the RE column, one enters the releveraging formula to be used, in this case (4). 

In the PV equity column, one enters the equity value (ex cash flow) caculated 

assuming last period’s equity value grows at RE. For example, the PV equity at date 1 

is 27.3335 1.2876  7.075  28.1185× − = .  The value of the equity is solved iteratively 

by choosing an initial end of period equity value (the first row in the fourth column) 

so that the sum of the discounted equity cash flows equals that equity value less the 

initial equity outflow.   

 

As seen, the solution when using (4) as the releveraging formula, is 17.3335, which is 

17.42% below the correct APV value as calculated in Panel A. The calculated value is 

below the unleveraged value, implying a negative value of PVTS. To illustrate the 

effect of using a different cost of equity formula, if the MM formula (2) is used as the 

releveraging formula it gives a computed equity value of 23.2178, which is 10.62% 

above the correct value.  In contrast, using the ME formula (1) gives an equity value 

of 20.7949, which is 0.93% below the correct valuation. While this is a relatively 
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small error, in other examples the error from using the ME formula is substantially 

larger.   

 

 

Table 1:  Example of valuation error in the standard implementation of the flows 

to equity method 

Panel A: Free cash flows, debt plan, and benchmark adjusted present value 

Year 
Operating 
Cash Flow 

(FCFF) 
Debt 

Net Principal 
Repayment 

Interest 
Tax 

saving 
Equity Cash 
Flow (FCFE) 

Unlevered 
discount 
factor 

Discount 
factor  
Tax shield 

0 -100 90 -90 0.00 0.0000 -10.0000 1.0000 1.0000 

1 20 80 10 4.50 1.5750 7.0750 0.9174 0.9524 

2 60 30 50 4.00 1.4000 7.4000 0.8417 0.9070 

3 45 0 30 1.50 0.5250 14.0250 0.7722 0.8638 

4 20 0 0 0.00 0.0000 20.0000 0.7084 0.8227 

VU : 17.7662  PVTS: 3.2234  APV equity: 20.9895  

 

Panel B: Flows-to-equity valuation using Esty’s (1999) method with Eq (4) as the 

releveraging formula 

Year 

Equity 
Cash 
Flow 
(ECF) 

Debt 

PV 
equity 

end 
period 

Debt 
plus 

equity 
(V) 

Leverage 
  

(D/V) 
RU RE 

Discount 
Factor 

Present 
Value of 

ECF 

0 -10.000 90 27.3335 117.3335 0.767044 9.00% 28.76% 1.0000 -10.0000 

1 7.075 80 28.1185 108.1185 0.739929 9.00% 26.07% 0.7767 5.4949 

2 7.400 30 28.0492 58.0492 0.516803 9.00% 15.42% 0.6161 4.5588 

3 14.025 0 18.3486 18.3486 0 9.00% 9.00% 0.5338 7.4860 

4 20.000 0 0.0000 0.0000 0 9.00% 9.00% 0.4897 9.7938 

      Sum (PV equity): 17.3335 

 

This example illustrates the two central issues addressed by this paper: First, any 

flows-to-equity valuation method involves a releveraging formula for the cost of 

equity. Each formula makes implicit assumptions about the risk of PVTS, the debt 

strategy, and other factors which we discuss in section 4 below. For the valuation 

method to be legitimate these assumptions need to be consistent. Second, the correct 

valuation method is always that given by no-arbitrage valuation (see for example, 

Berk and DeMarzo 2007). The most transparent way to derive this value is to use 

APV. However, the flows-to-equity method is commonly used in practice. Therefore, 

it is important to know what flows-to-equity valuation procedure corresponds to the 

correct APV value when particular assumptions are made about the debt policy. The 
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answer to this question is known for the specific cases involving a constant amount of 

debt or a constant proportion of debt (see, for instance, Cooper and Nyborg 2007). 

However, the correct procedure with a changing debt plan has not been derived and 

that is the purpose of this paper. 

 

In the next section, we develop a releveraging formula which always results in the 

correct value using the flows-to-equity method (i.e. the same as the no-arbitrage value 

derived using the adjusted present value calculation). In the following section we then 

extend the formula to include other realistic features of highly leveraged transactions. 

 

3. A releveraging formula assuming zero NPV debt and no distress costs 

 

In this section we derive our basic results using a simplified model with a fixed debt 

plan, fairly priced debt, and no costs of financial distress.  In the next section we allow 

for mispriced debt and costs of financial distress. Throughout, we consider a project 

funded with debt that will amortize according to a fixed schedule. The project has 

expected after tax unlevered cash flows of C(t). The debt face value at time t will be 

D(t). The promised yield on the debt is fixed at Y and the corporate tax rate is T.2 

  

We assume that the discount rate for the unlevered flows is constant and equal to
U

R .  

The unlevered value, ( )
U

V t , is calculated by discounting the unlevered free cash flows 

(after corporate taxes) at the unlevered discount rate: 

 
1

( ) ( ) /(1 )i

U U

i

V t C t i R
∞

=

= + +∑        (5) 

The fundamental APV relationship always gives the correct value, and we use it to 

derive the correct discount rate formulas: 

( ) ( ) ( )
L U

V t V t PVTS t= +        (6) 

where ( )
L

V t  is the levered value at time t, and ( )PVTS t  is the present value at time t 

of the debt tax saving from that date onwards. All leverage-adjusted discount rates are 

derived from (6). The reason that particular formulas differ is because they make 

different assumptions about the size and risk of PVTS (see Cooper and Nyborg 2004).  
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The value of equity can be calculated from the APV formula as: 

 ( ) ( ) ( ) ( ) ( ) ( )L UE t V t D t V t PVTS t D t= − = + −     (7) 

However, the point of the flows-to-equity method is to obtain the equity value by 

discounting the equity free cash flow, which is defined as: 

 ( ) ( ) ( ) ( ) ( )( )( ) 1 1 1FCFE t C t D t Y T D t D t= − − − − − −    (8) 

where Y is the yield (or coupon) on the debt. The equity discount rate, ( )ER t , is 

defined implicitly as the rate required to give the correct value of the equity by 

discounting equity flows and values period-by-period: 

 ( )
( ) ( )

( )
1 1

1
E

FCFE t E t
E t

R t

+ + +
=

+
      (9) 

where the equity values and equity free cash flow are given by (7) and (8). Hence a 

consistent flows-to-equity valuation procedure is the one that delivers an equity value 

from equation (9) which is the same as that calculated using equation (7). 

 

There is one slightly unusual feature of this procedure which is worthy of note. 

Although the approach is standard, the definition of equity free cash flow (8) mixes 

the expected cash flow from operations with a promised debt payment. Since the 

promised debt yield is not equal to the expected cash flow on the debt the equity free 

cash flow given by (9) is not equal to the expected cash flow on equity. Nevertheless, 

this definition of equity free cash flow is used in the standard version of the flows-to-

equity method. However, since the equity discount rate is used to discount this hybrid 

cash flow it is important to realise that the correct discount rate to use in the procedure 

is not exactly equal to the expected return on equity. 

 

Implementation of the flows-to-equity method requires the calculation of ( )
E

R t  

starting from the unlevered cost of capital,
U

R . The relationship between them can be 

derived from equations (5)-(9) with one further assumption. The crucial extra 

ingredient is an assumption about the risk of PVTS. This is the fundamental 

difference between the ME approach and the MM approach. For a fixed debt plan, the 

relevant assumption is that the risk of the debt tax shield is the same as the risk of the 

debt, which is also the MM assumption. With a fixed debt plan and simplifying 

                                                                                                                                       
2 Although we treat the interest rates as fixed, the same approach can be used with variable rate debt. 
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assumptions regarding the treatment of tax losses, Cooper and Nyborg (2008) show 

that the value of the debt tax shield is given by: 

1

0

( ) ( ) /(1 )i

i

PVTS t D t i YT Y
∞

+

=

= + +∑             (10) 

where Y is the promised yield on the debt. This assumes that (A1) the amount of debt 

at every future date is determined at time zero and will not change if the firm does not 

default, (A2) the debt is fairly priced, (A3) if the debt defaults there is zero recovery, 

and (A4) there are no costs of financial distress. Hence the only effect of debt on the 

total after-tax cash flow of the firm is through the debt tax shield.  

 

Appendix 1 shows that that, with the assumptions (A1)-(A4), ( )
E

R t  is given by:  

Result 1: (Proof: Appendix 1): With a fixed debt plan the equity discount rate is given 

by: 

 ( ) ( ) ( ) ( )( ) ( ) /
E U U

R t R D t PVTS t E t R Y= + − −       (11) 

The equity discount rate is subscripted with time because the key point of the flows-

to-equity method is that the discount rate varies over time as the leverage ratio varies.  

 

There are two differences between (11) and the standard formula (4). One is that the 

second term contains the spread over the debt yield (RU-Y) rather than the spread over 

the riskless rate (RU-RF). This lowers the equity discount rate and therefore raises the 

estimated equity value. The reason is that the equity free cash flow has already had 

the full debt yield deducted from it. Ignoring this in the releveraging formula 

essentially double-counts the spread of the risky debt. The second difference is that 

the leverage in (11) is lowered by PVTS. This also reduces the equity discount rate 

and increases estimated equity value. The reason for the difference is that the tax 

shields arising from the fixed debt plan have a low level of risk and do not, therefore, 

increase the equity discount rate by as much as ME formulas like (4) assume. 

 

To see the relationship between (10) and the standard MM and ME formulas, we 

define a variable which measures PVTS relative to its standard MM level: 

 ( ) ( ) / ( )t PVTS t TD tα =        (12) 

(note that ( )tα is not defined if D(t) = 0). Hence ( )tα is the present value of debt tax 

shields divided by the tax shield that would arise from a fixed amount of permanent 
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debt at the level D(t). In general for HLT's the value of ( )tα  will be less than one, 

because the level of debt will be expected to reduce over time. We can now restate (11) 

as:3 

 ( ) ( ) ( )( )( ) / 1 ( )
E U U

R t R D t E t t T R Yα= + − −                       (13) 

If ( ) 1tα = , this collapses to the MM formula, (2), with the debt yield used as the cost 

of debt. If ( ) 0tα =  it collapses to the ME formula, (1), with the debt yield used as the 

cost of debt.  Thus ( )tα  adjusts the releveraging formula to reflect the extent of the 

fixed debt plan. Using (13), we have a releveraging formula for the cost of equity that 

should be used in the flows-to-equity method.  It is easily verified that using this 

formula in the example in Section 2 gives the same value as the standard APV 

procedure. 

 

The intuition of the formula is that the ME formula applies whenever the risk of 

PVTS is the same as the risk of the operating cash flows (Cooper and Nyborg 2006). 

The MM formula applies to perpetual debt which generates PVTS with the same risk 

as the debt. In this case the variable ( )tα is measuring the size of the PVTS resulting 

from the fixed debt plan as a proportion of that which would result from permanent 

debt. 

 

From the perspective of implementation, a potential drawback with (11) and (13) is 

that they require the calculation of PVTS(t) at every date. Next, we show that ( )tα  

can be related to the duration of the debt, so that it can be calculated directly without 

first calculating PVTS(t). 

 

Define the conventional duration of the aggregate cash flows in the fixed debt plan by: 

( ) ( ) ( )
1

( ) / 1 /
i

i

DUR t iB t i Y D t
∞

=

 
= + + 
 
∑      (14) 

where ( )B t i+  is the total cash flow going to the debt holders at time ( )t i+ : 

( ) ( ) ( ) ( )1 1B t i D t i Y D t i+ = + − + − +      (15) 

 

                                                
3
 The formula (13) applies if D(t)>0. If D(t)=0 the alternative formula (11) must be used because 

( )tα is not defined. 
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Result 2: (Proof: Appendix 2) 

 ( )( ) ( ) / 1t DUR t Y Yα = +        (16) 

 

The expression for ( )tα  given by (16) can be used in (13) to get levered equity 

discount rates.    In the special case of perpetual debt, duration is equal to ( )1 /Y Y+ , 

and 1α = . Thus, ( )tα  is the duration of the project’s debt as a fraction of the duration 

of a perpetuity with the same yield. The importance of duration here is that it 

measures the effective maturity of the fixed debt plan, not that it measures the 

sensitivity of its value to interest rate changes.  

 

4. Generalization of the model: Negative NPV debt and costs of distress 

 

In the previous section we assumed that there are no costs of financial distress and 

that debt is priced to have zero NPV to the shareholders of the borrowing firms. 

However, Almeida and Philippon (2007) have shown that distress costs can have a 

substantial effect on the net benefit of debt. This effect is likely to be especially 

important for highly leveraged transactions, so in this section we incorporate the costs 

of financial distress into our valuation procedure. Furthermore, one of the stated 

benefits of the flows-to-equity approach is that it can handle debt which has an 

interest rate above a “fair” rate. We define a fair interest rate as the rate which would 

have a zero NPV to shareholders of the borrowing firm, excluding the financing side-

effects and incorporate this into our valuation formula. 

 

We use a simplified version of the model given in Almeida and Philippon (2007). 

Essentially, we extend their analysis to derive its implications for the flows-to-equity 

valuation method. We maintain the assumption (A1) of a fixed debt plan and replace 

assumptions (A2)-(A4) with more general assumptions: (A2') part of the debt spread 

exceeds fair compensation for default risk and therefore represents a loss of NPV to 

equity-holders, (A3') costs of financial distress are experienced only when debt 

defaults, (A4') in default the value of the firm falls by a fixed proportion of the face 

value of the debt, (A5) The marginal probability of default per period is constant. The 

justifications for the new assumptions are as follows. Assumptions (A2') and (A4') are 

simple generalisations. Almeida and Philippon provide a justification for (A3'). We 
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base our assumption (A5) on the idea that HLT's are structured to match the maturity 

structure of debt to the profile of the underlying cash flows. One way of doing this 

would be to make the debt structure generate a constant marginal probability of 

default, which is what we assume. 

 

We wish to value the firm from the perspective of the original equity-holders. The 

side-effects of financing now include the tax shield from debt, distress costs, and the 

effect of expensive debt. We assume that if default occurs distress costs are a fixed 

proportion of the face value of debt prior to default. The logic is that the firm value at 

default will be related to the amount of debt which has triggered default and the 

distress costs will be a proportion of the firm value. When expensive debt is issued we 

allow for its effect in the following way. The impact of the expensive debt on the 

equity-holders is the amount by which the promised yield exceeds the fair yield that 

would be required to compensate debt-holders for default risk. This loss of value 

occurs when the firm is solvent, but is zero in the default state. 

 

We introduce some additional notation: 

• Fair promised yield on debt from point of view of equity-holders: y  

• Recovery rate in default per dollar face value of debt: ρ  

• Financial distress cost per dollar face value of debt: φ  

Table 2 shows these financing side-effects in a single-period version of the model. In 

order to calculate the APV value of the firm, these are the components we need to 

value.  

 

Table 2: Financing side-effects in a single period version of the model 

Component State 

 Solvent Default 

Tax saving from debt DYT+   

Distress cost  Dφ−  

Loss to equity from 

overpriced debt 

-
 
D Y − y( )                       

Total financing side-effects ( )DYT D Y y+ − −  Dφ−  
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Figure 1 shows the evolution of the components of the adjusted present value in a 

multiperiod model.  At the end of the first period there is a gain of (0)TYD  from the 

interest tax shield in the solvent state. This is offset by an excess cost of ( ) (0)Y y D−  

if the debt is expensive. In the default state there is a cost represented by the amount  

(0)Dφ− .  

 

Figure 1: Evolution of the APV components in the multiperiod model 

To derive the equity discount rate using these assumptions, we start from the APV 

formula as before: 

( ) ( ) ( )
L U

V t V t PVFS t= +        (17) 

where PVFS(t) is the present value at time t in the solvent state of all future financing 

side-effects shown in Figure 1 (including the probability of distress costs at future 

dates). To determine PVFS we need a risk-adjusted probability to use in the valuation 

tree. As in the simple case, we derive the risk-adjusted probability from the condition 

for fairly-priced debt. Under the risk-neutral probability of default, q, this must have 

an expected return equal to the riskless rate. Fairly priced debt pays (1+y) per dollar 

of face value if it does not default and ( )1 yρ +  if it does default. So: 

 ( )(1 ) 1 (1 ) (1 )Fq y q y Rρ− + + + = +       (18) 

Solving for q gives: 

 

(0)Dφ−  

(1)Dφ−  

(2)Dφ−  

 

. . . . .  

(0) ( ) (0)TYD Y y D+ − −  

(1) ( ) (1)TYD Y y D+ − −  
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 ( ) ( )( )/ 1 1
F

q y R y ρ= − + −         (19) 

 

The components of the adjusted present value can be valued using this probability in 

conjunction with riskless discounting at 
F

R . A claim that pays $1 in the solvent state 

and 0 in the default state is worth 
  
(1− q) / 1+ R

F( ) at the beginning of the period and 

$1 in the default state is worth ( )/ 1 Fq R+ . Thus, the loss from expensive debt of 

( )D Y y− in the solvent state and 0 in the default state is 

worth ( ) ( )(1 ) / 1 FD Y y q R− − +  at the beginning of the period.  

 

Using the risk-neutral valuation procedure, we can value all the APV components at 

time t : 

 ( )( ) ( )
1 1

0

( ) 1 / 1
i i

F

i

PVFS t D t i q YT R
∞

+ +

=

= + − +∑     

   ( )( ) ( ) ( )
1 1

0

1 / 1
i i

F

i

D t i q Y y R
∞

+ +

=

− + − − +∑    

   ( ) ( ) ( )
1

0

1 / 1
i i

F

i

D t i q q Rφ
∞

+

=

− + − +∑  

  ( ) ( ) ( )
1

0

* 1 / 1
i

F

i

D t i YT q R
∞

+

=

= + − +  ∑      (20) 

Where: 

* ( ) /
(1 )

q
T T Y y Y

q Y

φ
= − − −

−
                                    (21) 

Equations (20) and (21) depend on q, which is defined by (19). We define: 

 ( ) ( ) ( )/ 1 1
F F

c y R Rρ ρ= − − +         (22) 

 ( ) ( ) ( )1 1 / 1y cγ+ = + −        (23) 

We then have: 

 ( ) ( )
1*

0

( ) / 1
i

i

PVFS t D t i YT γ
∞

+

=

= + +∑       (24) 

This differs from the simple case in two ways. First, it uses an adjusted tax rate, *T , 

that includes the effects of negative NPV debt and costs of financial distress. Second, 

it uses an adjusted yield that allows for the effect of the recovery rate. Note that when 
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0ρ =  then yγ = , so that the adjusted yield is equal to the fair yield and we 

“discount” the APV components at y , as in the simple case.  

 

Using the same basic procedure as for Result 1, but with PVFS given by (24) instead 

of PVTS given by (10), we get:  

Result 3: (Proof: Appendix 3) 

( )
( )

( )( )* * * * *( ) 1 ( ) ( ) ( ) ( )
E U U

D t
R t R t T R Y t T Y T T Y

E t
α α γ = + − − + − + −           (25)  

where4 

*

*

( )
( )

( )

PVFS t
t

T D t
α =                                                           (26) 

 

This parallels (13), but there are two extra terms.  One involves the difference 

between γ  and Y and another the difference between T and T*.  The first term allows 

for the effect of debt which is “expensive” in the sense that the interest rate is above a 

fair interest rate. The use of T
* rather than T incorporates the effect of financial 

distress costs into the formula for the cost of equity.   

 

Paralleling Result 2, we can eliminate PVFS (t) from the expression for )(* tα : 

Result  4:  (Proof: Appendix 4) 

Using an interest rate of γ , define the conventional duration of the aggregate debt 

cash flows by: 

 

  

d
γ
(t) = iB

γ
t + i( )/ 1+ γ( )

i

i=1

∞

∑








 / D t( )                                      (27) 

where 
  
B

γ
(t + i)  be  the total cash flow going to the debt holders at time ( )t i+  : 

  
B

γ
t + i( )= D t + i − 1( )γ + D t + i − 1( )− D t + i( )   (28) 

We have 

)1(/)()( γα γ += Ytdt                                                                         (29)   

 

                                                
4
 As with Result 1 this formula applies if D(t)>0. If D(t)=0 the alternative 

formula ( ) ( ( ) / ( ))( )
E U U

R t R PVFS t E t Rγ= + − must be used because *( )tα is not defined. 
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The reason why Y appears in (29) derives from the expression for PVFS(t) in (24), 

where Y also appears.  

 

5. The size of the effects: Which adjustments matter most? 

 

Esty (1999) develops an example using the flows-to-equity method.  We will use this 

example to illustrate the potentially large differences in valuation generated when 

using the standard formulas for the cost of equity, as compared with the formulas we 

have developed above.  

 

Table 3 presents Esty's calculation. The formulas and parameter values that are used 

are: 

RE (t) = RF + βE (t)P                                                    (30) 

where 

• RF  is the riskfree rate, which is assumed to be 8% 

• P is the risk premium, which is assumed to be 7.4% 

• βU is the unlevered asset beta, which is assumed to be 0.6 

• βE (t) is the beta of the equity in period t, which is calculated according to: 

 

βE (t) = βU

VL (t)

E(t)
=

βU

1− L(t)
                                              (31) 

where:  

 

( ) ( ) / ( )
L

L t D t V t=     (32) 

 

We show in Appendix 5 that this approach gives the same answer as using the capital 

cash flow (CCF) approach when debt is risk-free. In this approach, the free cash flows 

available to the combination of debt and equity are discounted at the unlevered cost of 

equity, thus implicitly discounting tax shields at the cost of unlevered equity (see  

Ruback 2002).  Thus Esty’s approach is correct whenever the CCF approach is correct 

(see Cooper and Nyborg (2007) for conditions when this holds).  The problem is that 

the high leverage in the types of transaction we are considering means that debt is 

rarely risk-free.  In fact the promised yield on the debt in Esty's example is 10%, 
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which is well above the riskless interest rate. The spread on the debt must represent 

either a reward for risk or expensive debt, or both. We return to this below in the 

context of the example. 

 

The procedure used in Table 3 is the same dynamic procedure as in Table1, Panel B.  

The leverage ratio changes over time and thus the cost of equity does too. The 4th 

column from the left gives the present value of the equity at the beginning of a period, 

say t.  This is calculated by taking the value in the previous period, t - 1, multiplying it 

by 1 + RE (t - 1) and subtracting the equity cash flow at t.  Given E(t), we can then 

calculate in succession VL(t), L(t), βE (t), and RE (t).  The valuation is done in a 

spreadsheet by searching for the equity value at time 0 that gives an ex cash flow 

equity value of 0 in the final period.  Since the tax shield is implicitly part of the 

Table 3: Flows to equity valuation with RE determined by Equation (4), Esty (1999) Exhibit 4. 

Year 

Equity 
Cash 
Flow 
(ECF) 

Debt 
PV equity 

end  period 
Debt plus 

equity 
Leverage 

Equity 
Beta 
using 

Eqn.(3) 

RE 
Discount 

Factor 

Present 
Value of 

ECF 

0 -300,000 0 406,688 406,688 0.000 0.60 12.44% 1.0000 -300,000 

1 -170,000 700,000 627,280 1,327,280 0.527 1.27 17.39% 0.8894 -151,192 

2 -254,349 1,300,000 990,743 2,290,743 0.568 1.39 18.27% 0.7576 -192,691 

3 171,446 1,275,000 1,000,265 2,275,265 0.560 1.36 18.10% 0.6406 109,824 

4 175,490 1,250,000 1,005,818 2,255,818 0.554 1.35 17.96% 0.5424 95,186 

5 167,058 1,225,000 1,019,384 2,244,384 0.546 1.32 17.78% 0.4598 76,818 

6 159,901 1,175,000 1,040,685 2,215,685 0.530 1.28 17.45% 0.3904 62,430 

7 153,143 1,125,000 1,069,173 2,194,173 0.513 1.23 17.11% 0.3324 50,907 

8 147,661 1,050,000 1,104,467 2,154,467 0.487 1.17 16.66% 0.2838 41,912 

9 155,080 975,000 1,133,402 2,108,402 0.462 1.12 16.26% 0.2433 37,732 

10 150,023 900,000 1,167,665 2,067,665 0.435 1.06 15.86% 0.2093 31,396 

11 146,243 800,000 1,206,639 2,006,639 0.399 1.00 15.38% 0.1806 26,415 

12 142,864 700,000 1,249,401 1,949,401 0.359 0.94 14.93% 0.1565 22,364 

13 140,761 575,000 1,295,146 1,870,146 0.307 0.87 14.41% 0.1362 19,173 

14 139,060 450,000 1,342,732 1,792,732 0.251 0.80 13.93% 0.1191 16,556 

15 138,636 300,000 1,391,112 1,691,112 0.177 0.73 13.40% 0.1045 14,487 

16 144,114 150,000 1,433,372 1,583,372 0.095 0.66 12.90% 0.0922 13,280 

17 212,953 0 1,405,390 1,405,390 0.000 0.60 12.44% 0.0816 17,381 

18 278,987 0 1,301,234 1,301,234 0.000 0.60 12.44% 0.0726 20,252 

19 281,798 0 1,181,310 1,181,310 0.000 0.60 12.44% 0.0646 18,193 

20 284,638 0 1,043,626 1,043,626 0.000 0.60 12.44% 0.0574 16,343 

21 287,506 0 885,948 885,948 0.000 0.60 12.44% 0.0511 14,681 

22 290,403 0 705,756 705,756 0.000 0.60 12.44% 0.0454 13,188 

23 293,330 0 500,222 500,222 0.000 0.60 12.44% 0.0404 11,848 

24 296,286 0 266,164 266,164 0.000 0.60 12.44% 0.0359 10,643 

25 299,275 0 0 0    0.0319 9,561 

          

        SUM 106,688 
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equity cash flow, the valuation in Table 2 gives the adjusted net present value.  As 

seen, the APV of the equity net of the initial investment of 300,000 is 106,688.   

 

The project described in Table 3 generates cash flows for 25 years.  The equity cash 

flows presented in the table are calculated by Esty based on operating cash flows (see 

Esty, 1999).5 For Esty's calculation the way the equity cash flows are derived is not 

important, given the debt profile. However, in Table 4 we show a set of operating 

cash flows which are consistent with the equity cash flows and debt schedule in Table 

3.6   

Table 4: Operating  and equity cash flows 

 

Year

Operating 

Cash Flow 

(FCFF)

Debt

Net 

Principal 

Repayment

Interest Tax saving

Equity 

Cash Flow 

(FCFE)

0 -300,000 0 0 0 0 -300,000

1 -870,000 700,000 -700,000 0 0 -170,000

2 -812,349 1,300,000 -600,000 70,000 28,000 -254,349

3 274,446 1,275,000 25,000 130,000 52,000 171,446

4 276,990 1,250,000 25,000 127,500 51,000 175,490

5 267,058 1,225,000 25,000 125,000 50,000 167,058

6 283,401 1,175,000 50,000 122,500 49,000 159,901

7 273,643 1,125,000 50,000 117,500 47,000 153,143

8 290,161 1,050,000 75,000 112,500 45,000 147,661

9 293,080 975,000 75,000 105,000 42,000 155,080

10 283,523 900,000 75,000 97,500 39,000 150,023

11 300,243 800,000 100,000 90,000 36,000 146,243

12 290,864 700,000 100,000 80,000 32,000 142,864

13 307,761 575,000 125,000 70,000 28,000 140,761

14 298,560 450,000 125,000 57,500 23,000 139,060

15 315,636 300,000 150,000 45,000 18,000 138,636

16 312,114 150,000 150,000 30,000 12,000 144,114

17 371,953 0 150,000 15,000 6,000 212,953

18 278,987 0 0 0 0 278,987

19 281,798 0 0 0 0 281,798

20 284,638 0 0 0 0 284,638

21 287,506 0 0 0 0 287,506

22 290,403 0 0 0 0 290,403

23 293,330 0 0 0 0 293,330

24 296,286 0 0 0 0 296,286

25 299,275 0 0 0 0 299,275   

 

                                                
5
 Table 3 is based on Exhibit 4 in Esty (1999).   

6 These are different to Esty's operating cash flows because he does not include the tax saving from 
debt in his definition of the equity cash flow and his calculation implicitly assumes that interest is paid 
in advance. We have constructed a set of operating cash flows that are consistent with the standard 
method of switching between operating free cash flow and equity cash flow. 
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Table 5 values the same equity cash flows as in Table 3 but using our formula (13) for 

RE(t). Here we have used Y = 10%, consistent with what is assumed in Esty’s 

example.  The result is an NPV of 264,608, almost twice as much as using the cost of 

equity formula (4).  The reason for this dramatic increase in value (APV) is that 

equation (4) overstates the cost of equity.  For example, in Year 2, Esty estimates RE 

to be 18.3%, whereas our formula yields an RE of 14.5% -- a difference of 3.8%.  

During the period the debt is outstanding the average difference in RE(t) between the 

two procedures is 2.1%, with the difference being larger at short horizons than at long 

horizons.  

 

 

Table 5: Flows to equity valuation  with RE determined using Equation (13)  

Year 
Equity 

Cash Flows 
(ECF) 

Total Debt 
(Book 
Value) 

PV equity 
end 

period 

Debt plus 
equity 

D/E RU 

RE 
using 
Eqn. 
(13) 

Disc'nt 
Factor 

Present 
Value of 

ECF 

0 -300,000 0 564,608 564,608 0.000 12.44% 11.24% 1.0000 -300,000 

1 -170,000 700,000 798,043 1,498,043 0.877 12.44% 13.64% 0.8990 -152,829 

2 -254,349 1,300,000 1,161,265 2,461,265 1.119 12.44% 14.52% 0.7911 -201,209 

3 171,446 1,275,000 1,158,453 2,433,453 1.101 12.44% 14.52% 0.6908 118,429 

4 175,490 1,250,000 1,151,150 2,401,150 1.086 12.44% 14.53% 0.6032 105,854 

5 167,058 1,225,000 1,151,302 2,376,302 1.064 12.44% 14.52% 0.5267 87,987 

6 159,901 1,175,000 1,158,591 2,333,591 1.014 12.44% 14.46% 0.4599 73,539 

7 153,143 1,125,000 1,172,928 2,297,928 0.959 12.44% 14.38% 0.4018 61,535 

8 147,661 1,050,000 1,193,925 2,243,925 0.879 12.44% 14.24% 0.3513 51,874 

9 155,080 975,000 1,208,913 2,183,913 0.807 12.44% 14.12% 0.3075 47,687 

10 150,023 900,000 1,229,609 2,129,609 0.732 12.44% 13.99% 0.2694 40,424 

11 146,243 800,000 1,255,436 2,055,436 0.637 12.44% 13.81% 0.2364 34,568 

12 142,864 700,000 1,286,008 1,986,008 0.544 12.44% 13.64% 0.2077 29,670 

13 140,761 575,000 1,320,601 1,895,601 0.435 12.44% 13.41% 0.1828 25,726 

14 139,060 450,000 1,358,660 1,808,660 0.331 12.44% 13.19% 0.1611 22,409 

15 138,636 300,000 1,399,270 1,699,270 0.214 12.44% 12.94% 0.1424 19,737 

16 144,114 150,000 1,436,158 1,586,158 0.104 12.44% 12.69% 0.1261 18,167 

17 212,953 0 1,405,390 1,405,390 0.000 12.44% 12.44% 0.1119 23,823 

18 278,987 0 1,301,234 1,301,234 0.000 12.44% 12.44% 0.0995 27,757 

19 281,798 0 1,181,310 1,181,310 0.000 12.44% 12.44% 0.0885 24,935 

20 284,638 0 1,043,626 1,043,626 0.000 12.44% 12.44% 0.0787 22,399 

21 287,506 0 885,948 885,948 0.000 12.44% 12.44% 0.0700 20,122 

22 290,403 0 705,756 705,756 0.000 12.44% 12.44% 0.0622 18,076 

23 293,330 0 500,222 500,222 0.000 12.44% 12.44% 0.0554 16,238 

24 296,286 0 266,164 266,164 0.000 12.44% 12.44% 0.0492 14,587 

25 299,275 0 0 0 0.000 12.44% 0.00% 0.0438 13,104 

          

        SUM 264,608 
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Our results differ from Estys’ for two reasons. First, equations (3) and (4), used by 

Esty, assume that the debt has a beta of zero, even though the interest rate on the debt 

is 2% above the risk-free rate. This inflates the estimated equity beta because all the 

risk of the project is assumed to be carried by the equity even though some risk is in 

fact borne by the debt. Second, equation (3) assumes that the risk of the tax shield is 

equal to the risk of the firm even though the debt policy is fixed. Both effects 

overstate the equity discount rate and thereby undervalue the value of the project.  

 

If the debt in Esty’s example is indeed risk-free, yet pays a 2% premium over the risk-

free rate, the implicit assumption is that a portion of the project’s APV is given to 

creditors.   That the debt is underpriced in this way is, of course, possible in a real-life  

situation.  As argued by Esty, one of the advantages of the flows-to-equity approach is 

that it looks at the valuation from shareholders’ perspective, without assuming that the 

debt is priced fairly. In contrast the standard approach where one first values the firm 

and then subtracts the face value of debt to get the value of equity assumes that the 

debt is fairly priced.  Esty's method implicitly assumes that the entire 2% interest 

premium represents debt underpricing (or, equivalently, an excessive interest rate). 

 

We can make Esty’s approach consistent with fairly priced debt by using equation (1) 

rather than equation (4) to set the equity discount rate. This makes the discount rate 

depend on the debt yield, Y, rather than the riskless rate. The reason that it is 

consistent with fairly priced debt is that the standard definition of equity cash flow 

deducts the full debt yield as a cost, as we have noted above. Alternatively, using the 

CAPM an interest rate of 10% gives an implied debt beta of approximately 2/7.4, or 

0.27.7  Working through Esty’s example with this value and the formula for the equity 

beta being the standard one, i.e.,  

 

βE (t) =
βU − L(t)βD

1 − L(t)
,                                                   (33) 

 

                                                
7
 This calculation ignores the possibility of default. The promised interest rate on the debt is not 

equivalent to its expected rate of return.  The actual expected rate of return of the debt is lower.  Thus, 
the correct debt beta is also lower.  If we assume it is 0.2, for example, the APV is would be 252,103. 
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we get an APV of 227,565.  This is still too low, as compared with the valuation 

based on our formula.  The source of the undervaluation is still an equity discount rate 

that is too high.  For example, RE (2) is now 15.3% - lower than before, but still too 

high compared with our estimate in Table 3.  

 

The reason for the remaining difference can be seen by comparing equation (1) with 

equation (13). Equation (1) assumes that α(t) = 0, which is equivalent to assuming 

that PVTS has a risk equal to the risk of the operating free cash flow rather than the 

risk of the debt. Since the method implicitly overestimates the risk of PVTS it 

underestimates the value of equity.  

 

Table 6: Sensitivity of equity value to assumptions  

(Basic parameters T = 0.4, Y=10%, RF = 8%). 

INPUTS Esty RE Generalized CN 

RE formula (3)  (1)  (13) (13) (13) (13) (13) 

Fair yield, y 0.080 0.100 0.100 0.090 0.100 0.100 0.100 

Recovery rate, ρ  0.000 0.000 0.000 0.000 0.000 0.413 0.413 

Distress cost, φ  0.000 0.000 0.000 0.000 0.165 0.000 0.165 

OUTPUTS        

T* 0.400 0.400 0.400 0.300 0.369 0.400 0.347 

Adjusted yield,γ  0.080 0.100 0.100 0.090 0.100 0.1145 0.1145 

Equity value 106,688 227,565 264,608 208,086 243,311 241,652 207,919 

Average RE 15.90% 14.18% 13.76% 14.49% 14.02% 14.01% 14.45% 

 

In Table 6 we show the sensitivity of the equity value to different assumptions. The 

first column is Esty's calculation, from Table 3 above. The second column is the Esty 

method with equity discount rate calculated using the debt yield rather than the 

riskless rate. As discussed above this makes a large difference and is the most 

important element of the calculation to treat consistently in this particular example. 

The other columns are calculated using a cost of equity given by equation (13) above. 

The first of these is the base case analyzed in Table 3. The next column shows the 

effect of assuming that half the debt spread is excessive, so the fair debt spread is 9% 
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rather than 10%. The final three columns show the effect of distress costs and debt 

recovery assumptions. The parameter values are from Almeida and Philippon (2007). 

 

Each of the changes in assumption has a material effect on the valuation. In 

combination they give a wide range of values. The net effect of the correct 

assumptions in any particular situation will vary and cannot be predicted without 

using a consistent treatment of the equity discount rate. 

 

6. Concluding Remarks 

 

We have developed formulas for tax adjusted discount rates in highly levered 

transactions.  Our formulas are best interpreted as being suitable for project finance or 

other structures where the amount of debt follows a predictable pattern, conditional on 

solvency.  Our analysis is concerned with developing a consistent method for using 

the flows-to-equity method.  This is nontrivial when the leverage ratio changes over 

time. The appropriate discount rate for equity flows varies over time with the duration 

of the debt.  Using an example from Esty (1999), we show that the values we get with 

our approach for equity values and discount rates can be substantially different from 

those obtained from standard approaches.  

 

We have extended the basic framework to allow for debt which has a higher than fair 

interest rate, distress costs, and recovery in default.  The formulas in this general 

scenario parallel those in the simpler case, but involve modified tax and interest rates. 

These modifications depend on the extent to which yield spread on the debt is unfair, 

the level of distress costs, and recovery rates.  

 

Although we focus on the flows-to-equity method, there are alternatives which can be 

used to value highly leveraged transactions. The WACC and capital cash flow 

approaches can be used to incorporate the tax benefit of debt directly in the DCF 

calculation (see Cooper and Nyborg (2007) for a review). Alternatively, adjusted 

present value (APV) can be used to separately calculate the tax benefit of the debt 

(Arzac 1996). We have shown the links between the three approaches and how all the 

features which the flows-to-equity method is designed to capture can also be included 

in the APV approach. In practice, implementing the flows-to-equity approach 
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correctly is more complicated than using APV. Since the consistent version of the 

flows-to-equity approach is derived from the APV formula we believe that it is an 

open question as to whether the flows-to-equity method can achieve anything that 

APV cannot.  

 

The analysis that we have discussed assumes that the debt will be run down to zero as 

the project matures. An obvious extension would be to run the leverage down to a 

target level and then assume that the leverage ratio stays constant from that point 

onwards. This could be accommodated in our analysis by switching the debt policy to 

a standard Miles-Ezzell policy from the time the leverage ratio drops to the target 

level. Alternatively, one could assume that the debt level will be increased if the 

investment is successful. In that case the valuation should include the option value of 

increasing the tax shield in those circumstances.  
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Appendix 1: Proof of the relationship between ( )ER t and 
U

R  

From equations (5) - (7) in the main text: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )(1 ) 1 1 1 1UE t D t PVTS t R E t D t PVTS t C t+ − + = + + + − + + +    (A1.1)       

From equations (8) and (9): 

 ( ) ( ) ( ) ( ) ( )(1 ( )) 1 1 1 [1 (1 )]EE t R t E t C t D t D t Y T+ = + + + + + − + −             (A1.2)     

From equation (10):        

( ) ( )( )(1 ) ( ) 1PVTS t Y D t TY PVTS t+ = + +                 (A1.3)       

Taking equation (A1.1) plus (A1.3) minus (A1.2) gives: 

 ( ) ( )( ) ( ) ( ) ( ) ( )U U U EE t R D t R PVTS t R E t R t PVTS t Y D t Y+ − − + =              (A1.4) 

Rearranging (A1.4) gives equation (11) of the main text.                                 

 

Appendix 2: The relationship between ( )tα and duration.  

From (14) and (15): 
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( ) ( )1 /PVTS t Y YT= +
              (A2.1) 

where the last equality follows from (10). Hence: 

 

( ) ( ) ( ) ( ) ( )( )/ 1 / 1 /DUR t PVTS t TD t Y Y t Y Yα= + = +            (A2.2) 
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Appendix 3: Proof of the relationship between ( )ER t and 
U

R in the general case. 

 

The proof follows along the same lines as in Appendix 1 with PVTS replaced by 

PVFS. From equations (5) - (7) in the main text: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )(1 ) 1 1 1 1UE t D t PVFS t R E t D t PVFS t C t+ − + = + + + − + + +    (A4.1)       

From equations (8) and (9): 

 ( ) ( ) ( ) ( ) ( )(1 ( )) 1 1 1 [1 (1 )]EE t R t E t C t D t D t Y T+ = + + + + + − + −             (A4.2)     

From equation (24):        

( ) ( )*( )(1 ) ( ) 1PVFS t D t T Y PVFS tγ+ = + +                 (A4.3)       

Taking equation (A4.1) plus (A4.3) minus (A4.2) gives: 

 ( ) ( ) *( ) ( ) ( ) ( ) ( ) ( ) ( )U U U EE t R D t R PVFS t R E t R t PVFS t D t Y D t YT D t YTγ+ − − + = − +     

                                                                                                                      (A4.4) 

Rearranging (A4.4) gives equation (25) of the main text, with )(* tα   given by (26).                              

Appendix 4: The relationship between 
  
α * t( ) and duration.  

Making the same substitutions as in Appendix 3 allows us to follow the same line of 

argument as in Appendix 2 result given in the text.  Note that we now use (24) instead 

of (10) at the final step. 

 

Appendix 5: Proof of the equivalence between the Esty and the capital cash flow 

(CCF) methods when debt is riskless. 

 
This follows along the lines of Appendix 1, setting Y=RF.  Under the CCF assumption 

the tax saving has the same risk as the operating free cash flow, so (A1.3) becomes:        

 ( ) ( )( )(1 ) ( ) 1U FPVTS t R D t TR PVTS t+ = + +     (A1.3')       

Taking equation (A1.1) plus (A1.3') minus (A1.2) gives: 

  ( ) ( )( ) ( ) ( )U U E FE t R D t R E t R t D t R+ − =         (A1.4') 

Rearranging (A1.4') gives equation (4) of the main text.                                 

 
 


