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ABSTRACT 

 

This paper suggests a formula able to capture potential stronger connection among credit losses 

in downturns without assuming any specific distribution for the variables involved. We first 

show that the current model adopted by regulators (Basel) is equivalent to a conditional 

distribution derived from the Gaussian Copula (which does not identify tail dependence). We 

then use conditional distributions derived from copulas that express tail dependence (stronger 

dependence across higher losses) to estimate the probability of credit losses in extreme scenarios 

(crises). Next, we present an example based on a specific copula that indicates upper-tail 

dependence among credit losses. Simulations show that, for both credit classes tested (retail and 

corporate), the alternative method outperforms the Basel formula which, in turn, is prone to 

result in insufficient capital when the losses have positively-skewed distributions (long tail in the 

right side) and are upper-tail dependent (a realistic representation of credit portfolios, according 

to the literature). The method proposed is extendable to any differentiable copula family which 

gives flexibility to future practical applications of the model. 
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1.  INTRODUCTION 

The model (Basel Accord) adopted by regulators in many countries to calculate the capital to 

cover unexpected credit losses in financial institutions assumes normally-distributed variables 

and uses the linear correlation to measure dependence across losses. However, these assumptions 

do not allow the identification of possible stronger dependence across losses in extreme 

scenarios (which seems to be the case for several financial assets, loans included) and, therefore, 

the Basel method may underestimate joint credit losses in periods of crisis. 

Albeit the formula currently used in Basel Accords has a derivation not associated to copula 

functions, we show that it turns out to be equivalent to the first derivative of the Gaussian Copula 

(which denotes symmetric association without tail dependence). Moreover, the distribution of 

one variable conditional on another variable can be calculated as the first derivative of the copula 

that represents the dependence between the considered variables with respect to the conditioning 

variable. In other words, the Basel formula can be interpreted as the cumulative distribution of a 

latent variable (asset returns of obligors, for instance) conditional on the economic status. Based 

on this interpretation of the Basel model, we propose the use of copulas that capture stronger 

dependence among high losses (stronger dependence among low values of debtors’ asset returns) 

to generate alternative conditional distributions. So, we keep the basic intuition of the traditional 

approach but change the dependence structure such that we can identify higher probability of 

default in adverse scenarios. The alternative model is basically set as the first derivative of the 

copula chosen to represent the relationship between the latent variable and the economic factor 

with respect to the latter variable. At this point, we face a challenge pertaining to the copula 

parameter that measures the dependence intensity. For some copulas, this parameter can be 

directly deduced from the rank correlation (Kendall’s tau) between the variables. Thus we need 

to find the rank correlation between the latent variable of each loan and the economic factor but 

we cannot calculate it since we do not have enough information about the second variable. To 

overcome this problem, we show that the rank correlation between the latent variable of each 

debtor and the economic factor is related to the rank correlation between two latent variables (e.g. 

asset returns of two obligors) which can be presumed from past losses (default rates). Once we 

have an estimate for the former rank correlation, we will have all necessary information to 

calculate the conditional probability by means of the first derivative of a copula with a given 

confidence (unfavorable economic level).  
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As an example, we present a formula originated from the Clayton Copula that is able to detect 

stronger connection (tail dependence) among low values of latent variables (which is equivalent 

to identify higher dependence among high credit losses). The resultant formula to calculate 

unexpected (extreme) credit losses does not assume any kind of distribution for the variables 

considered and therefore overcomes the limitations of the existing method with regard to the 

assumption of normality and the use of the linear correlation. 

Simulations corroborate our hypothesis that the Basel formula tends to underestimate the 

likelihood of joint extreme defaults when losses present positively-skewed distributions and 

right-tail dependence (which, according to the pertinent literature
1
, characterize loan portfolios 

held by financial institutions) and show that the alternative approach yields better estimates of 

unexpected losses when compared to Basel. 

In short, our contributions are threefold: (i) we present an alternative derivation of the Basel 

formula and show that it corresponds to the first derivative of the Gaussian Copula; (ii) we set up 

a model able to capture stronger dependence among credit losses in unfavorable scenarios which 

results in more efficient estimations of potential extreme losses; and (iii) we propose a way to 

derive the dependence between a latent variable of each loan and an economic factor from the 

dependence observed across loans’ default rates. 

This paper is organized as follows. In Section 2, we introduce copula functions and explain how 

conditional distributions can be derived from them. Then, we present two derivations of the 

Basel formula used to estimate extreme credit losses. Section 4 contains an example of 

conditional distributions that can capture potential asymmetric dependence across losses. 

Simulations are used in Section 5 to compare the performance of the proposed model to the 

performance of the Basel model. Section 6 concludes. 

 

2. COPULAS AND CONDITIONAL DISTRIBUTIONS 

Copulas are multivariate distribution functions with uniformly distributed margins in (0,1) that 

link marginal (individual) distributions of variables to their joint distributions: 

 

))(),...,((),...,( 111...1 nnnn xFxFCxxF   

 

                                                           
1
 Mentioned ahead. 
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where (.)F  denotes a cumulative distribution function and C  stands for a copula. Thus, C  is 

an expression (function) with n  inputs and, when evaluated at )(),...,( 11 nn xFxF , returns the 

joint cumulative distribution of the n  variables evaluated at nxx ,...,1 , i.e., the probability that all 

variables nXX ,...,1  are concurrently below the respective values nxx ,...,1 . 

According to Joe (1996)
2
, the cumulative distribution of a random variable conditional on other 

variables is given by the first derivative of the copula that represents the dependence among the 

variables with respect to the conditioning variables (those placed after the symbol “|”): 
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where F(x|v) is the distribution of x conditional on vector v ,
 jjxvC

v| is a copula distribution 

function, jv  is a component of vector v   and jv  is the vector v  excluding this component. 

When v  is univariate, the conditional distribution becomes: 
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where x and v indicate the conditioned and the conditioning variables respectively and the 

remaining notation is the same used in the prior formula.  

The first derivative of some bivariate copulas can be found, for example, in Joe (1997, Chapter 

5), Aas et al. (2009), and Bouyé and Salmon (2009). Two families of particular interest here are 

the Gaussian (Normal) and the Clayton that respectively generate the conditional distributions 

stated in [1] and [2]: 

  

                                                           
2
 A detailed proof of this formula is given in Czado (2010). 
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where   and 1  represent the standard normal distribution and its inverse respectively, F(.|.) 

is the distribution of X1 conditional on X2, F(.) is an unconditional distribution and 
12  is the 

Gaussian Copula parameter
3
 between X1 and X2. 

 

 )|(]|Pr[ 2212|12211 xXxFxXxX
 

 /)1(
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where F(.|.) is the distribution of X1 conditional on X2, F(.) is an unconditional distribution and 

  is the Clayton Copula parameter between X1 and X2. 

Note that this same concept of conditional distributions is treated in Bouyé and Salmon (2009) as 

nonlinear quantile regressions. The models proposed here are equivalent to quantile regressions 

but we do not use this terminology to keep the discussion as simple as possible.  

The strength of the dependence (copula) is expressed by a parameter   which is closely related 

to rank correlations Kendall’s tau ( ). For two variables 1X  and 2X  with distribution functions 

evaluated at 1x  and 2x , 111 )( uxF   and 222 )( uxF   correspondingly, the intensity   of their 

representative copula can be inferred from
4
: 

 

 
2]1,0[

2121 1),(),(4 uudCuuC  

 

  

                                                           
3
 The parameter of the Gaussian Copula is usually represented by  . We adopt the notation   to distinguish the 

Gaussian Copula parameter from the linear correlation coefficient between the variables studied. These two 

measures of dependence are identical only when the marginal distributions are normal. 
4
 The proof is given in Nelsen (2006, chapter 5). 

[ 3 ] 

[ 2 ]  

[ 1 ]  
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3. BASEL METHOD: TWO DERIVATIONS 

3.1 The calculation of extreme credit losses 

For each homogeneous credit segment, the capital required to cover unexpected losses is 

calculated as the unexpected losses adjusted by the portfolio maturity. 

In mathematical terms: 

 

MaturityPDKLGDMaturityPDLGDKLGD VV *)](*[*]**[   

 

where LGD is the “loss given default”, i.e. the percentage of exposure the lender will lose if 

borrowers default and PD  stands for probability of default. Maturity  corresponds to the 

maturity of corporate loans (i.e., not applied to consumer debt) and is added to the calculation in 

order to give higher weight to long-term obligations which are known to be riskier. For the sake 

of brevity, the maturity formula is not presented here. See BCBS (2005, 2006) for more details.  

The other term in [4], VK , is the expected default rate at the 99.9% percentile of the PD  

distribution (“Vasicek Formula”) - see Vasicek (1991, 2002) - and is calculated as: 
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where: 

  and 1  represent the standard normal cumulative distribution and its inverse, respectively; 

PD is the probability of default of the loan portfolio (average); 

)999.0(1 , which is equal to )001.0(1 , is the level of the economy (confidence) chosen to 

represent an extreme scenario when unexpected losses may occur. Therefore, the systematic 

factor is assumed to be normally distributed; and 

Rho (  ) is the correlation between returns of obligors’ assets.   is the linear correlation 

between the unobserved systematic factor and those asset returns. In Basel method, the 

correlation between asset returns is calculated as a function of PD  and (in the case of corporate 

[ 4 ] 

[ 5 ] 



6 
 

debt) the size of debtors (measured in terms of annual sales). Thus, for retail loans, the 

correlation is given by
5
: 
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And, for corporate debts, the correlation is calculated as: 
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where “Size” (in € million) refers to the obligors’ size and is applied for annual sales between €5 

million and €50 million. 

 

3.2 Derivation from factor models 

Some leading industry credit risk models, such as CreditMetrics


 and KMV


, rely on the 

presumptions of structural models (initially proposed by Merton, 1974) according to which an 

obligor defaults when a latent variable associated to it (typically interpreted as the log-returns of 

its assets) falls below a threshold (the amount needed to pay the outstanding debt). 

The dependence across defaults of different obligors is estimated in line with factor models 

which assume that the correlation among defaults is driven by the debtors’ latent variables (see, 

for instance, Crouhy et al., 2000 and Bluhm et al., 2002). Such underlying variables are impacted 

by common (systematic) factors that affect all obligors and specific (idiosyncratic) factors that 

have effect only on the respective borrowers.  

The idiosyncratic factors are assumed to be independent from one another and therefore do not 

contribute to asset return correlations which are exclusively determined by the systematic 

factors.  

To illustrate this idea, consider a case based on an example given by Bluhm et al. (2002). If two 

automotive companies A and B operating in country C are debtors, the ability of those firms to 

                                                           
5
 This formula does not apply to revolving and mortgage credits, for which the correlations were specified in Basel 

as 0.04 and 0.15, respectively. 

[ 6 ] 

[ 7 ] 
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pay their obligations is likely affected in the same direction by the underlying factor automotive 

industry. That is, if the activity in that sector falls, the default probability of A and B increases 

simultaneously. Another aspect that certainly have influence on the performance of those 

companies is the country C’s economic level. So this is another systematic factor that may 

change the default probability of A and B in the same way. In contrast, if the firm A’s CEO steps 

down or one of its factories is flooded, this event will, in principle, impact only the default 

likelihood of A (not B’s). Hence, this would be an idiosyncratic risk of A.  

Naturally, there are many common factors that act together and influence debtors’ situation. 

However this model may be simplified if we consider that the asset returns of all borrowers are 

driven by only one common factor (the “economic status”).  The latent variable (Y ), the single 

systematic factor ( E ), and the specific factor ( ) are assumed to be standardized normally 

distributed. Also, each idiosyncratic risk is uncorrelated with the systematic risk and the specific 

risks of all other obligors. For simplicity, all pairs of asset returns (i and j) are considered to 

present the same correlation ( ij ). The correlation between the systematic factor and the asset 

return of each debtor is denoted YE . 

Owen and Steck (1962) show that equally correlated and jointly standard normal variables may 

be expressed as a function of their correlation coefficient and two other standard normal 

variables.  

Thus, considering all assumptions of factor models, in the case of a single common risk, the 

latent variable Y  for a debtor i  may be expressed as a function of E ,  , and YE , namely:  

 

21 YEiYEi EY    

 

Due to some properties of jointly standard normal variables, we have: 

 

ijYE    

 

This equality is essential to the subsequent calculations since there is usually no adequate proxy 

for E  (which is not observable) and, consequently, YE  cannot be directly estimated from 

[ 9 ] 

[ 8 ] 
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empirical data. On the other hand, we can infer the correlation between asset returns, ij , from 

historical losses (default rates). Expression [9] is often mentioned in the literature but its 

derivation is rarely presented. In order to fill this gap, we present one possible derivation in 

Appendix A. By replacing 
YE  with 

ij  in [8], we get: 

 

ijiiji EY   1  

 

where ij  and ij1  indicate how much of the variability of iY  is explained by E  and i , 

respectively.  

Apart from the doubtful presumption of normal behavior for some of these variables, the use of 

the linear correlation coefficient is a limitation given that it does not capture asymmetric 

dependence which could indicate more or less intense association across some variables in 

certain scenarios (see Embrechts et al., 2002). 

In general, VK
 
(defined in [5]) follows the main presumptions of factor models (see, e.g., Gordy, 

2003) where each latent variable ( iY ) is a linear function of an unobserved single factor 

(systematic risk, E ) and specific characteristics of the respective obligor (idiosyncratic risk, i ). 

The single factor is assumed to be standard normally distributed and impacts all obligors equally 

(same correlation YE ). The latent variables are considered equicorrelated (same ij  for all pairs) 

and also follow the standard normal distribution. This leads to expression [10] mentioned above.  

For each loan i, the probability of default is the likelihood that the latent variable iY   becomes 

smaller than the cutoff cy , that is, ]Pr[ ci yYPD  . Extreme credit losses happen when the 

economy E  reaches an extremely unfavourable level *e . In other words, these high losses are 

the probability of default conditional on a poor economic status. Representing this probability as 

*PD , we have *]|Pr[* eEyYPD ci   and using [10] with the simplified notation for 

 ij : 

 

*]|1Pr[* eEyEPD ci    

[ 10 ] 
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Solving for i  and replacing E  with *e : 
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As mentioned above, i  is presumed to be normally distributed with mean 0 and variance 1. 

Thus, the previous equation turns into: 
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where   indicates the cdf of the standard normal distribution. 

Since Yi is also normally distributed, )( cyPD   which implies that )(1 PDyc

 , i.e. the 

cutoff of the latent variable below which default occurs is the inverse of the normal distribution, 

1 , evaluated at PD . Basel demands confidence of 99.9% which means that the capital is 

supposed to be sufficient to cover the losses whenever the economy is above (better than) the 

0.01 percentile of its distribution (also assumed to be normal). Hence the extreme adverse 

scenario *e  is given by )001.0(1 . Due to two properties of the standard normal distribution 

(symmetry and mean 0), )999.0()001.0( 11   . Using this fact and replacing *e  with  

)999.0(1  and  cy  with )(1 PD  in the prior equation, we get the formula presented in 

Basel Accord (here the extreme loss, *PD , is denoted as VK ):  
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Readers interested in more details about this derivation of Vasicek formula ( VK ) should consult, 

for instance, Schönbucher (2000), Perli and Nayda (2004), and Crook and Bellotti (2010).  
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Some models have been proposed to transform [5] into another expression that does not have the 

limitation regarding the assumption of normality. Starting from [10], Hull and White (2004) 

relax the distributions
6
 of iY , E  and i , such that they can, for example, present heavy tails 

(which tends to increase the joint occurrences of extreme realizations of the latent variables). 

Representing the distributions of those three variables respectively by F, G and H and following 

the same steps that derived [10] from [5], the expression to estimate the probability of default 

conditional on an unfavorable economic status (the worst 0.1% scenario, i.e. with confidence of 

99.9%) turns into: 
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where e* indicates an extreme adverse economic scenario and can be calculated as the inverse 

distribution of E  evaluated at 0.001 (since the critical level was set at 0.1%). PD  is the 

historical probability of default and   is the linear correlation between returns of obligors’ 

assets. Obviously, the expression above cannot be solved unless the shapes of the three 

distributions F, G and H  are known.  

Some studies, such as Bluhm et al. (2002), Kostadinov (2005) and Kang (2005), have suggested 

the Student t distribution for E  and i  to characterize the existence of more events (than the 

normal distribution) in the tails. In this case, it is not possible to define the distribution of the 

latent variable in [10] and the probability of default in downturns (at the 0.1% worst scenario) is: 
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where Tv is the Student t distribution with v degrees of freedom. Given that the latent variable’s 

distribution F remains unknown, the preceding likelihood cannot be calculated.  In view of the 

impossibility of the estimation of the probability of default in adverse economic scenarios when 

                                                           
6
 Provided that they are scaled with mean zero and variance one. 
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one (or more) of the variables in [10] are not normally distributed, we propose a different setup 

to incorporate Copula Theory into this analysis and capture potential tail dependence even if we 

do not know any of the distributions concerning the latent variable, the economic factor and the 

idiosyncratic factors (which is the reality in financial institutions).  

 

3.3 Derivation from the Gaussian Copula 

Departing from [1], the conditional distribution calculated from the Gaussian Copula (restated 

below for convenience), consider that  X1 is a latent variable, x1 is the level below which defaults 

happen and X2 is the economic status (single factor). So, that formula gives the likelihood of the 

latent variable X1 being below a specific value x1 conditional on X2 = x2. Assume that both 

variables follow the standard normal distribution.  
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Therefore PDxxF  )()( 111
 (i.e. the probability of the latent variable X1 being below the 

cutoff x1) and )())(( 1

11

1 PDxF    returns the latent variable cutoff
7
. )()( 222 xxF   is 

the level of the economic situation and the inverse of its distribution  ))(( 22

1 xF  

22

1 ))(( xx 
 gives the “value” of the economic variable. So, the smaller )( 2x  is the 

worse the economic status gets and to express adverse scenarios in [1] small values for )( 2x  

should be used. Basel adopts the confidence level of 99.9%; as said before, )999.0(1  = 

)001.0(1 . The parameter 12  in [1] refers to the dependence between X1 and X2. If we 

assume that X1 and X2 have individual normal distributions, 12  will be equal to the linear 

correlation between the variables (denoted here as 12 ) which cannot be estimated given that 

there is no sufficient information on the economic status. Assume we can assess the linear 

correlation between the latent variables (based on the observed probabilities of default). Under 

the conditions specified (i.e. the latent variables and the economic factor follow the standard 

                                                           
7
   represents the standard normal distribution and 1  indicates its inverse. 

[ 1 ] 

restated 
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normal distribution) and according to [9], 
12  can be associated to the linear correlation   

between the latent variables (or the probabilities of default) such that  12
.  

In resume, setting F1(x1) = PD and F2(x2) = 0.999, replacing )999.0(1  with )001.0(1  

and noting that   1212 , we see that the first derivative of the Gaussian Copula, [1], 

corresponds to the formula (restated below) used in Basel to calculate the probability of default 

conditional on an extremely unfavorable economic situation: 
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4. EMPLOYING ALTERNATIVE CONDITIONAL DISTRIBUTIONS TO CAPTURE 

TAIL DEPENDENCE 

4.1 An example to detect higher dependence across losses in downturns  

As indicated in some empirical studies (for instance, Di Clemente and Romano, 2004 and Das 

and Geng, 2006), higher credit losses tend to be more associated than low levels of losses. 

Recalling credit losses imply the existence of small values of the latent variables, we can 

interpret the stronger connection among losses in downturns as an effect of the intensification of 

the dependence across small latent variables. In other words, this is evidence that small values of 

the latent variables tend to be more connected over adverse periods. Thus the relationship 

between two latent variables, Yi and Yj, can be represented by a scatterplot like the one in Figure 

1. 

[Insert Figure 1 here] 

 

When the economic factor E is inserted in the analysis, reduced levels of this variable will 

present more intense association with the latent variables. Figure 2 shows the dependence 

between E and each latent variable in this context. The correspondence between Figure 1 and 

Figure 2 can be noticed by comparing the level of Yi and Yj in a downturn (e*, for example) with 

the level of those latent variables when the economy is booming (e**, for example). In the first 

case, both Yi and Yj  tend to be small whilst in the better economic scenario, e**, a wider range 
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of different values of the latent variables are associated (i.e. there is a higher likelihood that a 

small Yi and an elevated Yj, for instance, will happen at the same time). So, this means that the 

lower-tail dependence characterizes not only the relationship between the underlying variables 

but also the link between the economic status and each latent variable.  

 

[Insert Figure 2 here] 

  

Such dependence structure can be represented by, for example, the Clayton Copula and, in this 

case, the proportion of loans in the portfolio for which the latent variable, Y, will be smaller than 

the cutoff yc (i.e. the probability of default) when the economy falls to an extremely low level 

(e*) is derived from [2]: 

 

YEYEYEYE

cYEc yFeFeEyF
 /)1(

}1]1)([*)({*)|(


  

 

where F(.|.)  indicates a conditional distribution, FE(e*) is the cumulative distribution of the 

economic factor (which indicates adverse scenarios when it approaches 0 and booms when it gets 

close to 1), FY(yc) is the average (historically observed) probability of default and YE  is the 

copula parameter between Y and E.  

Among the three variables necessary to compute extreme losses by applying [11], two, FY(yc) 

and FE(e*), are readily available; the former is the expected probability of default of the 

homogeneous portfolio and the latter is to be set according to the confidence demanded for the 

economic scenario
8
. Naturally, it is expected that the probability of the latent variable of each 

obligor being below a particular cutoff, given a specific economic level, increases when the 

dependence among the defaults becomes stronger. In the particular case of the Clayton Copula, 

this monotonically increasing behavior of F(yc|E) with respect to YE  happens only if FE(e*)   

FY(yc). When FE(e*)  FY(yc), F(yc|E) is a quadratic function of YE  and starts falling after 

rising up to a specific value. Therefore the calculation of the regulatory capital will yield more 

consistent results if the extreme economic level is restricted to percentiles smaller than or equal 

                                                           
8
 Since FE(e*) is truncated in the interval [0,1] and small values represent adverse scenarios, 0.01 

indicates the confidence level of 99%, 0.05 is associated with the confidence of 95% and so on. 

[ 11 ] 
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to the percentiles of the latent variables, i.e. if PDeFE *)( , where PD is the average default 

probability of the portfolio. This does not represent any significant concern in this context 

because we are interested in small values of FE(e*)  that indicate downturns. 

One way to find the other variable in [11], 
YE , is to derive it from the rank correlation between 

Y and E (Kendall’s tau, 
YE ). As shown in [3], the Kendall’s tau between two variables is 

associated with the parameter of the copula that represents their dependence. For some families 

this association has closed form (see some examples in Nelsen, 2006, chapter 5) and the Clayton 

Copula is one of them such that its parameter can be calculated as: 

 

YE

YE
YE









1

2
 

 

However we do not have enough information on E  to estimate YE . When the Gaussian Copula 

is used, this problem is resolved by replacing the correlation between Y and E with the 

correlation between the latent variables of debtors (expression [9]). Thus, assuming the rank 

correlation between the latent variables, ij , can be inferred from datasets pertaining to credit 

losses (in the same way the linear correlations across probabilities of default were estimated in 

Basel Accords for different loan classes), we should look for a correspondence between YE  and 

ij  so that YE  can be calculated and plugged into [11]. 

 

4.2 Relationship between rank correlations 

Kendall’s tau ( ) is based on the number of concordant and discordant pairs of variables. 

Assuming ( 11,YX ) and ( 22 ,YX ) are two independent pairs from a joint distribution, they will be 

concordant if 0))(( 1212  YYXX , i.e., if the two variables move in the same direction. They 

will be discordant when 0))(( 1212  YYXX . Kendall’s tau is the difference between the 

proportion of concordant and discordant pairs, i.e.,   = Pr[concordance] – Pr[discordance]. 

Defining c  as the number of concordant pairs and d  as the number of discordant ones, 

Kendall’s tau is equivalently expressed as:  

 

[ 12 ] 
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dc

dc




  

 

Table 1 illustrates the co-movements of the three variables considered here: Yi, Yj and E. The 

arrows “” and “” indicate the direction in which the variables move. So, if two of them have 

equal arrows, they move in the same direction and are therefore “concordant”. Conversely, if one 

arrow points up while the other one points down, the pairs of variables are “discordant”. Denote 

the number of concordant pairs as cij, cEi, and cEj for the pairs (Yi,Yj), (E,Yi,) and (E,Yj) 

respectively. The related number of discordant pairs will be represented by dij, dEi, and dEj. Let N 

be the total number of observations (which will be obviously the same for all variables). So, for 

any pair, c + d = N and, from [13], c - d =  N. Combine these two expressions, we get: 

 

2

)1( 


N
c  

 

[Insert Table 1 here] 

 

Since we are assuming that the latent variable of each debtor has equal dependence in terms of 

the economic factor, cEi = cEj (and also dEi = dEj). Hence, this condition is satisfied whenever Yi 

and Yj are concordant because the relationship between each of them and E will be always the 

same (this is the case of all observations of Yi and Yj in Panel B of Table 1 and the two first 

observations of those two variables in Panels C and D). On the other hand, when Yi and Yj are 

discordant, E will be necessarily concordant with one latent variable and discordant with the 

other one. Therefore if E is concordant with Yi (Yj) when the latent variables are discordant, E 

must be concordant with Yj (Yi) in another period when the latent variables are discordant. 

Panel A represents the only case in which ij  (rank correlation for each pair of latent variables Yi 

and Yj) implies a single value of YE  (rank correlation related to each Y and E), i.e. when ij = -1. 

Since Yi and Yj present a completely inverse behavior, all pairs in the first two columns are 

discordant. In this scenario, the condition cEi = cEj  will be met only if E is concordant with Yi  in 

half of the observations and concordant with Yj in the other half such that cEi = cEj = 0.5 N. 

[ 13 ] 

[ 14 ] 
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Recalling that c + d = N, we have that dEi = dEj = 0.5 N and the Kendall’s tau between E and 

the latent variable of each obligor (i and j) will be: 

 

0
5.05.0















N

NN

dc

dc

dc

dc

EjEj

EjEj

EiEi

EiEi
YE  

 

So, when ij  = -1, we know for sure that, given the assumption of equal dependence between 

each latent variable and the single economic factor,  
YE  = 0. 

Apart from this special case, there is no mapping from ij  to a unique value of 
YE . Panel B 

shows the highest rank correlation between the latent variables ( ij  = 1) where all pairs of 

arrows in the two first columns point in the same direction and therefore any combination of 

directions in E will comply with the requirement cEi = cEj (the third column of Panel B is an 

example). This means that if the latent variables present the strongest possible connection, any 

value for YE  is possible. 

Fortunately, credit losses tend not to be perfectly correlated and this reduce the range of feasible 

values of YE  when ij  can be estimated (or assumed based on some reasonable presumptions).  

Whenever ij  is different from -1 and 1, there will be concordant and discordant pairs of Yi and 

Yj. Panels C and D in Table 1 help us to identify the minimum and maximum possible YE  (i.e. 

its bounds) for a given ij  in that interval. Both panels symbolize pairs (Yi,Yj) with identical 

observations: the two first lines are concordant and the others are discordant (the directions of 

the arrows are just illustrative). 

From [13], it is clear that the minimum YE  in this scenario will happen when cEi (=cEj) is 

minimum and this happens when E is discordant with the concordant pairs (Yi,Yj); see the first 

two lines of Yi and Yj in Panel C where the arrows of E have the opposite direction of the 

respective arrows of Yi and Yj. Furthermore, as explained above, when the pairs are discordant, E 

must be concordant with each Y  half of the observations (represented in the last four lines in 

Panel C). From this, we deduce that the minimum number of concordant pairs between E and a 

latent variable is 
jiEjEi dcc 5.0minmin  , that is, half of the observations presenting discordant 
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pairs (Yi,Yj). The equivalent discordant pairs will be therefore 
jiijEjEi dcdd 5.0minmin  . In 

Panel C, min

Eic , for instance, is equal to  2)4(5.05.0 
jid  (which refers to the third and the 

fourth lines where Yi and E are concordant) and 4)4(5.025.0min 
jiijEi dcd  

(concerning the first, the second, the fifth and the sixth lines). From this, it follows that the 

minimum Kendall’s tau between E and each latent variable (Yi, for example) can be associated to 

the concordant and discordant pairs that generated the calculable Kendall’s tau between Yi and 

Yj: 
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The maximum 
YE  will happen when cEi  (=cEj) is maximum and this occurs when E is 

concordant with the concordant pairs (Yi,Yj) as demonstrated in the two first lines of Panel D in 

Table 1. As before, E must be concordant with each Y  half of the discordant observations (see 

the last four lines in Panel D). In these circumstances, the highest number of concordant pairs 

involving E and a latent variable is 
jiijEjEi dccc 5.0maxmax   and the discordant pairs totalize 

jiEjEi ddd 5.0maxmax  . In Panel D, 4)4(5.025.02max 
jiEi dc  (the first four lines 

in Panel D) and 2)4(5.05.0max 
jiEi dd  (the last two lines). The maximum Kendall’s tau 

relating E to each Y  expressed in terms of concordant and discordant  pairs between the latent 

variables is (taking loan i as an example): 
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Combining [14], where c + d = N, with [15] and [16], these two expressions can be rewritten 

respectively as: 

 

[ 15 ] 

[ 16 ] 



18 
 

2

)1(2/)1(
min












ijij

ijij

ij

YE
N

N

dc

c 
  

and 

 

2

)1(2/)1(
max










ijij

ijij

ij

YE
N

N

dc

c 
  

 

This means that, when 11  ij , the rank correlation between E and each latent variable, 

YE  (which is the same for both loans i and j due to the assumption of homogeneous dependence) 

is always in the range whose limits are the values displayed in [17] and [18], i.e.: 

 

]2/)1(,2/))1([(  ijijYE   

 

such that the smaller ij  is, the shorter the range of YE  is
9
. Note that [17] and [18] are also 

compatible with the extreme cases mentioned earlier ( ij  = -1 and ij  = 1) and the maximum 

YE , for example, is respectively equal to 0 (the only admissible value for YE  when ij  = -1) 

and 1 (the maximum theoretical YE , which reflects the fact that ij  = 1 allows any rank 

correlation between E and the latent variables). Another interesting example is the possible range 

of YE  when the loan defaults (i.e. the latent variables) are independent. When ij  = 0, YE  may 

vary between -0.5 and 0.5. In other words, the independence between Yi and Yj does not imply 

that each latent variable (and consequently, the probability of default of each debtor) is free from 

the influence of the economy.  

In principle, any value in the interval [ 2/))1((  ij , 2/)1( ij ] can be used to estimate the 

parameter of the copula that expresses the dependence between the economic factor and the 

latent variable at the portfolio level. However, in the particular case of the Clayton Copula, the 

parameter YE  is in the interval (0,∞). Thus [19] becomes: 

                                                           
9
 In accordance to what was said before, the shortest range is associated with ij  = -1 (the smallest possible rank 

correlation between the latent variables) which results in a single value for YE  (= 0).  

[ 17 ] 

[ 18 ] 

[ 19 ] 
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]2/)1(,0(  ijYE   

 

In a prudential regulatory context, a reasonable choice for 
YE  seems to be its highest value 

(corresponding to 2/)1( ij ) since it denotes the strongest connection across the latent variables 

and represents the highest possible dependence among credit losses (so, the capital required will 

be estimated according to the worse scenario given the observed rank correlation between 

defaults). However this alternative may lead to the overestimation of the regulatory capital and 

therefore some intermediary values of YE  can be employed at the discretion of regulators and 

practitioners. In the simulations ahead we will test three levels of the rank correlation between 

each latent variable and the economic factor: ⅓ of the maximum YE , the average YE  and the 

highest YE . In the instance of the Clayton Copula, considering [20] these three levels are 

respectively given by: 
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If the Clayton Copula is adopted to represent the dependence between the economic factor and 

the credit losses, the capital required to cover unexpected losses with higher dependence in 

downturns will be estimated by means of [11], restated below: 

 

YEYEYEYE

cYEc yFeFeEyF
 /)1(

}1]1)([*)({*)|(


  

 

where the parameter YE  will be defined according to the level of the rank correlation between 

credit losses and the economic factor. Three options are ⅓ of the maximum value, the average 

value, and the highest value, calculated respectively as (by combining [12] and [21]): 
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[ 22 ] 
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Recall that ij  is the observable (computable) rank correlation (Kendall’s tau) across 

probabilities of default and can be determined in the same way the linear correlation in [5] was 

defined by several credit classes in Basel Accord. 

This model is flexible and the copula family can be changed according to different dependence 

shapes empirically found. One example could be the case of credit losses that present tail 

dependence in a symmetric joint distribution. An option to express this situation would be the 

Student t Copula. Thus, [11] would be replaced with the first derivative of the Student t Copula 

(displayed, for example, in Aas et al., 2009) where the distribution of the latent variable 

evaluated at the cutoff point (= PD) and the chosen percentile of the economic factor would be 

the conditioned and the conditioning variables, respectively. 

 

5. COMPARISON BETWEEN THE PERFORMANCE OF THE BASEL METHOD 

AND THE PERFORMANCE OF THE SUGGESTED APPROACH 

5.1 Initial comparisons 

Simulations were run to check whether the estimation of unexpected losses based on formulas 

derived from a left-tail-dependent copula outperforms the formula used in the Basel Accord. 

Following the evidence presented in the literature according to which high asset losses are prone 

to be more connected than low losses
10

, credit portfolios with right-tail-dependent losses were 

simulated with 520 observations each
11

. Two classes of loans were considered, retail (Table 2) 

and corporate (Table 3), because the Basel Accord uses different ranges of correlation for those 

two groups: between 0.03 and 0.16 for the former and between 0.12 and 0.24 for the latter
12

. In 

Basel, expressions [6] and [7] refer to correlations across asset returns of obligors but, given that 

these correlations are assumed to drive the relationship among defaults, we take the values 

calculated from [6] and [7] as proxies for correlations among PDs. 

In both classes (retail and corporate), correlations were taken as decreasing functions of PD (see 

[6] and [7]) following the idea that riskier obligors (higher PD) present more idiosyncratic risk 

                                                           
10

 See for example, Ang and Bekaert (2002), Di Clemente and Romano (2004), Das and Geng (2006), Ning (2006), 

Patton (2006) and Rosenberg and Schuermann (2006). 
11

 This is equivalent to around 10 years of weekly data or 43 years of monthly data. 
12

 The retail class in these simulations excludes revolving credit and mortgages given that they have correlation 

indices fixed respectively at 0.04 and 0.15 in Basel Accords. The correlation across corporate loans is also a function 

of the size of the obligors. In these simulations, all corporate debtors were set at the maximum size (annual sales = 

€50 million) stipulated in Basel. 
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and therefore the systematic portion of their risk is smaller which results in lower correlation 

(see, for instance, BCBS, 2005 and Das and Geng, 2006). So, to avoid poor performance of the  

Basel approach due to mispecified correlations, only portfolios with the respective levels of 

association determined in the Basel Accord were considered in the comparison (see second 

column of Tables 2 and 3 where the correlation coefficients displayed are consistent with the 

formulas adopted in Basel [6] and [7]
13

). In order to simplify the calculations for corporate 

portfolios, the maturity term (see [4]) was set equal to one year. 

As in the Basel approach, the portfolios are assumed to be homogeneous, i.e. all pairs have the 

same dependence (shape and intensity). Whilst Basel implicitly presumes the Gaussian 

dependence (copula), which represents a symmetric relationship without tail dependence, the 

simulations run in this section follow empirical evidence from the literature according to which 

high credit losses are typically more connected than low losses. Thus the losses in all simulated 

portfolios are upper-tail dependent and the Gumbel Copula was used to generate such 

relationship. 

Following Kalyvas et al. (2006), according to whom the distributions of credit losses are skewed 

to the right (positive skewness), we used two distributions (beta and gamma) to represent the loss 

distributions
14

. The shape of such distributions is generally like the one shown in Figure 3. 

 

[Insert Figure 3 here] 

 

Ten PD levels (expected losses) were tested (from 0.01 to 0.10). So, for each loan class (retail 

and corporate), the capital was estimated in 20 scenarios (ten PD levels times two distributions). 

The simulation of scenario was repeated 1,000 times to eliminate potential randomness effects. 

The alternative approach is illustrated by a conditional distribution derived from the Clayton 

Copula (as in Section 4). Since there is not a unique possible parameter for the copula between 

each latent variable and the economic factor, three parameters were tested. They were based on 

the average rank correlation ( YE ) between Yi and E, ⅓ of the maximum possible YE , and the 

maximum YE . The rank correlation between the latent variables of two obligors )( ij  and the 

                                                           
13

 Difference no greater than 0.001. 
14

 Both distributions were simulated such that they were positively skewed (longer tail in the right side), i.e., 

extremely high credit losses were farther from the mean than the extremely small losses were.  
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three copula parameters )( YE  resulted from the three rank correlations 
YE  used are presented in 

Appendices B (retail credit) and C (corporate credit). 

 

[Insert Tables 2 and 3 here] 

 

According to what was said in Section 4.1, the calculation of the regulatory capital via the first 

derivative of the Clayton Copula yields more consistent results (capital increasing with the 

dependence across defaults) if the extreme economic level is restricted to percentiles smaller 

than or equal to the percentiles of the latent variables (which represents the average default 

probability, PD, of the portfolio), i.e. if PDeFE *)( . As an example, we set the confidence 

(percentile of the economic level) equal to 99% (i.e. 01.0*)( eFE ), which complies with all 

PD values considered. 

In general, the results indicate that the formula currently used in Basel Accord tends to 

underestimate extreme (unexpected) losses for both retail and corporate portfolios when their 

losses present positively-skewed distributions and are right-tail dependent (higher losses more 

associated). 

As for retail credit, Table 2 details the estimations for ten PD levels whose correlations are 

consistent with those determined in Basel (see the second column). The maximum unexpected 

losses (i.e. the maximum losses minus the average losses) are displayed in the third column. The 

next four columns present the estimates resultant from Basel approach and from the alternative 

method based on three possible values of the rank correlation, YE , between each obligor and the 

economic factor. The last four columns show the absolute difference between the maximum 

simulated unexpected losses and the four estimates (the values in each of these four column is 

added and the total is shown to indicate which approach gave the overall best approximation to 

the maximum losses). In all scenarios of both distributions tested (beta in Panel A and gamma in 

Panel B), at least one alternative estimate was better than the Basel evaluation. The best 

approximation (smallest difference between estimates and the unexpected losses) in each 

scenario is displayed in boldface. 

Since we are following the same presumption adopted in Basel (namely, that high PDs are less 

connected than low PDs), the rank correlation, ij , between loans’ losses is lower for higher 
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PDs. As a consequence, the maximum rank correlation, 
YE , between each obligor and the 

economic factor gets smaller as PD increases
15

 and, logically, the same applies to the range of 

potential values of 
YE  (see [19] for all copulas and [20] for the Clayton Copula).  

In complement to this fact, our results suggest that, in general, the best value of 
YE  in a given 

interval follows a similar relationship: low levels of 
YE  yield better results for high PDs and 

vice versa.  So, in Panel A of Table 2 (beta-distributed losses), the highest level of 
YE  tested 

resulted in the best estimate of unexpected losses for the lowest PD (0.01). The extreme losses 

for the next three values of PDs were better captured by the intermediary 
YE . The lowest 

considered YE  gave the best outcomes for the six highest PDs. In Panel B (gamma-distributed 

losses), the three lowest PDs had the better results by means of the average YE . As PD 

increases, the best rank correlation becomes the smallest one (⅓ of the maximum YE ). 

Table 3 (pertaining to corporate loans) confirmed the pattern showed in Table 2 for both 

distributions.  

 

5.2 Calibration of the dependence between the latent variables and the economic factor 

Consonant with  the reasoning that supports the Basel model (i.e. high PDs are less subject to 

systematic risk and therefore less connected than low PDs), Tables 2 and 3 showed that the rank 

correlations related to the economic factor and the latent variable of each loan ( YE ) that 

generated the best estimates decreased with the portfolios’ PDs. Hence, based on the function 

used in Basel to calculate the correlation across asset returns (see [6] and [7]), we assume that 

YE   is an exponential function of PD. Nevertheless, we adopt a different expression to keep the 

consistency with the interval specified in [20]: 
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 See [21] where YE  increases monotonically with ij  for any of the levels chosen (⅓ of the maximum YE , 

average YE , and maximum YE ). 

[ 23 ] 
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where K is a constant to be set according to the characteristics of the portfolios and MAXYE _  is 

the maximum possible 
YE  (see [20]). This results in the shapes shown in Figure 4 (for three 

values of K) where 
YE  is in the range presented in [20], MAXYEYE _   when PD = 0 and 

0YE  when PD = 1. 

 

[Insert Figure 4 here] 

 

However, additional simulations (not displayed here) revealed that the estimation of 
YE  is 

improved when K is defined as a decreasing function of PD, such that, K = (K1 – K2*PD). So, 

[23] becomes: 
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and, for relatively “small” PDs, this new function has a similar shape to the function represented 

in Figure 4. Concerning the simulated portfolios (Gumbel-dependent with beta and gamma 

distributions), the best approximations were obtained when K1= 30 and K2 = 200. Tables 4 

(retail credit) and 5 (corporate credit) compare the capital estimated via the alternative approach 

(where the copula parameter, YE , is derived from the rank correlation computed according to 

[24]
16

) to the capital calculated in line with the Basel method.  

 

[Insert Tables 4 and 5 here] 

 

The results show that the alternative model outperforms Basel method in all scenarios given that, 

for all PD levels tested, the absolute difference between the “true” (simulated) unexpected losses 

and the alternative estimate is smaller than the absolute difference between the true unexpected 

losses and the Basel estimate (compare the seventh column to the last one). 

 

  

                                                           
16

 We used [12] to estimate YE . 

[ 24 ] 



25 
 

6.  CONCLUSIONS 

We show that the formula used in Basel Accord to estimate unexpected credit losses corresponds 

to a conditional distribution derived from the Gaussian Copula. Since this copula family does not 

capture tail dependence, the model largely used by regulators may underestimate the capital 

necessary to face credit losses in downturns (when the connection across defaults tends to be 

more intense than in periods of normal economic activity). 

Based on this finding, we propose a model that keeps the basic structure of the current method 

but uses different conditional distributions able to detect possible tail dependence among losses. 

The suggested method is flexible and can capture several dependence shapes since it can be 

adapted to any differentiable copula family. Its implementation is as simple as the 

implementation of the existent model and has the advantage of identifying potential higher 

association between losses in downturns. As an example, we set a formula derived from the 

Clayton Copula that can capture the supposed stronger dependence across defaults in downturns.   

There are typically several possible rank correlations between the economic factor and the latent 

variable of each loan (called YE  in this paper) for each rank correlation across loans (named 

here as ij ) and following the assumption present in the Basel method (according to which, high 

PDs are less connected than low PDs), we proposed a closed-form expression to estimate YE  as 

a decreasing function of the portfolios’ PD. We are currently working on simplified formulas to 

calculate YE . 

If the losses have small rank correlation, the model proposed gets more accurate because the 

range of possible associations between the economic factor and each latent variable tends to be 

shorter than intervals resulted from high rank correlation between the latent variables. So, the 

variation of potential outcomes is reduced for low rank correlations across defaults and we move 

towards a unique solution. 

By simulating credit losses that potentially represent defaults observed in real loan portfolios (i.e. 

with positively skewed distributions and upper-tail dependence
17

) and comply with the 

dependence levels specified in the Basel Accord, we confirm that the current model tends to 

underestimate joint extreme losses. We also demonstrate that the alternative formula outperforms 

Basel in all scenarios tested. 

                                                           
17

 See, for example, Kalyvas et al. (2006), Rosenberg and Schuermann (2006), Di Clemente and Romano (2004), 

and Das and Geng (2006). 
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It is possible that many trials to insert copulas in this Basel framework have failed due to the lack 

of a link between the dependence measure we need (
YE ) and the dependence we can infer from 

empirical data ( ij ). Therefore the relationship between those two measures found in this study 

will certainly contribute to the application of copulas to many models dealing with dependence 

among variables impacted by systematic (unobservable) factors. 
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APPENDIX A 

Derivation of equality [9], ijYE    

 

The latent variables Y that explain defaults are assumed to follow the standard normal 

distribution. Therefore those variables can be decomposed into a linear combination of two other 

standardized normal variables. This results in expressions similar to [10] in which the latent 

variables pertaining to two obligors i and j are guided by a single factor, E, and their respective 

idiosyncratic risks, i : 

ii baEY   

jj baEY   

 

where Yi and Yj are the latent variables of the obligors i and j respectively; a and b indicate how 

much of the Y’s oscillation is explained by the single factor, E, and the their idiosyncratic risk, 

i   and j , respectively; E, i , j , Yi and Yj are standard normal variables; and the pairs (E, i ), 

(E,
 j ) and ( i , j ) are assumed to be three pairs of independent variables.  

In principle, the coefficients a and b are unknown but owing to some properties of standard 

normal variables and other additional assumptions made above, they happen to be straightly 

related to the linear correlations between Yi and Yj (= ij ) and between any Y and E (= YE ). 

At this point, we know that: 

(i) Var(Yi) = Var(Yj) = 1  (since these variables are standard normal); 

(ii) Var(E) = Var( i )  = Var( j )   = 1 (since these variables are standard normal); 

(iii)Cov(Yi, E) = YE where YE  is the linear correlation between Yi and E. Recall that 

)()(

),(

EY

EYCov

i

i
YE


   and, due to (i) and (ii), the denominator has no effect on this calculation. 

(iv) Cov(Yi, Yj) = ij where ij is the linear correlation between Yi and Yj. Similarly to the prior 

item, 
)()(

),(

ji

ji

ij
YY

YYCov


   and, due to (i), the denominator disappears. 

[A.1] 

[A.2] 
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(v)  Cov(E, i ) = Cov(E, j ) = 0 because the single factor E is assumed to be independent of the 

idiosyncratic risk of each obligor; and 

(vi) Cov( i , j ) = 0 given that the idiosyncratic risks are taken as independent of each other. 

The covariance and the variance pertaining to variables composed of the summation of two other 

variables can be computed as: 

 

 ),(),(),( 41314321 XXmqCovXXmpCovqXpXnXmXCov  

),(),( 4232 XXnqCovXXnpCov   

and 

),(2)()()( 212

2

1

2

21 XXmnCovXVarnXVarmnXmXVar   

 

If we rewrite Cov(Yi, E) as ),( sErEbaECov i    for  r and s such that r + s = 1 (and 

therefore rE + sE = E)  we can use [A.3] to calculate this covariance. For example, doing r = s 

= 0.5, using (v) and considering that the covariance between two identical variables is equal to 1: 

 

 ),()5.0(),()5.0(),()5.0()5.05.0,( ii ECovbEECovaEECovaEEbaECov   

abbaaECovb i  )0)(5.0()0)(5.0()1)(5.0()1)(5.0(),()5.0(   

 

So, combining (iii) and [A.5]: 

aYE   

 

This means that the coefficient that gives the relationship between each latent variable and the 

single factor in expressions [A.1] and [A.2] is equal to the correlation between this factor and 

each of the underlying variables. Nonetheless we do not have enough information to calculate 

such correlation and we still need to find the second coefficient (b). As an alternative, we will 

estimate a and b as a function of ij (the correlation between the latent variables) and, 

consequently, find the relationship between YE  and ij. 

Since Yi  is the weighted sum of two random variables (the same applies to Yi), we can calculate 

its variance by using [A.4] and items (ii) and (v) above: 

[A.3] 

[A.4] 

[A.5] 

[A.6] 
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 ),(2)()()()( 22

iiii EabCovVarbEVarabaEVarYVar   

2222 )0(2)1()1( baabba   

According to (i), Var(Yi) = 1, so : 

122  ba  

 

Using [A.1], [A.2], [A.3], (v), (vi) and the fact the covariance between two equal variables is 1: 

 ),(),(),(),( 2

jjiji EabCovEECovabaEbaECovYYCov   

2222 )0()0()0()1(),(),( abababaCovbEabCov jii    

 

As stated in (iv), Cov(Yi, Yj) = ij, and from [A.8] we have: 

 

ijij aa   2  

Plugging [A.9] into [A.7]: 

ijb  1  

Hence, comparing [A.6] and [A.9]: 

ijYE  
 

 

  

[A.7] 

[A.8] 

[A.9] 
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APPENDIX B 

Complementary information concerning simulated data for retail credit 

 

Average PD ij* 
ij ** YE  derived from  ⅓ 

of maximum 

YE ***  

YE  derived from  

average 
YE ***  

YE  derived from  

maximum
YE ***  

 

Panel A: Beta-distributed losses 
0.01 0.12 0.0346 0.4168 0.6980 2.1462 

0.02 0.09 0.0369 0.4179 0.7001 2.1566 

0.03 0.08 0.0365 0.4177 0.6997 2.1545 

0.04 0.06 0.0334 0.4162 0.6969 2.1413 

0.05 0.05 0.0337 0.4164 0.6972 2.1427 

0.06 0.05 0.0266 0.4129 0.6907 2.1117 

0.07 0.04 0.0257 0.4125 0.6899 2.1078 

0.08 0.04 0.0250 0.4121 0.6892 2.1045 

0.09 0.04 0.0201 0.4097 0.6848 2.0841 

0.10 0.03 0.0187 0.4091 0.6835 2.0782 

 

Panel B: Gamma-distributed losses 
0.01 0.12 0.0408 0.4198 0.7037 2.1735 

0.02 0.09 0.0344 0.4167 0.6978 2.1455 

0.03 0.08 0.0327 0.4159 0.6964 2.1396 

0.04 0.06 0.0275 0.4133 0.6915 2.1156 

0.05 0.05 0.0376 0.4182 0.7007 2.1592 

0.06 0.05 0.0248 0.4120 0.6890 2.1038 

0.07 0.04 0.0277 0.4134 0.6917 2.1169 

0.08 0.04 0.0246 0.4119 0.6889 2.1027 

0.09 0.04 0.0240 0.4116 0.6883 2.1004 

0.10 0.03 0.0206 0.4100 0.6853 2.0864 

Copula parameters ( YE ) calculated according to [22] 

* ij  is the linear correlation between the default probability of two loans i and j (which represents the 

correlation of all pairs in the portfolio). 

 ** ij
 
is the rank correlation between the default probability of two loans i and j.  

*** Ei  is the rank correlation (Kendall’s tau) between the latent variable of each obligor and the 

economic factor. 
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APPENDIX C 

Complementary information concerning simulated data for corporate credit 

 

Average PD ij* 
ij ** YE  derived from  ⅓ 

of maximum 

YE ***  

YE  derived from  

average 
YE ***  

YE  derived from  

maximum
YE ***  

 

Panel A: Beta-distributed losses 
0.01 0.19 0.0907 0.4444 0.7501 2.4040 

0.02 0.16 0.0920 0.4451 0.7514 2.4110 

0.03 0.15 0.0882 0.4432 0.7477 2.3904 

0.04 0.14 0.0882 0.4432 0.7477 2.3910 

0.05 0.13 0.0841 0.4411 0.7438 2.3702 

0.06 0.13 0.0785 0.4384 0.7385 2.3440 

0.07 0.12 0.0765 0.4373 0.7366 2.3342 

0.08 0.12 0.0760 0.4371 0.7361 2.3316 

0.09 0.12 0.0764 0.4373 0.7365 2.3331 

0.10 0.12 0.0686 0.4334 0.7292 2.2972 

 

Panel B: Gamma-distributed losses 
0.01 0.19 0.0929 0.4455 0.7522 2.4148 

0.02 0.16 0.0890 0.4436 0.7485 2.3950 

0.03 0.15 0.0921 0.4451 0.7513 2.4095 

0.04 0.14 0.0863 0.4422 0.7459 2.3814 

0.05 0.13 0.0783 0.4382 0.7383 2.3428 

0.06 0.13 0.0781 0.4381 0.7381 2.3415 

0.07 0.12 0.0733 0.4358 0.7337 2.3195 

0.08 0.12 0.0725 0.4353 0.7328 2.3149 

0.09 0.12 0.0719 0.4351 0.7324 2.3128 

0.10 0.12 0.0734 0.4358 0.7338 2.3203 

Copula parameters ( YE ) calculated according to [22] 

* ij  is the linear correlation between the default probability of two loans i and j (which represents the 

correlation of all pairs in the portfolio). 

 ** ij
 
is the rank correlation between the default probability of two loans i and j.  

*** YE  is the rank correlation (Kendall’s tau) between the latent variable of each obligor and the 

economic factor. 
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Table 1: Representation of concordant and discordant variables 

for several values of ij
 

 

Panel A 

ij = -1 

 Panel B 

ij = 1 

Yi Yj E  Yi Yj E 

       

       

       
… … …  … … … 

       

 

Panel C 

(minimum when 11  ij ) 

 Panel D 

(maximum when 11  ij ) 

Yi Yj E  Yi Yj E 

       

       

       

       

       

       
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TABLE 2: Comparison between unexpected retail credit losses estimated via Basel and alternative methods 
Panel A: Beta-distributed losses 

Average 

PD 
ij* Observed 

unexpected 

losses (OUL) 

Basel 

estimation 

(BE) 

Estimation 

with ⅓ of 

maximum 

YE ** (AE1) 

Estimation 

with average 

YE ** (AE2) 

Estimation 

with 

maximum

YE ** (AE3) 

Absolute 

difference 

(BE) -

(OUL) 

Absolute 

difference 

(AE1) -

(OUL) 

Absolute 

difference 

(AE2) -

(OUL) 

Absolute 

difference 

(AE3) -

(OUL) 

0.01 0.12 0.3040 0.0825 0.1144 0.1876 0.3626 0.2215 0.1896 0.1164 0.0586 

0.02 0.09 0.3353 0.1039 0.1831 0.3134 0.7248 0.2315 0.1522 0.0219 0.3895 

0.03 0.08 0.3508 0.1107 0.2291 0.3910 0.8419 0.2401 0.1217 0.0402 0.4911 

0.04 0.06 0.3745 0.1164 0.2687 0.4520 0.8885 0.2580 0.1058 0.0775 0.5140 

0.05 0.05 0.3756 0.1187 0.2982 0.4938 0.9043 0.2570 0.0774 0.1182 0.5287 

0.06 0.05 0.3810 0.1205 0.3190 0.5206 0.9067 0.2605 0.0620 0.1396 0.5257 

0.07 0.04 0.3843 0.1226 0.3378 0.5437 0.9057 0.2617 0.0464 0.1594 0.5214 

0.08 0.04 0.4011 0.1260 0.3548 0.5630 0.9015 0.2751 0.0463 0.1619 0.5004 

0.09 0.04 0.4199 0.1302 0.3678 0.5761 0.8946 0.2898 0.0522 0.1561 0.4747 

0.10 0.03 0.4185 0.1341 0.3791 0.5870 0.8876 0.2844 0.0394 0.1685 0.4691 

Total ……………………………………………………………………………………………………. 2.5794 0.8930 1.1598 4.4733 

 

Panel B: Gamma-distributed losses 

Average 

PD 
ij* Observed 

unexpected 

losses (OUL) 

Basel 

estimation 

(BE) 

Estimation 

with  ⅓ of 

maximum 

YE ** (AE1) 

Estimation 

with average 

YE ** (AE2) 

Estimation 

with 

maximum

YE ** (AE3) 

Absolute 

difference 

(BE) -

(OUL) 

Absolute 

difference 

(AE1) -

(OUL) 

Absolute 

difference 

(AE2) -

(OUL) 

Absolute 

difference 

(AE3) -

(OUL) 

0.01 0.12 0.2536 0.0826 0.1155 0.1892 0.3650 0.1711 0.1382 0.0645 0.1113 

0.02 0.09 0.3021 0.1038 0.1823 0.3121 0.7226 0.1984 0.1199 0.0099 0.4204 

0.03 0.08 0.3347 0.1110 0.2286 0.3901 0.8409 0.2237 0.1062 0.0554 0.5061 

0.04 0.06 0.3487 0.1148 0.2638 0.4445 0.8840 0.2340 0.0850 0.0958 0.5352 

0.05 0.05 0.3616 0.1182 0.2988 0.4950 0.9055 0.2434 0.0628 0.1333 0.5439 

0.06 0.05 0.3692 0.1202 0.3177 0.5188 0.9062 0.2490 0.0515 0.1497 0.5371 

0.07 0.04 0.3983 0.1233 0.3399 0.5463 0.9058 0.2750 0.0584 0.1480 0.5075 

0.08 0.04 0.3991 0.1258 0.3544 0.5625 0.9016 0.2732 0.0447 0.1634 0.5025 

0.09 0.04 0.4088 0.1296 0.3685 0.5775 0.8956 0.2792 0.0403 0.1687 0.4869 

0.10 0.03 0.4257 0.1343 0.3802 0.5883 0.8877 0.2914 0.0455 0.1626 0.4620 

Total ……………………………………………………………………………………………………. 2.4384 0.7524 1.1512 4.6128 

 * ij is the linear correlation between the default probability of two loans i and j (which represents the correlation for all pairs in the portfolio). 

** YE stands for the rank correlation (Kendall’s tau) between the latent variable of each obligor and the economic factor. 

The best estimate and the smallest difference between the unexpected losses and the estimates for each PD level are highlighted in boldface. 
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TABLE 3: Comparison between unexpected corporate credit losses estimated via Basel and alternative methods 
Panel A: Beta-distributed losses 

Average 

PD 
ij* Observed 

unexpected 

losses (OUL) 

Basel 

estimation 

(BE) 

Estimation 

with ⅓ of 

maximum 

YE ** (AE1) 

Estimation 

with average 

YE ** (AE2) 

Estimation 

with 

maximum

YE ** (AE3) 

Absolute 

difference 

(BE) -

(OUL) 

Absolute 

difference 

(AE1) -

(OUL) 

Absolute 

difference 

(AE2) -

(OUL) 

Absolute 

difference 

(AE3) -

(OUL) 

0.01 0.19 0.3214 0.1308 0.1212 0.1971 0.3691 0.1905 0.2002 0.1243 0.0478 

0.02 0.16 0.3528 0.1697 0.1943 0.3320 0.7577 0.1830 0.1585 0.0208 0.4049 

0.03 0.15 0.3611 0.1939 0.2444 0.4165 0.8711 0.1671 0.1166 0.0555 0.5100 

0.04 0.14 0.3901 0.2146 0.2844 0.4777 0.9085 0.1755 0.1057 0.0876 0.5184 

0.05 0.13 0.3986 0.2329 0.3139 0.5188 0.9183 0.1657 0.0847 0.1202 0.5197 

0.06 0.13 0.4160 0.2508 0.3376 0.5488 0.9184 0.1651 0.0783 0.1329 0.5025 

0.07 0.12 0.4142 0.2677 0.3580 0.5729 0.9147 0.1465 0.0562 0.1586 0.5005 

0.08 0.12 0.4346 0.2825 0.3745 0.5909 0.9092 0.1521 0.0601 0.1562 0.4745 

0.09 0.12 0.4532 0.2979 0.3904 0.6069 0.9017 0.1553 0.0628 0.1538 0.4486 

0.10 0.12 0.4650 0.3104 0.3988 0.6135 0.8937 0.1546 0.0662 0.1485 0.4288 

Total ……………………………………………………………………………………………………. 1.6555 0.9894 1.1583 4.3556 

 

Panel B: Gamma-distributed losses 

Average 

PD 
ij* Observed 

unexpected 

losses (OUL) 

Basel 

estimation 

(BE) 

Estimation 

with ⅓ of 

maximum 

YE ** (AE1) 

Estimation 

with average 

YE ** (AE2) 

Estimation 

with 

maximum

YE ** (AE3) 

Absolute 

difference 

(BE) -

(OUL) 

Absolute 

difference 

(AE1) -

(OUL) 

Absolute 

difference 

(AE2) -

(OUL) 

Absolute 

difference 

(AE3) -

(OUL) 

0.01 0.19 0.2669 0.1302 0.1209 0.1963 0.3648 0.1367 0.1461 0.0707 0.0979 

0.02 0.16 0.3108 0.1699 0.1938 0.3312 0.7561 0.1409 0.1170 0.0204 0.4453 

0.03 0.15 0.3383 0.1951 0.2470 0.4207 0.8749 0.1432 0.0913 0.0824 0.5366 

0.04 0.14 0.3560 0.2157 0.2850 0.4785 0.9086 0.1403 0.0710 0.1225 0.5526 

0.05 0.13 0.3714 0.2320 0.3108 0.5141 0.9166 0.1394 0.0606 0.1427 0.5452 

0.06 0.13 0.3986 0.2505 0.3370 0.5481 0.9184 0.1481 0.0616 0.1495 0.5198 

0.07 0.12 0.4082 0.2674 0.3565 0.5708 0.9143 0.1408 0.0518 0.1625 0.5061 

0.08 0.12 0.4326 0.2831 0.3737 0.5896 0.9086 0.1495 0.0589 0.1570 0.4760 

0.09 0.12 0.4454 0.2982 0.3888 0.6048 0.9012 0.1472 0.0567 0.1593 0.4558 

0.10 0.12 0.4528 0.3116 0.4018 0.6170 0.8934 0.1412 0.0510 0.1642 0.4405 

Total ……………………………………………………………………………………………………. 1.4274 0.7659 1.2312 4.5758 

* ij is the linear correlation between the default probability of two loans i and j (which represents the correlation for all pairs in the portfolio). 

** YE stands for the rank correlation (Kendall’s tau) between the latent variable of each obligor and the economic factor. 

The best estimate and the smallest difference between the unexpected losses and the estimates for each PD level are highlighted in boldface. 
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TABLE 4: Additional comparison between unexpected retail credit losses estimated via Basel and alternative methods  
Panel A: Beta-distributed losses 

Average 

PD 
YE * 

YE ** Observed unexpected 

losses (OUL) 

Basel estimation 

(BE) 

Alternative 

estimation (AE) 

Absolute difference  

(BE) - (OUL) 

Absolute difference 

(AE) -( OUL) 

0.01 0.3836 1.2444 0.2953 0.0818 0.2752 0.2135 0.0201 

0.02 0.3016 0.8636 0.3378 0.1032 0.3771 0.2346 0.0393 

0.03 0.2428 0.6414 0.3582 0.1124 0.3630 0.2458 0.0048 

0.04 0.2055 0.5172 0.3545 0.1154 0.3350 0.2391 0.0195 

0.05 0.1798 0.4385 0.3728 0.1183 0.3138 0.2545 0.0590 

0.06 0.1648 0.3946 0.3846 0.1200 0.3034 0.2646 0.0812 

0.07 0.1562 0.3701 0.3844 0.1226 0.3025 0.2619 0.0819 

0.08 0.1538 0.3635 0.4058 0.1262 0.3133 0.2796 0.0925 

0.09 0.1575 0.3738 0.4223 0.1301 0.3362 0.2923 0.0862 

0.10 0.1698 0.4089 0.4215 0.1342 0.3791 0.2872 0.0424 

Total ……………………………………………………………………………………………………………………. 2.5731 0.5268 

 

Panel B: Gamma-distributed losses 

Average 

PD 
YE * YE ** Observed unexpected 

losses (OUL) 

Basel estimation 

(BE) 

Alternative 

estimation (AE) 

Absolute difference  

(BE) - (OUL) 

Absolute difference 

(AE) - (OUL) 

0.01 0.3863 1.2588 0.2580 0.0817 0.2781 0.1763 0.0201 

0.02 0.3004 0.8589 0.3167 0.1040 0.3790 0.2127 0.0623 

0.03 0.2449 0.6485 0.3236 0.1117 0.3651 0.2119 0.0415 

0.04 0.2048 0.5151 0.3352 0.1158 0.3345 0.2194 0.0007 

0.05 0.1804 0.4402 0.3588 0.1180 0.3146 0.2408 0.0442 

0.06 0.1646 0.3941 0.3692 0.1202 0.3034 0.2490 0.0658 

0.07 0.1562 0.3702 0.3910 0.1229 0.3031 0.2681 0.0879 

0.08 0.1537 0.3632 0.4049 0.1261 0.3130 0.2788 0.0919 

0.09 0.1568 0.3720 0.4188 0.1290 0.3330 0.2898 0.0857 

0.10 0.1690 0.4066 0.4253 0.1339 0.3765 0.2915 0.0488 

Total ……………………………………………………………………………………………………………………. 2.4383 0.5488 

* YE, the rank correlation (Kendall’s tau) between the latent variable of each obligor and the economic factor, was calculated according to [24]. 

** θYE  is the parameter of the copula that expresses the dependence between the latent variable of each obligor and the economic factor. 
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TABLE 5: Additional comparison between unexpected corporate credit losses estimated via Basel and alternative methods  
Panel A: Beta-distributed losses 

Average 

PD 
YE * 

YE ** Observed unexpected 

losses (OUL) 

Basel estimation 

(BE) 

Alternative 

estimation (AE) 

Absolute difference  

(BE) - (OUL) 

Absolute difference 

(AE) -( OUL) 

0.01 0.4082 1.3793 0.3080 0.1328 0.3001 0.1752 0.0079 

0.02 0.3214 0.9471 0.3502 0.1686 0.4044 0.1816 0.0542 

0.03 0.2563 0.6893 0.3746 0.1961 0.3887 0.1784 0.0141 

0.04 0.2163 0.5519 0.3885 0.2150 0.3572 0.1735 0.0313 

0.05 0.1915 0.4737 0.4047 0.2323 0.3369 0.1724 0.0678 

0.06 0.1731 0.4187 0.4101 0.2515 0.3226 0.1586 0.0875 

0.07 0.1643 0.3932 0.4248 0.2672 0.3212 0.1576 0.1036 

0.08 0.1615 0.3851 0.4361 0.2835 0.3315 0.1526 0.1046 

0.09 0.1657 0.3972 0.4378 0.2964 0.3547 0.1414 0.0831 

0.10 0.1775 0.4316 0.4505 0.3117 0.3981 0.1388 0.0523 

Total ……………………………………………………………………………………………………………………. 1.6302 0.6064 

 

Panel B: Gamma-distributed losses 

Average 

PD 
YE * YE ** Observed unexpected 

losses (OUL) 

Basel estimation 

(BE) 

Alternative 

estimation (AE) 

Absolute difference  

(BE) - (OUL) 

Absolute difference 

(AE) - (OUL) 

0.01 0.4082 1.3793 0.2621 0.1311 0.2945 0.1310 0.0324 

0.02 0.3199 0.9407 0.2946 0.1692 0.4037 0.1254 0.1091 

0.03 0.2617 0.7090 0.3175 0.1928 0.3933 0.1247 0.0758 

0.04 0.2171 0.5548 0.3640 0.2146 0.3585 0.1494 0.0055 

0.05 0.1918 0.4745 0.3601 0.2323 0.3374 0.1278 0.0227 

0.06 0.1732 0.4191 0.3863 0.2518 0.3234 0.1345 0.0629 

0.07 0.1642 0.3930 0.4066 0.2665 0.3204 0.1400 0.0862 

0.08 0.1616 0.3854 0.4328 0.2825 0.3310 0.1503 0.1018 

0.09 0.1658 0.3975 0.4302 0.2983 0.3566 0.1319 0.0737 

0.10 0.1769 0.4298 0.4459 0.3109 0.3961 0.1350 0.0498 

Total ……………………………………………………………………………………………………………………. 1.3500 0.6199 

* YE, the rank correlation (Kendall’s tau) between the latent variable of each obligor and the economic factor, was calculated according to [24]. 

** θYE  is the parameter of the copula that expresses the dependence between the latent variable of each obligor and the economic factor. 
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FIGURE 1: A representation of the stronger connection across small values of the latent variables (Yi and 

Yj) in downturns. 
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FIGURE 2: A representation of the stronger connection across small values of each latent variable (Yi on 

the left and Yj on the right) and the economic status. When E is reduced (e*), indicating an unfavorable 

scenario, both Yi and Yj tend to be small. When E increases (e**), denoting higher economic activity, 

different levels of the latent variables are associated.  
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FIGURE 3 – Representation of a positively-skewed distribution.  

 

 

  

 

 

 
 

FIGURE 4 – Rank correlation (YE) between the latent variable of each obligor and the economic 

factor expressed as an exponential function of the probability of default (PD). 
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