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Abstract. Corrado and Zivney (1992) have presented a sign test, which
provides well-specified inferences in event studies. However, the sign test is
derived only for a one-day event window. This paper examines a new sign
test (SIGN-GSAR-T), which is derived by developing the existing sign test
for testing in addition to one-day abnormal returns also cumulative abnor-
mal returns (CARs). The new test statistic is developed by adopting the
procedure of generalized standardized abnormal returns (GSARs) presented
by Kolari and Pynnonen (2010b). Simulations with real returns show that
the statistic SIGN-GSAR-T has competitive empirical power properties and
is robust against event-induced volatility. Moreover, if the event-dates are
clustered, the test statistic SIGN-GSAR-T outperforms both the examined

parametric and nonparametric test statistics.
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1. Introduction

Researchers use event study methods to measure stock price reactions to
events and many event studies rely on parametric test statistics. Standard-
ized parametric event study tests presented by Patell (1976) and Boehmer,
Musumeci and Poulsen (BMP) (1991) have been more popular than conven-
tional nonstandardized tests in testing abnormal security price performance,
because of their better power properties. Harrington and Shrider (2007) have
argued that, in short-horizon testing of mean abnormal returns, tests that are
robust against cross-sectional variation in the true abnormal return should
always be used. They have found that the BMP test statistic is a good
candidate for a robust parametric test in conventional event studies.! Al-
though many event studies rely on parametric test statistics, a disadvantage
of parametric statistics is that they embody detailed assumptions about the
probability distribution of returns. Nonparametric statistics do not usually
require as stringent assumptions about return distributions as parametric

tests. |e.g. Cowan (1992)].

The sign tests are nonparametric tests often used in event studies. Also
nonparametric procedures like the sign tests can be misspecified, if an in-
correct assumption about the data is imposed. For example Brown and

Warner (1980) and (1985), and Berry, Gallinger and Henderson (1990) have

!Conventional event studies are defined as those focusing only on mean stock price
effects. Other types of event studies include (for example) the examination of return
variance effects [Beaver (1968) and Patell (1976)], trading volume [Beaver (1968) and
Campbell and Wasley (1996)], accounting performance [Barber and Lyon (1997)] and
earnings management procedures [Dechow, Sloan, and Sweeney (1995) and Kothari, Leone,

and Wasley (2005)].



demonstrated that a sign test assuming an excess return median of zero is
misspecified. Corrado and Zivney (1992) have introduced a sign test based
on standardized excess returns that does not assume a median of zero, but
instead uses a sample excess return median to calculate the sign of an event
date excess return. The results of simulation experiments presented in Cor-
rado and Zivney (1992) indicate that their sign test provides reliable and
well-specified inferences in event studies. They have also reported that their
version of the sign test is better specified than the ordinary ¢-test and has a
power advantage over the ordinary ¢-test in detecting small levels of abnormal

performance.

The parametric tests derived by Patell and BMP can be applied to testing cu-
mulative abnormal returns (CARs) over multiple day windows. Corrado and
Zivney (1992) have derived the sign test only for testing one-day abnormal
returns (ARs). Kolari and Pynnénen (2010b) have derived a nonparamet-
ric rank test of CARs, which is based on generalized standardized abnormal
returns (GSARs). They have found that their rank test has superior (em-
pirical) power relative to popular parametric tests both at short and long
CAR-window lengths. Their test statistic has also been shown to be robust
to abnormal return serial correlation and event-induced volatility. Kolari
and Pynnonen (2010b) have also suggested that GSARs derived by them can
be used to extend the sign test in Corrado and Zivney (1992) for testing
CARs. Hence, in an effort to overcome previous pitfalls in the test statis-
tics, and thereby provide more powerful test methods for common practice
in event studies, this paper presents new sign test statistics (SIGN-GSAR-T
and SIGN-GSAR-Z) based on GSARs. These statistics can be used equally
well for testing simple day ARs and CARs.



Cowan (1992) has also derived a sign test for testing CARs and his test is
called generalized sign test. The generalized sign test compares the propor-
tion of positive ARs around an event to the proportion from a period unaf-
fected by the event. In this way the generalized sign test takes account of
a possible asymmetric return distribution under the null hypothesis. Cowan
(1992) has reported that the generalized sign test is well specified for event
windows of one to eleven days. He has also reported that the test is power-
ful and becomes relatively more powerful as the length of the CAR-window

mcreases.

In empirical simulations, the new sign test statistics presented in this paper
are compared with the generalized sign test derived by Cowan (1992), the
rank test derived by Kolari and Pynnonen (2010b) as well as the paramet-
ric tests derived by Patell and BMP, and the ordinary t-test. The results
of the current paper show that especially the test statistic SIGN-GSAR-T
has several advantages over previous testing procedures. First, it is robust
against a certain degree of cross-correlation caused by event day clustering.
For example, according to Kolari and Pynnonen (2010a) it is well known
that event studies are prone to cross-sectional correlation among abnormal
returns when the event day is the same for sample firms. For this reason
the test statistics cannot assume independence of abnormal returns. They
have also shown that even when cross-correlation is relatively low, event-
date clustering is serious in terms of over-rejecting the null hypothesis of
zero average abnormal returns, when it is true. Also in this paper it is re-
ported that when the event-dates are clustered, all test statistics, except the
the test statistic SIGN-GSAR-T and the rank test derived by Kolari and
Pynnénen (2010b), over-reject the null hypothesis both for short and long



CAR-windows. Second, the test statistic SIGN-GSAR-T seems to be robust
to the event-induced volatility. Third, it proves to have also good empirical
power properties. Thus, the SIGN-GSAR-T test procedure makes available a

nonparametric test for general application to the mainstream of event studies.

The paper is organized as follows. Section 2 introduces the distribution
properties of the sign of the GSAR. Section 3 presents the test statistics
SIGN-GSAR-T and SIGN-GSAR-Z together with the asymptotic distribu-
tions for both of the test statistics. Section 4 describes the simulation design
and summarizes the test statistics against which the new sign tests are com-
pared with. The empirical results are presented in Section 5, and Section 6

concludes.

2. The Sign of the GSAR

In forthcoming theoretical derivations, the following explicit assumption is

made:

Assumption 1 Stock returns ry are weak white noise continuous random

variables with

Elry]l = i for all t,
var[ry] = o? for allt, (1)
covlry,ris) = 0 for all t # s,

where i refers to the it stock and t and s are time indezes.

Let AR;; represent the abnormal return of security ¢ on day ¢, and let day



t = 0 indicate the event day.? The days t = Ty + 1,7y + 2,..., T} represent
the estimation period days relative to the event day, and the days t = T7 +
1,T1+2,...,T5 represent event window days, again relative to the event day.
Furthermore L, represents the estimation period length and L, represents

the event period length. Standardized abnormal returns are defined as

AR, = AR:/S(AR,), 2)

where S(AR;) is the standard deviation of the regression prediction errors in
the abnormal returns computed as in Campbell, Lo and MacKinlay (1997,
Sections 4.4.2-4.4.3).

The cumulative abnormal return (CAR) from day 73 to 7 with 77 < 7 <

7o <15 is defined as

CARir .y = Y ARy, (3)

t=11

and the time period from 71 to 75 is often called a CAR-window or a CAR-
period. Then the corresponding standardized cumulative abnormal return

(SCAR) is defined as

CAR; ;, 7,

A IL,T1,T2 — N A D\
5C R, 7 S<CARZ}7'1,T2)

(4)

where S(CAR; ;,.r,) is the standard deviation of the CARs adjusted for fore-
cast error [see Campbell, Lo and MacKinlay (1997, Section 4.4.3)|. Under the

2Abnormal returns are operationalized in Section 4.



null hypothesis of no event effect both AR}, and SCAR, ., ., are distributed

with mean zero and (approximately) unit variance.

In order to account for the possible event-induced volatility Kolari and Pyn-
nénen (2010b) re-standardize the SCARs like BMP (1991) with the cross-
sectional standard deviation to get re-standardized SCAR

SCAR;
A * — 1, T1,T2
SC R"L,Tl,’rg S(SCARTMTQ) Y (5)

where

n

1 [
S(SCARr,r) = \| —— ) (SCARi, -, — SCAR:, ,)? (6)

=

is the cross-sectional standard deviation of SCAR; ;, -,s and

_ 1 <&
SCAR;, ;, == > SCAR,; - 7
= 3 Y SCARG, @)
Again SCAR;, ., is a zero mean and unit variance random variable. The

generalized standardized abnormal returns (GSARs) are defined similar to

Kolari and Pynnénen (2010b):

Definition 1 The generalized standardized abnormal return (GSAR) is de-

fined as

SCAR; ,, ,,, in CAR-period ®
AR, otherwise,



where SCAR; | . is defined in equation (5) and AR;lt is defined in equation
(2)-

Thus the CAR-window is considered as one time point in which the GSAR
equals the re-standardized cumulative abnormal return defined in equation
(5), and for other time points GSAR equals the usual standardized abnormal

returns defined in equation (2).

The time indexing is redefined such that the CAR-window of length 75 —7+1
is squeezed into one observation with time index ¢ = 0. Thus, considering the
standardized cumulative abnormal return as one observation, in the testing
procedure there are again L; 4+ 1 observations of which the first L; are the
estimation period (abnormal) returns and the last one is the cumulative

return.

Kolari and Pynnonen (2010b) have suggested that the GSARs can be used
to extend the sign test in Corrado and Zivney (1992) for testing CARs. This
can be achieved by defining the sign of the GSAR like:

Definition 2 The sign of the generalized standardized abnormal return GS ARy,
8
G = sign[GSAR;; — median(GSAR;)], 9)

where sign(x) is equal to +1, 0, -1 as z is >0, =0 or < 0.

If T'= Ly + 1 is even, the corresponding probabilities for the sign of the
GSAR for values +1, 0 and -1 are



(10)

and

Pr[Gy, = 0] = 0. (11)

If T'= L;+1is odd, the corresponding probabilities for the sign of the GSAR

for values +1, 0 and -1 are

and

(13)

The expectations, variances and covariances of the sign of GSAR are pre-
sented in Appendix A for even and odd 7', and summarized in Proposition

1.

Proposition 1 The ezpectation for the sign of the GSAR defined in (9) is
E[Gy] =0 (14)

for T’ being even or odd. Furthermore the variance and covariance of the sign

of the GSAR are

L,
var|Gy) = T for odd T

for even T

(15)

5



and

——_. for even T
cov|Gy, Gis| = 7;_1 f (16)
—z, foroddT.

Furthermore i=1,...,n and t#s.

3. The Test Statistics SIGN-GSAR-T and SIGN-GSAR-Z

The null hypothesis of no mean event effect, reduces to

HO LU= O, (]_7)

where p is the expectation of the (cumulative) abnormal return. Like Ko-
lari and Pynnoénen (2010b) suggested, this paper introduces a new sign test
statistic (called hereafter SIGN-GSAR-T), which can be used for testing the
presented null hypothesis. The test statistic SIGN-GSAR-T is defined as

VT =2

tsgT = —m—onon—, 18
SGT m ( )
where
1 n
Zy = % ZZI Gin/S(G), (19)
with

10



S(G) = \| 7 2= D G (20)

in which n; is the number of nonmissing returns in the cross-section of n-firms
onday t and T = {Ty+1,...,T1,0}. The Z; statistic in equation (19) is the
sign test derived by Corrado and Zivney (1992) for testing single event-day

abnormal returns.

Proofs of the Theorem 1 and Theorem 2 regarding the asymptotic distribu-
tions of Z; and the test statistic SIGN-GSAR-T defined in equations (19)
and (18), respectively, are presented in Appendix B for both cases T' being

even and odd.

Theorem 1 (Asymptotic distribution of Zy): For a fized T, under the as-
sumption of cross-sectional independence, the density function of the asymp-
totic distribution of the test statistic Z1 defined in equation (19) when n — oo,

18

= T —-1)/2] 22 L(r-2)-1
fz,(2) = I'[(T-2)/2) /(T = 1)x (1 - ﬁ) ’ (1)

for |z| < VT —1 and zero elsewhere, where I'(+) is the Gamma function.

Thus, Theorem 1 implies that (Z;)?/(T — 1) is asymptotically Beta dis-
tributed with parameters 1/2 and (7 — 2)/2.

Corrado and Zivney (1992) conjecture that for sufficiently large sample size,
the Central Limit Theorem implies that the distribution of Z; should con-

verge to normality. By Theorem 1 we can conclude that the asymptotic

11



normality holds only if also 7" is large enough. This follows from the fact

that in equation (21)

1
2 §(T72)71
(1 - TZ 1) o3 (22)

and the normalizing constant

L[(T—-1)/2]
TT -2/ /T - /v (23)

as T'— oo, implying the limiting N (0, 1)-distribution.

Theorem 2 (Asymptotic distribution of the test statistic SIGN-GSAR-T):

Under the assumptions of Theorem 1,

T—2 d
t =1\ — tr— 24
SGT 1\/T—1—(ZI)2 — lr—2, (24)

as n — 00, where Zy is defined in equation (19), 2 denotes convergence in
distribution, and tr_o denotes the Student t-distribution with T — 2 degrees

of freedom.

Given that the ¢-distribution approaches the N(0, 1)-distribution as the de-
grees of freedom 7"— 2 increases, also the null distribution of the test statistic

tsqr approach the standard normal distribution as 7" — oc.

Remark 1 Using facts about statistics based on signs (see Appendiz A), it

15 easy to show that

e %, for even T o5
varltil = L~ L0 for odd T 29
nT n’ :

12



where Go = L 37" | Gyo. Thus, under the assumption that var[Go) = 2,

a useful test statistic for the null hypothesis (17) is

G, .
tsaz = — - Govn, (26)

var|[Go)
for which the null distribution converges rapidly to the standard normal dis-

tribution, N(0,1), as the number of firms increases. We henceforth refer to

this statistic as SIGN-GSAR-Z.

The simplicity of the test statistic SIGN-GSAR-Z makes it an attractive
alternative to the test statistic SIGN-GSAR-T. This is particularly the case
when the event days across the sample firms are not clustered. However, in
the presence of event day clustering, which causes cross-sectional correlations
between the returns, the SIGN-GSAR-T can be expected to be much more
robust than the SIGN-GSAR-Z test statistic.

Asymptotic Distributions: Cross-Sectional Dependence (Clustered Event Days)

Cross-sectional dependence due to clustered event days (the same event days
across the firms) changes materially the asymptotic properties of the test
statistics and in particular those statistics that do not account for the cross-

sectional dependence.

As stated in Lehmann (1999, Sec. 2.8), it is still, frequently true that the
asymptotic normality holds provided that the average cross-correlation, p,),

tends to zero rapidly enough such that

13



1 n n
D PPIEE 20
i=1 j=1,i#j
as n — Q.

In financial applications this would be the case if there are a finite number
of firms in each industry and the return correlations between industries were
zero. In fact this is a special case of so called m-independence. Generally, a
sequence of random variables Xy, X5,..., is said to be m-independent, if X;
and X; are independent if ¢ — j| > m. In cross-sectional analysis this would
mean that the variables can be ordered such that when the index difference
is larger than m, the variables are independent. [See Kolari and Pynnénen

(2010D)].

In such a case, we can show in the same manner as in Kolari and Pynnoénen
(2010b) that the result in (27) holds. More precisely, assuming that for
any fixed ¢, G;; defined in equation (9) are m-independent, i = 1,2,....n,
(n > m), the correlation matrix of Gy, ..., G, is band-diagonal such that all
pi; with |i — j| > m are zeros. It is straightforward to see that in such a
correlation matrix there are m(2n —m — 1) nonzero correlations in addition
to the n ones on the diagonal. Thus, in the double summation (27) there are

m(2n — m — 1) non-zero elements, and it can be written such that

1 « - m(2n —m —1) _
S S i (28)

i=1 j=1j#i "
where p, is the average of the m(2n —m — 1) cross-correlations in the band-

diagonal correlations matrix and v = 2myp is a finite constant with p =

lim,, o0 P, and 2m = lim, oo m(2n —m — 1)/n.

14



Thus, under the m-independence the asymptotic distribution of the test

statistic SIGN-GSAR-Z is

tsaz — N(O, 1+ ’7) (29)

This implies that the test statistic SIGN-GSAR-Z is not robust to cross-
sectional correlation of the return series. Typically v > 0, which means that

tsqz will tend to over-reject the null hypothesis.

The limiting distributions of the test statistic SIGN-GSAR-T turns out to
apply also under m-independence. This follows from the fact that if the
asymptotic normality holds under the m-independence such that the limiting
correlation effect is 14y, then using the scaled variables, Gy /+/1 + 7, in place
of the original variables, all the results in Theorem 1 and Theorem 2 follow,
because in Z; defined in (19) and tsgr defined in (18) are invariant to the
scaling of the observations (the zero-one sign of the GSARs). Therefore,
the theoretical derivation indicates that when the event-dates are clustered,
the test statistic SIGN-GSAR-T behave better than the test statistic SIGN-
GSAR-Z .

4. Simulation Design

In this section the simulation design, which is used to examine the empirical
behavior of the test statistics SIGN-GSAR-T and SIGN-GSAR-Z, is pre-
sented. Like for example Kolari and Pynnénen (2010b) have concluded, the
optimality of a test can be judged on the basis of size and power. Within a

class of tests of given size (Type I error probability), the one that has the

15



maximum power (minimum Type II error probability) is the best. A testing
procedure is robust, if the Type I error rate is not affected by real data issues
such as non-normality, event-induced volatility, autocorrelation and cross-
correlation of returns. Consequently, the aim of our simulations is to focus
on the robustness and power properties of the tests. Non-normality, autocor-
relation, and other data issues are captured in the simulation by using actual
return data instead of artificially simulated data. Event-induced volatility
effects are investigated by introducing volatility change within the event pe-
riod, and the effect of cross-sectional correlation is examined by setting the

same event day in the return series for each firm in the sample.

4.1 Sample construction

The well-known simulation approach presented by Brown and Warner (1980),
and widely used in several other methodological studies |e.g. Brown and
Warner (1985), Corrado (1989), Cowan (1992), Campbell and Wasley (1993),
and Cowan and Sergeant (1996)], is also used in this paper. From the data
base 1,000 portfolios each of 50 stocks are constructed with replacements.
Each time a stock is selected, a hypothetical event date is randomly generated
and the event day is denoted as day "0". The results are reported for event
day t = 0 abnormal return AR(0) and for cumulative abnormal returns
CAR(—1,+1), CAR(-5,+5) and CAR(—10,410). The estimation period is
comprised of 239 days prior to the event period, hence days from -249 to
-11. The event period is comprised of 21 days, hence days from -10 to +10.
Therefore, the estimation period and event period altogether comprises of
260 days. In order for a return series to be included, no missing returns are

allowed in the last 30 days from -19 to +10.

16



In earlier studies [e.g. Charest (1978), Mikkelson (1981), Penman (1982)
and Rosenstein and Wyatt (1990)] it has been found that the event period
standard deviation is about 1.2 to 1.5 times the estimation period standard
deviation. Therefore, the increased volatility is introduced by multiplying
the cumulated event period returns by a factor /¢ with values ¢ = 1.5 for
an approximate 20 percent increased volatility, ¢ = 2.0 for an approximate
40 percent increased volatility and ¢ = 3.0 for an approximate 70 percent
increased volatility due to the event effect.?> To add realism the volatility
factors c are generated for each stock based on the following uniform dis-
tributions U[1,2], U[1.5,2.5] and U[2.5,3.5]. This generate on average the
variance effects of 1.5, 2.0 and 3.0. Furthermore for the no volatility effect

experiment ¢ = 1.0 is fixed.

For investigating the power properties a similar method as for example Camp-
bell and Wasley (1993) is used. Hence, for single-day event period [AR(0)]
the abnormal performance is artificially introduced by adding the indicated
percent (a constant) to the day-0 return of each security. While, in the mul-
tiday setting [CAR(—1,41), CAR(—5,+5) and CAR(—10,+10)], abnormal
performance is introduced by selecting one day of the CAR-period at ran-
dom and adding the particular level of abnormal performance to that day’s
return. By this we aim to mimic the real situations, where there can be the
information leakage and delayed adjustment. That is, if the markets are in-
efficient, information may leak before the event, which shows up as abnormal
behavior before the event day. Delays in the event information show up as

abnormal return behavior after the event day.

3Because V1.5 ~ 1.2, 2.0 ~ 1.4 and v/3.0 =~ 1.7.
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Also the effect of event-date clustering on the test statistics is studied. The
effect of event-date clustering is examined by constructing again from the
data base 1,000 portfolios each of 50 stocks, but all stocks in the portfolio

have exactly the same event date.

4.2 Abnormal return model

The abnormal behavior of security returns can be estimated through the

market model

Tit = 04 + BiTme + €, (30)

where again r; is the return of stock ¢ at time ¢, 7, is the market index
return at time ¢ and €; is a white noise random component, which is not
correlated with r,,;. The resulting ARs are obtained as differences of realized

and predicted returns on day ¢ in the event period

ARy =1y — (& + Bz"f’mt)a (31)

where the parameters are estimated from the estimation period with ordinary
least squares. According to Campbell, Lo and MacKinley (1997) the mar-
ket model represents a potential improvement over the traditional constant-
mean-return model, because by removing the portion of the return that is
related to variation in the market’s return, the variance of the AR is reduced.

This can lead to increased ability to detect event effects.

18



4.3 Test statistics

Next the test statistics, which are used in the simulations, are presented.

The ordinary t-test (ORDIN) is defined as

CAR
t = 22 32
ORDIN S(CARTl 72) ( )
where
. 1<
CAR,, ., = - 2 CAR; 1, 70s (33)

in which CAR; ., ,, is defined in equation (3) and S(CAR,,,,) is the stan-
dard error of the average cumulative abnormal return CAR,, ., adjusted for
the prediction error [see again Campbell, Lo and MacKinlay (1997, Section
4.4.3)]. The ordinary t-test statistic is asymptotically N (0, 1)-distributed

under the null hypothesis of no event effect.

Patell (1976) test statistic (PATELL) is

Li—4)
= DsEoaR, (34)

tpaTELL =
L=

where SCAR., ,, is the average of the standardized CAR defined in equa-
tion (7), and L, is again the length of the estimation period. Also the test
statistic derived by Patell is asymptotically N(0, 1)-distributed under the
null hypothesis.
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The Boehmer, Musumeci and Poulsen (1991) test statistics (BMP) is

SCAR,, /1
t - K
BMP = G(SCAR,, )’ (35)

where again S(SCAR, ,) is the cross-sectional standard deviation of SCARs
defined in (6), and SCAR,, ,, is defined in equation (7). Also the test statistic

tgmp is asymptotically N (0, 1)-distributed under the null hypothesis.

We follow Kolari and Pynnonen (2010b) and define the demeaned standard-
ized abnormal ranks of the GSARs as

Ui = Rank(GSARy) /(T + 1) — 1/2, (36)

where : = 1,...,nand t € T = {1y + 1,...,T1,0} is the set of time indexes
including the estimation period for t = Ty + 1,...,77 and to the CAR for
t = 0, with Ty + 1 and 77 the first and last observation on the estimation
period, and T'= L; + 1 = T — Ty + 1 is the total number of observations
with L; estimation period returns and the one CAR. Then the generalized

rank test statistic (GRANK) is defined as

T -2

- (37)

LGRANK = Z2

where

&N

||
IS

E
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with

1 Ty —2
SU:Hf;#Ut (39)

_ 1 &
t =1

and

Furthermore n; is the number of valid GSARs available at time point ¢,
teT ={To+1,...,71,0}, T =Ty — Ty + 1 is the number of observations,
and Uy is the mean U, for t = 0 (CAR). According to Kolari and Pynnonen
(2010b) the asymptotic distribution of the test statistic GRANK is Student ¢-
distribution with 7'—2 degrees of freedom. Again given that the ¢-distribution
approaches the N (0, 1)-distribution as the degrees of freedom 7' —2 increases,
also the null distribution of the test statistic tgrank approach the standard

normal distribution as 7" — 0.

The generalized sign test statistic presented by Cowan (1992) is

w—np

lcowaN = —F/————,
vnp(l —p)

where w is the number of stocks in the event window for which the CAR is

(41)

positive and n is again the number of the stocks. Furthermore

3 s (42)

where m; is the number of non-missing returns in the estimation period for

security-event ¢ and



1 if AR; >0
0 otherwise.

According to Cowan (1992) the generalized sign test statistic (SIGN-COWAN)
is asymptotically N (0, 1)-distributed under the null hypothesis.

4.4 The data

The data in this simulation design consists of daily closing prices of 1,500
the U.S. traded stocks that make up the S&P 400, S&P 500, and S&P 600
indexes. S&P 400 covers the mid-cap range of stocks, S&P 500 the large-cap
range of stocks and S&P 600 the small-cap range of stocks. Five percent of
the stocks having the smallest trading volume are excluded. Therefore, 72
stocks from S&P 600, two stocks from S&P 400 and one stock from S&P 500
are excluded. The sample period spans from the beginning of July, 1991 to
October 31, 2009. S&P 400 index was launched in June in 1991, which is
why the sample period starts in the beginning of July, 1991. Official holidays
and observances are excluded from the data. By using actual (rather than
artificial) stock returns in repeated simulations, a reliable and realistic view
about the comparative real data performance of the test statistics in true

applications is attained.

The returns are defined as log-returns
rie = log(Py) — log(Pit-1), (44)

where Pj; is the closing price for stock ¢ at time ¢.
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5. Empirical Results

This section discusses the results from the simulation study. First, the sam-
ple statistics of the abnormal returns, the cumulative abnormal returns and
the test statistics are presented. Second, the properties of the empirical
distributions of the test statistics are presented. Third, the rejection rates
are reported. The rejection rates are also reported in the cases where the
event-induced volatility is present. Fourth, the power properties of the test
statistics are presented. The power properties are also presented in the cases

where the event-dates are clustered.

5.1 Sample statistics

Table 1 reports sample statistics from 1,000 simulations for the event day
abnormal returns and for the cumulative abnormal returns: CAR(—1,+1),
CAR(—5,+5) and CAR(—10,+10). It also reports sample statistics for the
test statistics for AR(0), CAR(—1,+1), CAR(—5,+5) and CAR(—10, +10).
Under the null hypothesis of no even effect test statistics ORDIN, PATELL,
BMP, SIGN-COWAN and SIGN-GSAR-Z should be approximately N (0, 1)-
distributed. Strictly speaking, the asymptotic distributions of GRANK and
SIGN-GSAR-T should be t-distributions with T'—2 degrees of freedom. How-
ever, with T'— 2 equal to 238, the normal approximation should be valid and
so the null distributions of the test statistics GRANK and SIGN-GSAR-T
approach the standard normal distribution. Hence, we can conclude that
under the null hypothesis of no event effect all the test statistics should have

zero mean and (approximately) unit variance.
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[Table 1]

Considering only on the single abnormal returns AR(0) in Panel A of Table 1,
it can be noted that means of all the test statistics are statistically close to
zero. For example (in absolute value) the largest mean of —0.024 for the
PATELL statistic is only 1.113 standard errors away from zero. In longer
CAR-windows the means of the test statistics, albeit small, start to deviate
significantly away from the theoretical value of zero. Considering on the 3-day
CARs, CAR(—1,+1), in Panel B of Table 1, we see that only the means for
PATELL and BMP deviate significantly away from zero. While, considering
on the 11- and 21-day CARs, CAR(—5,+5) and CAR(—10,+10), in Panels
C and D of Table 1, it can be noticed that means for almost all the test
statistics deviate significantly away from the theoretical value. Nonetheless,
it can be seen that the means of the test statistics PATELL and BMP deviate
more rapidly and clearly from the theoretical value of zero than the means
of the other test statistics. As well, it can be seen that the mean of the test
statistic GRANK seems to deviate more slowly from the theoretical value of
zero than the means of the other test statistics. Importantly, all standard

deviations of the test statistics are close their theoretical values of unity.

5.2 Empirical distributions

Table 2 reports Cramer-von Mises normality tests for ORDIN, PATELL,
BMP, SIGN-COWAN and SIGN-GSAR-Z, and Cramer-von Mises tests for
GRANK and SIGN-GSAR-T against a t-distribution with 238 (= T — 2)
degrees of freedom. Departures from normality (¢-distribution for GRANK
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and SIGN-GSAR-T) of the statistics are typically not statistically significant
for the AR(0) and CAR(—1,+1), i.e., in the short CAR-windows. Only the
normality of the test statistic PATELL is rejected for CAR(—1,+1) and the
test statistic SIGN-GSAR-Z for both AR(0) and CAR(—1,+1). In the long
CAR-windows (11 and 21 days) the normality is rejected for almost every
test statistic. The results indicate that particularly for short CAR-windows
a sample size of n = 50 series seems to be large enough to warrant the

asymptotic t-distribution for SIGN-GSAR-T.

[Table 2]

In Figure 1 empirical quantiles of test statistic SIGN-GSAR-T are displayed
from 1,000 simulations against theoretical quantiles of test statistic SIGN-
GSAR-T for AR(0), CAR(—1,+1), CAR(—5,+5) and CAR(—10, +10). Only
the test statistic SIGN-GSAR-T is considered, because it is derived in this
paper and because Cramer-von Mises tests reject the normality of the test
statistic SIGN-GSAR-Z for both short and long CAR-windows. In Figure
1 on vertical axis are the Student ¢ quantiles with 7" — 2 = 238 degrees of
freedom and on horizontal axis are the test statistics SIGN-GSAR-T. If the
statistic follow the theoretical distribution depicted on the vertical axis, the
plots should be close to the 45 degree diagonal line. According to Figure 1
the empirical distributions of the test statistics SIGN-GSAR-T and Student
t-distributions seem to match quite well, because the plots lie quite well on

the straight line.

|[Figure 1]
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5.3 Rejection rates

Columns 2—4 in Table 3 report the lower tail, upper tail and two-tailed rejec-
tion rates (Type I errors) at the 5 percent level under the null hypothesis of no
event mean effect with no event-induced volatility. Almost all rejection rates
are close to the nominal rate of 0.05 for short CAR-windows of AR(0) and
CAR(—1,41). Only PATELL statistic tends to over-reject the null hypoth-
esis for the two-tailed tests and SIGN-GSAR-Z statistics tends to over-reject
for left and right tail tests as well as two-tailed tests. For the longer CAR-
windows of CAR(—5, +5) and CAR(—10, +10) again all the other test statis-
tics except PATELL, BMP, SIGN-COWAN and SIGN-GSAR-Z reject close
to the nominal rate with rejection rates that are well within the approximate
99 percent confidence interval of [0.032,0.068]. For the longer CAR-windows
the PATELL tends to over-reject in addition of the two-tailed tests also on
the lower tail. The BMP statistic tends to somewhat over-reject the null
hypothesis for two-tailed test for CAR(—10,+10) and the SIGN-COWAN
statistic tends to over-reject the null hypothesis for CAR(—10, +10) for the
upper tail test. The SIGN-GSAR-Z statistic over-rejects the null hypothesis
again for left and right tailed tests as well as two-tailed tests. It seems that
the tails of the test statistic SIGN-GSAR-Z are fat, which may be the rea-
son why the Cramer-von Mises test rejects the normality of the test statistic

SIGN-GSAR-Z in every case.

[Table 3|

Columns 5-13 in Table 3 report the rejection rates under the null hypoth-

esis in the cases where the event-induced variance is present. ORDIN and
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PATELL tests over-reject when the variance increases, which is a well-known
outcome. At the highest factor of ¢ = 3.0 the Type I errors for both ORDIN
and PATELL are in the range from 0.2 to 0.3 in two-tailed testing, that is,
five to six times the nominal rate. The SIGN-GSAR-Z statistic over-rejects
the null hypothesis again for left and right tail tests as well as two-tailed tests.
Note that because test statistic SIGN-COWAN takes only account to the sign
of the difference between AR and zero, and not for example the sign of the
difference between AR and its median, the event-induced volatility does not
have an impact on the rejection rates of the test statistics SIGN-COWAN.
Hence, the test statistics BMP, GRANK, SIGN-COWAN and SIGN-GSAR-
T seem to be the best options in the cases where the event induced volatility

is present.

5.4 Power of the tests

5.4.1 Non-clustered event days

The power results of the test statistics for two-tailed tests are shown in
Panels A to D of Table 4 and graphically depicted in Figures 2 to 5. The
zero abnormal return line (bold face) in each panel of Table 4 indicates the
Type I error rates and replicates the Column 4 in each panel of Table 3. The
rest of the lines of Table 4 indicate the rejection rates for the respective ARs

shown in the first column.

[Table 4]
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[Figures 2-5]|

There are four outstanding results. First, at all levels of ARs (positive or neg-
ative), ORDIN, which is based on non-standardized returns is materially less
powerful than the other test statistics that are based on standardized returns.
Second, the test statistic GRANK seems to be one of the most powerful tests
for shorter CAR-windows as well as for the longer CAR-windows. Third,
both the test statistic SIGN-GSAR-T and SIGN-GSAR-Z seem to have good
power properties, but SIGN-GSAR-Z seems to be somewhat more powerful
than the test statistic SIGN-GSAR-T in every case. However, it should be
noted that test statistic SIGN-GSAR-Z also over-rejects the null hypothesis.
Fourth, SIGN-COWAN seems to be more powerful than SIGN-GSAR-T, but
less powerful than SIGN-GSAR-Z.

5.4.2 Clustered event days

Table 5 reports the Type I error and power results of the tests with clustered
event-days. The zero abnormal return line (bold face) in each panel again
indicates the Type I error rates at the 5 percent level under the null hypoth-
esis of no event mean effect. Consistent with earlier results [e.g., Kolari and
Pynnonen (2010a)|, test statistics like ORDIN, PATELL and BMP are prone
to material over-rejection of the true null hypothesis of no event effect. The
results reported in Table 5 indicate that also the test statistic SIGN-COWAN
and SIGN-GSAR-Z are prone to material over-rejection of the true null hy-
pothesis of no event effect. According to Table 5 test statistics GRANK and
SIGN-GSAR-T are much more robust to cross-correlation caused by event

day clustering. However, a notable distinction of the power results in Table 5
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of these statistics compared to those in Table 4 is that the powers tend to
be discernibly lower in the clustered case. This is due to the information
loss caused by cross-correlation. The problem is discussed in more detail in

Kolari and Pynnonen (2010a).

[Table 5|

In summary, the derived test statistic SIGN-GSAR-T as well as the test
statistic GRANK statistic are quite robust to clustered event days. In ad-
dition the well established asymptotic properties of SIGN-GSAR-T, its ro-
bustness against event-induced volatility, and competitive power properties

make it a recommended robust testing procedure in event studies.

6. Conclusion

This paper has proposed the nonparametric sign tests SIGN-GSAR-T and
SIGN-GSAR-Z based on GSARs. These tests extend the single day sign test
statistic presented by Corrado and Zivney (1992) to efficient testing of CARs.
Also, the theoretical asymptotic distributions of the statistics have been de-
rived when the estimation period is finite. The proposed testing procedure
based on SIGN-GSAR-T, in particular, has advantages of being well specified
under the null hypothesis of no event mean effect and being robust to event-
induced volatility and cross-correlation (clustered event days) of the returns.
Simulation results with actual stock returns also show that the SIGN-GSAR-
T test statistic has good empirical power properties. The results of this paper
suggest the use of the test statistic SIGN-GSAR-T particularly in the cases

where the event days are clustered.

29



References

Barber, B. M. and Lyon, J. D. (1997): Detecting long-run abnormal re-
turns: The empirical power and specification test statistics, Journal of

Financial Economaics, 81, 175-213.

Beaver, W. H. (1968): The information content of annual announcements,

Journal of Accounting research Supplement, 6, 67-92.

Berry, M. A., Gallinger, G. W. and Henderson, G. V. (1990): Using daily
stock returns in event studies and the choice of parametric versus

nonparametric test statistics, Quarterly Journal of Business and Fco-

nomics, 29, 70-85.

Boehmer, E., Musumeci J. and Poulsen, A. B. (1991): Event-study method-
ology under conditions of event-induced variance, Journal of Financial

Economics, 30, 253-272.

Brown, S. J. and Warner, J. B. (1980): Measuring security price perfor-

mance, Journal of Financial Economics, 8, 205-258.

Brown, S. J. and Warner, J. B. (1985): Using daily stock returns: The case

of event studies, Journal of Financial Economics, 14, 3-31.

Campbell, C. J. and Wasley C. E. (1993): Measuring security price perfor-
mance using daily NASDAQ returns, Journal of Financial Economics,

33, 73-92.

Campbell, C. J. and Wasley C. E. (1996): Measuring abnormal trading vol-
ume for samples of NYSE /ASE and NASDAQ securities using paramet-

30



ric and non-parametric test statistics, Review of Quantitative Finance

and Accounting, 6, 309-326.

Campbell, J. Y., Lo, A. W. and MacKinlay A. C. (1997): The Econometrics

of Financial Markets, Princeton, NJ: Princeton University Press.

Charest, G. (1978): Dividend information, stock returns, and market effi-

ciency, Journal of Financial Economics, 6, 265—-296.

Corrado, C. J. (1989): A nonparametric test for abnormal security price
performance in event studies, Journal of Financial Economics, 23, 385—

395.

Corrado, C. J. and Zivney, T. L. (1992): The specification and power of
the sign test in event study hypothesis tests using daily stock returns,

Journal of Financial and Quantitative Analysis, 27, 465—-478.

Cowan, A. R. (1992): Nonparametric event study tests, Review of Quanti-
tative Finance and Accounting, 2, 343-358.

Cowan, A. R. and Sergeant, A. M. A. (1996): Trading frequency and event
study test specification, Journal of Banking & Finance, 20, 1731-1757.

Dechow, P., Sloan R. and Sweeney, A. (1995): Detecting earnings manage-

ment, Accounting Review, 70, 3—42.

Harrington, S. E. and Shrider, D. G. (2007): All events induce variance:
Analyzing abnormal returns when effects vary across firms, Journal of

Financial and Quantitative Analysis 42, 229-256

Kolari, J. W. and Pynnénen, S. (2010a): Event study testing with cross-
sectional correlation of abnormal returns, Journal of Financial Re-

search, 23, 3996—-4025.

31



Kolari, J. W. and Pynnénen, S. (2010b): Nonparametric rank tests for event
studies, Working Paper.
Available at SSRN: http://ssrn.com /abstract—1254022

Kothari, S. P., Leone, A. and Wasley C. (2005): Performance-matched dis-

cretionary accruals, Journal of Accounting and Economics, 39, 163-197.

Lehmann, E. L. (1999): Elements of Large-Sample Theory, New York,
Springer-Verlag.

Mikkelson, W. H. (1981): Convertible calls and security returns, Journal of
Financial Economics, 9, 237-264.

Patell, J. A. (1976): Corporate forecasts of earnings per share and stock
price behavior: Empirical test, Journal of Accounting Research, 14,

246-276.

Penman, S. H. (1982): Insider trading and the dissemination of firms fore-

cast information, Journal of Business, 55, 479-503.

Pynnonen, S. (2010): The joint distribution of an arbitrary linear trans-
formation of internally studentized least squares residuals of a linear
regression, Working Papers of the University of Vaasa, Department of
Mathematics and Statistics, 16,

Available at: http://lipas.uwasa.fi/julkaisu/ewp.html

Rosenstein, S. and Wyatt, J. G. (1990): Outside directors, board indepen-
dence, and shareholders wealth, Journal of Financial Economics, 26,

175-191.

32



A Appendix: The Properties of the Sign of the
GSAR

We derive the theoretical expectation and variance of G; as well as the
theoretical covariance between G;; and Gy, t # s, t,s = 1,...,T, in both of

the cases T'= L; + 1 being even and odd.

Using equations from (10) to (13) it is straightforward to see that

and

1, for even T’

var[Gy) =
%, for odd T

(A.2)

Again, if t # s, it is straightforward to verify the following probabilities

2 foreven T

Pr[GuGi =1 =< ™! (A.3)
%, for odd T,
0, foreven T

for odd T

2
T
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and

T%—P for even T
%7 for odd T
Furthermore for 7" being even
1
COV[G#, st] = E[Gzths] = —ﬁ (A6)
and for 7" being odd
1
COV[G“, st] = E[Glths} = _T (A?)

B Appendix: The Asymptotic Distributions of
/1 and SIGN-GSAR-T

The following Lemmas are utilized in the proofs of Theorem 1 and Theorem 2.

Proofs of these Lemmas can be obtained as special cases from Pynnonen

(2010).

Lemma 1 Define

x = Qu, (B.1)
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where Q is a T x T idempotent matriz of rank r < T and y = (y1,...,yr)
is a vector of independent N(0,1) random variables, such that y ~ N(0,1),
where I is a T X T identity matriz. Furthermore, let m be a T component
column vector of real numbers such that m'Qm > 0. Then

__ mle/mQm

SN T
has the distribution with density function

2\ 2(r—1)-1
RO (CF) T e

where |z| < /T, and zero otherwise, and where I'(+) is the gamma function.

(B.2)

Lemma 2 Under the assumptions of Lemma 1

r—1

_ 52
r Zm

tin = Zm

(B.4)

is distributed as the Student t-distribution with v — 1 degrees of freedom.

Proof of the Theorem 1. The proof of the theorem is adapted from Kolari
and Pynnonen (2010b). In order to derive the asymptotic distribution of the
Z defined in equation (19), the Gs defined in (9) are collected to a column
vector G; = (Ginyt1, Gityi2s - - Gimy, Go)' of T =T, — Ty + 1 components,
where the prime denotes transpose and ¢ = 1,...,n with n the number of
series. Then by assumption the random vectors G;s are independent and, by
Proposition 1, identically distributed random vectors with zero means and

identical equicorrelation covariance matrices such that
ElG;] = 0 (B.5)
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and

1— oI+ out, for even T
covia] = | (L ToTTe (B.6)
%[(1 —0)I+ o], for odd T.
Again ¢t =1,...,n, where ¢ is a vector of T" ones, I is a T' x T" identity matrix,
and
= (8.7
T 1 ‘
Thus, the covariance matrix in (B.6) becomes
L (I—2Lu/), foreven T
Y =cov[Gi] = "' (L= rev) (B.8)
(I — %LL/) , for odd T.

It should be noted that the matrix I — 7 !¢t/ is an idempotent matrix of
rank 7'— 1, which implies that X is singular in both of the cases for 7" being

even or odd.

However, because G;s are independent with zero means and finite covariance

matrices (B.8), the Central Limit Theorem applies such that

JnG (%) s (B.9)

when T is even and

when 7' is odd, as n — oo, where
x ~ N(0,Q) (B.11)
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with the (idempotent) singular covariance matrix

1
Q=1I- TLL/, (B.12)

and in (B.9) and (B.10), G = (Gpy 41, - .., Gr,, Go) with

_ 1 <

Gy = - ,Zl Git, (B.13)
where t € {Ty +1,...,T1,0}. Note that the sum of G;; over the time index
tis zero for alli =1,...,n,ie., ¢/G; =0 for all i = 1,...,n, which implies
that /G = 0.

Let ¢g be a column vector of length T" = Ty — Ty + 1 with one in position
in the event day ¢t = 0 and zeros elsewhere. In terms of the T-vector G and
under the assumption that n, = n for all t € {To+1,...,T1,0}, we can write

the Z-statistic in equation (19) as

g 4G _ UG/ /(T —1)/T (B.14)

Jeer Jader-1)

Defining in Lemma 1

m = (B.15)
and
1
Q=1I- fLL,, (B.16)
we obtain
T—-1
m'Qm = ( T ), (B.17)

such that the ratio z,, in (B.2) becomes

/(T -1)/T (B.18)

m T I

x'x/(T—1)

37



the distribution of which, after arranging term, has the density function,

- T (T - 1)/2] B
R (YN (17) (19

for |z] < /T — 1 and zero elsewhere.

Because of the convergence results in (B.9) and (B.10) and that the function

hG) = WG/ (T - D/T (B.20)

GG/(T-1)

is continuous, the continuous mapping theorem implies h(G) KN h(zx). That

; - UG/ /_(T—1>/Ti> L6$/\/(T—1)/T:Zm (B.21)
Jaer—y | Ve[l

which implies that the density function of the limiting distribution of Z; for

fixed T', as n — o0, is of the form defined in equation (B.19), completing the

proof of Theorem 1.

Proof of the Theorem 2: By the proof of Theorem 1, Z; KN Zm, Where z,, is
defined in equation (B.18) with » = T'—1. Again because the function g(z) =
zy/(T —2)/(T — 1 — 2?) is continuous, for |z| < +/T —1, the continuous

mapping theorem implies Zsor = g(Z1) A g(zm). That is,

d T -2
Zsar 2 2y | s B.22
SGT 77 2 T—-1-22 ( )

where the distribution of the right hand side expression is by Lemma 2 the ¢-
distribution with 7'—2 degrees of freedom, completing the proof of Theorem 2.

38



Table 1: Sample statistics

The table reports sample statistics from 1,000 simulations for the event day
abnormal returns and for the cumulative abnormal returns: CAR(—1,+1),
CAR(-5,45), and CAR(—10,+10). It also reports the sample statistics for the
test statistics ORDIN [Eq. (32)], PATELL [Eq. (34)], BMP |Eq. (35)], GRANK
[Eq. (37)], SIGN-COWAN [Eq. (41)], SIGN-GSAR-T [Eq. (18)] and SIGN-GSAR-
Z |Eq. (26)] for AR(0), CAR(—1,+1), CAR(—5,+5) and CAR(—10,+10). The
data is based on 1,000 simulations for portfolios of size n = 50 securities with an
estimation period of 239 days and event period of 21 days. The event day is de-
noted as ¢ = 0. Cumulative abnormal returns CAR(—d, +d) with d =0, 1, 5 and
10 are computed around the event day. The data consist of securities belonging to
S&P 400-, S&P 500- and S&P 600-indexes from July, 1991 to October, 2009. The
returns are calculated with the help of the market model presented in equation
(30). Superscripts a, b and ¢ correspond to the significance levels 0.10, 0.05 and
0.01.

Test statistics

Panel A: Mean Med. Std. Skew. Kurt. Min. Max.
AR(0)

AR(0), % 0.004 -0.008 0.413 -0.082 1.018 -1.688 1.641
ORDIN 0.008 -0.019 1.053 -0.079 0.701 -3.878 3.694
PATELL -0.024 -0.036 1.113 -0.193 1.170 -6.178 3.837
BMP -0.013 -0.033 1.000 -0.013 0.146 -4.000 3.777
GRANK 0.002 -0.010 0.974 0.056 0.071 -3.518 3.375

SIGN-COWAN -0.002 -0.042 0.958 0.059 -0.120 -3.475 2.999
SIGN-GSAR-T -0.016  0.000 0.990 0.041 -0.206 -2.630 2.997
SIGN-GSAR-Z -0.016 0.000 1.082 0.037 -0.226 -2.828 3.111

Panel B: Mean Med. Std. Skew. Kurt. Min. Max.
CAR(—1,+1)

CAR(-1,+1), % -0.010 -0.029 0.671 -0.019 0.146 -2.288 2.096
ORDIN -0.018 -0.040 0.988 -0.028 0.306 -3.759 3.329
PATELL -0.067° -0.085 1.077 0.133 0.113 -3.380 4.059
BMP -0.054* -0.088 1.023 0.159 0.083 -3.208 3.856
GRANK -0.001  0.011 1.021 0.088 0.189 -3.332 3.963

SIGN-COWAN 0.042 0.108 1.020 0.063 0.127 -3.475 3.832
SIGN-GSAR-T 0.028 0.000 1.036 0.050 0.082 -3.225 3.610
SIGN-GSAR-Z 0.031  0.000 1.128 0.038 0.045 -3.677 3.960

(Continued)
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Table 1, continued.

Test statistics

Panel C: Mean Med. Std. Skew. Kurt. Min. Max.
CAR(—5,+5)

CAR(-5,+5), % -0.076  -0.027 1.269 -0.114 0.346 -5.178 4.455
ORDIN -0.060° -0.020 0.959 -0.183 0.433 -3.977 3.441
PATELL -0.132¢ -0.108 1.107 -0.034 0.363 -4.005 3.992
BMP -0.113¢ -0.117 1.036 0.088 0.157 -3.417 3.603
GRANK 0.016 0.062 1.038 0.011 0.113 -3.073 3.334

SIGN-COWAN 0.085> 0.102 0.973 -0.028 -0.081 -2.764 3.334
SIGN-GSAR-T 0.065 0.000 0.993 0.018 -0.005 -2.804 3.284
SIGN-GSAR-Z 0.071® 0.000 1.084 0.030 0.034 -3.111 3.677

Panel D: Mean Med. Std. Skew. Kurt. Min. Max.
CAR(—10,+10)

CAR(-10,+10), % -0.056 -0.029 1.800 -0.136 0.018 -5.442 4.845

ORDIN -0.038 -0.015 0.967 -0.225 0.149 -3.332 2.749
PATELL -0.130¢ -0.108 1.105 -0.287 0.852 -5.208 4.129
BMP -0.100¢ -0.117 1.042 0.011 0.033 -3.092 3.759
GRANK 0.071° 0.063 1.053 -0.049 0.282 -3.645 3.942

SIGN-COWAN 0.180¢ 0.162 1.013 -0.052 0.295 -3.296 3.536
SIGN-GSAR-T 0.148° 0.241 0.997 -0.059 0.370 -3.275 3.423
SIGN-GSAR-Z 0.158° 0.283 1.090 -0.088 0.413 -3.677 3.677
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Table 2: Cramer-von Mises tests of the distributions

The table summarizes the results of Cramer-von Mises tests for testing the good-
ness of fit for different test statistics for AR(0), CAR(—1,+1), CAR(-5,+5)
and CAR(—10,+10). Test statistics ORDIN [Eq.(32)|, PATELL [Eq.(34)], BMP
[Eq.(35)], SIGN-COWAN [Eq.(41)] and SIGN-GSAR-Z [Eq. (26)] are tested against
the standard normal distribution and test statistics GRANK [Eq.(37)| and SIGN-
GSAR-T [Eq.(18)] are tested against the Student ¢-distribution with 238 (=T —2)
degrees of freedom. Superscripts a and b correspond to the significance levels 0.05

and 0.01. See Table 1 for details of the simulation setup.

AR(0) CAR(-1,+1) CAR(-5,+5) CAR(-10,+10)
ORDIN 0.054 0.218 0.350 0.196
PATELL 0.164 0.795° 1.488° 1.104°
BMP 0.066 0.625 1.277° 0.985°
GRANK 0.074 0.029 0.143 0.541¢
SIGN-COWAN  0.136 0.270 0.916° 2.994°
SIGN-GSAR-T 0.361 0.387 0.855° 2.400°
SIGN-GSAR-Z 0.918° 1.006° 1.288° 2.871°
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Figure 1: The Q-Q plots of the test statistic SIGN-GSAR-T

The figure illustrates the theoretical quantile-quantiles (Q-Q) for the test statis-
tic SIGN-GSAR-T [Eq. (18)] in cases AR(0), CAR(—1,+1), CAR(—5,+5) and
CAR(—10,410). In vertical axes there are Students t-distributions with 238
(= T — 2) degrees of freedom and in horizontal axes there are the test statis-
tics SIGN-GSAR-Ts. The data is based on 1,000 simulations for portfolios of size
n = 50 securities with non-clustered event days, and with an estimation period of
239 days and event period of 21 days. The event day is denoted as t = 0. The
data consist of securities belonging to S&P 400-, S&P 500- and S&P 600-indexes
from July, 1991 to October, 2009. The returns are calculated with the help of the
market model presented in equation (30).
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1-Day Abnormal Returns [Event Day]
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Figure 2: The power results for AR(0)
The figure illustrates the power results of the test statistics for two-tailed tests for
testing AR(0) with an AR ranging from —3 percent to +3 percent. General details
of the simulation setup are given in the Figure 1.

3-Day Cumulative Abnormal Returns [+/- 1 Days around the Event Day]
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Figure 3: The power results for CAR(—1,+1)
The figure illustrates the power results of the test statistics for two-tailed tests for
testing CAR(—1, +1) with an AR ranging from —3 percent to +3 percent. General
details of the simulation setup are given in the Figure 1.
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11-Day Cumulative Abnormal Returns [+/-5 Days around the Event Day]
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Figure 4: The power results for CAR(—5, +5)
The figure illustrates the power results of the test statistics for two-tailed tests for
testing CAR(—5,+5) with an AR ranging from —3 percent to +3 percent. General
details of the simulation setup are given in the Figure 1.

21-Day Cumulative Abnormal Returns[+/- 10 Days around the Event Day]
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Figure 5: The power results for CAR(—10, +10)
The figure illustrates the power results of the test statistics for two-tailed tests
for testing CAR(—10,+410) with an AR ranging from —3 percent to +3 percent.
General details of the simulation setup are given in the Figure 1.
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