
Robust Investment Decisions

and The Value of Waiting to Invest

June 1, 2011

Work in progress.

Christian Riis Flor Søren Hesel

Dept. of Business and Economics Dept. of Business and Economics

University of Southern Denmark University of Southern Denmark

E-mail: crf@sam.sdu.dk E-mail: soren@sam.sdu.dk

The paper contains graphs in color, please use color printer for best results.

0Please direct correspondence to Christian Riis Flor, Department of Business and Economics, University

of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, email crf@sam.sdu.dk, phone: +45

6550 3384, fax: +45 6550 3237.



Robust Investment Decisions

and The Value of Waiting to Invest

The paper contains graphs in color, please use color printer for best results.

Abstract. We solve a firm’s investment problem when there is uncertainty about

the growth rate of the project value and about the investment cost. This uncer-

tainty makes the firm ambiguity averse. We use a robust method to take this

into account. In this setting, we provide explicit solutions when the value of the

project as well as the investment cost are stochastic. Ambiguity aversion de-

creases the investment threshold and, in contrast to standard models, volatility

can decrease the investment threshold. In fact, volatility increases the impact of

ambiguity aversion. We also show that the effect of volatility is highly depen-

dent on the correlation between the value of the project and the investment cost.

Hence, ambiguity aversion is an important aspect to take into account when the

firm considers its investment strategy.
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1 Introduction

A fundamental question in corporate finance is whether a firm should exploit an invest-

ment opportunity. Furthermore, as firms often have discrepancy in the timing of the

investment this element must be taken into account. The issue of finding the optimal time

for undertaking the investment has been addressed by several papers since the seminal

paper by McDonald and Siegel (1986). They base their analysis on the option like ap-

proach—leading to the so-called real options analysis—and a key assumption is that all

parameters in their model are known to investors. However, it can be difficult to provide

precise estimates of the parameters in practice. Our paper contributes to the optimal

investment literature by considering the investment problem when a firm takes parame-

ter uncertainty into account. We demonstrate that this significantly impacts the firm’s

investment decision. For example, the investment threshold can be decreasing in volatility.

A vast amount of literature has considered variations of the investment problem with

McDonald and Siegel (1986) being the basic reference. Expansions have analyzed e.g.

competition, asymmetric information, incomplete information, or risk aversion in combi-

nation with unspanned risk. Generally, the value of the option to invest is lowered by

the cause of the friction introduced in the different models. Our paper supplements this

literature by analyzing how ambiguity aversion against uncertainty in project value and

the investment cost, respectively, impacts the value of the investment opportunity and,

thus, when investment takes place.

As noted, one strand of real options literature relaxes the assumption of complete

information by considering incomplete information models with updating of beliefs, see e.g.

Decamps, Mariotti, and Villeneuve (2005) who add the friction that the investor does not

have complete information about the parameters in the model. Instead, the investor has

as prior probability measure over the states of the nature and as more observations occur

over time, the investor uses data to update the probability distribution of the parameters.

Thus, by Bayesian updating the investor has a perception of the drift and uses this to

find his optimal investment threshold, see e.g. Liptser and Shiriaev (2001). However, a

problem with this approach is that in principle one needs an infinite amount of data to

reduce the variance of the parameters sufficiently. Consequently, the optimal investment

decision depends on time as well as the underlying state variable. This feature makes
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it very hard to derive explicit solutions. That is, one needs to rely solely on numerical

methods. Yang, Song, and Yang (2011) uses the method with an extensive numerical

study and they find that the value of the project decreases in volatility. In contrast, e.g.

Henderson (2007) analyzes a model with an incomplete market and risk aversion. She

models a risk averse investor, who has access to a market portfolio and has the option

to undertake an irreversible investment project, where the pay-off is not spanned by the

market portfolio. This has the effect that the investor values the project less than in the

complete market, invests for an lower profit, and the value is not increasing convex in

volatility. This is also possible in the present paper albeit we consider a different setting.

A different approach takes as a starting point that the economic agent does not trust

the reference model he employs in his analysis. Importantly, the agent is averse against

this kind of uncertainty. An early example of this is the Ellsberg paradox by Ellsberg

(1961) with the famous urn experiments. This setting is known as Knightian uncertainty

in which ambiguity aversion is present. That is, the investor does not trust the probability

measure employed in the model and is averse from this lack of knowledge. Similar to risk

aversion, the investor can be more or less ambiguity averse. Ambiguity aversion has been

modeled in three different ways in the literature: Smooth preferences, the multiple prior

approach, or the multiplier approach. Smooth preferences is a framework that considers

the preferences of an investor and uses a concave function of all the models the investor

considers possible. In this framework, ambiguity aversion is similar to risk aversion, since

it is also a measure for the level of concavity in the function, see e.g. Klibanoff, Marinacci,

and Mukerji (2005). Unfortunately, the smooth preference approach is difficult to apply

in continuous-time models as explained in e.g. Hansen and Sargent (2009).

In both the multiple prior approach and the multiplier approach the economic agent

has a reference parameter as a starting point. For example, in a real options setting one

can think of an estimate of the expected growth rate of the project’s value as the reference

parameter. However, the agent (i.e. the firm) worries that this estimator is not correct

(or has a low precision). Hence, the firm fears that the project’s value can evolve very

differently than what is predicted. In the multiple prior setting, the worst outcome is

chosen, and the model is completed as without ambiguity aversion with the important

adjustment that the reference parameter is substituted with the worst outcome as a fixed

parameter. Hence, the employed reference parameter only depends on the space of possible
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outcomes. In a real options setting this method is used by Nishimura and Ozaki (2007)

and Trojanowska and Kort (2010). Both papers use cash flow as the underlying variable

and they consider the growth rate as the parameter estimated with high uncertainty.

In particular, the growth rate is assumed to lie within an interval where the boundaries

cannot change over time. Thus, the worst possible outcome is constant (the lowest possible

growth rate) and the model can be solved with dynamic programming as in (Dixit and

Pindyck, 1994, Chapter 6). In the standard real options setting, the value of the option to

invest has characteristics similar to a call option. in particular, the value is an increasing

convex function of volatility, which induces investors to choose more uncertain projects,

see e.g. Dixit and Pindyck (1994). However, in the multiple priors setting, Nishimura and

Ozaki (2007) and Trojanowska and Kort (2010) show that the value of the option is no

longer a monotonic increasing function of volatility. Related to the lack of information,

the investor will invest for a higher level of cash flow, if the interval is wider, i.e. if the

worst outcome gets worse.

In the multiplier approach—also known as the robust decision making approach—the

worst possible outcome is also chosen, but there is an opposite working penalty for choosing

a parameter. Hence, the parameter is chosen endogenously, see e.g. Hansen and Sargent

(2008) for an introduction to robust methods. In a continuous-time framework Anderson,

Hansen, and Sargent (2003) show how to derive a robust Hamilton-Jacobi-Bellman (HJB)

equation. The robust HJB-equation is similar to the standard HJB-equation except for

extra terms taking the above measuring penalty into account. The penalty is measured

as the relative entropy between the reference measure and other probability measures

considered. This robustness framework has been used in financial economic to address

problems in asset allocation and asset pricing, see e.g. Epstein and Schneider (2008),

Chen and Epstein (2002), and Maenhout (2004).

The present paper is, as far as the authors know, the first to use the multiplier approach

in a real options setting. To derive the optimal time to undertake an investment our model

employs a set-up similar to the one in McDonald and Siegel (1986). For a start, we focus

on a setting in which the underlying variable is the value of the project. That is, the

project value is uncertain in the future and, in particular, it has an expected growth rate

which we consider to be estimated with low precision so that the firm wants to make a

robust investment decision taking this into account. Subsequently, we also address the
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investment problem when the investment cost is a state variable. Since we use the robust

HJB-equation, we end up with a partial differential equation that is significantly different

than the Euler-differential equation from the standard problem without ambiguity aversion

and from the literature using the multiple priors approach. In technical terms, the present

paper has two main results. First, we are able to derive the explicit solution to the robust

differential equation. Second, using this solution we can derive the explicit value of the

option to invest together with the optimal investment threshold. In economic terms, we

find that the threshold value of the project—at which the investment is undertaken—has

a functional form similar to the one in the non-ambiguity aversion problem as well as

the multiple prior approach. However, our results reveal that ambiguity aversion enters

in a more complicated manner and, therefore, it has multiple effects. In particular, the

threshold value of the project is not a monotonic increasing function of volatility, since

an increase in volatility can decrease the expected growth in value. Furthermore, when

ambiguity aversion increases, we show that the threshold value converges to a limit. If the

reference growth rate of the project value is low enough compared to volatility, the firm

employs the simple NPV rule. In contrast, if the growth rate is high enough the firm will

not invest until the project’s NPV is at a level strictly higher than 0, thus violating the

simple NPV rule.

Finally, McDonald and Siegel (1986) also consider the setting in which the investment

cost is uncertain. They show by homogeneity that the problem can be reduced in dimen-

sion, where the underlying variable is the ratio between project value and the investment

cost. It is not evident that we have the same feature in our model due to the penalty

function. However, we show that homogeneity prevails, and the value of the project can

be found by only considering the pay-off ratio. Thus, we are able to study correlation

effects. We show that different degrees of correlation imply important differences in the

investment decision. For example, if the value of the project has higher volatility, this

may decrease the investment threshold, when the correlation is positive. In contrast, with

negative correlation the investment threshold can increase in the project value’s volatility.

The remainder of the paper is organized as follows. We set up the general model in

Section 2 in which we derive explicit formulas for the value of the option to investment and

the investment threshold. In Section 3 we restrict the analysis to have a fixed investment

cost. This allows us to make easier interpretations and to compare with results using
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the multiple prior method. We return to the general setting in Section 4 in which we

elaborate on correlation effects. Finally, Section 5 concludes. A number of technical

results and proofs are postponed to the appendix.

2 The robust decision to invest

In this section we extend the fundamental model by McDonald and Siegel (1986) to capture

model uncertainty. Thus, we consider a firm facing the standard real options problem.

That is, the firm has a perpetual option to pay the irreversible investment cost I. In

return it receives a project with value V . What complicates matters for the firm is the

fact that it is uncertain about the probability law driving the evolution of the value of

the project and the investment cost. If the firm takes this uncertainty into account it is

ambiguity averse. We now consider how to introduce ambiguity aversion into the basic

irreversible real investment problem

Let (Ω,F) be a measure space and assume that the firm uses P as a reference probability

measure. That is, the firm considers this probability measure as the most likely. This is

the measure an ambiguity neutral firm would apply. Let B = (B1, B2)> be a Brownian

motion with respect to P and the filtration F. At time t the process for the project’s value

and the investment cost have the dynamics:

dVt = Vt
(
µV dt+ σV dB

1
t

)
, (1)

dIt = It

[
µIdt+ σI

(
ρdB1

t +
√

1− ρ2dB2
t

)]
, (2)

where µV is the expected growth rate and σV is the drift regarding the value of the

project. Similarly, µI is the expected growth rate and σI is the drift of the investment

cost. ρ measures the correlation between the project’s value and the investment cost.

All these parameters are constants and, hence, V and I are geometric Brownian motions

under the reference measure.

As mentioned above, the firm is aware that it cannot be certain that the reference

measure provides a correct specification of the true model. Thus, the firm only knows

some approximation of the true model, for example due to parameter uncertainty. We

follow Anderson et al. (2003), Hansen and Sargent (2009) and others in modeling this

uncertainty. Thus, in addition to the references measure, the firm has to consider a larger
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set of probability measures. We assume that the firm has knowledge about all nulsets in

the model, and that is only has to consider measures equivalent to P.1 For this reason, we

can apply Girsanov’s theorem in which any measure P̃ ∼ P fulfil the relation

P̃t(A) = Et [1AE(u)t] , A ∈ Ft (3)

where

E(u)t = exp

[∫ t

0
usdBs −

1

2

∫ t

0
|us|2ds

]
. (4)

Here the process u = (u1, u2)> is denoted the distortion process. It is a progressively

measurable process satisfying ∫ ∞
0
|us|2ds <∞ a.s. (5)

Thus, we have the Radon-Nikodym derivative dP̃t
dPt = E(u)t where Pt is the restriction to

Ft and similar for P̃t. Under the new measure we have the new Brownian motions

dBt = dB̃1
t + u1tdt, dB2

t = dB̃2
t + u2tdt. (6)

Denote U as the set of all distortion processes u such that P̃ ∼ P. For a u ∈ U the

expected growth rates become

µV − σV u1t, (7)

µI − σI
(
ρu1t +

√
1− ρ2u2t

)
. (8)

Inserting these into the evolution of the value of the project and the investment cost, (1)

and (2), respectively, we obtain

dVt = Vt

(
(µ− σV u1t)dt+ σV dB̃

1
t

)
, (9)

dIt = It

(
(µI − σI(ρu1t +

√
1− ρ2u2t))dt+ σI

(
ρdB̃1

t +
√

1− ρ2dB̃2t

))
. (10)

Since the firm is ambiguity averse it worries that an alternative measure yields a less

beneficial option to invest. Specifically, the reference drift for the project value could

1We use this methods with equivalent measures and Girsanov’s theorem such that the drift of the

processes can change in both directions; some model use Choquet Brownian, but there the drift can only

be decreased and the volatility is also decreased, which is an unfortunate result. See e.g. Kast, Lapied,

and Roubaud (2010)
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be too high compared to the true drift, while the reference drift for the investment cost

could be too low compared to the true drift. To deal with this, the firm considers this

as a max-min problem in which an imaginary malevolent counter player chooses the drift

that minimizes the value of the option to invest. However, since the firm has a reference

measure—which it considers to be the most likely measure—it has less faith in measures

that lie far away from it. Therefore, we assume that there is a penalty to the counter

player for choosing an alternative probability measure away from the reference measure.

Thus, the firm faces the problem of maximizing the value of the option to invest, while the

counter player wants to minimize it subject to the penalty from choosing an alternative

measure.

Formally, let denote F̃ (V, I) the alternative value of the option to invest in which both

the expected profit and the penalty from the counter player choosing a different probability

measure are included:

F̃ (V, I) = sup
τ∈T

inf
u∈U

[
EP̃
[
e−δ(τ−t) (Vτ − Iτ )

]
+ Ψ−1

∫ τ

0

∫
Ω

log

(
dP̃s
dPs

)
dP̃sds

]
. (11)

The second term in (11) is the penalty for choosing the alternative measure P and not the

reference measure P̃. The penalty is measured by the relative entropy of the two measures,

R(P̃), where

R(P̃) =

∫ τ

0

∫
Ω

log

(
dP̃s
dPs

)
dP̃sds =

∫ τ

0

∫
Ω

(∫ s

0
urdBr −

1

2

∫ s

0
|ur|2dr

)
dP̃ds. (12)

Note that choosing the alternative measure P is basically equivalent to choosing the func-

tion u.

To handle how much the firm fears alternatives to the reference measure, i.e. its degree

of ambiguity aversion, the entropy penalty in (11) is scaled by Ψ−1, where

Ψ =

Ψ1 0

0 Ψ2

 .

Thus, Ψ1 is the firm’s subjective ambiguity parameter regarding the value of the project,

while Ψ2 is the firm’s subjective ambiguity parameter regarding the investment cost.2 If

the firm has less faith in the reference model it considers models with a larger relative

2SinceR(P̃) =∞, if P̃ and P are not equivalent we are restricted to having a fixed maturity, see Karatzas

and Shreve (1998) for the maturity problem and Hansen et al. (2006) about the relative entropy.
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entropy by reducing the penalty to the counter player choosing a measure further away

from the reference measure. In the special case Ψ = 0, the counter player chooses u = 0 to

minimize the payoff. Thus, this case simply corresponds to an expected payoff maximizer,

i.e. the standard setting without ambiguity (ambiguity neutrality). Note that we allow

the penalty weighting to be different for the two state variables. We consider this to be

reasonable as the firm’s information quality regarding the state variables can differ. For

instance, the firm can have better knowledge regarding changes in the investment cost

than in the project value. We can model this by letting the firm have a lower Ψ2 than Ψ1.

To solve the optimal stopping problem we use robust dynamic programming developed

in Anderson et al. (2003) and applied in e.g. Maenhout (2006). That is, we solve the robust

Hamilton-Jacobi-Bellman (HJB) equation which is an adjusted usual (non-robust) HJB.

To see how the HJB is affected by the demand for robustness we first state the HJB for the

case in which the firm is ambiguity neutral. The usual HJB states that the infinitesimal

generator must be equal to the demanded rate of return, δF̃ , in the continuation (waiting)

region. Loosely speaking the infinitesimal generator is interpreted as the infinitesimal

expected change in F̃ , i.e. E[dF̃ ]/dt. Hence, from Itô’a Lemma and the ambiguity neutral

expected growth rates in (1)–(2) we have

0 = F̃V V µV + F̃IIµI +
1

2
F̃V V V

2σ2
V +

1

2
F̃III

2σ2
I + V IσV σIρF̃V I − δF̃ . (13)

To extend (13) to the robust HJB two changes are needed. First, the evolution of

the value of the project and the investment cost must be specified under the alternative

measure as in (9)–(10). Second, we must add the weighted derivative of the relative

entropy. Using (12) the derivative of the relative entropy is

R′(P̃) =
∂R(P̃)

∂t
=

1

2
u>u. (14)

With the above ingredients we can now set up the robust HJB:

0 = inf
u∈U

[
F̃V V (µV − σV u1) + F̃II(µI − σI(ρu1 +

√
1− ρ2u2))

+
1

2
F̃V V V

2σ2
V +

1

2
F̃III

2σ2
I + V IσV σIρF̃V I − δF̃ +

1

2
tr(Ψ−1u>u)

]
, (15)

where tr is the trace of a matrix, i.e. tr(Ψ−1u>u) = 1
Ψ1
u2

1 + 1
Ψ2
u2

2. Hence, we obtain the

robust HJB

0 = inf
u∈U

[
F̃V V (µV − σV u1) + F̃II(µI − σI(ρu1 +

√
1− ρ2u2))
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+
1

2
F̃V V V

2σ2
V +

1

2
F̃III

2σ2
I + V IσV σIρF̃V I − δF̃ +

1

2Ψ1
u2

1 +
1

2Ψ2
u2

2

]
. (16)

From the two first order conditions with respect of the distortion process u we get that

u∗1 = Ψ1

(
F̃V V σV + ρσI F̃II

)
, (17)

u∗2 = Ψ2F̃II
√

1− ρ2σI . (18)

Inserting the solution into the HJB equation we get the partial differential equation (PDE)

0 =F̃V V
(
µV − σV Ψ1

(
F̃V V σV + ρσI F̃II

))
+ F̃II

(
µI − σI

(
ρΨ1

(
F̃V V σV + ρσI F̃II

)
+(1− ρ2)Ψ2F̃IIσI

))
+

1

2
F̃V V V

2σ2
V +

1

2
F̃III

2σI + V IρσV σI F̃V I − δF̃

+
1

2
Ψ1

(
F̃V V σV + ρσI F̃II

)2
+

1

2
Ψ2F̃

2
I I

2(1− ρ2)σ2
I . (19)

The PDE (19) characterizes the value of the option to invest together with the following

boundary boundary conditions3

lim
V→0

F̃ (V, I) = 0, (20)

lim
I→∞

F̃ (V, I) = 0, (21)

F̃ (V ∗, I∗) = V ∗ − I∗, (22)

∂F̃ (V, I)

∂V

∣∣∣∣
V=V ∗

= 1, (23)

∂F̃ (V, I)

∂I

∣∣∣∣
I=I∗

= −1. (24)

Condition (20) ensures that the option becomes worthless as the value of the project

tends to zero. Similarly, (21) states than the value of the option to invest is zero when the

investment cost is infinitely high. Condition (22) is the value matching condition saying

that the value of the option to invest equals the value of the project minus the investment

cost. Finally, (23)–(24) are the smooth pasting conditions needed to derive the optimal

investment threshold. These conditions are standard in the real options literature, see

e.g. Dixit and Pindyck (1994), Schwartz and Trigeorgis (2004), and Alili and Kyprianou

(2005).

3It is not evident that these requirements are enough for the optimal stopping time. However, Riedel

(2010) analyzes this problem in a general form and has this solution, when the state variables are Markov

processes.
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To obtain a closed form solution we impose more structure on the subjective ambiguity

parameter. Consider the distortion process from the first order conditions, i.e. (17) and

(18). From this we see a dependence on the value of the option to invest and the two

underlying processes V and I. If we assume that the structure of the functional form of

the value is the same as with ambiguity neutrality—and if Ψ1 and Ψ2 are constants—we

obtain some less desired properties of the distortion process. Maenhout (2004, 2006) faces

a similar problem in a portfolio choice problem. To circumvent this, he assumes that Ψ is

state dependent. We follow his approach and define the penalty parameter as

Ψi = Ψi(V, I) =
θi

F̃ (V, I)
. (25)

Intuitively, the option value decreases, when the project value decreases or the investment

cost increases. Therefore, the above specification increases the weight Ψi, i.e. the firm takes

larger distortions away from the reference measure into account. This seems plausible, as

the firm should fear a mis-specification of the growth of the project value more when it is

low. Similarly, it should fear a mis-specification of the growth of the investment cost more

when the investment cost is high.

In the following we will consider the profit ratio v , V/I. In a standard real options

problem it is well known that the profit ratio is sufficient to describe the problem, see e.g.

Dixit and Pindyck (1994, Chapter 6). In this case, the two-dimensional problem reduces

to a one-dimensional one. It turns out that this is also possible when ambiguity aversion

is present.

An application of Itô’s Lemma shows that the dynamics of the profit ratio is

dvt = vt(µV − µI + σ2
I − ρσV σI)dt+ vt

(
σV − ρσI , σI

√
1− ρ2

)>
dBt. (26)

When we consider the investment problem with the profit ration as the state variable, we

denote the value of the option to invest as f(v). Using this together with the penalty

specification, we obtain the robust HJB

0 =
1

2
f ′′
(
σ2
V + σ2

I − 2ρσV σI
)
v2 + f ′

(
µV − µI + ρ2σ2

Iθ1 − ρσV σIθ1 + σ2
I (1− ρ2)θ2

)
v

+ f

(
−δ + µI −

1

2
ρ2σ2

Iθ1 −
1

2
σ2
I (1− ρ2)θ2

)
− 1

2
f ′2f−1

(
σ2
V θ1 + σ2

I (1− ρ2)θ2 + ρ2σ2
Iθ1 − 2ρσV σIθ1

)
v2. (27)
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We note that (27) is significantly different from the ODE in the original problem by

McDonald and Siegel (1986). Indeed, the last term has the non-linear factor (f ′(v))2/f(v).

However, the following lemma which shows that—as in McDonald and Siegel (1986)—our

problem with ambiguity aversion exhibits homogeneity.

Lemma 2.1. Let the investor have ambiguity aversion parameters θ1 and θ2. Then the

value of the option to invest can be written

F̃ (V, I) = If(v) (28)

where f(v) is a function depending on v = V/I.

Hence, we reduce the problem into solving the corresponding differential equation that

depends only on v. For future reference we set up some notation. From (26) the volatility

is on the vector form

σ =
(
σV − ρσI ,

√
1− ρ2σI

)>
, (29)

and we also specify the ambiguity aversion matrix and another volatility vector as

θ =

θ1 0

0 θ2

 , (30)

σI = (ρσI ,
√

1− ρ2σI)
>. (31)

We can now state the general solution to (27).

Lemma 2.2. 1. Assume that θ 6= I. The solution of equation (27) is on the form

f(v) = (y1(v) + y2(v))Q(θ) , (32)

where

Q(θ) =
σ>σ

σ>
(
I − θ

)
σ
,

and y1 and y2 are two linear independent functions.

2. If θ = I, then

f(v) =C2v

2(δ−µI+1
2σ

2
I)

2(µV −µI−ρσV σI+σ2I)−σ>σ × exp

[
σ>σ

σ>σ − 2
(
µV − µi − ρσV σI + σ2

I

)] . (33)
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Given the solution to the HJB equation (27), the value of the option to invest and the

optimal investment threshold is then found as in the standard problem without ambiguity.

Theorem 2.1. The optimal investment threshold is

V ∗/I∗ = v∗ =
β

β − 1
, (34)

where

β =
σ>σ

σ>(I − θ)σ
× 1

2

[
−

(
2
(
µV − µI − θ1ρσV σI + σI

>θσI

)
σ>σ

− 1

)

+

(2
(
µV − µI − θ1ρσV σI + σI

>θσI

)
σ>σ

− 1

)2

+ 8
σ>
(
I − θ

)
σ
(
δ + 1

2σI
>θσI − µI

)
(σ>σ)

2

1/2
 .

The value of the project is given by

F̃ (V, I) = I (v∗ − 1)

(
V

v∗I

)β
. (35)

2.1 The investment problem without ambiguity

To compare the effect of ambiguity, we want to use the solution from the investment

problem without ambiguity as a benchmark. Since this is the in standard problem already

studied e.g. McDonald and Siegel (1986) and Dixit and Pindyck (1994) we omit the details

of the derivation.

Thus, the firm has to find the optimal time to invest and, hence, receive the profit

V − I. Therefore, the firm’s problem is

F (V, I) = sup
τ∈T

E
[
e−δτ (Vτ − Iτ )

]
= E

[
e−δτ

∗
(Vτ∗ − Iτ∗)

]
.

This can be reduced to only depend on the profit ratio v = V/I, i.e.

F (V, I) = If(v),

where f(v) satisfies the standard HJB (27) with θ1 = θ2 = 0. Using the value matching

and smooth-pasting conditions the value of the option is

F (V, I) = I (v∗ − 1)
( v
v∗

)α
,

12



where

α =

(
µ̂− 1

2σ
>σ
)

+
[(
µ̂− 1

2σ
>σ
)2

+ 2δσ>σ
]1/2

σ>σ
,

where we use σ = (σv, σI − ρσV )> and µ̂ = µV − µI . The optimal investment threshold

is given by

v∗ =
α

α− 1
.

We have that α > 1 and, thus, the firm waits until the project value is sufficiently higher

than the investment cost. We also see that there exists a ray through the origin separating

waiting and investment in the (V, I) space. Here, the slope of the threshold line has the

standard option value interpretation. That is, the slope is increased when either σV or σI

is increased, since α is decreasing in both.

To simplify the problem, it is often assumed that the investment cost is constant and

the comparative statics of the problem is easier to interpret. In the present setting this

implies no loss of generality. We obtain

F (V ) = AV α̂,

where

α̂ =
−
(
µ− 1

2σ
2
)

+

√(
µ− 1

2σ
2
)2

+ 2σ2δ

σ2
> 1, (36)

and A = (V ∗ − I)(V ∗)−α̂.

We now turn to analyze how ambiguity aversion impacts the firm’s investment decision

in more detail.

3 Solution with fixed investment cost

In this section we assume that the investment cost is fixed. This allows us to consider a

simpler problem and to provide easier interpretations of the results. Also, we can compare

our framework to the multiple prior framework. In Section 4 we consider the case of

stochastic investment cost.

Recall that the firm faces the investment problem

F̃ (V, t) = sup
τ∈T

inf
u∈U

[
EP̃
[
eδ(τ−t) (Vτ − I) |F̃t

]
+

1

Ψ

∫ ∞
0

∫
log

(
dPs
dP̃s

)
dPsds

]
.

13



As in Section 2 we set Ψ(V ) = θ/F̃ (V ). The corresponding robust HJB equation yields

the ODE4

0 =
1

2
σ2V 2F̃V V + µV F̃V − δF̃ −

1

2
σ2V 2θF̃ (V )−1F̃ 2

V . (37)

With this version of Ψ(V ), the ODE in (37) differs from the standard one commonly seen

in the literature—e.g. Dixit and Pindyck (1994) and Nishimura and Ozaki (2007). In

particular, the last term makes the ODE nonlinear and different from the Euler equation.

The boundary conditions for the problem are

lim
V→0

F̃ (V ) = 0, (38)

F̃ (V ∗) = V ∗ − I, (39)

F̃ ′(V ∗) = 1, (40)

where we, of course, assume that the option is not exercised if V < I. With the above

boundary conditions, the solution collapses to the same structure seen in the standard

non-ambiguous framework. Therefore, we highlight this solution below.

Lemma 3.1. The solution depends on θ.

• Assume θ 6= 1. Then the general solution to (37) can be written on the form

F̃ (V ) = (y1(V ) + y2(V ))
1

1−θ (41)

where y1 and y2 are two linear independent functions of V .

• Assume θ = 1. Then there are two cases for the solution to equation (37):

1. If 2µ− σ2 6= 0. Then the solution can be written on the form:

F̃ (V ) = C1V
2δ

2µ−σ2 exp
[
C2V

1− 2µ

σ2

]
(42)

2. 2µ− σ2 = 0. The solution is written

F̃ (V ) = C2V
C1 exp

[
δ

σ2
log(V )2

]
for a arbitrary constant C1.

4To simplify notation we let θ1 = θ, σV = σ and µV = µ.
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From the proof of Lemma 3.1 it is seen that the functions y1 and y2 depend on the

value of θ related to the value of K = 1 +
(

2µ
σ2 − 1

)2
σ2

8δ . As we will see in Theorem 3.1,

we have that θ ≤ K. To derive the value of the option to invest, we need to consider

conditions (38)–(40), for all three cases of θ. We also make the following assumption:

Assumption 3.1. The optimal investment threshold V ∗ is a continuous function of θ.

The assumption is not restrictive, since it would not make sense that the investment

threshold should have jumps as a function of the ambiguity parameter. Therefore, we use

the limit of V ∗, as θ converges to 1. We also note that the threshold will depend on the

sign of µ − 1
2σ

2. If the sign is negative, then the value of the option to wait will be zero

for a ambiguity parameter lower than one. That is, for a θ high enough, but less than one,

the firm is willing to invest, if just the net present value is zero. We collect our results

below.

Theorem 3.1. Let the investor have ambiguity aversion θ. Then the value of the project

can be written as

F (V ) = A1V
β1 , (43)

where

A1 = (V ∗ − I)(V ∗)−β1 ,

and

• if θ 6= 1 and θ ≤ 1 +
(

2µ
σ2 − 1

)2
σ2

8δ , then

β1 =
−
(
µ− 1

2σ
2
)

+

√(
µ− 1

2σ
2
)2

+ 2(1− θ)σ2δ

σ2(1− θ)
, (44)

• if θ = 1, then

β1 =
δ

µ− 1
2σ

2
,

• if θ > 1 +
(

2µ
σ2 − 1

)2
σ2

8δ , then the value of the option to wait is zero.

The optimal investment threshold occurs as the project value

V ∗ =
β1

β1 − 1
I. (45)
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From the proof of Theorem 3.1 it follows that the firm is concerned with the degree of

ambiguity aversion and the sign of 2µ − σ2. If 2µ − σ2 < 0, then the value of the option

to wait is zero for a θ̂ < 1. If 2µ− σ2 = 0, then the value of the option is zero for θ ≥ 1,

since the optimal threshold is I. In addition, for a small enough σ we have that V ∗ > I

for all θ, i.e. the value of the option is positive. This may seem odd, but even in the case

of no volatility and θ = 0, which makes it a deterministic problem, the optimal threshold

is also higher than I, V ∗ = δ
δ−µ , see Dixit and Pindyck (1994, Section 5.1).

3.1 Loss in value by not using the robust rule

We now want to measure the firm’s loss by not taking ambiguity into account. This is

inspired by the certainty equivalent from asset pricing and portfolio choice. Denote the

value of the option to invest—conditional on using the optimal robust investment rule—

as F̃ (V ;V ∗) = F̃ (V ). Let F̂ be the option value for an arbitrary investment rule, i.e.

F̂ (V ) = F̃ (V ; V̂ ). F̂ satisfies the absorbing as well as the value matching condition, so we

know that

V̂ = V ∗(0), (46)

where V ∗ is considered as a function of θ.

Definition 3.1. We measure the loss as L, where L denotes how large a fraction of the

option value the firm is willing to give up in order to know the optimal robust investment

strategy. Thus, L satisfies

(1− L)F̃ (V ) = F̂ (V ).

Rewriting the two option expressions we see that the loss is

L = 1− β1(θ)− 1

β1(0)− 1

(
β1(0)

β1(0)− 1

)−β1(θ)( β1(θ)

β1(θ)− 1

)β1(θ)

. (47)

Note, that the loss vanishes, if there is no ambiguity aversion.

3.2 The multiple prior method

Our solution in Section 2 is derived using the multiplier approach. That is, we rely on

the robust HJB and the specification of the subjective ambiguity parameter Ψ. Another
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framework to address ambiguity is the so-called multiple prior or maximin approach. In

this subsection we use a different functional form for Ψ than previously to illustrate how

our results relate to the multiple prior model from e.g. Nishimura and Ozaki (2007).

To see the differences between the two approaches we first briefly describe the multiple

prior model by Nishimura and Ozaki (2007) and Trojanowska and Kort (2010). In these

papers it is assumed that the distortion process is in a fixed, compact interval called

κ-ignorance; i.e. u ∈ [−κ, κ]. Moreover, the dynamics of the value process is given by

dVt = Vt

(
(µ− κσ)dt+ σdB̃t

)
,

while the investment cost is kept constant. The next result follows from the standard

analysis in e.g. Dixit and Pindyck (1994, Chapter 5)5

Proposition 3.1. Let the investor have κ-ignorance and let the investment cost be fixed

to I. The optimal threshold is given by

V ∗ =
β̃1

β̃1 − 1
I, (48)

where

β̃1 =
−
(
(µ− κσ)− 1

2σ
2
)

+
√

((µ− κσ)− 1
2σ

2)2 + 2δσ2

σ2
. (49)

It is immediate from (48) that the value of the option to invest is of the same functional

form as in Section 2 and Section 3. However, there is a substantial difference due to the

fact that the ambiguity aversion only shows up as a decrease in drift. Thus β̃1 in (49)

differs from e.g. β1 in (44). Furthermore, from Girsanov’s theorem we know that u is

multiplied with σ. Therefore, it is not clear whether the investment threshold behaves

similar in the two frameworks for different degrees of volatility.

It is interesting to consider whether the multiplier approach can be more directly

related to the multiple prior approach. Suppose we set Ψ(V ) = θ/(V F̃ ′(V )). Then it

follows by the method in Section 2 that u∗ = θσ. Inserting this into the robust HJB we

get

0 = F̃ ′(V )V (µ− 1

2
σ2θ) +

1

2
σ2V 2F̃ ′′(V )− δF̃ (V ).

5Nishimura and Ozaki (2007) and Trojanowska and Kort (2010) consider the problem where the firm

receives a cash flow from the point of investment. Both papers are able to solve the problem with their

assumption of κ−ignorance, since that enables them to employ dynamic programming.
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Thus, if we set κ = 1
2σθ, we obtain exactly the same solution as in the multiple prior

approach.

Since the two different specifications of Ψ appear to be closely related, one could be

tempted to conclude that the approaches provide the same qualitative results. However, as

we demonstrate below, there are important differences. More importantly, in Section 2 we

solved the firm’s investment problem in the general case with stochastic project value as

well as stochastic investment cost. This allows us to study correlation effects as will be done

in Section 4. In contrast, correlation effects seem to be harder to analyze in the multiple

prior approach, since the results in Nishimura and Ozaki (2007) and Trojanowska and

Kort (2010) cannot immediately be extended to include the case in which the investment

cost is random and correlated with the value of the project.

3.3 Comparative statics

We now turn to an numerical analysis to show how the option value and the investment

decision changes with ambiguity aversion. To restrict the analysis, we focus our attention

to effects ambiguity aversion as well as volatility. To make comparisons we consider a

base case with parameters given in Table 1. These parameters are inspired by McDonald

and Siegel (1986). Note that µ− 1
2σ

2 = −0.01 < 0, cf. Theorem 3.1.

[Table 1 about here.]

[Figure 1 about here.]

Figure 1 depicts the value of the option to invest as a function of the project value V .

The green (blue) curve depicts the option value with (without) ambiguity. We see that

introducing ambiguity aversion lowers the value of the option, since the firm is unsure

about the dynamics of the project value. Consequently, the value of waiting is lower with

ambiguity aversion.

[Figure 2 about here.]

The impact of ambiguity aversion is further studied in Figure 2. In Figure 2(a) we

depict the investment threshold as a function of the investor’s ambiguity aversion. The

threshold is clearly decreasing, i.e. the investor invests for a lower V in order to eliminate
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the uncertainty about the drift µ, and the more ambiguity averse the earlier does the

investor want to eliminate this uncertainty. As we have seen we have that the investment

threshold converges to V̂ < I as θ → θ̂, and for θ̂ > 1 the value of the project is zero.6 This

result is different from the results by both Nishimura and Ozaki (2007) and Trojanowska

and Kort (2010), where the value of the project is always positive. The intuition is that

as θ is increased above our threshold for positive investment the penalty from changing

the probability measure in form of the relative entropy is so large, that the investor will

choose an investment threshold that is actually negative.

Figure 2(b) illustrates the loss of neglecting ambiguity aversion. We use the loss to

measure whether the importance of taking ambiguity into account. Intuitively, the higher

the ambiguity aversion is, the higher the loss will be. From Figure 2(a) we know that

the investment threshold decreases in ambiguity aversion. Even if the firm is only slightly

ambiguity avers, the drop in the investment threshold seems to be quit large. However,

Figure 2(b) shows that the loss is small. On the other hand, the loss increases a lot for

larger degrees of ambiguity aversion. We also consider the effect of volatility. Interestingly,

a higher volatility yields a higher loss. This is due to the fact that the robust adjustment of

the drift is scaled directly by volatility. Thus, volatility emphasizes the effect of ambiguity

aversion. For example, when θ = 0.2, the loss is about 3% in the base case, but it increases

to 10% when the volatility is increased to 0.15.

We now turn to a comparison between the multiplier approach and the multiple prior

approach. Specifically, we consider how the investment threshold behaves as volatility is

changed. This is illustrated in panel (c) and (d) in Figure 2. Figure 2(c) employs the

model of the present paper, while Figure 2(d) uses the multiple prior approach in the

sense of κ-ignorance as in Nishimura and Ozaki (2007). Recall, that the latter method

implies that the drift is adjusted downward so that the expected growth rate is reduced

from µ to µ−κσ. To make the comparisons as equal as possible, we have used κ = 0.0556

when θ = 0.3, and when κ = 0.5 we set θ = 0.868. These specifications ensure that

the investment threshold is equal in the two specifications when σ = 0.20. As seen in

Figure 2, the volatility effect on the investment threshold is somewhat different in the

two implementations of ambiguity aversion. The multiplier approach seems to provide

6This is due to µ−σ2/2 < 0, but close to zero in the base case. Otherwise we have a maximal admissible

θ, cf. Theorem 3.1, at which V ∗ > I.
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a monotone effect, while the multiple prior approach is clearly non-monotonic. As in

standard real options theory, the investment threshold is increasing in volatility when

ambiguity aversion is absent (i.e. θ = 0), cf. the blue curve in Figure 2(c) and Figure 2(d).

However, as the importance of ambiguity aversion increases with volatility, the value of

waiting to invest is dampened when volatility increases. When ambiguity aversion is

high enough, we see from Figure 2(c) that the investment threshold can be decreasing in

volatility. This decreasing effect is also present in Figure 2(d), but the usual increasing

effect due to the value of flexibility enters when the volatility of the project value is (very)

small compared to the volatility.

4 Comparative statics with stochastic investment cost

In this section we extend the analysis to include stochastic investment cost. Intuitively, the

sensitivity analysis from Section 3 regarding the parameters for the project value basically

carries over to a partial sensitivity analysis regarding the parameters for the investment

cost in the opposite direction. Also, as previously noted, the studies in Nishimura and

Ozaki (2007) and Trojanowska and Kort (2010) cannot be readily extended to include

stochastic project value together with stochastic investment cost. For these reasons we

focus on how correlation plays a role when ambiguity aversion is at play.

[Figure 3 about here.]

Correlation between the the value of the project and the investment cost can have a

significant effect based on two reasons. First, there is a spill over effect from the first

coordinate of the distortion process, u1, see (8). Second, correlation obviously plays a role

even without ambiguity aversion. Figure 3(a) illustrates the value of the option to invest.

As in Section 3.3 the general picture is that ambiguity aversion lowers the investment

threshold. When there is no ambiguity aversion, the investment threshold is 2.32 (not

shown in the figure). It decreases to 2.29 if there is ambiguity aversion regarding the

investment cost (θ1 = 0, θ2 = 0.3), and further down to 1.79 if there is ambiguity aversion

regarding the value of the project (θ1 = 0.3, θ2 = 0). Overall, the figure shows that the

impact of ambiguity aversion regarding the project value is more influential than ambiguity

aversion regarding the investment cost.
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[Figure 4 about here.]

We next consider how correlation and volatility regarding the project value affects the

investment threshold. This is done in Figure 3(b). In the figure, the blue (purple/gray)

curve corresponds to a negative (zero/positive) correlation. When correlation is zero,

we have the same picture as the green curve in Figure 2(c). That is, the investment

threshold is a convex-concave function of volatility. When the correlation is negative,

the investment threshold is increases in volatility. This relates to the usual result in real

option analysis, i.e. the value of waiting increases in volatility. For positive correlation,

the investment threshold is no longer monotone in volatility. When volatility increases

there is a decreasing effect in the project value’s expected growth due to ambiguity. This

drift-effect is dominating when volatility is low. However, as the project value’s volatility

is further increased the usual volatility effect is dominates.

In Figure 4 we consider the investment threshold depending on the volatility param-

eters σV and σI for positive and negative correlation. Consider first the case when the

volatility of the project value is high (σV = 0.4). When the volatility of the investment

cost increases, we clearly see a different shape of v∗ depending on the correlation. When

the correlation is positive, an increase in σI lowers the drift of the profit ratio even fur-

ther. Therefore, we have an even lower threshold. Thus, the investment threshold is

non-monotonic in the investment cost’s volatility. Hence, comparing to the results in

Figure 3(b), we see that volatility impacts the investment threshold depending on the cor-

relation. Turning to the case with negative correlation, an increase in σI increases the drift

and the threshold is increased. This is due to that fact, that with negative correlation, a

higher volatility in the investment cost increases the value of waiting.

Interestingly, if we consider a high level of volatility of the investment cost, Figure 4

demonstrates the project value’s volatility impacts the investment threshold differently.

With positive correlation, ambiguity aversion makes more volatility (in addition to the

high σI) less desirable. Thus, the value of waiting decreases in σV . On the contrary, when

correlation is negative, the value of waiting increases in σV as long as it is not too large. To

conclude, it is clear that correlation significantly impacts the firm’s investment behavior.
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5 Conclusion

We examine a firm’s investment decision when it is ambiguity averse. That is, the firm does

not trust its reference model and it wants to take account of this uncertainty. Despite the

fact that we need to solve a non-standard differential equation, we are able to derive closed

form solutions for the value of the option to invest as well as the investment threshold.

Overall, ambiguity aversion decreases the value of the option to invest. Thus, the firm

invests for a lower level of project value compared to the case with no ambiguity aversion.

Interestingly, in contrast to standard real option analysis, the value of waiting is no longer

monotonically increasing in volatility. This is due to the fact that volatility emphasizes

ambiguity aversion. Thus, we demonstrate that it is more important to take ambiguity into

account, the larger the ambiguity aversion is and, in particular, the larger the volatility is.

Since we can let both the project value and the investment cost be uncertain, we

are able to study correlation effects. We show different correlations imply important

different effects regarding the investment decision. For example, if the value of the project

has higher volatility, this may decrease the investment threshold, when the correlation is

positive. In contrast, with negative correlation the investment threshold can increase in

the project value’s volatility. Hence, ambiguity aversion is an important aspect to take

into account when the firm considers its investment strategy.
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A Proofs

A.1 Proofs from section 2

Proof of Lemma 2.1. The pay-off function is naturally homogeneous of degree one in both

variables, and thus we need to show that the robust HJB equation can be rewritten into a

differential equation depending on only one variable. First we solve for the controls, and

we have the partial differential equation. We guess that the value of the project can be

written as a function of the pay off ratio times the investment cost, which is put into the

robust HJB. The HJB equation 19

0 =F̃V

(
µV − σV Ψ1

(
F̃V V σV + ρσI F̃II

))
+ F̃II

(
µI − σI

(
ρΨ1

(
F̃V V σV + ρσI F̃II

)
+ (1− ρ2)Ψ2F̃IIσI

))
+

1

2
F̃V V V

2σ2
V +

1

2
F̃III

2σI − δF̃ + V IρσV σI F̃V I

+
1

2
Ψ1

(
F̃V V σV + ρσI F̃II

)2
+

1

2
Ψ2F̃

2
I I

2(1− ρ2)σ2
I (50)

If we gues a solution on the form

F̃ (V, I) = If(v)

with v = V/I. Then the partial derivatives of F̃ are

F̃V = f ′(v), F̃I = f(v)− vf ′(v), F̃V V = f ′′(v)/I, F̃II = v2f ′′(v)/I, F̃V I = −vf ′′(v)/I

These are inserted into equation (19) and for simplicity we leave out the variables in f

0 =µV V f
′ + µII(f − vf ′)− δIf +

1

2
σ2
V V

2f ′′/I +
1

2
σ2
I I

2v2f ′′/I

+ ρσV σIV I(−f ′′v/I)− 1

2
σ2
V V

2f ′2Ψ1 −
1

2
ρ2σ2

I I
2(f − vf ′)2Ψ1

− ρσV σIV If ′(f − vf ′)Ψ1 −
1

2
σ2
I (1− ρ2)I2(f − vf ′)2Ψ2 (51)

As in the simple model we set the penalties to be state dependent:

Ψ1 =
θV

F̃ (V, I)
=

θV
If(v)

, Ψ2 =
θI

F̃ (V, I)
=

θI
If(v)

and insert these into (51) and we can divide by I to get

0 =
1

2
f ′′
(
σ2
V + σ2

I − 2ρσV σI
)
v2
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+ f ′
(
µV − µI + ρ2σ2

Iθ1 − ρσV σIθ1 + σ2
I (1− ρ2)θ2

)
v

+ f

(
−δ + µI −

1

2
ρ2σ2

Iθ1 −
1

2
σ2
I (1− ρ2)θ2

)
− 1

2
f ′2f−1

(
σ2
V θ1 + σ2

I (1− ρ2)θ2 + ρ2σ2
Iθ1 − 2ρσV σIθ1

)
v2 (52)

Hence the problem can be reduced to a problem depending of v = V/I similar to the the

original problem.

Proof of Lemma 2.2. Since we have already shown that the problem is homogeneous, we

need to solve the ordinary differential equation. Equation (27) can be rewritten as

0 =
1

2
f ′′v2σ>σ − 1

2
v2f ′2f−1σ>θσ

+ f ′v
(
µV − µI − θ1ρσV σI + σI

>θσI

)
+ f

(
−δ + µI −

1

2
σI
>θσI

)
=

1

2
v2σ>

(
f ′′ − f ′2f−1θ

)
σ

+ f ′v
(
µV − µI − θ1ρσV σI + σI

>θσI

)
+ f

(
−δ + µI −

1

2
σI
>θσI

)
With the assumption θ 6= I we can make the same tranformations as in lemma 3.1 and

we have that

f(v) = u(v)Q(v)

and the solution to u(v) has the same form as before, but the solution to the quadratic

equation has the form

β̂ =
1

2

[
−

(
2
(
µV − µI − θ1ρσV σI + σI

>θσI

)
σ>σ

− 1

)

±

(2
(
µV − µI − θ1ρσV σI + σI

>θσI

)
σ>σ

− 1

)2

+ 8
σ> (I − θ)σ (δ + 1

2σI
>θσI − µI

)
(σ>σ)

2

1/2


and thus the solution to f depends on how many solutions there are to β̂.

Proof of Theorem 2.1. The proof very similar to the proof for Theorem 3.1 which is given

below. Basically, the proof for Theorem 2.1 is only extended in dimension with minimum

modifications.
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A.2 Proof from section 3

Proof of Lemma 3.1 . The structure of the proof is to transform the ODE in (37) to a

differential equation with recognizable solution, and then transform this solution back to

the initial problem. First we rewrite (37)

0 =
1

2
σ2V 2

(
F̃V V − θF (V )−1F̃ 2

V

)
+ µV F̃V − δF̃ , (53)

and abstracting from F=0 we get

0 =
σ2

2
V 2

 F̃ F̃V V − F̃ 2
V

F̃ 2(V )
+ (1− θ)

(
F̃V
F

)2
+ µV

F̃V

F̃
− δ. (54)

Let g(V ) = F̃V
F̃

. Then g′ =
F̃ F̃V V −F̃ 2

V
F 2 and (54) becomes

g′(V ) =
2δ

σ2

1

V 2︸ ︷︷ ︸
q0(V )

+
−2µ

σ2

1

V︸ ︷︷ ︸
q1(V )

g(V ) + (−(1− θ))︸ ︷︷ ︸
q2(V )

g2(V ), (55)

which we recognize as a Ricatti equation. Therefore, consider the transformation h(V ) =

q2(V )g(V ) yielding

h′(V ) = q0(V )q2(V )︸ ︷︷ ︸
S(V )

+

(
q1(V ) +

q′2(V )

q2(V )

)
︸ ︷︷ ︸

R(V )

h(V ) + h2(V ). (56)

Finally, let u satisfy

h(V ) =
u′(V )

u(V )
(57)

then

h′(V ) =
−u(V )u′′(V ) + (u′(V ))2

u2(V )
, (58)

wherewithal

−u(V )u′′(V ) + (u′(V ))2

u2(V )
= S(V ) +R(V )

−u′(V )

u(V )
+

(
u′(V )

u(V )

)2

. (59)

Thus,

0 = u′′(V )−R(V )u′(V ) + S(V )u(V ) (60)
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and inserting for R and S we get

0 = u′′(V ) +
2µ

σ2

1

V
u′(V )− (1− θ) 2δ

σ2

1

V 2
u(V ), (61)

hence

0 = V 2u′′(V ) +
2µ

σ2
V u′(V )− (1− θ) 2δ

σ2
u(V ), (62)

which we recognize as a second order Euler differential equation. By setting V = et we

get an linear second order differential equation.

u′′(t) +
2µ

σ2
u′(t)− (1− θ) 2δ

σ2
u(t) = 0

We have the characteristic function

β̂2 +

(
2µ

σ2
− 1

)
β̂ − (1− θ) 2δ

σ2
= 0. (63)

where

β̂ =
1

2

−(2µ

σ2
− 1

)
±

√(
2µ

σ2
− 1

)2

+ (1− θ) 8δ

σ2

 (64)

If the solutions to the characteristic equation are complex, we write β̂ = ψ ± iϕ. The

solution of u with respect to t then depends on the roots of the characteristic function,

which depends mainly on θ. Denote K = 1 +
(

2µ
σ2 − 1

)2
σ2

8δ . The solutions can be found

in Spiegel and Liu (1999).

[Table 2 about here.]

Hence all solutions is a linear combination of two linear independent functions, y1 and y2.

Now recall that

g(V ) =
1

1− θ
u′(V )

u(V )

but we also have

g(V ) =
F ′(V )

F (V )

i.e.

F̃ ′(V )

F̃ (V )
=

1

1− θ
u′(V )

u(V )
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hence it follows that

F̃ (V ) = Ĉ3u(V )
1

1−θ ,

where Ĉ3 is an integration constant to be determined. Using the expression for u we obtain

F̃ (V ) = Ĉ3

(
Ĉ1y1(V ) + Ĉ2y2(V )

) 1
1−θ

, (65)

=
(
Ĉ1−θ

3 Ĉ1y1(V ) + Ĉ1−θ
3 Ĉ2y2(V )

) 1
1−θ

, (66)

which we rewrite as

F̃ (V ) = (C1y1(V ) + C2y2(V ))
1

1−θ , (67)

as asserted in equation (41)

Proof of Lemma 3.1 in the case θ = 1. We only do the case with µ− 1
2σ

2 6= 0. We assume

that F̃ (V ) 6= 0. The differential equation is now written

0 =
1

2
σ2V 2

(
tFV V −

F 2
V

F

)
+ µV F̃V − δF̃

=
1

2
σ2V 2

 F̃V V
F̃
−

(
F̃V

F̃

)2
+ µV

F̃V

F̃
− δ

We define

g(V ) =
F̃V

F̃
gV =

F̃V V

F̃
−

(
F̃V

F̃

)2

Thus the differential equation is written

gV +
2µ

σ2
V −1g =

2δ

σ2
V −2

Set G(V ) = 2µ
σ2

∫
V −1dV = 2µ

σ2 log(V ) and the solution to g is

g(V ) = exp

[
−2µ

σ2
log(V )

] [
2δ

σ2

∫
V −2 exp

[
2µ

σ2
log(V )

]
dV + C1

]
=

2δ

σ2
V −1 + C1V

− 2µ

σ2

To find F̃ we set

P (V ) =

∫ (
− 2δ

2µ− σ2
V −1 − C1V

1− 2µ

σ2

)
dV

= − 2δ

2µ− σ2
log(V )− C1σ

2

σ2 − 2µ
V 1− 2µ

σ2
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and the solution for F̃ is

F̃ (V ) = C2 exp [−P (V )] = C2 exp

[
−
(

log(V )
− 2δ

2µ−σ2 − C1σ
2

σ2 − 2µ
V 1− 2µ

σ2

)]
= C2V

2δ
2µ−σ2 exp

[
C1V

1− 2µ

σ2

]

Proof of Theorem 3.1. Assume that θ < 1. Then from Lemma 3.1 we have that β̂1 > 0

and β̂2 < 0 and 1/(1− θ) > 0. From the conditions (38)–(40) we can set C2 = 0 and the

F̃ can be written

F̃ (V ) = (C1V
β̂1)1/(1−θ)

= A1V
β1

where

β1 =
−
(
µ− 1

2σ
2
)

+

√(
µ− 1

2σ
2
)2

+ 2(1− θ)σ2δ

σ2(1− θ)

Since we are interested in β̂1/(1− θ) we study the associated quadratic equation

β̂2 +

(
2µ
σ2 − 1

)
1− θ

β̂ − (1− θ)
1− θ

2δ

σ2
= 0,

i.e.

(1− θ)σ
2

2
β̂2 +

(
µ− σ2

2

)
β̂ − δ︸ ︷︷ ︸

Q(β)

= 0.

Since (1− θ) > 0 we have a parabola with upward turning branches. Moreover, as δ > µ,

we get Q(0) = −δ < 0 and Q(1) = −θ σ2

2 − (δ − µ) < 0. From this it follows that the

positive root β , β̂1/(1− θ) > 1. The value matching condition yields

F (V ∗) = A1(V ∗)β1 , V ∗ − I,

i.e.

A1 = (V ∗ − I) (V ∗)−β1 .
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The smooth pasting condition yields

F ′(V ∗) = A1β1(V ∗)β1−1 , 1,

i.e.

V ∗ =
β1

β1 − 1
I,

as asserted.

Denote the investment factor:

C =
β1

β1 − 1
=

−
(

2µ
σ2 − 1

)
+
[(

2µ
σ2 − 1

)
+ 4(1− θ) 2δ

σ2

]1/2

−
(

2µ
σ2 − 1

)
+
[(

2µ
σ2 − 1

)
+ 4(1− θ) 2δ

σ2

]1/2
− 2(1− θ)

If we let θ → 1 we have that

lim
θ→1−

C(θ) =

0

0


We use l’Hopital’s rule and we get

lim
θ→1−

C(θ) =
δ

δ − (µ− 1
2σ

2)

From the proof of Lemma 3.1 in the case of θ = 1, we have that

F̃ (V ) = C1V
β1 exp

[
C2V

β2
]

where β1 = 2δ
2µ−σ2 and β2 = 1− 2µ

σ2 and we have that

β1

β1 − 1
=

2δ

2δ − 2µ− σ2

and so for the case θ = 1 we set C2 = 0. With 1 < θ ≤ 1 +
(

2µ
σ2 − 1

)2
σ2

8δ we can again set

C2 = 0 due to continuous V ∗(θ). For the case θ = 1 +
(

2µ
σ2 − 1

)2
σ2

8δ , we also set C2 = 0.

When θ > 1 +
(

2µ
σ2 − 1

)2
σ2

8δ we have to set both C1 and C2 equal to zero, otherwise the

function u(V ) = y1(V ) + y2(V ) from the proof of Lemma 3.1 will oscillate and become

negative. Recall that the actual penalty of changing the measure was Ψ and therefore that

we can set F̃ ≡ 0 for the case θ > 1 +
(

2µ
σ2 − 1

)2
σ2

8δ
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Figure 1: The value of the option to invest as a function of the value of V . The green curve
is with ambiguity aversion. The vertical dashed lines indicate the investment threshold.
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(a) The investment threshold, V ∗, with (green
curve) and without (blue curve) ambiguity aversion.
The dashed line indicates the investment cost level
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(b) Loss of ignoring ambiguity aversion for three
cases of volatility: 0.15 (dashed, blue), 0.2 (solid,
green), and 0.25 (dashed gray)
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(c) The investment threshold without ambiguity
aversion (blue curve) and with (green curve) us-
ing base case parameters and θ = 0.868 (orange,
dashed)
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(d) The investment threshold without ambiguity
aversion (blue curve) and with using base case pa-
rameters and κ being 0.056 (green curve), 0.1(or-
ange line), and 0.5 (orange, dashed)

Figure 2: Effects of ambiguity aversion θ and volatility, σ.
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(a) The value of the option to invest as a func-
tion of V . The purple (green) curve is for the
case θ1 = 0 (θ2 = 0).
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(b) The investment threshold v∗ as a function
of the volatility in the value for three different
correlations from above: Negative, zero and
positive.

Figure 3: The value of the project and the investment threshold.
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Correlation Positive
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(a) Positive correlation, ρ = 1/2

Correlation Negative
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(b) Negative correlation, ρ = −1/2

Figure 4: The investment threshold v∗ as a function of the volatilities for two cases of
correlation
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δ µ σ θ I
3% 1 % 0.2 0.3 10

Table 1: Parameters for the base case.
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Condition u(t) u(V)

θ < K C1e
β̂1t + C2e

β̂2t C1V
β̂1 + C2V

β̂2

θ = K C1e
β̂t + C2te

β̂t C1V
β + C2 log(V )V β̂

θ > K eψt (C1 cos(ϕt) + C2 sin(ϕt)) V ψ (C1 cos(log V ) + C2 sin(log V ))

Table 2: Solutions of the differential with respect to t and V .
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