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Abstract

GARCH volatility models should not be considered as data-generating processes

for volatility but just as filters. Based on this insight we suggest a simple and gen-

eral way to improve the GARCH volatility models using the difference between the

highest and the lowest price of the day. We illustrate this idea on the GARCH(1,1)

model, which we modify into the Range GARCH(1,1) model. An empirical analysis

confirms that the RGARCH(1,1) model performs significantly better than the stan-

dard GARCH(1,1) model regarding both in-sample fit and out-of-sample forecasting

ability.
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1 Introduction

The most fundamental variables of finance and economics are changes of asset prices (re-

turns) and their variances. As was observed a long time ago, even though returns of most

financial assets are to a large extent unpredictable, their variances display high temporal

dependency and are predictable. Starting with the work of Engle (1982) and Bollerslev

(1986), the ARCH and GARCH classes of models have become standard tools to for volatil-

ity modelling and forecasting. Some of the widely used extensions are EGARCH of Nelson

(1991), GJR-GARCH of Glosten et al. (1993) and FIEGARCH of Bollerslev and Mikkelsen

(1996). See e.g. Andersen et al. (2006) and Engle and Patton (2001) for surveys and further

references.

Starting with the work of Taylor (1986), a new class of volatility models emerged –

stochastic volatility models. For an overview see e.g. Ghysels et al. (1996) and Shephard

(1996). The main difference between stochastic volatility and GARCH models is the

following. Stochastic volatility models assume that volatility evolves over time as some

stochastic process and returns are drawn from a distribution parametrized by this volatility.

Past returns have no direct effect on the future volatility.1 In GARCH models, returns are

generated the same way as in the stochastic volatility models. The only stochastic element

in the volatility equation are past returns and therefore past returns determine future

volatility. In other words, returns are stochastic, but once the return is realized, future

volatility is determined. A direct comparison of stochastic volatility models and GARCH

models is inconclusive (Kim et al. (1998)). The main reason why stochastic volatility

models did not become as popular as GARCH models is the practical one - stochastic

1Abstracting from leverage effect, which can be possibly incorporated into the stochastic volatility

models.
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volatility models are more difficult to estimate (see e.g. Broto and Ruiz (2004)).

If we consider GARCH models and stochastic volatility models as data generating

processes, they are obviously mutually exclusive. However, important insights from Nelson

(1990) and Nelson (1992) tell us that even when a GARCH model is misspecified (it is not

a true data generating process for the volatility), it can provide consistent estimates of the

volatility if the volatility changes “slowly” relative to the sampling interval (Nelson and

Foster (1994)). Simply said, we can think of the GARCH model as a filter through which

we pass the data to produce an estimate of the conditional volatility.

Our work is based on a similar intuition. The GARCH model can fit the data quite

well even when the volatility itself is not generated by the process specified by the GARCH

model. In GARCH type of models, demeaned2 squared returns serve as a way to calculate

innovations to the volatility. Rewriting GARCH models in terms of observed variables

(returns) only shows that the GARCH model in fact calculates volatility as a weighted

moving average of past squared returns. If volatility is changing gradually over time, the

GARCH model will work simply because squared returns are daily volatility estimates and

therefore the GARCH model essentially calculates volatility as a weighted moving average

of the past volatilities.

This intuition has interesting implications. Most importantly, replacing the squared

returns by more precise volatility estimates will produce better GARCH models, regarding

2For most of the assets, mean daily return is much smaller than its standard deviation and therefore

can be considered equal to zero. From now on we assume that it is indeed zero. This assumption not only

makes further analysis simpler, but it actually helps to estimate volatility more precisely. In the words of

Poon and Granger (2003): “The statistical properties of sample mean make it a very inaccurate estimate

of the true mean, especially for small samples, taking deviations around zero instead of the sample mean

typically increases volatility forecast accuracy.”
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both in-sample fit and out-of-sample forecasting performance. Additionally, coefficients of

GARCH models based on more precise volatility estimates than squared returns will be

changed in such a way that they will put more weight on more recent observations. We

examine both these implications.

To test our idea, we estimate a GARCH(1,1) model using both squared returns and a

more precise volatility proxy, in particular the Parkinson (1980) volatility estimator based

on range (the difference between high and low). The results confirm our expectations.

In this way our work becomes closely related to Alizadeh et al. (2002), Chou (2005)

and Brandt and Jones (2006) who use range-based volatility measures to estimate volatility

models. Alizadeh et al. (2002) estimate a stochastic volatility model. Brandt and Jones

(2006) estimate EGARCH and FIEGARCH models based on log range. Chou (2005) uses

range in standard deviation GARCH. These papers employ range-based volatility proxies

in different volatility models. However, standard GARCH models are estimated to fit the

conditional distribution of returns, whereas the previously mentioned models are estimated

to fit the conditional distribution of range (log-range). This in turn means that only our

model can be estimated using standard econometric software without any programming.

Our contribution is threefold. First, we construct a range-based GARCHmodel (RGARCH).

This model is a simple modification of the standard widely used GARCH(1,1) model, but

still outperforms it significantly. Second, our paper should be viewed as an illustration of

how the existing GARCH models can be easily improved by using more precise volatility

proxies. Even though this paper devotes most of the space to illustrate that the RGARCH

models outperforms the standard GARCH(1,1) model, our main goal is not to convince

the reader that our model is the best one. On the contrary, since leverage effect is a well-

documented phenomenon, an asymmetric RGARCH model is very likely to outperform our
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model. However, we focus on the GARCH(1,1) model, as it is arguably the most popular

volatility model and the incorporation of the range into this model illustrates the general

idea well enough. Third, we confirm that GARCH models should indeed be considered

just filtering devices, not models for data generating processes.

The rest of the paper is organized in the following way: Section 2 provides a ba-

sic introduction to volatility modelling and an overview of existing range-based volatility

estimators. Section 3 describes the data, methodology and results. Finally, Section 4

concludes.

2 Theoretical background

2.1 GARCH models

Let Pt be the price of a speculative asset at the end of day t. Define return rt as

rt = log (Pt)− log (Pt−1) . (1)

Daily returns are known to be basically unpredictable and their expected value is very

close to zero. On the other hand, variance of daily returns changes significantly over time.

We assume that daily returns are drawn from a normal distribution with a zero mean and

time-varying variance:

rt ∼ N
(
0, σ2

t

)
. (2)

Both assumptions, zero mean and normal distribution, are not necessary and can be aban-

doned without any difficulty. For the sake of exposition, we maintain these assumptions

throughout the whole paper. This allows us to focus on the modelling of conditional vari-

ance (volatility) only. The first model to capture the time variation of volatility is Engle’s
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(1982) Auto Regressive Conditional Heteroskedasticity (ARCH) model. The ARCH(p) has

the form

σ2

t = ω +

p∑

i=1

αir
2

t−i, (3)

where rt is a return in day t, σ2
t is an estimate of the volatility in day t and ω and αi’s are

positive constants. The Generalized ARCH model was afterwards introduced by Bollerslev

(1986). The GARCH(p,q) has the following form:

σ2

t = ω +

p∑

i=1

αir
2

t−i +

q∑

j=1

βiσ
2

t−j , (4)

where the βi’s are positive constants. The GARCH model has become more popular,

because with just a few parameters it can fit data better than a more parametrized ARCH

model. Particularly popular is its simplest version, the GARCH(1,1) model3:

σ2

t = ω + αr2t−1 + βσ2

t−1. (5)

Estimation of the GARCH(1,1) typically yields the following results. Parameter ω is very

small (e.g. 0.0006), α + β is close to one, but smaller than one. Moreover, most of the

weight is on the β coefficient, e.g. α = 0.04, β = 0.95. In other words, the estimated

GARCH(1,1) model is usually very close to its reduced form, the Exponential Weighted

Moving Average (EMWA) model

σ2

t = αr2t−1 + (1− α)σ2

t−1. (6)

The EMWA model is useful particularly for didactic purposes. In this model the new

volatility estimate is estimated as a weighted average of the most recently observed volatil-

ity proxy (squared returns) and the last estimate of the volatility. Loosely speaking, we

3Even though the GARCH(1,1) is a very simple model, it still works surprisingly well in comparison

with much more complex volatility models (see Hansen and Lunde (2005)).
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gradually update our belief about the volatility as new information (noisy volatility proxy)

becomes available. If the new information indicates that the volatility was larger than our

previous belief about it, we update our belief upwards and vice versa. The coefficient α

tells us how much weight we put on the new information. If we use a less noisy volatility

proxy instead of squared returns, the optimal α should be larger and the performance of

the model should be better.

The same intuition applies to GARCH models too. This naturally leads to the proposal

of the modified GARCH(1,1)

σ2

t = ω + α ̂σ2
proxy,t−1

+ βσ2

t−1 (7)

where ̂σ2
proxy,t−1

is the less noisy volatility proxy.

Next we need to decide upon what should be used as a better (less noisy) volatility

proxy. Generally, the better the proxy we use, the better should the model work. There-

fore, the natural candidate would be realized volatility. This would lead to models related

to Shephard and Sheppard (2010) and Hansen et al. (2011). However, despite the attrac-

tiveness of the realized variance we do not use it as a volatility proxy. Realized variance

must be calculated from high frequency data and these data are in many cases not avail-

able at all or available only over shorter time horizons and costly to obtain and work with.

Moreover, due to market microstructure effects the estimation of volatility from high fre-

quency data is a rather complex issue (see Dacorogna et al. (2001)). Contrary to high

frequency data, high (H) and low (L) prices, which are usually widely available, can be

used to estimate volatility (Parkinson (1980)):

σ̂2

P =
[ln(H/L)]2

4 ln 2
. (8)

This estimator is derived under the assumption that, during the day, the logarithm of the
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price follows a Brownian motion with a zero drift. Even though this is not always true,

Parkinson’s volatility estimator performs very well with the real world data (Chou et al.

(2010)).

An alternative volatility proxy we could use is the Garman and Klass (1980) volatility

estimator, which utilizes additional open (O) and close (C) data:

σ̂2

GK = 0.5 [ln(H/L)]2 − (2 ln 2− 1) [ln(C/O)]2 . (9)

Under ideal conditions (Brownian motion with zero drift) this estimator is less noisy than

the Parkinson volatility estimator4, because it utilizes open and close prices too. However,

in this paper we use Parkinson’s volatility estimator (σ2
proxy = σ2

P ). We have done all

the calculations for the Garman-Klass volatility estimator too and found out that for this

particular purpose the Garman-Klass estimator does not improve the results more than

Parkinson estimator, the results are practically the same. Moreover, for the same data

sets where high and low prices are available, open price is sometimes not available.

In this paper we therefore study the following model

σ2

t = ω + ασ̂2

P,t−1
+ βσ2

t−1, (10)

which we denote as RGARCH(1,1) (range GARCH) model. This model can obviously be

extended to the RGARCH(p,q) model

σ2

t = ω +

p∑

i=1

αiσ̂2

P,t−i +

q∑

j=1

βiσ
2

t−j . (11)

Since it is generally known that GARCH(p,q) of order higher than (1,1) is seldom useful (see

e.g. Hansen and Lunde (2005)), we study the RGARCH model only in its simplest version

(10), i.e. the RGARCH(1,1) model. Most of the paper is devoted to the comparison of

4For comparison of range-based volatility estimators see Molnár (2011).
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the standard GARCH(1,1) model (5) and the RGARCH(1,1) model (10). Since we do not

study GARCH and RGARCH models of higher orders, we sometimes refer to GARCH(1,1)

and RGARCH(1,1) models simply as GARCH and RGARCH models.

Our hypotheses are the following:

Hypothesis 1 An RGARCH(1,1) outperforms the standard GARCH(1,1) model, both in

sense of the in sample fit and out of sample forecasting performance.

Additionally, as previously explained, we expect that the estimated coefficients of the

GARCH models will be changed in such a way that more weight will be put on the recent

observation(s) of the volatility proxy. This leads us to the second hypothesis.

Hypothesis 2 If we modify the GARCH(1,1) to the RGARCH(1,1) model, we expect α

to increase and β to decrease.

Since the RGARCH(1,1) model puts more weight on the most recent observation of the

volatility, this model will provide largest improvement in those situations when the recent

observation tells us much more about the future volatility then the past observations. This

leads us to the following hypothesis.

Hypothesis 3 The superiority of the RGARCH(1,1) model over the GARCH(1,1) model

is the strongest when day-to-day changes in volatility are large.

However, this does not mean that GARCH should be better model in situations when

changes in volatility are small. We expect RGARCH model to be superior in both situa-

tions, but its superiority should be largest in situations when volatility changes a lot.

Even though we formulated 3 hypotheses, the central one is Hypothesis 1. The purpose

of Hypothesis 2 and Hypothesis 3 is mostly to provide some additional insights why and
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when RGARCH model works better than standard GARCH model.

To evaluate the usefulness of the RGARCH model, we briefly compare it not only with

the basic GARCH(1,1) model, but with the other commonly used GARCH models too.

GARCH models we compare the RGARCH to are the following:

The GJR-GARCH of Glosten et al. (1993):

σ2

t = ω + αr2t−1 + βσ2

t−1 + γr2t−1It−1. (12)

where It = 1 if rt < 0 and zero otherwise.

The Exponential GARCH (EGARCH) of Nelson (1991):

log
(
σ2

t

)
= ω + α

∣∣∣∣
rt−1

σt−1

∣∣∣∣+ β log
(
σ2

t−1

)
+ γ

rt−1

σt−1

. (13)

The standard deviation GARCH of Taylor (1986), denoted in this paper as stdGARCH,

both in its symmetric version:

σt = ω + αrt−1 + βσt−1 (14)

and in the asymmetric version, similar to (12), taking into account the leverage effect

(astdGARCH):

σt = ω + αrt−1 + βσt−1 + γrt−1It−1. (15)

The last model we use is the component GARCH (cGARCH):

σ2

t −mt = ω + α
(
r2t−1 −mt

)
+ β

(
σ2

t−1 −mt

)
(16)

mt = ω + ρ (mt − ω) + φ
(
r2t−1 − σ2

t−1

)
. (17)

The intuition for the component GARCH is the following. The standard GARCH(1,1)

model, which can be rewritten as

σ2

t = ω + α
(
r2t−1 − ω

)
+ β

(
σ2

t−1 − ω
)
, (18)
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exhibits mean reversion around ω, which is constant. The component GARCH allows

mean reversion around the time varying level mt.

2.2 Estimation

All the GARCH models, including the models (5), (12) - (15) in our paper are estimated

via Maximum Likelihood. Since the RGARCH model changes only the specification of the

variance equation (equation (10) instead of (5)), we do not need to derive a new likelihood

function for estimation of this model. This in turns mean that our model can be estimated

without any programming in widely available econometric packages which allow to include

exogenous variables in the variance equation, e.g. EViews, R or OxMetrics. We simply

specify that we want to estimate a GARCH(0,1) model with an exogenous variable σ̂2

P,t−1
.

As mentioned earlier, we assume returns to be normally distributed with zero mean

(equation (2)) and variance evolving according to a given GARCH model. However, there

are alternative distributions for residuals to consider (e.g. Student’s t-distribution or GED

distribution). We did the calculations for alternative distributions too, but found that

comparison of the. RGARCH model with the standard GARCH model is unaffected by

the assumption of the residuals’ distribution as long as the return distribution is the same

for both models. For the sake of brevity, we report only the results for normally distributed

residuals.

Two most closely related models are The Conditional Autoregressive Range model

(CARR) of Chou (2005) and Range-Based EGARCH model (REGARCH) of Brandt and

Jones (2006). Common feature of these models with the standard GARCH models is the

variance equation. The variance equation for RGARCH model is created by a modification

of the GARCH(1,1) (5), the variance equation of the CARR model is a modification of
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the GJR-GARCH (12) and the variance equation of the REGARCH is a modification of

EGARCH (13).

However, CARR and REGARCH are otherwise significantly different from RGARCH

and other GARCH models. Standard GARCH models as well as our RGARCH model are

estimated by fitting the conditional distribution of returns. On contrary, estimation of the

CARR and the REGARCH models is based on the distribution of the range. Denote range

as

Dt = ln (Ht/Lt) . (19)

The REGARCH model is estimated by fitting the conditional distribution of log-range:

ln (Dt) ∼ N(0.43 + ln (σt) , 0.29
2), (20)

and the CARR model is estimated by fitting the conditional distribution of range

Dt = λtεt, (21)

where λt is the conditional mean of the range (varying according to equation similar to

(12)) and εt is distributed according to either the exponential or the Weibull distribution.

In other words, these models are not estimated to capture the conditional distribution

of the returns, but the conditional distribution of range instead. Since these estimations

are not implemented in standard econometric software, CARR and RGARCH models must

be programmed first.

On the contrary, RGARCH model combines the ease of estimation of the standard

GARCH models with the precision of the range-based models.

Now we evaluate the performance of the RGARCH model (10). To do so, we mainly

compare it with the standard GARCH(1,1) model (5), because these two models are very
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closely related and their direct comparison is very intuitive. We do this comparison for

both in-sample fit and out-of-sample forecasting performance. The analysis of the in-

sample fit will give us some insights about how these models work. The forecasting ability

is typically the most important feature of a volatility model. Therefore when evaluating

the overall usefulness of the RGARCH model, we focus mostly on its forecasting ability.

2.3 In-sample comparison

We start the in-sample comparison between RGARCH(1,1) and standard GARCH(1,1)

models by an estimation of equations (5) and (10). This allows us to see whether the

coefficients change according to our Hypothesis 2. To evaluate which model is a better fit

for the data, we use Akaike Information Criterion (AIC). However, as we are comparing

models with an equal number of parameters, any information criterion would necessary

produce the same raking of these models. We believe that in our particular case, when

we are comparing two very closely related models (the conditional distribution of returns

is the same, models differ in specification of variance equation only), AIC is a sensible

criterion.

Moreover, we estimate the combined GARCH(1,1) model

σ2

t = ω + α1r
2

t−1 + α2σ̂2

P,t−1
+ βσ2

t−1 (22)

too. This allows us to better understand which volatility proxy: squared returns r2t−1
or

the Parkinson volatility proxy σ̂2

P,t−1
, is a more relevant variable in the variance equation.

2.4 Out-of-sample forecasting evaluation

To evaluate forecasting performance of two competing models, we first create forecasts

from these models and afterwards evaluate which of these forecasts is on average closer to
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the true volatility.

To do this, we must first decide how to create the forecasts, particularly how much data

to use for the forecasting. If we use too little data, the model will be estimated imprecisely

and the forecasting will not be very good. On the other hand, if we use too much data,

we can estimate the model precisely, but when the dynamics of the true volatility changes,

our model will adapt to this change too slowly. To avoid this problem, we use rolling

window forecasting5 with four different window sizes: 300, 400, 500 and 600 trading days.

These numbers are obviously somewhat arbitrary, but we are focused on the comparison

of different volatility models, not on the search for the optimal forecasting window. Due

to space limitations, we restrict our attention to one-day-ahead forecasts.

Next we must first decide on what to use as a benchmark (as the “true” volatility).

The most common benchmark is squared returns. Squared returns are so widely used due

to the data availability. Squared returns are a natural candidate too, since the main reason

for the existence of volatility models is to capture the volatility of returns.

However, squared returns are a very noisy volatility proxy. Therefore we use the Parkin-

son volatility estimator and the realized variance too. Due to space limitations, we do not

report results when the Parkinson volatility estimator is used as a benchmark, though the

results are even more convincing than for squared returns. Conversely, whenever the data

on the realized variance is available, we use it as a benchmark.

To evaluate which forecast is closer to the true value, we must next decide on the

loss function. We use the Mean Squared Error (MSE) as a loss function. For the sake

of exposition, we report Root Mean Squared Error (RMSE) instead of MSE in all the

5By rolling window forecasting with window size 100 we mean that we use the first 100 observations to

forecast volatility on the 101, then we use observations 2 to 101 to forecast volatility for day 102 and so on.
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tables. MSE is not only the most common loss function, but it has many other convenient

properties, particularly the robustness. Since we are using imperfect volatility proxies, the

choice of an arbitrary loss function (e.g. Mean Absolute Error or Mean Percentage Error)

could lead to problems, particularly to the inconsistent ranking of different models (see

Hansen and Lunde (2006) and Patton Patton (2011)).

Next we want to know whether the MSE for two different models are statistically

different. We adopt the Diebold and Mariano (1995) test for this purpose. The Diebold-

Mariano test statistic (DM) is computed in the following way: denote two competing

forecasts as σ̂2
1,t and σ̂2

2,t and the true volatility as σ2
true,t. In our case σ̂2

1,t =
̂σ2

RGARCH,t

and σ̂2
2,t is the competing model; in the majority of this paper it is the GARCH(1,1) model.

First we construct the vector of differences in squared errors

dt =
(
σ̂2
1,t − σ2

true,t

)2

−
(
σ̂2
2,t − σ2

true,t

)2

. (23)

Next we construct the Diebold-Mariano test statistic

DM =
d√
V̂
(
d
) , (24)

where d denotes the sample mean of dt and V̂
(
d
)
is variance of the sample mean. DM is

assumed to have a standard normal distribution. Later in the results we denote by asterisk

* (**) cases when the DM test statistics lies below 5-percentile (1-percentile), i.e. the cases

where we can reject at 5% (1%) confidence level the hypothesis that the competing model

has smaller MSE than the RGARCH(1,1) model.6

6In our data the DM test statistic never lies above 95-percentile.
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2.5 Opening jump

In the previous discussion we assumed that all the models are estimated on the close-to-

close returns defined by equation (1). This is typically the case for the standard GARCH

models. On the other hand, a common approach in the literature dealing with high fre-

quency data is to model open-to-close returns

rt = log (Pt)− log (Ot) . (25)

The reason for this is that volatility for the trading period (from open to close of the market)

can be estimated quite precisely, whereas this precision is not available for estimation of

the period over the night, which is summarized in opening jump. As Parkinson volatility

estimator (8) estimates open-to-close volatility only, we must deal with the same problem.

There are basically three ways how to solve this problem.

First, we could add opening jump component to the Parkinson volatility estimator. We

do not do this for the same reason this is seldom done in the realized variance literature:

this would decrease the precision of the estimated volatility.

Second, we could ignore the fact that Parkinson volatility estimator estimates the

volatility only for the open-to-close period and still estimate our model on close-to-close

returns. In this case we must be careful with interpretation of the α coefficient in the

RGARCH model. As long as opening jumps are present, the Parkinson volatility estimator

underestimates volatility of daily returns,

E
(
σ̂2

P

)
< E

(
r2
)
= σ2. (26)

As a result, the estimated coefficient α will be larger to balance this bias in σ̂2

P . This

intuition can explain one seemingly surprising result which is documented later in the
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appendix. The RGARCH model estimated on the close-to-close data typically yield coeffi-

cients α and β such that α+ β > 1, even though estimation of the standard GARCH(1,1)

model yields coefficients α and β such that α+β < 1. However, as we just explained, these

α coefficients are not directly comparable in presence of opening jumps. We illustrate this

on a simple example. If we specify GARCH(1,1) in the following form

σ2

t = ω + α
r2t−1

2
+ βσ2

t−1,

then the estimated coefficient α will be exactly twice as large as when we estimate equation

(5). Therefore, if the RGARCH model is estimated on the close-to-close returns, the

coefficient α does not have the same interpretation as in standard GARCH models. Even

though we expect α to increase and β to decrease, if we use close-to-close returns, we must

focus on the coefficient β only. The coefficient β will change only because a less noisy

volatility proxy is used, whereas change in coefficient α is caused by both high precision

and bias of the Parkinson volatility estimator.

Our final choice is to estimate the RGARCH model on the open-to-close returns. In this

case the interpretation of the coefficient α remains the same as in the standard GARCH

models. Moreover, the dynamics of the opening jumps is arguably different from the

volatility of the trading part of the day. Results from the estimation on the close-to-close

returns are in the appendix.

3 Data and results

To show the generality of our idea we study a wide class of assets, particularly 30 individual

stocks, 6 stock indices and simulated data. Due to space limitations, our analysis cannot

be as detailed as it would be if we studied a single asset. We believe that the analysis
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of the main features of the problem on the broad data set is more convincing than very

detailed analysis based on a small data set. We use daily data, particularly the highest,

the lowest, the opening and the closing price of the day.

3.1 Stocks

We study the components7 of the Dow Jow Industrial Average, namely the stocks with

tickers AA, AXP, BA, BAC, C, CAT, CVX, DD, DIS, GE, GM, HD, HPQ, IBM, INTC,

JNJ, JPM, CAG8, KO, MCD, MMM, MRK, SFT, PFE, PG, T, UTX, VZ and WMT.

Data were obtained from the CRSP database and consist of 4423 daily observations of

high, low and close prices from June 15, 1992 to December 31, 2010.

3.1.1 In-sample analysis

Table 1 presents estimated coefficients for the equations (5) and its modified version (7)

together with values of Akaike Information Criterion (AIC).

For every single stock, the coefficients in the modified GARCH(1,1) have changed in

exactly the same way we expected. Additionally, according to AIC, modified GARCH(1,1)

is superior to its standard counterpart for every single stock in our sample.

Next we estimate equation (22). Results of this estimation (reported in Table 2 to-

gether with respective p-values) show that whereas coefficients α2 is always significant

both statistically and economically, the coefficient α1 is insignificant in most of the cases.

Even when it is statistically significant, it is rather small. This confirms that σ2

P is a

better volatility proxy than r2 and when we have the first one available, the inclusion of

7Components of stock indices change over time. These stocks were DJI components on January 1, 2009.
8Since historical data for KFT (component of DJI) are not available for the complete period, we use its

competitor CAG instead.
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Table 1: Estimated coefficients of the GARCH(1,1) model σ2
t = ω + αr2t−1

+ βσ2
t−1

and

the RGARCH(1,1) model σ2
t = ω + ασ̂2

P,t−1
+ βσ2

t−1
, reported together with the values of

Akaike Information Criterion (AIC) of the respective equations.
Ticker GARCH(1,1) RGARCH(1,1)

ω α β AIC ω α β AIC

AA 1.61E-06 0.036 0.960 -5.121 4.21E-06 0.066 0.926 -5.131
AXP 1.61E-06 0.071 0.927 -5.320 2.26E-06 0.160 0.842 -5.348
BA 2.67E-06 0.057 0.934 -5.497 5.20E-06 0.148 0.830 -5.520
BAC 1.69E-06 0.080 0.917 -5.508 1.77E-06 0.197 0.816 -5.529
CAT 2.78E-06 0.045 0.947 -5.303 1.11E-05 0.145 0.826 -5.325
CSCO 2.98E-06 0.078 0.921 -4.756 4.04E-06 0.184 0.814 -4.787
CVX 3.29E-06 0.066 0.917 -5.838 5.20E-06 0.134 0.840 -5.854
DD 1.04E-06 0.038 0.959 -5.551 2.53E-06 0.088 0.901 -5.573
DIS 2.57E-06 0.053 0.939 -5.460 5.51E-06 0.107 0.867 -5.494
GE 8.38E-07 0.062 0.937 -5.742 2.54E-06 0.180 0.811 -5.765
HD 2.82E-06 0.053 0.939 -5.313 7.22E-06 0.121 0.852 -5.334
HPQ 2.15E-06 0.035 0.961 -4.997 3.06E-06 0.054 0.941 -5.008
IBM 8.21E-07 0.054 0.946 -5.552 6.67E-07 0.153 0.860 -5.574
INTC 2.60E-06 0.054 0.942 -4.943 4.52E-06 0.142 0.855 -4.966
JNJ 1.28E-06 0.069 0.926 -6.021 1.47E-06 0.170 0.824 -6.044
JPM 1.82E-06 0.080 0.919 -5.273 1.86E-06 0.158 0.841 -5.307
CAG 1.80E-06 0.057 0.936 -5.815 5.68E-06 0.238 0.740 -5.843
KO 5.68E-07 0.044 0.954 -5.965 6.22E-07 0.114 0.883 -5.980
MCD 1.84E-06 0.046 0.947 -5.654 2.28E-06 0.091 0.898 -5.673
MMM 1.57E-06 0.033 0.959 -5.890 8.19E-06 0.136 0.814 -5.911
MRK 6.02E-06 0.058 0.920 -5.513 1.17E-05 0.124 0.826 -5.533
MSFT 1.05E-06 0.062 0.937 -5.392 6.69E-07 0.195 0.809 -5.408
PFE 1.80E-06 0.046 0.948 -5.509 6.52E-06 0.177 0.805 -5.520
PG 1.69E-06 0.057 0.934 -5.953 4.79E-06 0.213 0.764 -5.989
T 1.27E-06 0.057 0.940 -5.621 2.36E-06 0.109 0.881 -5.629

TRV 3.95E-06 0.074 0.913 -5.544 9.41E-06 0.198 0.782 -5.586
UTX 2.44E-06 0.074 0.918 -5.700 5.05E-06 0.198 0.788 -5.723
VZ 1.46E-06 0.052 0.943 -5.695 4.34E-06 0.159 0.826 -5.704

WMT 1.39E-06 0.058 0.939 -5.617 1.91E-06 0.127 0.861 -5.638
XOM 2.70E-06 0.074 0.912 -5.922 5.32E-06 0.164 0.807 -5.949
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the second one can improve the model only marginally. Note that the coefficient α1 is

negative in most cases. This is expected, since an optimal volatility estimate (9) combines

the Parkinson volatility estimator with squared returns in such a way that squared returns

have negative weight. We discuss this more in the subsection with simulated data.

Table 2: Estimated coefficients and p-values for the combined GARCH(1,1) model σ2
t =

ω + α1r
2
t−1

+ α2σ̂2

P,t−1
+ βσ2

t−1
.

Ticker combined GARCH(1,1)
ω p-value α1 p-value β p-value α2 p-value

AA 4.37E-06 0.000 -0.002 0.811 0.925 0.000 0.069 0.000
AXP 2.33E-06 0.004 -0.041 0.003 0.827 0.000 0.218 0.000
BA 6.07E-06 0.000 -0.028 0.013 0.810 0.000 0.191 0.000
BAC 1.76E-06 0.002 0.007 0.546 0.819 0.000 0.187 0.000
CAT 1.47E-05 0.000 -0.052 0.000 0.783 0.000 0.231 0.000
CSCO 3.82E-06 0.015 -0.025 0.058 0.812 0.000 0.211 0.000
CVX 5.67E-06 0.000 -0.018 0.135 0.829 0.000 0.161 0.000
DD 2.78E-06 0.000 -0.025 0.002 0.896 0.000 0.117 0.000
DIS 5.88E-06 0.000 -0.034 0.001 0.864 0.000 0.140 0.000
GE 2.56E-06 0.000 -0.005 0.704 0.809 0.000 0.186 0.000
HD 8.19E-06 0.000 -0.018 0.095 0.837 0.000 0.150 0.000
HPQ 3.01E-06 0.000 0.001 0.849 0.941 0.000 0.053 0.000
IBM 6.69E-07 0.353 -0.010 0.178 0.853 0.000 0.171 0.000
INTC 4.90E-06 0.012 -0.032 0.006 0.842 0.000 0.187 0.000
JNJ 1.47E-06 0.000 0.005 0.598 0.826 0.000 0.162 0.000
JPM 1.90E-06 0.017 -0.030 0.013 0.829 0.000 0.200 0.000
CAG 6.83E-06 0.000 -0.042 0.002 0.699 0.000 0.315 0.000
KO 6.15E-07 0.046 -0.002 0.773 0.882 0.000 0.117 0.000
MCD 4.61E-06 0.000 -0.041 0.000 0.841 0.000 0.178 0.000
MMM 9.43E-06 0.000 -0.092 0.000 0.790 0.000 0.242 0.000
MRK 1.41E-05 0.000 -0.029 0.009 0.796 0.000 0.173 0.000
MSFT 5.69E-07 0.534 -0.018 0.240 0.798 0.000 0.224 0.000
PFE 6.28E-06 0.000 0.007 0.496 0.813 0.000 0.163 0.000
PG 5.18E-06 0.000 -0.061 0.000 0.733 0.000 0.303 0.000
T 1.95E-06 0.001 0.026 0.000 0.894 0.000 0.072 0.000

TRV 1.03E-05 0.000 -0.041 0.000 0.768 0.000 0.252 0.000
UTX 5.49E-06 0.000 -0.020 0.107 0.773 0.000 0.232 0.000
VZ 3.96E-06 0.000 0.018 0.009 0.840 0.000 0.129 0.000

WMT 1.97E-06 0.003 -0.010 0.338 0.855 0.000 0.142 0.000
XOM 5.75E-06 0.000 -0.030 0.021 0.794 0.000 0.204 0.000
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3.1.2 Out-of-sample forecasting performance

As seen in the previous subsection, the RGARCHmodel outperforms the standard GARCH

model in the in-sample fit of the data. The next obvious question is the comparison of

the predictive ability of these models. To answer this question, we compare one-day ahead

forecasts of the models (5) and (7) with squared returns as a benchmark. Results are

presented in the Table 3.

As we can see from Table 3, the RGARCH(1,1) model outperforms GARCH(1,1). All

the cases (stock-estimation window pairs) when the difference is statistically significant

favour the RGARCH model. The reason the difference is often insignificant is a very noisy

volatility benchmark (squared returns). Therefore we should wait with evaluation of size of

the improvement of RGARCH(1,1) model over GARCH(1,1) model until next subsections,

where we use less noisy volatility proxies in addition to squared returns.

The next obvious question is how our RGARCH performs relative to other more com-

plicated GARCH models. Even though a detailed answer to this question is beyond the

scope of this paper, we provide some basic comparison. We now compare the RGARCH

model (10) not only with the basic GARCH model (5), but with its other versions (12)-(16)

as well. We chose an estimation window equal to 400. A shorter estimation window would

favour the RGARCH model even more. A too long estimation window is not desirable,

because, as Table 3 documents, volatility forecasting becomes less precise when we use a

too long estimation window.

As we can see from Table 4, the comparison of the RGARCH model with other GARCH

models is very similar to the previous comparison, the RGARCH model outperforms other

GARCH models. When we consider the cases where the difference is statistically signifi-
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Table 3: Comparison of the forecasting performance of the GARCH(1,1) model σ2
t =

ω + αr2t−1
+ βσ2

t−1
and the RGARCH(1,1) model σ2

t = ω + ασ̂2

P,t−1
+ βσ2

t−1
. Numbers

in this table are 1000×RMSE of the one-day-ahead rolling window forecast reported for
different window sizes w. An asterisk * (**) indicates when the difference is significant at
the 5% (1%) level.

Ticker GARCH(1,1) RGARCH(1,1)
w=300 w=400 w=500 w=600 w=300 w=400 w=500 w=600

AA 1.277 1.296 1.309 1.322 1.268 1.281 1.291 1.305
AXP 1.167 1.177 1.189 1.202 1.179 1.199 1.203 1.215
BA 0.656 0.657 0.657 0.662 0.649 0.650 0.651 0.657
BAC 2.594 2.621 2.646 2.673 2.791 2.824 2.701 2.761
CAT 0.710 0.717 0.722 0.731 0.694* 0.701 0.710 0.719
CSCO 1.749 1.761 1.781 1.806 1.700 1.708* 1.736* 1.747*
CVX 0.643 0.648 0.657 0.662 0.634 0.635 0.642 0.647
DD 0.675 0.679 0.686 0.692 0.660* 0.665** 0.671** 0.677**
DIS 0.684 0.688 0.696 0.703 0.665* 0.669* 0.678* 0.682*
GE 0.869 0.870 0.879 0.888 0.882 0.865 0.862 0.871
HD 0.794 0.801 0.809 0.815 0.789 0.800 0.800 0.844
HPQ 1.050 1.058 1.070 1.083 1.043 1.057 1.063 1.077
IBM 0.631 0.635 0.641 0.648 0.624* 0.629* 0.637 0.643
INTC 1.194 1.195 1.205 1.218 1.161* 1.169* 1.180* 1.193*
JNJ 0.359 0.358 0.356 0.357 0.350* 0.349* 0.350 0.351
JPM 1.757 1.787 1.805 1.817 1.711 1.724* 1.736** 1.758**
CAG 0.534 0.537 0.538 0.543 0.514 0.531 0.536 0.542
KO 0.496 0.495 0.497 0.500 0.488 0.488 0.491 0.496
MCD 0.670 0.670 0.676 0.678 0.665 0.667 0.682 0.694
MMM 0.446 0.446 0.451 0.455 0.444 0.445 0.449 0.452
MRK 0.642 0.649 0.653 0.660 0.632* 0.636** 0.639* 0.649**
MSFT 0.676 0.683 0.688 0.696 0.676 0.673* 0.675** 0.684**
PFE 0.540 0.546 0.545 0.553 0.546 0.547 0.552 0.555
PG 0.505 0.508 0.509 0.510 0.493* 0.493** 0.498 0.498
T 0.612 0.614 0.619 0.626 0.597 0.601* 0.608* 0.613*

TRV 1.161 1.169 1.177 1.190 1.180 1.178 1.185 1.188
UTX 0.689 0.698 0.701 0.710 0.681* 0.686** 0.695* 0.702**
VZ 0.570 0.573 0.577 0.583 0.561** 0.563** 0.569* 0.575**

WMT 0.625 0.628 0.633 0.640 0.612 0.618 0.619 0.628
XOM 0.610 0.612 0.614 0.621 0.588** 0.590** 0.597* 0.604*
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Table 4: Comparison of the forecasting performance of the RGARCH(1,1) model σ2
t =

ω + ασ̂2

P,t−1
+ βσ2

t−1
and several different GARCH models. Numbers in this table are

1000×RMSE of the one-day-ahead rolling window forecast with forecasting window equal
to 400.
ticker RGARCH GARCH GJR EGARCH stdGARCH astdGARCH cGARCH

AA 1.281 1.296 1.286 1.277 1.294 1.270 1.309
AXP 1.199 1.177 1.189 1.174 1.173 1.178 1.177
BA 0.648 0.655 0.647 0.659 0.655 0.650 0.650
BAC 2.825 2.623 2.654 2.549 2.631 2.595 2.550
CAT 0.705 0.720 0.716 0.718 0.722* 0.716 0.723*
CSCO 1.881 1.928** 1.963 1.895 1.909* 1.888 1.937*
CVX 0.633 0.646* 0.628 0.630 0.653 0.632 0.662**
DD 0.663 0.678** 0.676* 0.683** 0.678** 0.680** 0.678**
DIS 0.668 0.688* 0.685 0.688 0.690 0.689 0.690*
GE 0.863 0.869 0.862 0.855 0.866 0.863 0.887
HD 0.803 0.804 0.799 0.799 0.807 0.799 0.803
HPQ 1.057 1.058 1.056 1.059 1.058 1.056 1.071*
IBM 0.639 0.645 0.633 0.635 0.642 0.633* 0.650*
INTC 1.170 1.196* 1.160 1.158 1.175 1.156 1.207*
JNJ 0.347 0.355* 0.351 0.351 0.353 0.351 0.355*
JPM 1.724 1.786* 1.711 1.715 1.782* 1.730 1.761
CAG 0.531 0.537 0.536 0.533 0.530 0.532 0.529
KO 0.485 0.492 0.505 0.492 0.487 0.488 0.491
MCD 0.669 0.672 0.695 0.824 0.663 0.663 0.668
MMM 0.442 0.443 0.444 0.441 0.442 0.442 0.447
MRK 0.635 0.648** 0.652** 0.648* 0.647* 0.647* 0.653**
MSFT 0.674 0.684* 0.675 0.676 0.686* 0.677 0.686*
PFE 0.562 0.561 0.567 0.555 0.556 0.554 0.560
PG 0.492 0.507** 0.507** 0.503* 0.503* 0.502* 0.508**
T 0.601 0.613* 0.607 0.611 0.613 0.609 0.613

TRV 1.176 1.167 1.174 1.173 1.176 1.175 1.171
UTX 0.685 0.697** 0.697 0.695 0.697** 0.691 0.703
VZ 0.562 0.571** 0.569 0.569 0.570** 0.566 0.574*

WMT 0.621 0.632 0.625 0.629 0.626 0.624 0.633
XOM 0.588 0.609** 0.595 0.594 0.613 0.600 0.618**
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cant, the RGARCH model always outperforms all other studied GARCH models. In rest

of the cases, when the difference is not statistically significant, the RGARCH model out-

performs other studied GARCH models most of the time. Moreover, the comparison of the

RGARCH model with other GARCH models shows that the RGARCH model typically ei-

ther performs better than any of the competing GARCH models or worse than all of them.

Therefore comparison of the RGARCH model with the GARCH(1,1) model can to some

extent serve as an evaluation of the overall performance of the RGARCH model. However,

remember that we do not argue that RGARCH model is the best volatility model. It is

clearly not, as it does not take into account e.g. leverage effect. Therefore, the comparison

of the RGARCH model with other GARCH models serves mostly the illustrative purposes,

particularly to show that even such a simple model (but based on more precise data) can

outperform more complicated models.

The results summarized in Tables 3 and 4 show the superior performance of the

RGARCH model. The improvement in the RGARCH model in comparison to the ba-

sic GARCH(1,1) model seems to be rather small at the first glance. Even though the

RGARCH model outperforms the basic GARCH(1,1) model in most cases, the average

improvement of the RMSE reported in Table 3 is about 1.2%. This could give us a first

impression that the improvement of the RGARCH(1,1) model over the GARCH(1,1) model

is rather small.

However, there is a potential problem with this standard evaluation procedure, where

we compare the forecasted volatility with the squared returns. Even though the squared

returns are unbiased estimates of the volatility, they are very noisy. The most natural

solution to this problem is to use the true volatility as a benchmark, or, if unavailable,

some other less noisy volatility proxy. Following subsections use less noisy volatility proxies
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(realized variance for the stock indices and true volatility for simulated data). However,

due to stock data limitations, we suggest an alternative measure for the comparison of the

basic GARCH(1,1) model and the RGARCH(1,1) model.

Comparison of the volatility forecasts from two different models, forecast 1 (σ2
1,1, σ

2
2,1,

σ2
3,1,..., σ

2
n,1) and forecast 2 (σ2

1,2, σ
2
2,2, σ

2
3,2,..., σ

2
n,2) when we observe only returns r1, r2,

r2,...,rn is problematic for two reasons. First, the comparison of the forecasted volatility

with squared returns will always penalize the volatility forecast when the squared return

is different from the forecasted volatility, even if the volatility was perfectly forecasted.

Second, when we have two models and one of them forecasts volatility to be σ2 = 0.12

on the day when the stock return is r = 1 and the second model forecasts volatility

to be σ2 = 32 on the day when stock return is r =
√
10, then MSE (RMSE) will slightly

favour the first model (
(
0.12 − 12

)2
<

(
10− 32

)2
, even though the probability of the return

r = 1 being drawn from the distribution N
(
0, 0.12

)
is more than 1040-times smaller than

probability of the return r =
√
10 being drawn from the distribution N

(
0, 32

)
.

An alternative way to compare different volatility forecasts is to not compare squared

returns with volatility directly, but to compare the likelihood that the return was drawn

from the distribution parametrized by the given volatility. This approach is not perfect

either, because the calculated probability depends on the specification of the distribution of

the stock returns. However, in our case, when we are comparing two models with the same

specification of the conditional distribution of returns, N
(
0, σ2

t,1

)
and N

(
0, σ2

t,2

)
, which

differ only in the specification of the variance equation, this is not a problem. Therefore

we now compare the basic GARCH(1,1) model with the RGARCH model in terms of the

value of the log-likelihood function. The log-likelihood is calculated simply according to
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the following formula:

LLF = −
n

2
ln (2π)−

1

2

n∑

t=1

ln
(
σ̂2
t

)
−

1

2

n∑

t=1

r2t

σ̂2
t

, (27)

where σ2
t is the volatility forecasted from the studied volatility model (using past informa-

tion only).

Table 5 confirms our previous comparison between the RGARCH model and the stan-

dard GARCH model. The RGARCH model outperforms the standard GARCH(1,1) model

for basically every stock and every estimation window.

3.2 Stock indices

In addition to the individual stocks of the Dow Jones Industrial Average stock index we

decided to compare the performance of the RGARCH model to the standard GARCH

model on the major world indices (French CAC 40, German DAX, Japanese Nikkei 225,

Britain’s FTSE 100 and American DJI and NASDAQ 100). There are two reasons for this.

First, volatility dynamics is generally different for individual stocks and for the whole stock

markets. Second, estimates of realized variance, which is a proxy for the true variance, are

publicly available for these indices9. Open, high, low and close prices are downloaded from

finance.yahoo.com. Data covers the period January 3, 1993 - April 27, 2009 for open, high

and low prices and the period January 3, 1996 - April 27, 2009 for the realized variance.

Due to small differences in trading days in different markets, the number of observations

varies accordingly.

For the in-sample analysis we use the data ranging from January 3, 1993 to April 27,

2009. For the out of sample comparison we use the volatilities forecasted for the period

9Heber, Gerd, Asger Lunde, Neil Shephard and Kevin K. Sheppard (2009) ”Oxford-Man Institute’s

Realized Library”, Oxford-Man Institute, University of Oxford
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Table 5: Comparison of forecasting performance GARCH(1,1) model σ2
t = ω + αr2t−1

+

βσ2
t−1

and the RGARCH(1,1) model σ2
t = ω + ασ̂2

P,t−1
+ βσ2

t−1
. Numbers in this table

are the LLF of the returns rt beind drawn from the distributions N
(
0, σ̂2

t

)
, where σ̂2

t is a

one-day-ahead rolling window volatility forecast reported for different window sizes w.
Ticker GARCH(1,1) RGARCH(1,1)

w=300 w=400 w=500 w=600 w=300 w=400 w=500 w=600

AA 9803 9580 9267 9020 9873 9597 9320 9032
AXP 10377 10166 9881 9595 10502 10242 9969 9688
BA 10434 10225 9809 9660 10500 10258 9993 9708
BAC 10687 10451 10154 9875 10783 10527 10236 9949
CAT 10105 9916 9631 9342 10202 9950 9675 9385
CSCO 9309 9080 8825 8528 9478 9237 8955 8646
CVX 11371 11017 10853 10576 11440 11145 10882 10599
DD 10853 10593 10321 10050 10916 10641 10377 10095
DIS 10535 10298 10024 9747 10681 10411 10142 9859
GE 11086 10860 10567 10258 11176 10902 10617 10325
HD 10266 10024 9729 9479 10372 10084 9809 9542
HPQ 9587 9255 9076 8792 9715 9415 9174 8869
IBM 10813 10575 10247 9972 10986 10716 10378 10130
INTC 9420 9208 8937 8665 9484 9278 9001 8735
JNJ 12013 11776 11492 11230 12063 11126 11522 11264
JPM 10158 10014 9730 9464 10345 10113 9830 9554
CAG 11421 11192 10939 10681 11563 11301 10994 10722
KO 11682 11454 11155 10924 11782 11517 11250 10980
MCD 11058 10846 10564 10288 11129 10871 10596 10320
MMM 11238 11105 10819 10542 11377 11153 10878 10599
MRK 10131 9775 9632 9294 10348 10120 9813 9570
MSFT 10234 10038 9724 9478 10396 10171 9867 9611
PFE 10741 10499 10222 9959 10827 10564 10269 10004
PG 11512 11236 10962 10709 11571 11369 11081 10777
T 10948 10704 10459 10172 11002 10744 10473 10206

TRV 10801 10614 10312 10069 10899 10678 10395 10111
UTX 11013 10790 10477 10179 11054 10840 10556 10269
VZ 11132 10892 10605 10329 11198 10930 10645 10361

WMT 11004 10778 10510 10109 11130 10860 10558 10276
XOM 11464 11223 10947 10657 11567 11294 11014 10729
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January 3, 1996 - April 27, 2009. However, estimates of realized variance are not available

for some trading days. These days are included in the volatility forecast comparison when

squared returns are used as a benchmark, but excluded when the benchmark is realized

variance.

3.2.1 In-sample analysis

Table 6 presents estimated coefficients for the equations (5) with its modified version (10)

together with the values of Akaike Information Criterion (AIC). The results are again in

line with those in Table 1. RGARCH model performs better than the standard GARCH

model for every index. Coefficients in the RGARCH are changed as expected - coefficient

α is increased and coefficient β is decreased for all the indices.

Table 6: Estimated coefficients of the GARCH(1,1) model σ2
t = ω + αr2t−1

+ βσ2
t−1

and

it modified version RGARCH(1,1) σ2
t = ω + ασ̂2

P,t−1
+ βσ2

t−1
, reported together with the

values of Akaike Information Criterion (AIC) of the respective equations for the simulated
data.

Index GARCH(1,1) RGARCH(1,1)
ω α β AIC ω α β AIC

CAC40 1.03E-06 0.075 0.920 -6.327 1.80E-06 0.182 0.821 -6.352
DAX 6.16E-07 0.088 0.911 -6.417 1.28E-06 0.174 0.842 -6.446
DJI 9.39E-07 0.083 0.910 -6.674 -1.77E-06 0.128 0.717 -6.645
FTSE 7.64E-07 0.085 0.910 -6.581 1.47E-06 0.188 0.837 -6.598

NASDAQ 9.43E-07 0.056 0.942 -5.534 4.30E-07 0.135 0.893 -5.561
NIKKEI 3.20E-06 0.093 0.890 -6.084 1.64E-06 0.179 0.854 -6.113

Now we estimate the combined GARCH model (22). The results (presented in Table

7) are consistent with those in Table 2.

3.2.2 Out–of-sample forecasting performance

Now we compare the forecasting performance of the RGARCH model and the standard

GARCH model against both squared returns (r2) and realized variance (RV ) used as a
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Table 7: Estimated coefficients and p-values for the combined GARCH(1,1) model σ2
t =

ω + α1r
2
t−1

+ α2σ̂2

P,t−1
+ βσ2

t−1
.

Index combined GARCH(1,1)
ω p-value α1 p-value β p-value α2 p-value

CAC40 1.93E-06 0.000294 -0.064 7.02E-05 0.789 0 0.286 0
DAX 1.61E-06 4.00E-15 -0.064 2.74E-05 0.815 0 0.276 0
DJI 5.69E-07 0.003 0.080 0 0.896 0 0.008 1.45E-04
FTSE 1.51E-06 1.33E-05 -0.005 0.723 0.834 0 0.198 5.06E-11

NASDAQ -3.07E-07 0.553 -0.050 2.97E-05 0.891 0 0.204 0
NIKKEI 1.11E-06 0.031043 -0.088 1.72E-10 0.837 0 0.319 0

benchmark. Results are in Table 8.

Table 8: Comparison of the forecasting performance of the GARCH(1,1) model σ2
t =

ω + αr2t−1
+ βσ2

t−1
and the RGARCH(1,1) model σ2

t = ω + ασ̂2

P,t−1
+ βσ2

t−1
. Numbers

in this table are 1000×RMSE of the one-day-ahead rolling window forecasts reported for
different window sizes w and different benchmarks (squared returns r2 and the realized
variance RV ) for the stock indices.

Index Bench GARCH(1,1) RGARCH(1,1)
w=300 w=400 w=500 w=600 w=300 w=400 w=500 w=600

CAC40 r2 0.335 0.339 0.342 0.346 0.331 0.335 0.338 0.342
RV 0.185 0.181 0.179 0.180 0.172** 0.169** 0.167** 0.167**

DAX r2 0.474 0.477 0.481 0.488 0.446** 0.454** 0.461* 0.469*
RV 0.252 0.242 0.236 0.235 0.212** 0.208** 0.207** 0.207**

DJI r2 0.353 0.355 0.362 0.367 0.336 0.341 0.347 0.350
RV 0.174 0.172 0.176 0.179 0.142** 0.142** 0.141** 0.139**

FTSE r2 0.376 0.382 0.385 0.390 0.364* 0.368** 0.372** 0.377**
RV 0.201 0.226 0.212 0.209 0.196 0.202* 0.189* 0.186*

NASDAQ r2 0.931 0.939 0.949 0.963 0.908** 0.917** 0.929** 0.942**
RV 0.464 0.452 0.440 0.446 0.431* 0.423* 0.426 0.432

NIKKEI r2 0.467 0.475 0.478 0.478 0.456* 0.461 0.467 0.470
RV 0.237 0.283 0.269 0.249 0.196** 0.188** 0.177** 0.173**

This table is the strongest evidence for the superiority of the RGARCH model over the

standard GARCH model. For every single index and for every single estimation window

size, the RGARCH model outperforms the standard GARCH model. The difference in the

forecasting performance of these two models is much more obvious when we use realized

variance as a benchmark (since it is much less noisy than squared returns).
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3.3 Simulated data

In reality, we can never know for sure what the true volatility was. However, if we simulate

the data, we know the true volatility exactly. Simulation therefore provides a convenient

tool to study different volatility models. We can compare not only the overall performance

of different models, but we can study under which conditions these models perform partic-

ularly good or bad. On the other hand, it is always questionable how close the simulated

data are to the real world. In order to convince the reader that the simulated data are

close to reality (and we did not construct them deliberately to show superiority of our

model), we borrow the credibility of Alizadeh et al. (2002). They simulate the data in the

following way. First we simulate the volatility process

lnσt = lnσ + ρH (lnσt−1 − lnσ) + µ1εt−1 (28)

with parameters ln (σ) = −2.5, ρH = 0.985 and µ1 = 0.75/
√
257 = 0.048. Afterwards

we simulate for every day t = 1, 2, ..., 100000 a Brownian motion10 with zero drift term

and diffusion term equal to σt. Save the highest, the lowest and the final value of this

Brownian motion. According to Alizadeh et al. (2002), volatility dynamics (28) together

with mentioned parameters is broadly consistent with literature on stochastic volatility.

The volatility process (28) does not favour directly either of the competing models

GARCH (5) and RGARCH (10). Volatility gradually evolves over the time, and neither

past returns nor past high or low prices influence the future volatility in any way. Note

that there are no opening jumps in this these simulated data.

In addition to data simulated according to (28) with parameter µ1 = 0.75/
√
257,

we simulate the data for two other parameter values too, µ0.5 = 0.5µ1 and µ2 = 2µ1.

10We use 100000 discrete steps for the approximation of the continuous Brownian motion.
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Parameter µ1 represents a case with medium daily changes in volatility and parameters

µ0.5 and µ2 represent cases with small and large changes in daily volatility.

3.3.1 In-sample analysis

Table 9 presents estimated coefficients for the standard GARCHmodel (5) and the RGARCH

model (10) together with the values of Akaike Information Criterion (AIC). As expected,

the RGARCH model performs better than the standard GARCH model.

Table 9: Estimated coefficients of the GARCH(1,1) model σ2
t = ω + αr2t−1

+ βσ2
t−1

and

the RGARCH(1,1) model σ2
t = ω + ασ̂2

P,t−1
+ βσ2

t−1
, reported together with the values of

Akaike Information Criterion (AIC) of the respective equations for the simulated data.
GARCH(1,1) RGARCH(1,1)

ω α β AIC ω α β AIC

µ0.5 1.77E-04 0.016 0.958 -2.143 1.76E-04 0.053 0.922 -2.149
µ1 1.73E-04 0.044 0.933 -2.112 1.61E-04 0.122 0.857 -2.133
µ2 1.50E-04 0.114 0.875 -2.037 1.20E-04 0.274 0.723 -2.101

Coefficients in the RGARCH are changed in exactly the same way as in the previous

section - coefficient α is increased and coefficient β is decreased. Note that α+β is smaller

than one for both GARCH and RGARCH model (implying stationarity) and α+ β is the

same (0.98) for both models. This means that both GARCH and RGARCH models imply

the same (high) volatility persistence. This is very natural, since we simulated volatility as

a highly persistent process. Note that when volatility changes more rapidly (µ increases),

more weight is put on the recent (noisy) observation of volatility (α increases) and less

weight is put on the past observation of volatility (β decreases).

Now we estimate the combined GARCH model (22). As we can see (Table 10), the

results are generally consistent with those in Table 2.

The main difference is that the negative coefficient α1 is now clearly significant. As

Garman and Klass (1980) showed, the optimal volatility forecast based on open, high, low
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Table 10: Estimated coefficients and p-values for the combined GARCH(1,1) model σ2
t =

ω + α1r
2
t−1

+ α2σ̂2

P,t−1
+ βσ2

t−1
for the simulated data.

combined GARCH(1,1)
ω α β γ

µ0.5 1.71E-04 -0.027 0.908 0.094
µ1 1.53E-04 -0.057 0.834 0.204
µ2 1.13E-04 -0.119 0.686 0.431

and close price is (9). It is a weighted average of the Parkinson volatility estimator (8)

and squared open-to-close returns, where squared returns have negative weight. This is

the reason why coefficient α1 is negative. Note that the ration between the coefficients α1

and α2 is very close to the ratio predicted from the Garman-Klass formula.

As previously mentioned, we use the Parkinson volatility estimator (8) instead of Gar-

man and Klass (9) volatility estimator because of the data concerns (open prices are some-

times not available). Another reason is that for the purpose of volatility modelling, the

Garman and Klass volatility estimator brings only a small improvement over the Parkinson

estimator even in the ideal case. This can be seen from the coefficient β, which decreases

from 0.933 (for the standard GARCH) to 0.857 (for RGARCH), but afterwards only a little

bit to 0.834 (for the combined GARCH, which is basically the same as GARCH based on

the Garman and Klass volatility estimator).

3.3.2 Out–of-sample forecasting performance

Now we compare the forecasting performance of the RGARCH model and the standard

GARCH model on the simulated data. Results are shown in Table 11.

These results illustrate the benefit of using simulated data. Now we know exactly what

the true volatility is and we can use it as a benchmark. Additionally, simulation allows

us to have much larger data sample (100000 observations of the simulated data instead
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Table 11: Comparison of the forecasting performance of the GARCH(1,1) model σ2
t =

ω + αr2t−1
+ βσ2

t−1
and the RGARCH(1,1) model σ2

t = ω + ασ̂2

P,t−1
+ βσ2

t−1
. Numbers

in this table are 1000×RMSE of the one-day-ahead rolling window forecasts reported for
different window sizes w and different benchmarks squared returns (r2) and the realized
variance (RV ) for the simulated data. The differences in MSE are significant at any
significance level (due to very large number of observations).

GARCH(1,1) RGARCH(1,1) σ2
true

w=300 w=400 w=500 w=600 w=300 w=400 w=500 w=600

r2 as a benchmark

µ0.5 10.16 10.14 10.12 10.11 10.15 10.12 10.10 10.09 9.99
µ1 11.90 11.86 11.84 11.83 11.78 11.74 11.72 11.71 11.49
µ2 20.31 20.22 20.11 20.07 19.78 19.71 19.63 19.60 18.98

σ2
true as a benchmark

µ0.5 1.81 1.71 1.63 1.57 1.71 1.59 1.49 1.43 0
µ1 3.00 2.88 2.80 2.75 2.52 2.32 2.21 2.15 0
µ2 7.15 6.97 6.84 6.72 5.52 5.30 5.22 5.15 0

of 4423 observations of the real data), which in turns mean that all the results are highly

statistically significant.

First note that the results obtained from the simulated data (Table 11) are consistent

with results in Table 3 and Table 8. Table 3 and Table 8 show that the RGARCH model

outperforms the standard GARCH model most of the time. Since the simulated data

are much larger, we basically got rid of the noise and now we can see (in Table 11)

exactly how much better the RGARCH performs. Let us focus for now primarily on the

data simulated with the parameter µ1, which is arguably closest to the real world. The

improvement seems to be small, just around 1% decrease in RMSE, when we use squared

returns as a benchmark. However, use of the true volatility as a benchmark shows that

the real improvement of the RGARCH in comparison to the standard GARCH model is

much larger, around 20%.

In fact, the mean squared error (MSE) between the forecasted volatility (σ̂2) and a
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noisy volatility proxy (σ2

noisy) can be rewritten in the following way:

MSE
(
σ̂2, r2

)
= MSE

(
σ̂2, σ2

true

)
+MSE

(
σ2

true, σ
2

noisy

)
(29)

where σ2
true is the true volatility. This means that part of the MSE is due to the model

imperfection (first term) and second part is due to the noisiness of the volatility proxy.

When squared returns are used as a benchmark, then the second term typically dominates

and it is therefore difficult to choose between competing volatility models based on the

MSE (RMSE).

To understand when the RGARCHmodel provides the largest improvement over GARCH

model (Hypothesis 3), let us look at Table 11. As we cam see, the larger the day-to-day

changes in volatility, the larger the improvement of the RGARCH model (relatively to

the GARCH model). The decrease in RMSE (with the true volatility as a benchmark)

when we use RGARCH instead of GARCH is 6%-9% in case of small day-to-day changes

in volatility, 16%-22% for moderate changes in volatility and 23%-24% for large changes

in volatility. This confirms our Hypothesis 3.

4 Summary

The goal of this paper was to show a simple, effective and general way to incorporate

range (the difference between the highest and the lowest price of the day) into the stan-

dard GARCH volatility models. We illustrated our idea on the GARCH(1,1) model, which

we modify and create a Range GARCH(1,1) model. Empirical tests performed on 30

stocks, 6 stock indices and simulated data show that the RGARCH model outperforms

the standard GARCH model, both in the in-sample fit and in the out-of-sample forecast-

ing. The main intuition behind this result is that replacing squared returns by less noisy
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volatility proxy has two advantages. First, using more precise volatility proxy in a given

model obviously helps. Second, when the model is estimated, more weight than before

will be attributed to the most recent volatility estimate, because this estimate is now less

noisy. As a consequence, this model adjusts more quickly to the changes of volatility and

therefore performs particularly well when volatility changes quickly. This is very desir-

able feature, because volatility forecasting is most important in situations when volatility

changes the most.

Another advantage of our model is that it provides both high precision of range as a

volatility proxy with simplicity and ease of estimation of the standard GARCH model.

This model offers increased precision in volatility modelling at almost no costs: additional

required data (high and low prices) are typically widely available and the model itself can

be easily estimated using standard econometric software, e.g. EViews, R or OxMetrics.

Therefore we encourage both academics and practitioners to use the RGARCH model

instead of the standard GARCH model whenever high and low data are available.

References

Alizadeh, S., M. W. Brandt, and F. X. Diebold (2002): “Range-Based Estimation

of Stochastic Volatility Models,” The Journal of Finance, 57, 1047–1091.

Andersen, T. G., T. Bollerslev, P. F. Christoffersen, and F. X. Diebold

(2006): “Volatility and Correlation Forecasting,” in Handbook of Economic Forecasting,

ed. by G. Elliott, C. W. J. Granger, and A. Timmermann, Elsevier, vol. 1, chap. 15,

777–878.

Bollerslev, T. (1986): “Generalized autoregressive conditional heteroskedasticity,”

35



Journal of Econometrics, 31, 307–327.

Bollerslev, T. and H. O. Mikkelsen (1996): “Modeling and pricing long memory in

stock market volatility,” Journal of Econometrics, 73, 151–184.

Brandt, M. W. and C. S. Jones (2006): “Volatility Forecasting With Range-Based

EGARCH Models,” Journal of Business and Economic Statistics, 24, 470–486.

Broto, C. and E. Ruiz (2004): “Estimation methods for stochastic volatility models: a

survey,” Journal of Economic Surveys, 18, 613–649.

Chou, R. Y. (2005): “Forecasting Financial Volatilities with Extreme Values: The Condi-

tional Autoregressive Range (CARR) Model,” Journal of Money, Credit, and Banking,,

37, 561–582.

Chou, R. Y., H. Chou, and N. Liu (2010): “Range Volatility Models and Their Ap-

plications in Finance,” in Handbook of Quantitative Finance and Risk Management, ed.

by C.-F. Lee and J. Lee, Springer, chap. 83.

Dacorogna, M. M., R. Gencay, U. Muller, R. B. Olsen, and O. V. Olsen (2001):

An introduction to high frequency finance, Academic Press, New York.

Diebold, F. X. and R. S. Mariano (1995): “Comparing Predictive Accuracy,” Journal

of Business and Economic Statistics, 13, 253–265.

Engle, R. F. (1982): “Autoregressive Conditional Heteroscedasticity with Estimates of

the Variance of United Kingdom Inflation,” Econometrica, 50, 987–1007.

Engle, R. F. and A. J. Patton (2001): “What good is a volatility model?” Quantitative

Finance, 1, 237–245.

36



Garman, M. B. and M. J. Klass (1980): “On the Estimation of Security Price Volatil-

ities from Historical Data,” The Journal of Business, 53, 67–78.

Ghysels, E., A. C. Harvey, and E. Renault (1996): “Stochastic volatility,” in Sta-

tistical Methods in Finance, ed. by C. R. Rao and G. S. Maddala, Amsterdam: North-

Holland, 119–191.

Glosten, L. R., R. Jagannathan, and D. E. Runkle (1993): “On the Relation

between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,”

The Journal of Finance, 48, 1779–1801.

Hansen, P. R., Z. Huang, and H. H. Shek (2011): “Realized GARCH: a joint model

for returns and realized measures of volatility,” Journal of Applied Econometrics, forth-

coming.

Hansen, P. R. and A. Lunde (2005): “A forecast comparison of volatility models: does

anything beat a GARCH(1,1)?” Journal of Applied Econometrics, 20, 873–889.

——— (2006): “Consistent ranking of volatility models,” Journal of Econometrics, 131,

97–121.

Kim, S., N. Shephard, and S. Chib (1998): “Stochastic Volatility: Likelihood Inference

and Comparison with ARCH Models,” The Review of Economic Studies, 65, 361–393.

Molnár, P. (2011): “Properties of range-based volatility estimators,” International Re-

view of Financial Analysis, forthcoming.

Nelson, D. B. (1990): “ARCH models as diffusion approximations,” Journal of Econo-

metrics, 45, 7–38.

37



——— (1991): “Conditional Heteroskedasticity in Asset Returns: A New Approach,”

Econometrica, 59, 347–370.

——— (1992): “Filtering and forecasting with misspecified ARCH models I: Getting the

right variance with the wrong model,” Journal of Econometrics, 52, 61–90.

Nelson, D. B. and D. P. Foster (1994): “Asymptotic Filtering Theory for Univariate

Arch Models,” Econometrica, 62, 1–41.

Parkinson, M. (1980): “The Extreme Value Method for Estimating the Variance of the

Rate of Return,” The Journal of Business, 53, 61–65.

Patton, A. J. (2011): “Volatility forecast comparison using imperfect volatility proxies,”

Journal of Econometrics, 160, 246–256.

Poon, S. H. and C. W. J. Granger (2003): “Forecasting Volatility in Financial Mar-

kets: A Review,” Journal of Economic Literature, 41, 478–539.

Shephard, N. (1996): “Statistical Aspects of ARCH and Stochastic Volatility,” in Time

Series Models in Econometrics, Finance and Other Fields, ed. by D. R. Cox, D. V.

Hinkley, and B. O. E. Nielsen, London: Chapman & Hall, 1–67.

Shephard, N. and K. Sheppard (2010): “Realising the future: forecasting with high-

frequency-based volatility (HEAVY) models,” Journal of Applied Econometrics, 25, 197–

231.

Taylor, S. J. (1986): Modelling Financial Time Series, John Wiley and Sons, 2nd ed.

38



5 Appendix

In previous parts of this paper, open-to-close returns were used for the estimation and

squared open-to-close returns were used as a volatility benchmark. In some cases, a variable

of interest are close-to-close returns. This appendix (Table 12 – Table 19) documents that

all the conclusions remain the same when we use close-to-close returns for the estimation

and squared close-to-close returns as a volatility benchmark.
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Table 12: Estimated coefficients of the GARCH(1,1) model σ2
t = ω + αr2t−1

+ βσ2
t−1

and

the RGARCH(1,1) model σ2
t = ω + ασ̂2

P,t−1
+ βσ2

t−1
(both estimated on the close-to-close

returns), reported together with the values of Akaike Information Criterion (AIC) of the
respective equations.

Ticker GARCH(1,1) RGARCH(1,1)
ω α β AIC ω α β AIC

AA 2.81E-06 0.039 0.956 -4.864 2.29E-06 0.075 0.941 -4.880
AXP 2.41E-06 0.075 0.923 -5.080 1.38E-06 0.227 0.829 -5.119
BA 3.03E-06 0.052 0.942 -5.166 4.90E-06 0.212 0.835 -5.184
BAC 2.21E-06 0.062 0.933 -5.244 3.21E-06 0.245 0.818 -5.274
CAT 3.08E-06 0.026 0.967 -4.990 2.08E-05 0.190 0.813 -5.021
CSCO 6.27E-06 0.061 0.933 -4.465 8.99E-06 0.227 0.817 -4.515
CVX 3.97E-06 0.061 0.922 -5.616 5.10E-06 0.141 0.866 -5.632
DD 1.30E-06 0.037 0.960 -5.351 8.71E-07 0.091 0.923 -5.373
DIS 3.56E-06 0.056 0.938 -5.140 3.61E-06 0.189 0.848 -5.202
GE 7.74E-07 0.046 0.952 -5.521 7.70E-07 0.156 0.874 -5.549
HD 1.51E-06 0.044 0.955 -5.022 5.25E-06 0.230 0.819 -5.043
HPQ 2.19E-06 0.020 0.976 -4.669 1.25E-06 0.058 0.957 -4.703
IBM 2.31E-06 0.061 0.937 -5.225 3.98E-06 0.380 0.742 -5.272
INTC 5.30E-06 0.046 0.947 -4.588 8.54E-06 0.207 0.848 -4.614
JNJ 1.47E-06 0.081 0.916 -5.829 9.42E-07 0.161 0.866 -5.840
JPM 1.37E-06 0.061 0.939 -5.015 -8.62E-08 0.126 0.905 -5.052
CAG 5.98E-07 0.031 0.968 -5.614 1.73E-05 0.452 0.571 -5.647
KO 1.07E-06 0.050 0.946 -5.750 -4.18E-07 0.157 0.878 -5.771
MCD 2.27E-06 0.046 0.947 -5.468 1.99E-06 0.086 0.920 -5.487
MMM 2.94E-06 0.029 0.958 -5.613 1.71E-05 0.243 0.735 -5.650
MRK 2.86E-05 0.047 0.876 -5.118 4.20E-05 0.271 0.690 -5.164
MSFT 6.44E-06 0.067 0.921 -5.011 1.01E-05 0.362 0.724 -5.066
PFE 4.65E-06 0.055 0.932 -5.257 1.18E-05 0.242 0.782 -5.271
PG 8.65E-07 0.041 0.957 -5.715 -5.96E-07 0.080 0.941 -5.750
T 1.64E-06 0.059 0.937 -5.411 1.91E-06 0.126 0.892 -5.421

TRV 4.97E-06 0.070 0.916 -5.385 9.58E-06 0.198 0.811 -5.433
UTX 4.72E-06 0.101 0.894 -5.407 3.75E-06 0.350 0.743 -5.454
VZ 2.09E-06 0.059 0.935 -5.494 4.07E-06 0.180 0.843 -5.500

WMT 1.28E-06 0.043 0.954 -5.389 1.92E-06 0.121 0.892 -5.410
XOM 2.38E-06 0.058 0.932 -5.706 4.19E-06 0.175 0.841 -5.737
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Table 13: Estimated coefficients and p-values for the combined GARCH(1,1) model σ2
t =

ω + α1r
2
t−1

+ α2σ̂2

P,t−1
+ βσ2

t−1
estimated on the close-to-close returns.

Ticker combined GARCH(1,1)
ω p-value α1 p-value β p-value α2 p-value

AA 2.29E-06 0.001 0.000 0.936 0.941 0 0.075 1.6E-13
AXP 1.38E-06 0.083 0.000 0.949 0.830 0 0.227 0
BA 4.74E-06 0.000 0.002 0.788 0.838 0 0.205 0
BAC 3.17E-06 0.000 -0.003 0.657 0.817 0 0.251 0
CAT 2.06E-05 0.000 -0.010 0.015 0.815 0 0.202 0
CSCO 8.18E-06 0.000 -0.014 0.002 0.828 0 0.232 0
CVX 5.11E-06 0.000 -0.001 0.956 0.866 0 0.142 1.5E-13
DD 7.39E-07 0.160 -0.010 0.075 0.923 0 0.104 0
DIS 3.19E-06 0.003 -0.013 0.000 0.852 0 0.203 0
GE 6.16E-07 0.165 -0.011 0.009 0.876 0 0.168 0
HD 5.47E-06 0.000 0.008 0.321 0.821 0 0.216 0
HPQ 1.03E-06 0.004 -0.005 0.000 0.958 0 0.064 0
IBM 3.97E-06 0.000 0.000 0.963 0.742 0 0.379 0
INTC 8.54E-06 0.000 0.000 0.957 0.848 0 0.206 0
JNJ 1.07E-06 0.001 0.038 0.000 0.873 0 0.105 0
JPM -2.95E-07 0.584 -0.010 0.070 0.907 0 0.137 0
CAG 1.77E-05 0.000 -0.016 0.003 0.563 0 0.478 0
KO -1.55E-07 0.662 0.018 0.001 0.873 0 0.141 0
MCD 1.95E-06 0.001 0.004 0.496 0.921 0 0.080 2.2E-16
MMM 1.54E-05 0.000 -0.019 0.000 0.755 0 0.249 0
MRK 4.21E-05 0.000 -0.001 0.687 0.689 0 0.274 0
MSFT 1.00E-05 0.000 -0.010 0.006 0.725 0 0.374 0
PFE 1.04E-05 0.000 0.026 0.001 0.807 0 0.182 0
PG -5.93E-07 0.000 0.000 0.989 0.941 0 0.080 0
T 1.83E-06 0.003 0.030 0.000 0.895 0 0.086 3.1E-12

TRV 9.60E-06 0.000 -0.001 0.814 0.811 0 0.200 0
UTX 3.67E-06 0.008 -0.011 0.221 0.741 0 0.367 0
VZ 3.16E-06 0.000 0.037 0.000 0.874 0 0.098 0

WMT 1.92E-06 0.001 0.000 0.957 0.892 0 0.122 0
XOM 4.41E-06 0.000 -0.040 0.000 0.828 0 0.240 0
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Table 14: Comparison of the forecasting performance of the GARCH(1,1) model σ2
t =

ω+αr2t−1
+βσ2

t−1
and the RGARCH(1,1) model σ2

t = ω+ασ̂2

P,t−1
+βσ2

t−1
(both estimated

on the close-to-close returns with squared close-to-close returns as a benchmark). Numbers
in this table are 1000×RMSE of the one-day-ahead rolling window forecast reported for
different window sizes w. An asterisk * (**) indicates when the difference is significant at
the 5% (1%) level.

Ticker GARCH(1,1) RGARCH(1,1)
w=300 w=400 w=500 w=600 w=300 w=400 w=500 w=600

AA 1.892 1.915 1.937 1.968 1.837 1.874 1.893 1.924
AXP 1.728 1.733 1.763 1.786 1.711 1.736 1.747 1.768
BA 1.247 1.254 1.262 1.280 1.235 1.240 1.248* 1.263*
BAC 4.561 4.572 4.615 4.652 4.435 4.454 4.351 4.432
CAT 1.135 1.142 1.152 1.170 1.098* 1.111* 1.123* 1.147*
CSCO 2.003 2.027 2.047 2.077 1.988 2.003 2.008 2.037
CVX 0.883 0.888 0.899 0.909 0.850** 0.859* 0.876* 0.885*
DD 0.855 0.864 0.874 0.883 0.836* 0.845* 0.857* 0.871*
DIS 1.311 1.328 1.341 1.358 1.307 1.310 1.328 1.342
GE 1.137 1.153 1.168 1.183 1.276 1.227 1.138 1.181
HD 2.709 2.158 2.204 2.228 2.938 2.698 2.519 2.500
HPQ 1.800 1.814 1.825 1.853 1.775* 1.792** 1.812* 1.840**
IBM 1.099 1.109 1.122 1.134 1.095 1.107 1.120 1.133
INTC 1.998 2.007 2.026 2.050 1.951* 1.969* 1.992* 2.016*
JNJ 0.690 0.691 0.696 0.699 0.665** 0.669** 0.678* 0.681*
JPM 2.443 2.471 2.508 2.510 2.284** 2.317** 2.352** 2.386**
CAG 0.967 0.977 0.989 0.999 0.970 0.979 0.991 1.016
KO 0.655 0.661 0.664 0.671 0.647 0.649* 0.655* 0.655**
MCD 0.735 0.737 0.744 0.751 0.730 0.735 0.741 0.746
MMM 0.621 0.624 0.629 0.637 0.613 0.612 0.615 0.624*
MRK 1.811 1.830 1.839 1.863 1.792 1.808* 1.833 1.845*
MSFT 1.338 1.347 1.363 1.375 1.308* 1.310** 1.332** 1.345*
PFE 0.795 0.800 0.811 0.818 0.800 0.800 0.812 0.816
PG 2.337 2.447 2.444 2.466 2.297 2.317** 2.343** 2.371**
T 0.851 0.857 0.865 0.874 0.830 0.838 0.848 0.854

TRV 1.479 1.493 1.512 1.526 1.428* 1.440** 1.453** 1.468**
UTX 1.871 1.880 1.905 1.929 1.862 1.875 1.900 1.922
VZ 0.788 0.794 0.801 0.809 0.772** 0.779** 0.789* 0.794*

WMT 0.735 0.742 0.745 0.754 0.723* 0.730* 0.736 0.744
XOM 0.801 0.804 0.815 0.824 0.753* 0.761* 0.781* 0.791*
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Table 15: Comparison of the forecasting performance of the RGARCH(1,1) model σ2
t =

ω + ασ̂2

P,t−1
+ βσ2

t−1
and several different GARCH models, all of them estimated on the

close-to-close returns with squared close-to-close returns as a benchmark. Numbers in
this table are 1000×RMSE of the one-day-ahead rolling window forecast with forecasting
window equal to 400.
ticker RGARCH GARCH GJR EGARCH stdGARCH astdGARCH cGARCH

AA 1.874 1.915 1.871 1.882 1.916 1.862 1.926
AXP 1.738 1.735 1.732 1.731 1.733 1.729 1.743
BA 1.240 1.254 1.265 1.258 1.250 1.245 1.260
BAC 4.454 4.572 4.556 4.459 4.545 4.458 4.571*
CAT 1.112 1.144* 1.140* 1.141* 1.143* 1.134 1.143*
CSCO 2.254 2.288 2.247 2.236 2.267 2.234 2.309*
CVX 0.857 0.887* 0.854 0.863 0.907** 0.864 0.900**
DD 0.845 0.865* 0.863 0.863 0.865** 0.858 0.871**
DIS 1.310 1.328 1.337* 1.317 1.322 1.317 1.330*
GE 1.226 1.152 1.169 1.143 1.154 1.135 1.172
HD 2.699 2.159 2.441 19.615 2.111 2.117 2.420
HPQ 1.800 1.823** 1.812* 1.813* 1.814** 1.800 1.830**
IBM 1.143 1.145 1.150 1.135 1.137 1.127 1.156
INTC 1.972 2.010** 2.068** 1.987 1.999** 1.988 2.034**
JNJ 0.668 0.690** 0.693* 0.678 0.681* 0.673 0.693*
JPM 2.317 2.471** 2.395 2.367 2.445* 2.365 2.451*
CAG 0.980 0.978 0.985 0.980 0.981 0.981 0.981
KO 0.647 0.658* 0.662 0.651 0.656* 0.652 0.663**
MCD 0.738 0.740 0.752 0.744 0.736 0.733 0.744
MMM 0.609 0.621 0.621 0.626 0.618 0.618 0.629
MRK 0.778 0.793** 0.790* 0.790* 0.785 0.799**
MSFT 1.312 1.349** 1.346** 1.342** 1.342** 1.341* 1.365**
PFE 0.804 0.804 0.806 0.803 0.802 0.799 0.807
PG 2.317 2.447** 2.519** 2.318 8.394 12.721? 2.353**
T 0.838 0.857 0.853 0.855 0.860 0.853 0.857

TRV 1.439 1.492** 1.476* 1.483* 1.496* 1.485* 1.487
UTX 1.876 1.881 2.470* 1.920 2.031* 1.905* 2.326
VZ 0.778 0.793** 0.790* 0.791* 0.785 0.799**

WMT 0.735 0.745* 0.745 0.745* 0.740 0.749*
XOM 0.759 0.803* 0.779 0.821* 0.798 0.827**
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Table 16: Comparison of forecasting performance GARCH(1,1) model σ2
t = ω + αr2t−1

+

βσ2
t−1

and the RGARCH(1,1) model σ2
t = ω + ασ̂2

P,t−1
+ βσ2

t−1
. Numbers in this table

are the LLF of the returns rt beind drawn from the distributions N
(
0, σ̂2

t

)
, where σ̂2

t is a

one-day-ahead rolling window volatility forecast reported for different window sizes w.
Ticker GARCH(1,1) RGARCH(1,1)

w=300 w=400 w=500 w=600 w=300 w=400 w=500 w=600

AA 9803 9580 9267 9020 9873 9597 9320 9032
AXP 10377 10166 9881 9595 10502 10242 9969 9688
BA 10434 10225 9809 9660 10500 10258 9993 9708
BAC 10687 10451 10154 9875 10783 10527 10236 9949
CAT 10105 9916 9631 9342 10202 9950 9675 9385
CSCO 9309 9080 8825 8528 9478 9237 8955 8646
CVX 11371 11017 10853 10576 11440 11145 10882 10599
DD 10853 10593 10321 10050 10916 10641 10377 10095
DIS 10535 10298 10024 9747 10681 10411 10142 9859
GE 11086 10860 10567 10258 11176 10902 10617 10325
HD 10266 10024 9729 9479 10372 10084 9809 9542
HPQ 9587 9255 9076 8792 9715 9415 9174 8869
IBM 10813 10575 10247 9972 10986 10716 10378 10130
INTC 9420 9208 8937 8665 9484 9278 9001 8735
JNJ 12013 11776 11492 11230 12063 11126 11522 11264
JPM 10158 10014 9730 9464 10345 10113 9830 9554
CAG 11421 11192 10939 10681 11563 11301 10994 10722
KO 11682 11454 11155 10924 11782 11517 11250 10980
MCD 11058 10846 10564 10288 11129 10871 10596 10320
MMM 11238 11105 10819 10542 11377 11153 10878 10599
MRK 10131 9775 9632 9294 10348 10120 9813 9570
MSFT 10234 10038 9724 9478 10396 10171 9867 9611
PFE 10741 10499 10222 9959 10827 10564 10269 10004
PG 11512 11236 10962 10709 11571 11369 11081 10777
T 10948 10704 10459 10172 11002 10744 10473 10206

TRV 10801 10614 10312 10069 10899 10678 10395 10111
UTX 11013 10790 10477 10179 11054 10840 10556 10269
VZ 11132 10892 10605 10329 11198 10930 10645 10361

WMT 11004 10778 10510 10109 11130 10860 10558 10276
XOM 11464 11223 10947 10657 11567 11294 11014 10729
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Table 17: Estimated coefficients of the GARCH(1,1) model σ2
t = ω+αr2t−1

+ βσ2
t−1

and it

modified version RGARCH(1,1) σ2
t = ω+ασ̂2

P,t−1
+ βσ2

t−1
, both of them estimated on the

close-to-close returns, reported together with the values of Akaike Information Criterion
(AIC) of the respective equations for various stock indices.

Index GARCH(1,1) RGARCH(1,1)
ω α β AIC ω α β AIC

CAC40 1.49E-06 0.072 0.922 -5.965 2.98E-06 0.251 0.823 -5.995
DAX 2.19E-06 0.088 0.902 -5.946 9.88E-06 0.207 0.808 -5.954
DJI 1.34E-06 0.084 0.909 -6.323 -1.51E-06 0.140 0.761 -6.341
FTSE 8.90E-07 0.080 0.914 -6.495 1.93E-06 0.183 0.846 -6.515

NASDAQ 4.23E-05 0.044 0.880 -4.796 1.25E-05 0.032 0.959 -4.827
NIKKEI 4.40E-06 0.089 0.893 -5.758 3.64E-06 0.267 0.837 -5.780

Table 18: Estimated coefficients and p-values for the combined GARCH(1,1) model σ2
t =

ω + α1r
2
t−1

+ α2σ̂2

P,t−1
+ βσ2

t−1
estimated on the close-to-close returns for various stock

indices.
Index combined GARCH(1,1)

ω p-value α1 p-value β p-value α2 p-value

CAC40 3.26E-06 5.22E-06 -0.017 9.01E-02 0.813 0 0.290 0.00E+00
DAX 5.00E-06 3.40E-13 0.051 1.09E-08 0.854 0 0.104 4.34E-13
DJI -3.09E-07 0.438 0.041 8.01E-05 0.823 0 0.077 1.90E-11
FTSE 1.95E-06 1.14E-06 -0.001 0.931365 0.846 0 0.184 5.57E-12

NASDAQ 4.63E-04 0.014 -0.002 0.363481 0.575 0.001 -0.006 0.561
NIKKEI 3.63E-06 2.40E-06 0.002 0.838884 0.837 0 0.262 0

Table 19: Comparison of forecasting performance of the GARCH(1,1) model σ2
t = ω +

αr2t−1
+ βσ2

t−1
and its modified version RGARCH(1,1) σ2

t = ω + ασ̂2

P,t−1
+ βσ2

t−1
(both

them estimated on the close-to-close returns). As a benchmark is used both squared
close-to-close returns and realized variance. Numbers in this table are 1000×RMSE of the
one-day-ahead rolling window forecasts reported for different window sizes w and different
benchmarks (squared returns r2 and the true volatility σtrue2) for various stock indices.

Index Bench GARCH(1,1) RGARCH(1,1)
w=300 w=400 w=500 w=600 w=300 w=400 w=500 w=600

CAC r2 0.609 0.607 0.603 0.602 0.583** 0.582** 0.581** 0.581**
RV 0.257 0.257 0.242 0.241 0.233* 0.227** 0.217** 0.218**

DAX r2 0.642 0.636 0.633 0.633 0.622 0.623 0.621 0.620
RV 0.272 0.259 0.249 0.250 0.263 0.263 0.260 0.258

DJI r2 0.501 0.507 0.504 0.513 0.482* 0.486 0.483 0.493
RV 0.199 0.207 0.202 0.209 0.171** 0.167** 0.164** 0.165**

FTSE r2 0.480 0.482 0.479 0.478 0.466* 0.465** 0.463** 0.463**
RV 0.205 0.230 0.216 0.213 0.202 0.207** 0.195** 0.192**

NASDAQ r2 1.390 1.290 1.232 1.206 1.253 1.202** 1.165** 1.145**
RV 0.549 0.674 0.678 0.657 0.517 0.578* 0.567** 0.550**

NIKKEI r2 0.699 0.702 0.695 0.689 0.683* 0.678** 0.675* 0.669*
RV 0.356 0.394 0.366 0.351 0.363 0.365* 0.345* 0.326*
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