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1 Introduction

Under the classical mean-variance framework of Markowitz (1952), optimal portfolio weights are

a function of two parameters: the vector of the expected returns on the risky assets and the in-

verse covariance matrix of these returns. The true values of these parameters are unknown in

practice and investors traditionally estimate them using historical data. Several studies over the

years have shown that estimation errors lead to poor out-of-sample portfolio performance (see, for

example, Jobson and Korkie 1980; Michaud 1989; Best and Grauer 1991). Unsurprisingly, a vast

literature has grown around improving portfolio performance using various statistical techniques

for the reduction of estimation errors (Brandt 2009 provides a comprehensive review). Despite

all the research efforts, the problem of parameter uncertainty remains largely unresolved. Char-

acteristically, DeMiguel et al. (2009a) show that the simple heuristic 1/N portfolio outperforms

the mean-variance portfolio and most of its extensions. This finding has spawned a new wave of

research that seeks to develop portfolio strategies superior to 1/N and to reaffirm the practical

value of portfolio theory (e.g., DeMiguel et al. 2009b; Tu and Zhou 2011).

The present work deals with parameter uncertainty by developing a new methodology for the

estimation of the inverse covariance matrix that aims to improve out-of-sample portfolio perfor-

mance. We start by studying how the estimation errors in the sample inverse affect out-of-sample

portfolio returns. In accordance with recent studies (Jagannathan and Ma 2003; Ledoit and Wolf

2003; DeMiguel et al. 2009b, among others), we constrain our interest to the global minimum

variance (GMV) portfolio.1 On the basis of analytical expressions, we show that in the presence of

many assets and/or a small sample, estimation errors in the inverse covariance matrix can substan-

tially increase portfolio risk. Moreover, even though the GMV portfolio generally results in higher

risk-adjusted returns than the sample mean-variance portfolio, there is a considerable difference of

the risk-adjusted returns between the GMV portfolio and the parameter certainty mean-variance

portfolio.

Motivated by our analysis, we apply a popular statistical tool known as “shrinkage” (James and

Stein 1961) to the Maximum Likelihood (ML) estimator of the inverse covariance matrix in order

to reduce portfolio risk and increase risk-adjusted returns. To the best of our knowledge, this study

is the first to directly improve on the sample inverse within the context of portfolio choice. So far,

the practice in the literature is to derive an estimator of the covariance matrix and then invert it

to compute the portfolio weights. This practice is represented by three popular approaches. The

first uses a matrix with more structure as an estimator of the covariance matrix (for instance a

matrix implied by a 1-factor or constant correlations model) in order to reduce the number of free

parameters (Frost and Savarino 1986; Chan et al. 1999). The second can be interpreted as an

extension to the first. It proposes the estimation of the covariance matrix through shrinking the

ML covariance matrix to one of the structured matrices proposed by the first approach (Ledoit

1This portfolio is appealing since its weights are merely determined by the inverse covariance matrix and not the
means. Given that the estimation errors in the means are typically large (e.g., Chopra and Ziemba 1993), the GMV
portfolio tends to yield higher out-of-sample performance than the traditional mean-variance portfolio.
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and Wolf 2003; 2004a; 2004b). The third uses data of higher frequency, such as daily instead of

monthly, to estimate the covariance matrix (e.g., Jagannathan and Ma 2003). All these methods

provide superior estimators to the ML inverse under various statistical criteria. However, due to

the complexity of matrix inversion, it is difficult to optimise such estimators under investor-oriented

objectives, such as portfolio variance or risk-adjusted returns. Our framework resolves these issues,

since it produces simple and intuitive expressions of the portfolio weights. In this manner, it

enables the derivation of estimators of the inverse covariance matrix that are designed to improve

out-of-sample portfolio performance rather than to optimise statistical criteria.

Our framework generates estimators that are a linear combination of the ML estimator of the

inverse and a “target” matrix, i.e., a matrix that is less sensitive to estimation errors. In this paper,

we use three particular targets: the identity, the inverse covariance matrix generated by the 1-factor

model of Sharpe (1963) and a weighted sum of these two matrices. To better interpret our approach,

we show that, for each one of these targets, the resulting portfolio is a linear combination of the

GMV portfolio and a “target” portfolio. Specifically, the application of the identity as a target

matrix gives a target portfolio that coincides with the equal-weighted 1/N portfolio investigated

by DeMiguel et al. (2009a) while the use of the 1-factor inverse results in a target portfolio that is

studied by Chan et al. (1999).2 Both of these portfolios are known to perform well in the presence

of parameter uncertainty, since they have little or no sensitivity to estimation errors. As a result,

they can also be efficient in eliminating a part of the estimation risk of the GMV portfolio.3

The above interpretation of our framework enables the construction of estimators of the inverse

covariance matrix that are optimal under portfolio performance criteria. We specifically propose

two non-parametric methods for selecting the linear combination coefficients. The first applies a

cross-validation methodology to obtain the combination which minimises out-of-sample portfolio

variance. The second exploits the serial dependence of portfolio returns (Campbell et al. 1997)

in order to increase risk-adjusted returns. The application of these methods leads to a set of new

portfolio strategies. In all cases, the portfolio weights have a simple analytical form that allows us

to accommodate for short-sale constraints, high transaction costs and singular covariance matrices.

We evaluate empirically the out-of-sample performance of the new portfolio strategies against

that of several benchmark methods from the literature. For this purpose, we employ six commonly

used datasets of monthly returns and four performance measures (variance, Sharpe ratio, certainty-

equivalent return (CER) and turnover). We can draw four major conclusions from the results.

First, the proposed estimators of the inverse covariance matrix offer substantial gains in portfolio

performance. In particular, the new portfolio strategies greatly outperform the GMV portfolio

constructed using the traditional estimator of the inverse with regards to both risk and risk-adjusted

returns. Second, the new strategies outperform the 1/N portfolio across most datasets in terms of

2Accordingly, for the third target matrix under consideration, the target portfolio is a weighted sum of the target
portfolios from the first two cases.

3Portfolio strategies that combine two or more funds have received significant attention in recent studies. For
instance, Kan and Zhou (2007) propose a linear combination of the mean-variance portfolio, the GMV portfolio and
the riskless asset. Tu and Zhou (2011) further augment this combination with the 1/N portfolio. For other examples
of such strategies, see Jorion (1986) and Garlappi et al. (2007).

2



variance, Sharpe ratio and CER. This extends the recent contributions of DeMiguel et al. (2009b)

and Tu and Zhou (2011) and affirms the practical usefulness of portfolio theory. Third, under

most scenarios, the strategies we obtain from the use of both target matrices under consideration

outperform the rest of the strategies developed as well as the benchmark strategies considered. This

finding indicates that using more than one targets helps to further reduce the effects of estimation

errors. Finally, we find that the portfolio strategies that exploit autocorrelation in portfolio returns

are associated with a high turnover. Nevertheless, this can be significantly reduced by imposing a

short-sale constraint. The corresponding constrained portfolios also lead to higher Sharpe ratios

and CERs than the 1/N rule and offer a considerably lower turnover than their unconstrained

analogues.

The remainder of the paper is organised as follows. Section 2 outlines the mean-variance frame-

work. It also discusses the effects of parameter uncertainty on the performance of the minimum

variance portfolio on the basis of analytical expressions. Section 3 develops the framework for the

estimation of the inverse covariance matrix and applies it to derive a set of new portfolio strategies.

The out-of-sample performance of these strategies is assessed in Section 4. Section 5 concludes this

paper whereas the Appendix contains the relevant mathematical derivations.

2 Parameter Uncertainty in Optimal Portfolio Choice

2.1 The mean-variance framework

We study the portfolio choice problem of a mean-variance investor in a market of N risky and a

risk-free asset. To fix notation, let rt and rft denote the vector of monthly returns on the risky

and the riskless asset at time t, respectively. Then, the excess returns on the risky assets over

the risk-free rate are Rt = rt − rft1N , where 1N is an N -dimensional vector of ones. Following a

common approach in the literature, we assume for now that Rt’s are independently and identically

(i.i.d.) normally distributed with mean µ and covariance matrix Σ.4 The weights w ∈ RN , that

the investor should assign to the risky assets, maximise the following quadratic expected utility

function:5

U(w) = µp −
γ

2
σ2
p, (1)

where µp = w′µ and σ2
p = w′Σw are, respectively, the mean and the variance of the excess return

on the portfolio over the risk-free rate and γ is the coefficient of the relative risk aversion of the

investor. The maximisation of (1) leads to the optimal mean-variance portfolio:

wmv =
1

γ
Σ−1µ. (2)

4Tu and Zhou (2004) explore the importance of this assumption and conclude that ignoring tails makes negligible
difference in terms of portfolio out-of-sample performance. Nevertheless, this assumption is not required for the
derivation of our estimators as we show in the next section.

5The weight given to the riskless asset is then 1 − w′1N .

3



The corresponding expected utility is then

U(wmv) =
µ′Σ−1µ

2γ
=

SR2
mv

2γ
, (3)

where SR2
mv = µ′Σ−1µ is the squared Sharpe ratio of the optimal portfolio wmv.

The computation of the portfolio weights wmv is not feasible in practice since the values of both

µ and Σ are unknown. As a result, the investor needs to estimate these parameters. Generally, a

sample of T historical excess returns on the risky assets, i.e., a set of observations JT = {R1, ..., RT },
is available for estimation. The traditional practice employs the Maximum Likelihood (ML) esti-

mators:

µ̂ =
1

T

T∑
t=1

Rt (4)

Σ̂ =
1

T

T∑
t=1

(Rt − µ̂)(Rt − µ̂)′. (5)

and the respective sample mean-variance weights are given by:

ŵmv =
1

γ
Σ̂−1µ̂ (6)

under the assumption that T > N in order to ensure the non-singularity of the sample covariance

matrix. It is well-known that the above simple “plug-in” method introduces a considerable amount

of estimation risk in the portfolio choice process and produces severely suboptimal portfolios (for

instance, see Michaud 1989; Best and Grauer 1991). This motivates the adoption of alternative

portfolio strategies such as the popular global minimum variance portfolio which is the subject of

the next subsection.

2.2 The global minimum variance portfolio

The global minimum variance (GMV) portfolio is the minimum risk portfolio with weights that

sum to unity. These weights are commonly estimated by:6

ŵmin := wmin
(

Σ̂−1
)

=
Σ̂−11N

1′N Σ̂−11N
. (7)

Clearly, the application of the GMV portfolio does not require the estimation of the “prob-

lematic” means. Therefore it is less sensitive to estimation risk that the sample mean-variance

portfolio ŵmv. In fact, Jagannathan and Ma (2003) show empirically that when the estimation

errors in the means are large, nothing is lost in terms of out-of-sample performance by using the

GMV portfolio instead of the mean-variance portfolio. This finding suggests that the GMV port-

6It is useful in this paper to express the portfolio weights of the GMV portfolio as a function of the estimator of
Σ−1 we apply to compute them.
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folio is an attractive alternative for the mean-variance investor, even though it is not designed to

maximise the objective function (1). To further investigate the validity of this argument, we study

the out-of-sample performance of the GMV portfolio on the basis of analytical expressions. We

first show that estimation errors in Σ̂−1 can have significant impact on portfolio performance:

Proposition 1 If E(·) denotes expectation with respect to the true distribution of JT , then the

expected out-of-sample mean µ̃min and variance σ̃2
min of the excess return on the sample GMV

portfolio are respectively given by

µ̃min := E
(
(ŵmin)′µ̂

)
= wminµ = µmin (8)

σ̃2
min := E

(
(ŵmin)′Σŵmin

)
=

T − 2

T −N − 1
(wmin)′Σwmin =

T − 2

T −N − 1
σ2

min (9)

where µmin and σ2
min are respectively the mean and variance of the return on the true GMV portfolio

wmin =
Σ−11N

1′NΣ−11N
.7

Proposition 1 indicates that the expected out-of-sample mean return on the GMV portfolio is

unaffected by estimation risk since it is equal to that of its population counterpart. However, the

sample portfolio leads to higher out-of-sample variance than its true analogue for N > 1. The

variance of the sample portfolio increases with the number of assets N and decreases with the

sample size T . To better demonstrate the effects of errors in Σ̂−1 on out-of-sample risk, we apply

equation (9) to compute the quantity

σ̃2
min − σ2

min

σ2
min

=
N − 1

T −N − 1
(10)

in percentage terms for four portfolio sizes (N = 10, 25, 50 and 100 assets) and six sample lengths

(T = 60, 120, 240, 480, 960 and 24000 observations). The corresponding results in Table 1 show

that the risk of the GMV portfolio raises significantly for large values of the ratio N /T . For

instance, when N = 50 and T = 60, the variance increases by 544.44% when using Σ̂−1 instead

of Σ−1. In such cases, Σ̂−1 is very inaccurate and an improved estimator of the inverse covariance

matrix is particularly valuable.

We further examine the attractiveness of the GMV portfolio to the mean-variance investor.

In particular, we compare the out-of-sample performances between the sample GMV and mean-

variance portfolios. To this end, we use the opportunity cost (OC) of estimating the optimal weights

wmv with a sample-based portfolio ŵ:

OC(ŵ, wmv) = U(wmv)− E(U(ŵ)) (11)

7The proof is contained in the Appendix. A more comprehensive treatment of the distributional properties of
minimum variance portfolios is provided by Ohkrin and Schmid (2006), Kan and Smith (2008) and Basak et al.
(2009).
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where E(·) is again taken with respect to the true distribution of JT .8 The smaller is the OC, the

smaller is the difference of the out-of-sample performances between the optimal portfolio and the

sample-based portfolio ŵ. For the sample mean-variance portfolio (6), Kan and Zhou (2007) show

that:

OC(ŵmv, wmv) = (1− k)
SR2

mv

2γ
+

NT (T − 2)

2γ(T −N − 1)(T −N − 2)(T −N − 4)
, (12)

where k =
T

T −N − 2

(
2− T (T − 2)

(T −N − 1)(T −N − 4)

)
. Therefore, the performance loss from using

µ̂ and Σ̂ for the computation of the optimal mean-variance weights instead of their true analogues is

an increasing function of the market size N and a decreasing function of the number of observations

T and of the risk aversion coefficient γ. The next proposition determines the OC of using the

weights ŵmin instead of the optimal weights wmv:

Proposition 2 The opportunity cost of using the GMV portfolio instead of the optimal mean-

variance portfolio is:

OC(ŵmin, wmv) =
SR2

mv

2γ
− µmin +

γ (T − 2)

2(T −N − 1)
σ2

min (13)

Similarly to the case of the sample mean-variance portfolio, the opportunity cost OC(ŵmin, wmv)

increases with N and decreases with T.

We apply (13) and (12) to compare the OCs between the sample GMV and mean-variance

portfolios, respectively, under several scenarios. Columns 3-6 of Table 2 report the quantity

OC(ŵmin, wmv)
/
U (wmv) in percentage terms for four portfolio sizes (N = 10, 25, 50 and 100

assets), three sample sizes (T = 60, 120 and 240 observations per asset) and two values of SRmv

(0.2 and 0.4). For expositional simplicity, we set µ = k1N for some constant k in order to account

for the quantities µ′Σ−11N and 1′NΣ−11N. Then, µ′Σ−11N = SR2
mv

/
k and 1′NΣ−11N = SR2

mv

/
k2.

We consider two values for k, namely 0.05/12 and 0.1/12 which, under the assumption of monthly

returns, correspond to expected annual excess returns of 5% and 10%, respectively. The last col-

umn of Table 2 expresses the performance losses caused by the use of the sample mean-variance

portfolio (OC(ŵmv, wmv)/U (wmv)).9 We observe that the GMV portfolio greatly outperforms the

sample mean-variance portfolio in all but one case. The standardised OC for the GMV portfolio

is generally less than 100% for almost every value of N, T and Smv considered. This means that,

the GMV portfolio is expected to lead to positive values of the objective function U
(
ŵmin

)
or,

in other words, positive risk-adjusted excess returns. In contrast, the OC for the sample mean-

variance strategy is significantly higher than 100% which corresponds to highly negative expected

risk-adjusted returns.

We also measure the amount of information that the investor should require in order to prefer

the mean-variance portfolio over the GMV portfolio. In particular, we compute the number of

8OC has also been employed by Brown (1976), Jorion (1986), Kan and Zhou (2007) and DeMiguel et al. (2009a).
9Note that this quantity does not depend on γ.
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observations T needed for the estimation of the mean-variance weights (6) in order for the latter to

result in a lower OC than the GMV portfolio. According to the results in Table 3, T ranges from

108 in the case of 10 assets to 3602 in the case of 100 assets. For monthly observations, the latter

value of T corresponds to an unrealistically long historical dataset which exceeds 300 years. We

conclude that the GMV portfolio dominates the mean-variance portfolio in practical situations.

The results in Tables 2 and 3 illustrate the appeal of the GMV portfolio to the mean-variance

investor. Nevertheless, there still exists a considerable difference of the performance between the

GMV and its parameter certainty analogue (in terms of out-of-sample variance) or the optimal

mean-variance strategy (as measured by the opportunity cost). The next section proposes a frame-

work for the estimation of the inverse covariance matrix that attempts to reduce these differences.

3 Estimation of the Inverse Covariance Matrix

3.1 Estimation framework

We develop a shrinkage approach for the estimation of the inverse covariance matrix. James and

Stein (1961) first proposed shrinkage as a mean to reduce the error of an estimator by optimally

exploiting the trade-off between bias and variance. Shrinkage has been applied to portfolio selection

problems in estimating excess returns (e.g., Jobson and Korkie 1981; Jorion 1986) and covariances

(Ledoit and Wolf 2003; 2004a; 2004b). The method of Ledoit and Wolf, in particular, is considered

one of the most efficient methods in estimating the covariance matrix.10 It involves the estimation

of the covariance matrix by a convex combination of its sample counterpart Σ̂ and a shrinkage

target Λ:

SLW = (1− f)Σ̂ + fΛ (14)

The set of typical shrinkage targets includes the identity matrix (Ledoit and Wolf 2004a), the

constant correlations matrix (Ledoit and Wolf 2004b) and a covariance matrix that corresponds

to a 1-factor model (Ledoit and Wolf 2003). Ledoit and Wolf (2003; 2004b) estimate the optimal

shrinkage parameter f under a statistical loss function and then invert the resulting estimator ŜLW

to compute the GMV weights (wmin
(
Ŝ−1

LW

)
). They find that the latter portfolio outperforms the

standard GMV portfolio ŵmin in terms of out-of-sample variance and Sharpe ratio.

Despite its apparent efficiency in reducing the estimation error in the ML covariance matrix,

the method of Ledoit and Wolf is difficult to be optimised with respect to portfolio performance

measures due to the complexity of the inversion of sum of matrices. To overcome this difficulty, we

suggest the estimation of the inverse covariance matrix in a different manner. Instead of shrinking

the covariance matrix and then inverting it, we propose to apply shrinkage directly to the inverse

covariance matrix. Specifically, we propose the estimation of the inverse with a weighted sum of

10In comparison with the other commonly used methodologies for estimating the covariance matrix, the method
of Ledoit and Wolf is a dominating extension of the approach which imposes more structure to the covariance matrix
(e.g., Frost and Savarino 1986; Chan et al. 1999) while it provides results similar to estimation using more frequent
historical data (Jagannathan and Ma 2003).
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the ML estimator and a target matrix Ω̂

Sinv = c1Σ̂−1 + c2Ω̂, (15)

where Ω̂ is an N x N symmetric and positive definite matrix. Note that Sinv retains the basic

properties of Σ̂−1 such as symmetry, positive definiteness and invertibility for positive values of

c1, c2.

Although this paper is the first to apply the class of estimators (15) to portfolio choice, the

multivariate statistics literature has studied a special case of this class (Efron and Morris 1976, Haff

1977, 1979, Dey 1987 and Kubokawa 2005, among others). These studies suggest the estimation of

Σ−1 by shrinking Σ̂−1 to Σ̂ or to the identity matrix. The selection of the parameters c1 and c2 is

performed on the basis of statistical loss functions under the assumption that the covariance matrix

follows a Wishart distribution. Our interest here lies in a different direction since our ultimate aim

is to improve portfolio performance. Moreover, our framework has two important advantages over

previous efforts. First, as shown below, we do not need to assume any specific distribution to derive

the parameters c1 and c2. Second, our framework can easily accommodate any N ×N matrix as a

target. Here, we consider three different targets:11

1. The identity matrix I which is a common choice for the estimation of random matrices due

to its constancy and simplicity.

2. The inverse covariance matrix resulting from the 1-factor model of Sharpe (1963) where the

factor is the market (F̂ ).

3. A linear combination of I and F̂ . Then,

Sinv = c1Σ̂−1 + c2I + c3F̂ (16)

We further provide some interpretation on how the use of (15)-(16) can improve out-of-sample

performance. If we apply (15) to estimate the GMV weights, we obtain the following portfolio:

wmin(Sinv) =
c1Σ̂−11N + c2Ω̂1N

c11′N Σ̂−11N + c21′N Ω̂1N
(17)

We rewrite the above equation in a simpler form as

wmin(Sinv) = d̂0ŵ
min + (1− d̂0)wmin(Ω̂) (18)

where d̂0 =
c11′N Σ̂−11N

c11′N Σ̂−11N + c21′N Ω̂1N
. Therefore, the application of the inverse covariance matrix

estimator (15) results in a “two-fund” portfolio, i.e., a convex combination of the standard GMV

11More sophisticated targets are likely to produce superior estimators. We leave such extensions for future research
since our focus here is on the introduction of the concept of shrinking the inverse covariance matrix within the context
of portfolio selection.
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portfolio ŵmin and the minimum variance portfolio constructed using Ω̂ instead of Σ−1. This result

provides further intuition on how our approach deals with parameter uncertainty. Specifically, the

“target portfolio” wmin(Ω̂) helps in eliminating a part of the estimation risk of the GMV portfolio

and in improving its out-of-sample performance. This is because, for the target matrices under

consideration, wmin(Ω̂) is less subject to estimation errors than ŵmin. When the identity is used

as a target, then the target portfolio is wmin(I) = 1N/N representing the 1/N strategy. This

equal-weighted portfolio appears to outperform several sophisticated sample-based portfolios, since

it does not require the estimation of any parameter (see DeMiguel et al. 2009a). When we extract

the target matrix from the market model of Sharpe (1963), the corresponding target portfolio

wmin(F̂ ) belongs to the class of portfolios studied by Chan et al. (1999). These authors show that

when estimation errors are significant, portfolios resulting from factor models result in considerably

higher performance than the GMV portfolio. Finally, when Sinv is given by (16), the target portfolio

wmin(Ω̂) is a linear combination of wmin(I) and wmin(F̂ ). In this case, we end up with the following

three-fund strategy:

wmin(Sinv) = d̂1ŵ
min + d̂2ŵ

min(I) + (1− d̂1 − d̂2)ŵmin(F̂ ). (19)

where d̂1 =
c11′N Σ̂−11N

c11′N Σ̂−11N +Nc2 + c31′N F̂1N
and d̂2 =

Nc2

c11′N Σ̂−11N +Nc2 + c31′N F̂1N
.

Besides providing intuition, the expressions (18)-(19) modify the problem of selecting the com-

bination coefficients ci in two useful ways. First, they reduce the number of coefficients by one and

we now only have to determine the value(s) of d̂i instead of ci. Second, they enable the choice of

d̂i on the basis of portfolio performance criteria. We next present two methods to compute d̂i; the

first aims to minimise portfolio risk while the second attempts to increase portfolio return.

3.2 Selection of the combination coefficients

3.2.1 Minimisation of the out-of-sample variance

Our first approach in determining the combination coefficients in (18)-(19) aims at reducing the out-

of-sample variance of the GMV portfolio. For this purpose, we adopt the non-parametric statistical

method of cross-validation.12 This method allows us to exploit the information contained in the

sample without the need of any specific distributional assumption for the excess returns. As a result,

it can be easily used for any target matrix avoiding hard expectation computations that could be

required by a parametric method. We apply cross-validation as follows. For each historical return

Rt known to the investor, we first compute the portfolio weights ŵt
min and wt

min(Ω̂) (Ω̂ = I, F̂ )

using the remaining returns in the sample (JT −{Rt}). We then apply these weights to extract the

corresponding excess returnsRmin
t = R′tŵt

min andRΩ̂
t = R′twt

min(Ω̂). The outcome of this procedure

is a time-series of out-of-sample excess returns for each combination strategy. We finally compute

the parameter(s) d̂vari that minimise(s) the out-of-sample variance of the returns R′tw
min
t (Sinv):

12Cross-validation has also been used in portfolio choice applications by Brandt (1999) and DeMiguel et al. (2009b).
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d̂vari = arg min
d̂i

var
(
(wmin

t (Sinv)′Rt)(t=1,...,T )

)
, (20)

When wmin
t (Sinv) is expressed as in (18), it is simple to show that

d̂var0 =
var

(
RΩ̂

t

)
− cov

(
Rmin

t , RΩ̂
t

)
var

(
Rmin

t

)
− 2cov

(
Rmin

t , RΩ̂
t

)
+ var

(
RΩ̂

t

) (21)

To obtain the quantities d̂var1 , d̂var2 for the three-fund rule (19), we first introduce notation for the

covariance matrix V = (vij) of the out-of-sample excess returns of the three combination strategies:

V =


var

(
Rmin

t

)
cov

(
Rmin

t , RI
t

)
cov

(
Rmin

t , RF̂
t

)
cov

(
Rmin

t , RI
t

)
var

(
RI

t

)
cov

(
RI

t , R
F̂
t

)
cov

(
Rmin

t , RF̂
t

)
cov

(
RI

t , R
F̂
t

)
var

(
RF̂

t

)
 (22)

Then, the solution of (20) is given by(
d̂var1

d̂var2

)
=

(
v11 + v33 − 2v13 v12 − v13 − v23 + v33

v12 − v13 − v23 + v33 v22 + v33 − 2v23

)−1(
v33 − v13

v33 − v23

)
(23)

The substitution of d̂vari in the corresponding portfolio weights in (18) and (19) gives three

new “variance-based” portfolio strategies. We denote them ICVARI , ICVARF and ICVARIF in

accordance to the specific target that each one employs for the estimation of the inverse covariance

matrix.

3.2.2 Maximisation of the last period’s return

In section 2, we show that the GMV strategy is appealing to the mean-variance investor, since it

generally leads to higher risk-adjusted returns than the sample mean-variance portfolio. To further

enhance the out-of-sample returns of the GMV strategy, we provide an alternative method to select

the parameters d̂i. This method is motivated by the strong positive autocorrelation of portfolio

returns that has been reported in the literature (Campbell et al. 1997).13 In particular, the

combination coefficients are chosen to maximise the last period’s return on the portfolio wmin(Sinv)

or, equivalently, they solve the following optimisation problem:

d̂reti = arg max
d̂i

wmin(Sinv)′RT , (24)

subject to the constraint

0 ≤ d̂i ≤ 1, (25)

13In a similar fashion, DeMiguel et al. (2009b) exploit the autocorrelation of portfolio returns to calibrate their
norm-constrained portfolios.
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that ensures that d̂i do not acquire any extreme value. The optimization problem (24)-(25) also

has a simple solution. In the case that Sinv is given by (15), the solution can be expressed by

d̂ret0 = δ
(

(ŵmin)′RT − wmin(Ω̂)′RT

)
, (26)

where δ(x) = 1 if x is positive and δ(x) = 0 otherwise. In essence, the investor adopts either ŵmin

or wmin(Ω̂) depending on which portfolio yielded higher return in the last period. Similarly, for the

three-fund strategy (19), the investor chooses among ŵmin, wmin(I) and wmin(F̂ ):

d̂ret1 = δ
(
(ŵmin)′RT − wmin(I)′RT

)
δ
(
ŵmin)′RT − wmin(F̂ )′RT

)
(27)

d̂ret2 = δ
(
wmin(I)′RT − (ŵmin)′RT

)
δ
(
wmin(I)′RT − wmin(F̂ )′RT

)
. (28)

In the remainder of the paper, we use the abbreviations ICRETI , ICRETF and ICRETIF to

denote the “return-based” portfolio strategies that result from the corresponding target matrices

and the application of d̂reti to (18)-(19).

3.3 Practical issues

Despite its generality, the portfolio choice framework developed in this work has still some lim-

itations that may impose difficulties in its practical implementation. Namely, we have not yet

accounted for the case that the number of assets exceeds the sample size and for the possibility of

short-sale constraints and transaction costs. With respect to the first limitation, the ML estimator

of the covariance matrix Σ̂ is not invertible when N > T . In this case, we suggest the application

of the Moore-Penrose inverse of Σ̂ instead of Σ̂−1 in (15) and (16) :

WMP = HL−1H ′ (29)

where H is a matrix of eigenvectors of Σ̂, L = diag{l1, l2, ..., lN} is a diagonal matrix and l1 > l2 >

... > lN are the eigenvalues of Σ̂.14 WMP is well-defined for all positive values of N and T . Hence,

it enables the computation of the weights for the six portfolio strategies developed earlier when

N > T .

Further, the new portfolios may involve negative positions in some assets. In the presence of

short-sale constraints, they cannot be applied in their current form. Additionally, the effects of

parameter uncertainty on portfolio performance can be more hazardous when transaction costs

are high. This is because parameter uncertainty magnifies the volatility of the portfolio weights

across time and, consequently, increases portfolio turnover. A high portfolio turnover corresponds

to a significant decrease in the out-of-sample performance after accounting for transaction costs.

To address these issues, we provide two alternative strategies that result from the constraint-

based inverse covariance matrix studied in Jagannathan and Ma (2003). These authors show that

14Kubokawa and Srivastava (2008) also propose a combination of WMP and I for the estimation of the singular
inverse Wishart matrix.
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imposing a nonnegativity constraint to the minimum variance portfolio is equivalent to applying:

Σ̂cons = Σ̂−
(
ζ1′N + 1Nζ

′) (30)

to compute the GMV portfolio weights (7), where ζ is the N -dimensional vector of the Lagrange

multipliers for the nonnegativity constraint at the solution of the short-sale constrained minimum

variance problem. If we use Σ̂−1
cons in the place of Σ̂−1 in (15) and apply the identity as a target while

constraining d̂0 to lie in [0,1], then the corresponding portfolio weights are a convex combination of

the short-sale constrained minimum variance weights and 1/N . Since the weights of both portfolios

are nonnegative, so is their combination. Moreover, the turnover of the short-sale constrained

minimum variance portfolio as well as that of the 1/N rule are known to be relatively low. In

accordance, we expect a similar feature for the combination.15 To obtain the coefficient d̂0 in this

case, we again apply the two selection criteria discussed earlier. We denote the resulting portfolios

with “ICVARI (cons)” and “ICRETI (cons)”.

4 Performance Evaluation

4.1 Benchmarks, data and methodology

We carry out a comparative performance analysis of the eight portfolio strategies derived in the

previous section against several strategies from the literature. The set of benchmark strategies

naturally includes the sample mean-variance (MEAN) portfolio (6), the sample global minimum

variance (GMV) portfolio (7) and the 1/N strategy. We also consider five extensions of the GMV

portfolio. The first two are based on the shrinkage estimation of the covariance matrix developed

in Ledoit and Wolf (2003) and in Ledoit and Wolf (2004a) respectively denoted with LW (1f) and

LW (id). We consider these specific portfolios, since they are known to produce lower out-of-sample

variance than most other strategies in the literature. The third extension we include in our study

is the short-sale constrained minimum variance portfolio (MV (cons)). This portfolio is reported

to outperform the unconstrained GMV portfolio for large values of N (Jagannathan and Ma 2003).

The remaining two benchmark strategies we consider are the 2-norm constrained GMV portfolio

(MV (2-norm)) that exploits autocorrelation in portfolio returns (DeMiguel et al. 2009b) and the

“four-fund” rule of Tu and Zhou (2011) that combines the MEAN, GMV, 1/N strategies and the

risk-free asset (TZ4).16 DeMiguel et al. (2009b) and Tu and Zhou (2011) respectively find that these

two strategies dominate 1/N as well as most sample-based portfolios from earlier works,. Hence,

we exclude from this study several other strategies that have been proposed in the literature. Table

5 lists the competing strategies.

15For a further reduction in the turnover, one can also restrict d̂0 to take values close to 0 or to 1.
16Among the different norm-constrained portfolios developed by DeMiguel et al. (2009b) we just consider the

return-based 2-norm constrained portfolio for two reasons. First, the variance-based portfolios appear to perform
worse than the Ledoit-Wolf portfolios in terms of out-of-sample variance. Second, the 2-norm return-based portfolio
dominates the 1-norm and A-norm portfolios with regards to the Sharpe ratio measure. Moreover, it performs
similarly to the partial minimum variance portfolio while it is easier to compute.
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Following the literature, we evaluate the performance of the competing portfolio strategies in

6 datasets of monthly excess returns (see Table 6 for a summary). Our selection of data allows

us to account for various numbers of assets and different asset characteristics. Moreover, apart

from the dataset of stocks returns, the remaining datasets are a common choice in portfolio choice

studies. We assess out-of-sample portfolio performance by employing the rolling window method of

DeMiguel et al. (2009a). In particular, for each month t > T , we estimate the portfolio weights for

each strategy s using the returns for the months t-T,...,t-1. We then calculate the corresponding

portfolio returns Rs
t and obtain a time-series of excess returns for each portfolio strategy. We

let µ̂s and σ̂s denote the sample mean and standard deviation of the time-series and compute the

following out-of-sample performance metrics:

Variance: σ̂2
s (31)

Sharpe ratio: ŜRs =
µ̂s
σ̂s

(32)

Certainty-equivalent return: CERs = µ̂s −
γ

2
σ̂2
s (33)

Turnover: τ̂ =
1

M − T − 1

M−1∑
t=T+1

∣∣∣∣ws
t+1 − ws

t+

∣∣∣∣
1
, (34)

where M is the total number of observations in the dataset and ws
t+ and ws

t+1 are respectively

the portfolio weights for strategy s at time t before and after rebalancing. We derive the above

measures assuming a sample size of 60 which corresponds to 5 years of monthly returns.17 We also

assume a risk aversion parameter of γ = 3 for the computation of the weights of the mean-variance

portfolio and the portfolio of Tu and Zhou (2011) as well as for the computation of the CERs. We

note that in the case that N = 100 all unconstrained portfolio strategies are implemented using

WMP instead of Σ̂.

It is also necessary to consider the statistical significance of the difference of the variances, the

Sharpe ratios and the CERs between two specific strategies. To test the null hypothesis “H0 :

σ̂2
s − σ̂2

p = 0” or “H0 : CERs − CERp = 0” for two strategies s and p, we employ the circular

studentized bootstrap of Politis and Romano (1994) assuming an expected block size of 5. We then

use the resulting two-sided confidence interval to compute the p-value following the recommendation

of Ledoit and Wolf (2008). We also test the hypothesis “H0 : ŜRs − ŜRp = 0” by employing the

studentised circular block bootstrap methodology of Ledoit and Wolf (2008) to obtain the respective

p-value.18

17This sample length allows us to assess the new strategies in a competing situation where estimation errors are
typically large. It also enables us to study portfolio performance in the case that N > T using the dataset of 100
stocks. Nevertheless, we have also accounted for T = 120, but these results lead to comparable conclusions and, for
conservation of space, we exclude them from the paper.

18We are grateful to Michael Wolf for making available the Matlab code that performs this test at his website
(http://www.econ.uzh.ch/faculty/wolf/).
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4.2 Out-of-sample variance

Table 6 reports in percentage terms the monthly out-of-sample variance of the excess returns for

each portfolio strategy considered. We also report in brackets the p-value for the difference between

this variance and that of the GMV portfolio. We first observe that GMV leads to lower variance

than MEAN, 1/N and TZ4. It appears that a large increase in the risk aversion parameter is

required for the mean-variance and the Tu and Zhou (2011) portfolios to reach the risk levels of

the GMV portfolio. However, in line with the results in Table 1, the variance of the latter portfolio

significantly increases with the number of assets. For instance, it attains a value of 0.157% in the

dataset of 6 size and book-to-market portfolios while it increases to 0.183% in the set of the 25 size

and book-to-market portfolios.

The three new strategies ICVARI , ICVARF and ICVARIF calibrated using the minimum vari-

ance criterion outperform the GMV portfolio in all cases. In most of them, the difference between

the variances is statistically significant. Among the new strategies, the lowest variance is obtained

when both the identity and the 1-factor inverse covariance matrix are applied as targets. For exam-

ple, in the 30 industry portfolios dataset, the variance of GMV portfolio is equal to 0.219% while

the variance for the ICVARI , ICVARF and ICVARIF strategies are 0.173%, 0.142% and 0.137%,

respectively. In comparison to the strategies that use the covariance matrix estimators of Ledoit

and Wolf, the latter lead to lower variance than ICVARIF in half of the datasets while ICVARIF

dominates in the remaining.

The strategies ICRETI , ICRETF , ICRETIF and MV (2-norm) also lead to lower risk levels

than the GMV portfolio in four out of six datasets, even though they aim to improve out-of-sample

returns. Finally, the constrained portfolio ICVARI (cons) appears to attain similar risk levels to

the original MV (cons) portfolio. We deduce that no significant variance reduction can be achieved

by shrinking the constrained inverse covariance matrix.

4.3 Out-of-sample Sharpe ratios and certainty-equivalent returns

We now turn our focus on risk-adjusted returns. In Table 7, we present the out-of-sample Sharpe

ratio for the 16 portfolio strategies under study. We observe that the Sharpe ratio for the GMV

portfolio is lower than that of the strategies ICVARI , ICVARF and ICVARIF in most datasets.

The new strategies that exploit the positive autocorrelation in portfolio returns (ICRETI , ICRETF

and ICRETIF ) generally outperform GMV, LW (id), LW (1f) and all the variance-based portfolios

developed in this work. More importantly, the new return-based strategies result in considerably

higher Sharpe ratios than the 1/N rule in five out of six datasets with the difference being statistical

significant. 1/N only wins in the international indices dataset, but its superiority is not statistical

significant. This result shows that portfolio optimisation can be useful in practice extending the

contributions of Demiguel et al. (2009b) and Tu and Zhou (2011). We further observe that

ICRETIF results in the highest Sharpe ratios among the theory-based portfolios in the majority

of the datasets considered. For instance, it attains a Sharpe ratio of almost 29% in the 25 size

and book-to-market portfolios while TZ4, MEAN and MV (2-norm) follow with a Sharpe ratio of

14



around 25%, 24.5% and 21%, respectively. The only exception occurs for the dataset of stocks,

where ICRETI yields the highest Sharpe ratio.

We can draw at least two more conclusions from Table 7. First, in the presence of short-sale

constraints, the constrained portfolio ICRETI (cons) can be applied instead of MV (cons). The

former portfolio leads to considerably higher Sharpe ratios than 1/N . Second, when the number of

assets exceeds the size of the sample as in the last dataset, the generalised inverse WMP appears to

be an efficient replacement of Σ̂−1 in our framework. As we can see in the last column, the highest

Sharpe ratios are attained for ICRETI and ICRETIF .

The insights from the above discussion are also valid when we employ the CER measure instead

of SR to measure risk-adjusted returns. This is evident in Table 8 which reports, for γ = 3,

the CERs for each strategy. Nevertheless, we include these results in the paper for two reasons.

First, the CER metric is an out-of-sample analogue to the objective function (1). Clearly, the

portfolio strategies developed adapt well on this objective and are appealing to the mean-variance

investor. Second, the four-fund strategy of Tu and Zhou (2011) is constructed to maximise CER.

Yet, this strategy generally underperforms the portfolios ICVARI , ICVARF and ICVARIF due to

the magnitude of the estimation errors in the means.

4.4 Portfolio turnover

Table 9 contains the turnover generated by each strategy under consideration. Naturally, the 1/N

portfolio has the lowest turnover. We observe that, besides outperforming the GMV portfolio

in terms of risk and risk-adjusted returns, the portfolios ICVARI , ICVARF and ICVARIF also

offer lower levels of turnover. We further find that the high level of Sharpe ratio for the return-

based strategies developed in this work comes at the cost of high turnover. This is comparable

to that generated by the norm-constrained portfolio and the four-fund strategy of Tu and Zhou

(2011). However, when turnover is an issue, the portfolios ICVARI (cons) and ICRETI (cons)

can be applied instead. The constrained strategies offer significantly lower turnover than their

unconstrained counterparts. At the same time, they result in higher out-of-sample Sharpe ratios and

certainty-equivalent returns than both the 1/N strategy and the short-sale constrained minimum

variance portfolio MV (cons).

5 Conclusions

This paper focused on the estimation of the inverse covariance matrix in the context of optimal

portfolio choice. We derived analytical expressions which shed light on the circumstances under

which estimation errors in the inverse lead to a substantial deterioration in portfolio performance.

Based on our findings, we proposed a new framework for the estimation of the inverse that aims

to improve this performance. Our framework shrinks the sample inverse covariance matrix to a

target matrix which is less subject to estimation errors. We accounted for three different targets

and derived our shrinkage estimators using two non-parametric methods. The application of our
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estimators to the computation of the minimum variance weights led to a set of new portfolio

strategies. We investigated the performance of these strategies in several datasets of monthly

returns in terms of four metrics.

The estimation of the inverse covariance through the framework we developed offers several

advantages. First, the estimators are investor-oriented, i.e., they are optimised under portfolio

performance criteria rather statistical metrics. Second, the portfolio weights have an intuitive form

and are simple to compute. Third, our framework can easily accommodate a small sample size

or short-sale constraints. Fourth, the resulting portfolios perform very well out-of-sample. They

result in relatively low levels of variance and outperform several competing strategies in terms of

risk-adjusted returns.
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A Appendix: Mathematical Derivations

Proof of Proposition 1. Define the vector of m weights of the sample global minimum variance

(GMV) portfolio by:

ŵmin
m =

(
e1ŵ

min, ..., emŵ
min
)
, (A.1)

where {ei}i=1,...m is the standard base of Rm and 1 ≤ m < N . Ohkrin and Schmid (2006) show

that ŵmin
m follows an m-variate elliptical distribution with T − N + 1 degrees of freedom and

parameters wmin
m =

(
e1w

min, ..., emw
min
)

and
1

T −N + 1

Qm

1′NΣ−11N
where Qm = {e′iQej}i,j=1,...m

and Q = Σ−1 −
Σ−11N1′NΣ−1

1′NΣ−11N
. This implies that the mean and covariance matrix of the sample

GMV weights are given by:

E
(
ŵmin

)
= wmin and COV

(
ŵmin

)
=

1

T −N + 1

Q

1′NΣ−11N
(A.2)

It follows that the expected out-of-sample return on the GMV portfolio is simply:

E
((
ŵmin

)′
µ
)

=
(
wmin

)′
µ (A.4)

We proceed with the calculation of the expected out-of-sample variance of the excess return on

the GMV portfolio. Let ŵi = e′iŵ
min for i = 1, ..., N and Σ = {σij}i,j=1,...,N . Then

E
((
ŵmin

)′
Σŵmin

)
=

N∑
i=1

N∑
j=1

E (ŵiŵj)σij = tr
(
E
(
Ŵ
)

Σ
)
, (A.5)

where Ŵ = {ŵiŵj}i,j=1,...,N . The expectation of Ŵ can be derived using (A.2) as:

E
(
Ŵ
)

= {E (ŵiŵj)}i,j=1,...,N =
{
e′iCOV

(
ŵmin

)
ej + E (ŵi)E (ŵj)

}
i,j=1,...,N

(A.2)⇔

E
(
Ŵ
)

=
1

T −N + 1

Q

1′NΣ−11N
+ wmin

(
wmin

)′
(A.6)

Applying (A.6) to (A.5) gives

E(
(
ŵmin

)′
Σŵmin) = tr

(
1

T −N − 1

QΣ

1′NΣ−11N
+ wmin

(
wmin

)′
Σ

)

= tr

(
1

T −N − 1

1′NΣ−11NI − Σ−11N1′N(
1′NΣ−11N

)2 +
Σ−11N1′N(
1′NΣ−11N

)2
)

Simplifying the above expression, results in

E(
(
ŵmin

)′
Σŵmin) =

T − 2

T −N − 1

1

1′NΣ−11N
, (A.7)
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since tr
(
Σ−11N1′

)
= 1′Σ−11N . This completes the proof. �
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Table 1: Increase in the out-of-sample variance due to estimation errors

This table presents the increase in the out-of-sample variance of the global minimum variance portfolio when using
the ML estimator of the inverse covariance matrix (Σ̂−1) instead of its population counterpart. In particular, it

reports the quantity
σ̃2
min − σ2

min

σ2
min

=
N − 1

T −N − 1
in percentage terms for different values of the sample length (T )

and of the number of available risky assets (N ), where σ̃2
min and σ2

min are the expected out-of-sample variances of
the sample and true portfolios, respectively.

N

T 10 25 50 100

60 18.37 70.59 544.44 -
120 8.26 25.53 71.01 521.05
240 3.93 11.22 25.93 71.22
480 1.92 5.29 11.42 26.12
960 0.95 2.57 5.39 11.53

24000 0.04 0.10 0.20 0.41
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Table 2: Opportunity costs

This table presents the expected out-of-sample performance losses from using the global minimum variance portfolio
or the sample mean-variance portfolio instead of the optimal mean-variance portfolio. It reports the percentage
normalized opportunity cost 100 · OC(ŵmin, wmv)

/
U(wmv) for different sample lengths (T ) and numbers of assets

(N ), where ŵmin and wmv are respectively the weights of the sample global minimum variance and the parameter
certainty mean-variance portfolios. The opportunity cost is computed using equation (13) in the text. The table
accounts for two values for the relative risk aversion coefficient (γ = 1, 3), for the Sharpe ratio of the optimal mean
variance portfolio (SRmv = 0.2, 0.4) and for the mean excess returns (µ = 0.05 1N , 0.1 1N ), respectively. The
last column includes the normalised opportunity cost 100 · OC(ŵmv, wmv)

/
U(wmv) for the sample mean-variance

portfolio ŵmv computed using the relevant formula in Kan and Zhou (2007) (see equation (12) in the text).

Panel A: SRmv = 0.2

N T
Annual µ= 5% Annual µ= 10% 100 · OC(ŵmv, wmv)

U(wmv)γ = 1 γ = 3 γ = 1 γ = 3

10
60 95.11 80.45 87.26 49.06 847.12
120 95.09 80.34 87.02 48.07 297.64
240 95.07 80.29 86.91 47.65 126.67

25
60 95.25 81.02 88.54 54.16 6589.91
120 95.13 80.53 87.44 49.76 1168.01
240 95.09 80.37 87.09 48.36 388.37

50
60 96.54 86.16 100.11 100.43 1053877.78
120 95.26 81.02 88.55 54.20 6011.49
240 95.13 80.53 87.45 49.80 1132.46

100
120 96.48 85.91 99.54 98.15 676749.12
240 95.26 81.02 88.56 54.22 5751.55

Panel B: SRmv = 0.4

N T
Annual µ= 5% Annual µ= 10% 100 · OC(ŵmv, wmv)

U(wmv)γ = 1 γ = 3 γ = 1 γ = 3

10
60 98.72 94.87 96.27 85.10 244.02
120 98.72 94.87 96.26 85.04 84.87
240 98.72 94.86 96.25 85.01 35.91

25
60 98.73 94.91 96.35 85.42 1899.98
120 98.72 94.88 96.29 85.14 333.65
240 98.72 94.87 96.26 85.05 109.98

50
60 98.81 95.23 97.08 88.31 298669.44
120 98.73 94.91 96.35 85.42 1724.70
240 98.72 94.88 96.29 85.14 322.20

100
120 98.80 95.21 97.04 88.17 191551.75
240 98.73 94.91 96.36 85.42 1646.14
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Table 3: Number of observations required for the estimation of the mean-variance
portfolio to outperform the global minimum variance portfolio

This table reports the number of historical observations required for the estimation of the sample mean-variance
portfolio in order to outperform the global minimum variance portfolio. This value is calculated by comparing the
analytical expressions of the opportunity cost for each portfolio choice method (see equations (12) and (13) in the
text). The table considers four numbers of assets (N ). It also accounts for two values for the relative risk aversion
coefficient (γ = 1, 3), for the Sharpe ratio of the optimal mean variance portfolio (SRmv = 0.2, 0.4) and for the mean
excess returns (µ = 0.05 1N , 0.1 1N ), respectively.

SRmv = 0.2 SRmv = 0.4

N Annual µ= 5% Annual µ= 10% Annual µ= 5% Annual µ= 10%
γ = 1 γ = 3 γ = 1 γ = 3 γ = 1 γ = 3 γ = 1 γ = 3

10 309 323 335 366 108 109 110 113
25 764 797 828 906 260 263 265 272
50 1521 1587 1650 1804 514 519 524 538
100 3035 3167 3293 3602 1021 1031 1041 1069
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Table 4: List of portfolio strategies

This table reports the portfolio strategies considered in the empirical analysis. Panel A lists strategies from
the literature while panel B outlines the strategies developed in the paper. For the variance-based portfolios,
the estimator of the inverse covariance matrix is constructed to minimise out-of-sample portfolio variance using
a cross-validation technique. For the return-based strategies, the estimator of the inverse covariance matrix is
constructed to maximise the last month’s portfolio return.

Abbreviation Description

Panel A: Strategies from the literature

MEAN Sample mean-variance portfolio

GMV Sample global minimum variance portfolio

1/N Equal-weighted portfolio

LW (id) Minimum variance portfolio that results from shrinking the covariance matrix to the identity
(Ledoit and Wolf 2004a)

LW(1f) Minimum variance portfolio that results from shrinking the covariance matrix to the covariance
matrix from an 1-factor model. (Ledoit and Wolf 2003)

MV (cons) Short-sale constrained minimum variance portfolio

MV (2-norm) 2-norm constrained minimum variance portfolio that exploits the positive autocorrelation of
portfolio returns (DeMiguel et al. 2009b)

TZ4 The linear combination of MEAN, GMV, 1/N portfolios and the risk-free asset proposed in
Tu and Zhou (2011).

Panel B: Strategies developed in the paper

Variance-based portfolios

ICVARI Minimum variance portfolio that results from shrinking the ML estimator of the inverse co-
variance matrix to the identity, under the minimum variance criterion.

ICVARF Minimum variance portfolio that results from shrinking the ML estimator of the inverse co-
variance matrix to the inverse covariance matrix from a 1-factor model, under the minimum
variance criterion.

ICVARIF Minimum variance portfolio that results from shrinking the ML estimator of the inverse co-
variance matrix to a linear combination the identity and the inverse covariance matrix from
a 1-factor model, under the minimum variance criterion.

Return-based portfolios

ICRETI Minimum variance portfolio that results from shrinking the ML estimator of the inverse co-
variance matrix to the identity, under the return-based criterion.

ICRETF Minimum variance portfolio that results from shrinking the ML estimator of the inverse covari-
ance matrix to the inverse covariance matrix from a 1-factor model, under the return-based
criterion.

ICRETIF Minimum variance portfolio that results from shrinking the ML estimator of the inverse co-
variance matrix to a linear combination of the identity and the inverse covariance matrix from
a 1-factor model, under the return-based criterion.

Short-sale constrained portfolios

ICVARI (cons) Minimum variance portfolio that results from shrinking the short-sale constrained estimator
of the inverse covariance matrix to the identity, under the minimum variance criterion.

ICRETI (cons) Minimum variance portfolio that results from shrinking the short-sale constrained estimator
of the inverse covariance matrix to the identity, under the return-based criterion.
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Table 5: List of datasets

This table contains the datasets of monthly excess returns that we employ in the empirical analysis. For
the computation of excess returns, the 30-days T-bill is employed. For each dataset we also report its ab-
breviation and the time period spanned. The source of the first 5 datasets is Kenneth French’s website
(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html). Data for the S&P 500 stocks was
obtained by Reuters.

Abbreviation Time Period Description

6FF 07/1963-12/2008 6 industry portfolios

10Ind 07/1963-12/2008 10 size and book-to-market portfolios

16Int 01/1977-12/2008 16 international indices

25FF 07/1963-12/2008 25 size and book-to-market portfolios

30Ind 07/1963-12/2008 30 Industry portfolios

100S&P 01/1981-09/2009 100 randomly selected S&P 500 stocks
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Table 6: Variances

This table reports in percentage terms the monthly out-of-sample variance of the excess portfolio returns for each
strategy of Table 4 and for each dataset of Table 5. It also includes in brackets the p-value that the variance of each
strategy differs from that of the GMV portfolio. The p-values are computed using the stationary bootstrap approach
of Politis and Romano (1994) and the recommendation of Ledoit and Wolf (2008) with an expected block size of 5.

6FF 10Ind 16Int 25FF 30Ind 100S&P

Panel A: Strategies from the literature

Mean 6.7527 5.7518 13.5067 68.5813 87.8512 143.5053
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

GMV 0.1567 0.1374 0.2009 0.1833 0.2188 0.2493
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

1/N 0.2430 0.1862 0.1948 0.2649 0.2317 0.2178
(0.00) (0.00) (0.52) (0.00) (0.31) (0.08)

LW (id) 0.1584 0.1269 0.1672 0.1378 0.1296 0.1361
(0.56) (0.00) (0.00) (0.00) (0.00) (0.00)

LW (1f) 0.1559 0.1295 0.1670 0.1471 0.1285 0.1349
(0.45) (0.00) (0.00) (0.00) (0.00) (0.00)

MV (cons) 0.1901 0.1366 0.1653 0.1852 0.1391 0.1276
(0.00) (0.83) (0.00) (0.79) (0.00) (0.00)

MV (2-norm) 0.1703 0.1473 0.1940 0.1754 0.1601 0.2178
(0.00) (0.01) (0.36) (0.15) (0.00) (0.07)

TZ4 1.4857 0.3071 0.4582 1.1577 0.3059 0.5786
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Panel B: Strategies developed in the paper

Variance-based portfolios

ICVARI 0.1563 0.1364 0.1743 0.1660 0.1725 0.1774
(0.74) (0.63) (0.00) (0.00) (0.00) (0.00)

ICVARF 0.1554 0.1323 0.1693 0.1650 0.1422 0.1561
(0.19) (0.01) (0.00) (0.00) (0.00) (0.00)

ICVARIF 0.1551 0.1321 0.1618 0.1515 0.1369 0.1295
(0.29) (0.04) (0.00) (0.00) (0.00) (0.00)

Return-based portfolios

ICRETI 0.1734 0.1496 0.1954 0.1927 0.1934 0.2094
(0.00) (0.00) (0.42) (0.06) (0.00) (0.00)

ICRETF 0.1630 0.1352 0.1795 0.2008 0.1758 0.2012
(0.09) (0.43) (0.00) (0.02) (0.00) (0.00)

ICRETIF 0.1695 0.1435 0.1814 0.2006 0.1648 0.1784
(0.01) (0.17) (0.02) (0.03) (0.00) (0.00)

Short-sale constrained portfolios

ICVARI (cons) 0.1903 0.1388 0.1646 0.1855 0.1414 0.1278
(0.00) (0.00) (0.00) (0.00) (0.03) (0.00)

ICRETI (cons) 0.2027 0.1513 0.1813 0.2129 0.1793 0.1480
(0.00) (0.01) (0.03) (0.00) (0.00) (0.00)
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Table 7: Sharpe ratios

This table reports in percentage terms the monthly out-of-sample Sharpe ratios for each portfolio strategy of Table
4 and for each dataset of Table 5. It also includes in brackets the p-value that the Sharpe ratio of each strategy
differs from that of the 1/N portfolio. The p-values are computed using the studentized circular bootstrap of Ledoit
and Wolf (2008) with an expected block size of 5.

6FF 10Ind 16Int 25FF 30Ind 100S&P

Panel A: Strategies from the literature

Mean 22.9419 2.2160 8.4165 24.5826 4.9673 -9.0485
(0.02) (0.21) (0.10) (0.04) (0.53) (0.02)

GMV 20.3735 13.1767 13.8147 20.2081 6.2139 13.8470
(0.01) (0.39) (0.12) (0.04) (0.60) (0.97)

1/N 10.1801 9.5254 20.2858 10.3339 8.7357 13.5740
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

LW (id) 15.4522 13.3689 18.2761 18.8106 11.2836 6.4553
(0.07) (0.21) (0.47) (0.03) (0.54) (0.26)

LW (1f) 19.2836 13.8102 15.1082 20.2838 11.7729 8.9997
(0.01) (0.28) (0.18) (0.03) (0.54) (0.43)

MV (cons) 11.1360 11.1357 18.7276 10.8669 10.2177 10.8830
(0.60) (0.54) (0.58) (0.81) (0.61) (0.47)

MV (2-norm) 23.1322 18.3923 19.0307 21.5498 18.1341 13.5759
(0.00) (0.00) (0.53) (0.00) (0.01) (0.23)

TZ4 20.2322 6.0897 13.3063 25.0833 6.7939 0.4040
(0.04) (0.34) (0.13) (0.02) (0.66) (0.06)

Panel B: Strategies developed in the paper

Variance-based portfolios

ICVARI 19.4444 13.2175 18.2894 17.8754 9.4415 11.2871
(0.01) (0.25) (0.44) (0.03) (0.81) (0.58)

ICVARF 19.6185 14.3242 15.1362 18.8909 11.2191 6.5407
(0.02) (0.25) (0.23) (0.10) (0.64) (0.40)

ICVARIF 18.1596 14.5096 18.1618 17.2551 12.1511 7.6968
(0.02) (0.11) (0.48) (0.07) (0.40) (0.28)

Return-based portfolios

ICRETI 22.7646 17.9636 17.1046 21.5872 14.0824 19.0613
(0.00) (0.01) (0.23) (0.01) (0.18) (0.29)

ICRETF 17.1273 14.9796 13.7175 23.6955 12.3222 9.3374
(0.10) (0.21) (0.10) (0.02) (0.51) (0.57)

ICRETIF 23.2405 19.2813 18.6364 28.9572 21.1849 14.2316
(0.00) (0.00) (0.57) (0.00) (0.01) (0.90)

Short-sale constrained portfolios

ICVARI (cons) 11.0855 11.3612 19.9041 11.0011 10.2228 10.8880
(0.59) (0.45) (0.89) (0.76) (0.61) (0.51)

ICRETI (cons) 14.0257 13.6725 19.8520 14.8786 15.0144 13.3534
(0.00) (0.03) (0.79) (0.00) (0.00) (0.92)
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Table 8: Certainty-equivalent returns

This table reports in percentage terms the monthly certainty-equivalent return for each portfolio strategy of Table
4 in each dataset of Table 5. It also includes in brackets the p-value that the variance of each strategy differs
from that of the 1/N portfolio. The p-values are computed using the stationary bootstrap approach of Politis and
Romano (1994) and the recommendation of Ledoit and Wolf (2008) with an expected block size of 5. The relative
risk aversion coefficient is equal to 3.

6FF 10Ind 16Int 25FF 30Ind 100S&P

Panel A: Strategies from the literature

Mean -4.1674 -8.0962 -17.1669 -82.5141 -127.1210 -226.0975
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

GMV 0.5715 0.2823 0.3179 0.5902 -0.0375 0.3174
(0.00) (0.09) (0.01) (0.00) (0.39) (0.96)

1/N 0.1373 0.1317 0.6031 0.1345 0.0729 0.3068
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

LW (id) 0.3774 0.2859 0.4965 0.4916 0.2118 0.0329
(0.00) (0.02) (0.12) (0.00) (0.15) (0.07)

LW (1f) 0.5276 0.3027 0.3669 0.5573 0.2293 0.1282
(0.00) (0.04) (0.01) (0.00) (0.15) (0.23)

MV (cons) 0.2004 0.2067 0.5135 0.1899 0.1724 0.1974
(0.20) (0.21) (0.16) (0.37) (0.21) (0.29)

MV (2-norm) 0.6992 0.4850 0.5472 0.6394 0.4855 0.3069
(0.00) (0.00) (0.32) (0.00) (0.00) (0.04)

TZ4 0.2375 -0.1231 0.2134 0.9623 -0.0831 -0.8371
(0.79) (0.02) (0.07) (0.01) (0.17) (0.00)

Panel B: Strategies developed in the paper

Variance-based portfolios

ICVARI 0.5343 0.2836 0.5021 0.4793 0.1334 0.2093
(0.00) (0.02) (0.10) (0.00) (0.46) (0.33)

ICVARF 0.5402 0.3226 0.3688 0.5198 0.2098 0.0243
(0.00) (0.03) (0.02) (0.00) (0.25) (0.11)

ICVARIF 0.4825 0.3292 0.4879 0.4443 0.2442 0.0827
(0.00) (0.01) (0.10) (0.00) (0.06) (0.07)

Return-based portfolios

ICRETI 0.6878 0.4704 0.4630 0.6586 0.3292 0.5581
(0.00) (0.00) (0.05) (0.00) (0.01) (0.03)

ICRETF 0.4470 0.3480 0.3119 0.7606 0.2530 0.1170
(0.01) (0.01) (0.00) (0.00) (0.16) (0.30)

ICRETIF 0.7025 0.5152 0.5216 0.9961 0.6128 0.3335
(0.00) (0.00) (0.28) (0.00) (0.00) (0.85)

Short-sale constrained portfolios

ICVARI (cons) 0.1981 0.2151 0.5606 0.1956 0.1723 0.1975
(0.21) (0.15) (0.44) (0.36) (0.20) (0.28)

ICRETI (cons) 0.3274 0.3049 0.5734 0.3672 0.3668 0.2917
(0.00) (0.00) (0.47) (0.00) (0.00) (0.85)
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Table 9: Portfolio turnovers

This table reports the monthly turnover for each portfolio strategy of Table 4 and for each dataset of Table 5.

6FF 10Ind 16Int 25FF 30Ind 100S&P

Panel A: Strategies from the literature

Mean 16.9883 7.7554 15.8747 336.7108 341.1199 568.6349
GMV 0.4082 0.3376 0.4345 1.8737 1.3702 1.9252
1/N 0.0163 0.0233 0.0329 0.0182 0.0289 0.0553
LW (id) 0.1346 0.1798 0.1942 0.4829 0.4442 0.3922
LW (1f) 0.3544 0.2568 0.2599 0.9287 0.4687 0.4389
MV (cons) 0.0828 0.0979 0.1231 0.1306 0.1268 0.2422
MV (2-norm) 1.7464 1.0726 1.2014 4.1989 2.4231 0.0553
TZ4 3.7526 0.6827 0.7270 5.0123 1.5983 2.7856

Panel B: Strategies developed in the paper

Variance-based portfolios

ICVARI 0.3480 0.2653 0.2669 1.2797 0.8550 1.0008
ICVARF 0.3950 0.2725 0.2879 1.3371 0.6503 0.8002
ICVARIF 0.3452 0.2435 0.2463 0.9270 0.5342 0.5548

Return-based portfolios

ICRETI 2.0196 1.2040 1.3920 5.0754 3.1508 2.4612
ICRETF 1.9160 0.9370 1.0899 4.5742 2.8014 2.8219
ICRETIF 2.1959 1.2867 1.4260 4.4276 2.7769 2.1472

Short-sale constrained portfolios

ICVARI (cons) 0.0883 0.0955 0.1227 0.1352 0.1323 0.2412
ICRETI (cons) 0.5995 0.6293 0.6703 0.7826 0.7513 0.9242
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