Cross-Sectional Anomalies

Ronnie Sadka Boston College sadka@bc.edu

What is a cross-sectional anomaly?

- An unexplained return spread
 - Significant risk-adjusted return (alpha)
 - Returns are outside the no-arbitrage bounds; transaction costs not high enough; idiosyncratic risk
- Explanation typically involves some aspect of investor behavior
 - Underreaction/overreaction
 - Rejection of market efficiency

What are some popular anomalies?

- Price-based anomalies
 - Size, momentum, reversal, seasonalities

Accounting-based anomalies
 Value, PEAD, accruals

- Other anomalies
 - Analysts, volume/liquidity, news
 - Increased use of proprietary datasets

How has the literature responded?

Compensation for unknown beta risk

- Introduction of new risk factors
 - Subject to some critic (several factors explain value/size)

Conditional beta models (not with great success)

Liquidity risk (momentum, PEAD, analysts)

Do the anomalies survive trading costs?
 Often anomalies involve significant rebalancing and re-weighting
 Manuarka document anomalies are costly.

Many works document anomalies are costly

The test of time

Has the anomaly survived post-publication?
Is so, then perhaps represents risk
If not, then market efficiency

 Anomalies disappeared over time due to increased liquidity and hedge-fund activity

Investor Horizon

- Some argue that cross-sectional anomalies can be represented by a beta model
- Consider long-horizon beta pricing: Should assessment of risk be related to the underlying investment horizon?
 - Delayed price reaction
 - Factor dynamics
 - Heterogeneous investor horizon (Pension funds, endowments, hedge funds, FoF)
- Are there "long-horizon" factors and "shorthorizon" factors?

Data and Measures

NYSE/AMEX/NASDAQ, 1963–2010

Factors

- MKT, SMB, HML, UMD, LIQ
- Factors of horizon q
 - Constructed from monthly factors
 - Excess return factors
 - $f_{q,t}^{MKT} = \prod_{i=0}^{q-1} (1 + r_{m,t-i}) \prod_{i=0}^{q-1} (1 + r_{f,t-i})$
 - $f_{q,t}^{SMB} = \prod_{i=0}^{q-1} (1 + r_{s,t-i}) \prod_{i=0}^{q-1} (1 + r_{B,t-i})$

How do we treat the liquidity factor?

 $LIQ_{t,q} = Liquidity_t - E_{t-q}[Liquidity_t]$

Variance Ratio Tests

$$VR(q) = \frac{Var(r_{q,t})}{q \cdot Var(r_t)}$$

- VR(q)=1
 independent
- VR(q)>1 persistent
- VR(q)<1 transitory

Some factors exhibit long-run risks

Price Delay and Systematic Risk

> Example: One-factor model, one-period delay

 Relation between one-period horizon risk and q-period horizon risk

$$\beta_q = \beta_1 + \frac{q-1}{q} \frac{1}{VR(q)Var(f_1)} Cov(\varepsilon_{1,t}, f_{1,t-1})$$

- > Additional effects
 - Longer delays
 - Discrete compounding

> What horizon is relevant for investors?

Pricing of Horizon Betas

Horizon	Marke	et Beta	SMB	Beta	HM	L Beta	UMI) Beta	Liq	Beta	Liq	Beta
(q)	Return	Spread	Return	Spread	Return	Spread	Return	Spread	Return	Spread	FF4 A Spi	Alpha read
1	1.50	[0.58]	-1.20	[-0.35]	1.82	[0.65]	-2.74	[-1.17]	3.35	[1.73]	4.67	[2.33]
[5,6,7]	4.56	[2.34]	-1.41	[-0.48]	2.54	[1.05]	0.46	[0.23]	4.17	[2.33]	4.81	[2.63]
[11,12,13]	3.51	[1.94]	-1.13	[-0.41]	3.81	[1.69]	-0.58	[-0.29]	-0.23	[-0.14]	0.02	[0.01]
[23,24,25]	0.73	[0.39]	1.73	[0.74]	4.95	[2.29]	0.41	[0.22]	-0.68	[-0.44]	-0.83	[-0.52]
[35,36,37]	2.22	[1.14]	0.50	[0.24]	4.53	[2.17]	-0.94	[-0.48]	0.89	[0.54]	0.94	[0.55]
[47,48,49]	1.83	[0.94]	1.39	[0.65]	2.02	[1.13]	-3.04	[-1.57]	0.27	[0.17]	0.40	[0.25]
[59,60,61]	0.19	[0.09]	1.88	[0.89]	1.56	[0.81]	-2.63	[-1.44]	0.53	[0.34]	0.47	[0.30]

Liquidity is a short-run factor

- Market is a medium-run factor
- HML is a long-run factor
- SMB and UMD are not priced risk factors

Term Structure of Risk Premia

- Liquidity is a short-run factor
 Market is a medium-run factor
- HML is a long-run factor

	(1)	(2)	(3)	(4)
MKT(1)	-0.10			
	[-1.29]			
MKT(6)	0.03			
	[0.39]			
MKT(12)	0.30			0.13
	[0.85]			[0.39]
HML(1)		0.08		
HMI (1 2)		[0.94]		
1 11v1L(1 <i>L</i>)		-0.01 [-0.08]		
HML(24)		0.16		0.21
· · ·		[2.62]		[3.29]
LIQ(1)			0.20	0.21
IIO(2)			[1.77]	[1.87]
LIQ(3)			0.59	
LIO(6)			-0.04	
~()			[-0.57]	
Log(Cap)	0.13	-0.06	-0.11	0.07
	[0.47]	[-1.11]	[-1.34]	[0.30]
ВМ	0.04	0.01	-0.29	-0.04 1[_0_50]
Ret(12.2)	0.57	0.39	0.71	0.32
	[2.46]	[4.09]	[1.77]	[1.54]

Conditioning Systematic Risk on Characteristics

- Condition each factor exposure on size, b/m, momentum, and historical own beta
- Estimate per firm using entire sample

 Cross-sectional regressions (standardized)

Investor Horizon – Cont'd

 Some characteristics might be priced due to their information about betas

 A return spread could be a risk-factor for one investor and an alpha for another

- The case of liquidity risk
- Is value a characteristic of a factor?

Summary and Conclusion

Exciting research in the cross-section of returns

 Probably a bit of both risk and mispricing; also investor flow sentiment

Alpha or premium for systematic risk?